Energy-level displacement of excited *np* **states of kaonic hydrogen**

A. N. Ivanov,^{1,2,3,*} M. Cargnelli,² M. Faber,¹ H. Fuhrmann,² V. A. Ivanova,³ J. Marton,² N. I. Troitskaya,³ and J. Zmeskal²

1 *Atominstitut der Österreichischen Universitäten, Arbeitsbereich Kernphysik und Nukleare Astrophysik,*

Technische Universität Wien, Wiedner Hauptstrasse 8-10, A-1040 Wien, Austria

2 *Stefan Meyer Institut für Subatomare Physik der Österreichische Akademie der Wissenschaften, Boltzmanngasse 3, A-1090,*

Wien, Austria

3 *Department of Nuclear Physics, State Polytechnic University, 195251 St. Petersburg, Russian Federation* $(Received 6 November 2004; published 27 May 2005)$

We compute the energy-level displacement of the excited *np* states of kaonic hydrogen within the quantum field theoretic and relativistic covariant model of strong low-energy $\bar{K}N$ interactions suggested by [Ivanov *et* a . Eur. Phys. J. A 21, 11 (2004)]. For the width of the energy-level of the excited 2p state of kaonic hydrogen, caused by strong low-energy interactions, we find $\Gamma_{2p}=2$ meV=3×10¹² s⁻¹. This result is important for the theoretical analysis of the x-ray yields in kaonic hydrogen.

DOI: 10.1103/PhysRevA.71.052508 PACS number(s): 36.10.Gv, 31.15.Ar, 32.30.Rj, 25.80.Nv

I. INTRODUCTION

Recently $[1]$ we have computed the energy-level displacement of the ground state of kaonic hydrogen,

$$
- \epsilon_{1s}^{(\text{theor})} + i \frac{\Gamma_{1s}^{(\text{theor})}}{2} = (-203 \pm 15) + i(113 \pm 14) \text{ eV}.
$$
\n(1.1)

This result has been obtained within a quantum field theoretic and relativistic covariant model of strong low-energy *KN* interactions near threshold of K^-p scattering, based on the dominant role of strange resonances $\Lambda(1405)$ and $\Sigma(1750)$ in the *s* channel of low-energy elastic and inelastic *K*−*p* scattering and the exotic four-quark (or *KK* molecules) scalar states $a_0(980)$ and $f_0(980)$ in the *t* channel of lowenergy elastic *K*−*p* scattering.

The theoretical result (1.1) agrees well with recent experimental data obtained by the DEAR Collaboration $[2]$,

$$
-\epsilon_{1s}^{(expt)} + i\frac{\Gamma_{1s}^{(expt)}}{2} = (-194 \pm 41) + i(125 \pm 59) \text{ eV}.
$$
\n(1.2)

A systematic analysis of corrections, caused by electromagnetic and QCD isospin-breaking interactions, to the energylevel displacements of the *ns* states of kaonic hydrogen, where n is the principal quantum number, has been recently carried out by Meißner, Raha, and Rusetsky $[3]$ within effective field theory by using the nonrelativistic effective Lagrangian approach based on chiral perturbation theory (ChPT) by Gasser and Leutwyler [4,5]. For the *s*-wave amplitude of K^-N scattering near threshold, computed in [1,6], the energy-level displacement of the ground state of kaonic hydrogen obtained by Meißner *et al.* [3] is equal to

$$
- \epsilon_{1s}^{(\text{theor})} + i \frac{\Gamma_{1s}^{(\text{theor})}}{2} = (-266 \pm 17) + i(177 \pm 16) \text{ eV}.
$$

This agrees well with both our theoretical result (1.1) and experimental data (1.2) within 1.5 standard deviations.

In this paper, we compute the energy-level displacement of the excited *np* states of kaonic hydrogen, where *n* is the principal quantum number and *p* corresponds to the excited state with $\ell = 1$. The knowledge of the energy-level displacement of the excited *np* states of kaonic hydrogen is very important for the understanding of the accuracy of experimental measurements of the energy-level displacement of the ground state of kaonic hydrogen and the theoretical analysis of the *x*-ray yields in kaonic hydrogen $[2,7-13]$.

The paper is organized as follows. In Sec. II we extend our approach to the description of low-energy *K*−*p* interaction in the *s*-wave state to the analysis of the low-energy *K*−*p* interaction in the *p*-wave state with a total angular moment $J=3/2$ and $J=1/2$, respectively. We compute the *p*-wave scattering lengths of elastic *K*−*p* scattering and the energylevel shift of the *np* excited state of kaonic hydrogen. In Sec. III, we compute the *p*-wave scattering lengths of inelastic reactions $K^-p \to Y\pi$, where $Y\pi = \Sigma^-\pi^+$, $\Sigma^+\pi^-$, $\Sigma^0\pi^0$, and $\Lambda^{0} \pi^{0}$. We compute the energy-level width of the *np* excited state of kaonic hydrogen. For the 2*p* state of kaonic hydrogen, we get $\Gamma_{2p}=2$ meV= 3×10^{12} s⁻¹. The rate of the hadronic decays of kaonic hydrogen from the *np* excited state is important for the theoretical analysis of the x-ray yields in kaonic hydrogen, which are the main experimental tool for the measurement of the energy-level displacement of the ground state of kaonic hydrogen $[2]$. In the Conclusion, we discuss the obtained results.

II. ENERGY-LEVEL DISPLACEMENT OF THE *n*ø **EXCITED STATES OF KAONIC HYDROGEN: GENERAL FORMULAS**

According to $[14]$, the energy-level displacement of the *Electronic address: ivanov@kph.tuwien.ac.at excited *n* ℓ states of kaonic hydrogen can be defined by

$$
-\epsilon_{n\ell} + i\frac{\Gamma_{n\ell}}{2} = \frac{1}{2\ell+1} \sum_{m=-\ell}^{\ell} \int \frac{d^3k}{(2\pi)^3} \frac{\Phi_n^{\dagger}(\boldsymbol{k})}{\sqrt{2E_{K-}(\boldsymbol{k})2E_p(\boldsymbol{k})}} \int \frac{d^3q}{(2\pi)^3} \frac{\Phi_{n\ell}(q)}{\sqrt{2E_{K-}(q)2E_p(q)}} \times \int \int \frac{d\Omega_{\vec{k}}}{\sqrt{4\pi}} \frac{d\Omega_{\vec{q}}}{\sqrt{4\pi}} Y_{\ell m}^{\ast}(\vartheta_{\vec{k}},\varphi_{\vec{k}}) M[\boldsymbol{K}(\vec{q})p(-\vec{q},\sigma_p) \to \boldsymbol{K}(\vec{\boldsymbol{k}})p(-\vec{\boldsymbol{k}},\sigma_p)] Y_{\ell m}(\vartheta_{\vec{q}},\varphi_{\vec{q}}), \tag{2.1}
$$

where $M[K(\vec{q})p(-\vec{q}, \sigma_p) \rightarrow K(\vec{k})p(-\vec{k}, \sigma_p)]$ is the amplitude of elastic K^-p scattering and $\Phi_{n\ell}(k)$ is a radial wave function of kaonic hydrogen in the $n\ell$ excited state in momentum representation. It is defined by $[14]$

$$
\Phi_{n\ell}(k) = \sqrt{4\pi} \int_0^\infty j_\ell(kr) R_{n\ell}(r) r^2 dr,\tag{2.2}
$$

where $j_{\ell}(kr)$ are spherical Bessel functions [15] and $R_{n\ell}(r)$ is a radial wave function of kaonic hydrogen in the coordinate representation $|16|$,

$$
R_{n\ell}(r) = -\frac{2}{n^2} \sqrt{\frac{(n-\ell-1)!}{[(n+\ell)!]^3 a_B^3}} \left(\frac{2}{n} \frac{r}{a_B}\right)^{\ell} e^{-r/n a_B} L_{n+\ell}^{2\ell+1} \left(\frac{2}{n} \frac{r}{a_B}\right).
$$
\n(2.3)

Here $L_{n+\ell}^{2\ell+1}(\rho)$ are the generalized Laguerre polynomials given by $\lceil 16 \rceil$

$$
L_{n+\ell}^{2\ell+1}(\rho) = (-1)^{2\ell+1} \frac{(n+\ell)!}{(n-\ell-1)!} \rho^{-(2\ell+1)}
$$

$$
\times e^{\rho} \frac{d^{n-\ell-1}}{d\rho^{n-\ell-1}}(\rho^{n+\ell}e^{-\rho}), \qquad (2.4)
$$

where $p=r/na_B$ and $a_B=1/\alpha\mu=83$ fm is the Bohr radius of kaonic hydrogen with $\mu = m_K m_N/(m_K + m_N) = 324$ MeV, and α =1/137.036 are the reduced mass of the *K*−*p* pair, computed for m_K =494 MeV and m_N =940 MeV, and the finestructure constant, respectively. Spherical harmonics $Y_{\ell m}(\vartheta,\varphi)$ are normalized by

$$
\int d\Omega Y_{\ell'm'}^*(\vartheta,\varphi) Y_{\ell m}(\vartheta,\varphi) = \delta_{\ell'\ell} \delta_{m'm},
$$
 (2.5)

where $d\Omega$ =sin $\partial d\partial d\varphi$ is a volume element of solid angle.

In Eq. (2.1), due to the wave functions $\Phi_{n\ell}^*(k)$ and $\Phi_{n\ell}(q)$ the integrand of the momentum integrals is concentrated at momenta of order of $k \sim q \sim 1/na_B = \alpha \mu / n = 2.4/n$ MeV. Therefore, the amplitude of elastic *K*−*p* scattering can be defined in the low-energy limit at $k, q \rightarrow 0$. Since in the lowenergy limit there is no spin flip in the transition K^- +*p* [→]*K*[−] ⁺*p*, the amplitude of low-energy elastic *^K*−*^p* scattering can be determined by $[17-19]$ (see also $[14]$),

$$
M[K^{-}(\vec{q})p(-\vec{q},\sigma_{p}) \to K^{-}(\vec{k})p(-\vec{k},\sigma_{p})]
$$

\n
$$
= 8\pi\sqrt{s} \sum_{\ell'=0}^{\infty} [(\ell'+1)f_{\ell'+}(\sqrt{kq}) + \ell'f_{\ell'-}(\sqrt{kq})]P_{\ell'}(\cos\vartheta)
$$

\n
$$
= 8\pi\sqrt{s} \sum_{\ell'=0}^{\infty} [(\ell'+1)f_{\ell'+}(\sqrt{kq}) + \ell'f_{\ell'-}(\sqrt{kq})]
$$

\n
$$
\times \sum_{m'=-\ell'}^{\ell'} \frac{4\pi}{2\ell'+1} Y^{*}_{\ell'm'}(\vartheta_{\vec{q}},\varphi_{\vec{q}})Y_{\ell'm'}(\vartheta_{\vec{k}},\varphi_{\vec{k}}), \qquad (2.6)
$$

where \sqrt{s} is the total energy in the *s* channel of K^-p scattering, $P_{\ell'}(\cos \vartheta)$ are Legendre polynomials [15], and ϑ is the angle between the relative momenta \vec{k} and \vec{q} . The amplitudes $f_{\ell'_{+}}(\sqrt{kq})$ and $f_{\ell'}_{-}(\sqrt{kq})$ describe elastic $K^{-}p$ scattering in the states with a total angular momentum $J = \ell' + 1/2$ and $J = \ell'$ −1/2, respectively. They are defined by

$$
f_{\ell'+}(\sqrt{kq}) = \frac{1}{2i\sqrt{kq}} [\eta_{\ell'+}(\sqrt{kq})e^{+2i\delta_{\ell'+}(\sqrt{kq})} - 1],
$$

$$
f_{\ell'-}(\sqrt{kq}) = \frac{1}{2i\sqrt{kq}} [\eta_{\ell'-}(\sqrt{kq})e^{+2i\delta_{\ell'-}(\sqrt{kq})} - 1], \quad (2.7)
$$

where $\eta_{\ell' \pm}(\sqrt{kq})$ and $\delta_{\ell' \pm}(\sqrt{kq})$ are inelasticities and phase shifts of elastic K^-p scattering [17–19].

Near threshold, the amplitudes $f_{\ell'+\lambda}(kq)$ and $f_{\ell'-\lambda}(kq)$ possess the real and imaginary parts. The real parts of the amplitudes $f_{\ell'+}(\sqrt{kq})$ and $f_{\ell'}(\sqrt{kq})$ are defined by the ℓ' -wave scattering lengths of K^-p scattering [14,18],

Re
$$
f_{\ell' +}(\sqrt{kq}) = a_{\ell' +}^{K-p} (kq)^{\ell'}
$$
,
Re $f_{\ell' -}(\sqrt{kq}) = a_{\ell'}^{K-p} (kq)^{\ell'}$. (2.8)

Using Eq. (2.8) for the shift of the energy-level of the $n\ell$ excited state of kaonic hydrogen, we obtain $[14]$

$$
\epsilon_{n\ell} = -\frac{2\pi}{\mu} \frac{(\ell+1)a_{\ell+}^{K^-p} + \ell a_{\ell-}^{K^-p}}{2\ell+1} \times \left| \int \frac{d^3k}{(2\pi)^3} \sqrt{\frac{m_K m_N}{E_K^-(k)E_p(k)}} k^{\ell} \Phi_{n\ell}(k) \right|^2.
$$
 (2.9)

The imaginary parts of the amplitudes $f_{\ell'+}(\sqrt{kq})$ and $f_{\ell}(\sqrt{kq})$ are defined by inelastic channels $K^-p \to \Sigma^- \pi^+,$ $K^-p \to \Sigma^+\pi^-$, $K^-p \to \Sigma^0\pi^0$, and $K^-p \to \Lambda^0\pi^0$. According to

[14], the width $\Gamma_{n\ell}$ of the energy-level of the $n\ell$ excited state of kaonic hydrogen is given by

$$
\Gamma_{n\ell} = \frac{4\pi}{\mu} \sum_{\gamma_{\pi}} \left[\frac{(\ell+1)a_{\ell+}^{\gamma_{\pi}} + \ell a_{\ell-}^{\gamma_{\pi}}}{2\ell+1} \right]^2 [k_{\gamma_{\pi}}(W_{n\ell})]^{2\ell+1} \times \left| \int \frac{d^3k}{(2\pi)^3} \sqrt{\frac{m_K m_N}{E_{K-}(\ell)E_p(\ell)}} k^{\ell} \Phi_{n\ell}(k) \right|^2, \quad (2.10)
$$

where we sum over all *Y* π pairs *Y* $\pi = \sum^{+} \pi^{-}$, $\sum^{-} \pi^{+}$, $\sum^{0} \pi^{0}$, and $\Lambda^0 \pi^0$; $k_{Y\pi}(W_{n\ell})$ is a relative momentum of the $Y\pi$ pair,

$$
k_{Y\pi}(W_{n\ell}) = \frac{\sqrt{[W_{n\ell}^{2} - (m_{Y} + m_{\pi})^{2}][W_{n\ell}^{2} - (m_{Y} - m_{\pi})^{2}]}}{2W_{n\ell}}
$$
\n(2.11)

with $W_{n\ell} = m_K + m_N + E_{n\ell}$ and $E_{n\ell}$ is the binding energy of kaonic hydrogen in the $n\ell$ excited state [19].

The analysis of experimental data obtained by the DEAR Collaboration $\lceil 2 \rceil$ requires knowledge of the energy-level displacement of the excited *np* states. For $\ell = 1$, the formulas and (2.9) and (2.10) read

$$
\epsilon_{np} = -\frac{2\pi}{3} \frac{1}{\mu} (2a_{3/2}^{K-p} + a_{1/2}^{K-p})
$$

$$
\times \left| \int \frac{d^3k}{(2\pi)^3} \sqrt{\frac{m_K m_N}{E_{K-}(k)E_p(k)}} k \Phi_{np}(k) \right|^2,
$$

$$
\Gamma_{np} = \frac{4\pi}{9} \frac{1}{\mu} \sum_{Y\pi} \left(2a_{3/2}^{Y\pi} + a_{1/2}^{Y\pi} \right)^2 k_{Y\pi}^3
$$
\n
$$
\times \left| \int \frac{d^3k}{\left(2\pi \right)^3} \sqrt{\frac{m_K m_N}{E_K - (k)E_p(k)}} k \Phi_{np}(k) \right|^2, \quad (2.12)
$$

where $\Phi_{np}(k)$ is the radial wave function of kaonic hydrogen in the *np* excited state in the momentum representation, and the indices 3/2 and 1/2 denote the *p*-wave amplitudes of the reactions $K^-p \to K^-p$ and $K^-p \to Y\pi$ with total angular momentum $J=3/2$ and $J=1/2$, respectively [17–19].

The momentum integral on the r.h.s. of Eq. (2.12) has been computed in [14]. Using this result, the energy-level displacement of the *np* excited states reads

$$
\epsilon_{np} = -\frac{2}{3} \frac{\alpha^5}{n^3} \left(1 - \frac{1}{n^2} \right) \left(\frac{m_K m_N}{m_K + m_N} \right)^4 (2a_{3/2}^{K-p} + a_{1/2}^{K-p}),
$$

$$
\Gamma_{np} = \frac{4}{9} \frac{\alpha^5}{n^3} \left(1 - \frac{1}{n^2} \right) \left(\frac{m_K m_N}{m_K + m_N} \right)^4 \sum_{Y\pi} \left(2a_{3/2}^{Y\pi} + a_{1/2}^{Y\pi} \right)^2 k_{Y\pi}^3.
$$
(2.13)

Thus, the problem of the calculation of the energy-level displacement of the *np* excited states of kaonic hydrogen reduces to the problem of the calculation of the *p*-wave scattering lengths $a_{1/2}^{K-p}$ and $a_{3/2}^{K-p}$ of elastic K^-p scattering and *p*-wave scattering lengths $a_{1/2}^{Y_{\pi}^{-}}$ and $a_{3/2}^{Y_{\pi}}$ of inelastic reactions $K^-p \to Y\pi$ with $Y\pi = \Sigma^+\pi^-, \ \Sigma^-\pi^+, \ \Sigma^0\pi^0$, and $\Lambda^0\pi^0$.

III. MODEL FOR LOW-ENERGY *K***−***p* **SCATTERING IN THE** *p***-WAVE STATE**

For the description of the *p*-wave amplitude of lowenergy K^-p scattering, we follow [1,6] and assume the following.

(i) The amplitudes with total angular momentum $J=1/2$ are defined by the contributions of the elastic background and the octets of baryon resonances with spin 1/2 and positive parity such as $(N(1440), \Lambda^0(1600), \Sigma(1660)) = B_1(8)$ and $(N(1710), \Lambda^0(1810), \Sigma(1880)) = B_2(8)$.

(ii) The amplitudes with total angular momentum $J=3/2$ are defined by the contributions of the elastic background and the baryon resonances with spin 3/2 and positive parity from decuplet $(\Delta(1232), \Sigma(1385)) = B_3(10)$ and octet $(N(1720), \Lambda^0(1890), \Sigma(1840)) = B_4(8)$ [20]. We would like to emphasize that the baryon resonances we will treat as elementary particles defined by local fields and local phenomenological Lagrangians with phenomenological coupling constants $[1,6]$ (see also $[21]$). We include the contribution of the octet of low-lying baryons with spin 1/2 and positive parity $(N(940), \Lambda^0(1116), \Sigma(1193)) = B(8)$ in the elastic background.

A. *p***-wave scattering lengths of elastic** *K***−***p* **scattering**

The *p*-wave amplitude of elastic *K*−*p* scattering at threshold is defined by two *p*-wave scattering lengths $a_{1/2}^{K-p}$ and $a_{3/2}^{K-p}$ caused by the interactions of the *K*−*p* pair in the states with a total angular momentum $J=1/2$ and $J=3/2$, respectively.

I. *p*-wave scattering length $a_{1/2}^{K-p}$

According to our approach to the description of the lowenergy *K*−*p* interaction in the *s*-wave state extended to the low-energy *K*−*p* interaction in the *p*-wave state, the amplitude $a_{1/2}^{K-p}$ has the following form:

$$
a_{1/2}^{K^-p} = (a_{1/2}^{K^-p})_B + \sum_R (a_{1/2}^{K^-p})_R, \tag{3.1}
$$

where $(a_{1/2}^{K-p})_B$ is the contribution of an elastic background and $(a_{1/2}^{K-p})_{R}$ is the contribution of the baryon resonance *R* $=\Lambda_1^0$, Σ_1^0 , Λ_2^0 , and Σ_2^0 .

2. Resonance contribution to p-wave scattering length $a_{1/2}^{K^-p}$

The phenomenological low-energy interactions B_1 (8)*B*(8)*P*(8) and *B*₂(8)*B*(8)*P*(8), necessary for the calculation of the contribution of the baryon resonances to the *p*-wave amplitude $a_{1/2}^{K^-p}$, can be defined using the results obtained in $[6]$. As a result, for the sum of the baryon resonance contributions, we obtain

$$
\sum_{R} (a_{1/2}^{K-p})_R = -\frac{1}{8\pi} \frac{1}{m_K + m_N} \left[\frac{1}{\sqrt{3}} (3 - 2\alpha_1) g_{\pi NN_1} \right]^2 \frac{1}{2m_N} \frac{1}{m_{\Lambda_1^0} - m_N - m_K} - \frac{1}{8\pi} \frac{1}{m_K + m_N} \left[(2\alpha_1 - 1) g_{\pi NN_1} \right]^2 \frac{1}{2m_N} \frac{1}{m_{\Sigma_1^0} - m_N - m_K} - \frac{1}{8\pi} \frac{1}{m_K + m_N} \left[\frac{1}{\sqrt{3}} (3 - 2\alpha_2) g_{\pi NN_2} \right]^2 \frac{1}{2m_N} \frac{1}{m_{\Lambda_2^0} - m_N - m_K} - \frac{1}{8\pi} \frac{1}{m_K + m_N} \left[(2\alpha_2 - 1) g_{\pi NN_2} \right]^2 \frac{1}{2m_N} \frac{1}{m_{\Sigma_2^0} - m_N - m_K}.
$$
\n(3.2)

The coupling constants of the interactions $K^{-}pB_1(8)$ and $K^-pB_2(8)$ are equal to $g_{\pi NN_1} = 6.28$, $\alpha_1 = 0.85$, $g_{\pi NN_2} = 1.20$, and α_2 =−1.55. These numerical values of the coupling constants one can obtain by using the phenomenological $SU(3)$ invariant interactions B_1 (8) B (8) P (8) and B_2 (8) B (8) P (8) (see [6]), where $P(8)$ is the octet of low-lying pseudoscalar mesons and experimental data on the partial widths of the resonances $B_1(8)$ and $B_2(8)$ [20]. Using the recommended masses for the resonances $m_{\Lambda_1^0}$ = 1600 MeV, m_{Σ_1} = 1660 MeV, $m_{\Lambda_2^0}$ =1810 MeV, and m_{Σ_2} =1880 MeV, we compute

$$
\sum_{R} (a_{1/2}^{K-p})_R = -0.013 \text{ m}_\pi^{-3}.
$$
 (3.3)

Now we proceed to computing the contribution of the elastic background $(a_{1/2}^{K^-}p)_B$.

*3. Elastic background contribution to the p-wave scattering length a***1/2** *K***−***p*

According to $[1]$, the contribution of the elastic background $(a_{1/2}^{K-p})_B$ to the *p*-wave scattering length $a_{1/2}^{K-p}$ should be defined by the contribution of all low-energy interactions $(a_{1/2}^{K-p})_{\text{CA}}$, which can be described within the effective chiral lagrangian (the ECL) approach $[22]$ or that is equivalent within current algebra (CA) [23–30], supplemented by softkaon theorems (SKT) [26–30], and the contribution $(a_{1/2}^{K-p})_{K\bar{K}}$ of low-energy exchanges with the exotic scalar mesons $a_0(980)$ and $f_0(980)$, which are four-quark states [31,32] or *KK* molecules [32,33]. The description of strong low-energy interactions of these mesons goes beyond the ECL approach, describing strong low-energy interactions of mesons with $q\bar{q}$ and baryons with *qqq* quark structures. Recent experimental confirmation of the exotic structure of the scalar mesons $a_0(980)$ and $f_0(980)$ has been obtained by the DEAR Collaboration at DAPHNE [34].

Thus, the *p*-wave scattering length $(a_{1/2}^{K-p})_B$ is defined by

$$
(a_{1/2}^{K^-p})_B = (a_{1/2}^{K^-p})_{\text{CA}} + (a_{1/2}^{K^-p})_{K\bar{K}}.\tag{3.4}
$$

Using the results obtained in $[1]$, we compute the contribution of the exotic scalar mesons,

$$
a_{1/2,K\bar{K}}^{K-p} = -\frac{1}{\pi} \frac{m_N}{m_K + m_N} \frac{g_D g_0}{m_{a_0}^4} \left(1 - \frac{1}{8} \frac{m_{a_0}^2}{m_N^2} \right) = -0.018 \text{ m}_\pi^{-3},\tag{3.5}
$$

where $m_f^0 = m_{a0} = 980 \text{ MeV}, \quad g_0 = g_{a_0 K^+ K^-} = g_{f_0 K^+ K^-} = 2746$ MeV [32], and $g_D = \xi g_{mNN}/g_A = 0.95g_{mNN}$. For the calculation of g_D , we have used $\xi = 1.2$ [1] and $g_A = 1.267$ [20]. The coupling constant $g_{\pi NN}$ of the πNN interaction is equal to $g_{\pi NN}$ =13.21 [35] (see also [36] by Ericson, Loiseau, and Wycech, where the authors have obtained $g_{\pi NN}$ $=13.28\pm0.08$.

The contribution to the *p*-wave amplitude, caused by the ECL interactions, we represent in the form of the superposition of the contributions of the $\Lambda^0(1116)$ and $\Sigma^0(1193)$ hyperon exchanges and the term $(a_{1/2}^{K-p})_{SKT}$, which can be computed applying the soft-kaon technique $[26-30]$. Thus, we get

$$
(a_{1/2}^{K-p})_{\text{CA}} = (a_{1/2}^{K-p})_{\text{SKT}} - \frac{1}{8\pi} \frac{1}{m_K + m_N} \left[\frac{1}{\sqrt{3}} (3 - 2\alpha) g_{\pi NN} \right]^2
$$

$$
\times \frac{1}{2m_N} \frac{1}{m_{\Lambda^0} - m_N - m_K} - \frac{1}{8\pi} \frac{1}{m_K + m_N}
$$

$$
\times \left[(2\alpha - 1) g_{\pi NN} \right]^2 \frac{1}{2m_N} \frac{1}{m_{\Sigma^0} - m_N + m_K} . \tag{3.6}
$$

For m_{Λ} 0=1116 MeV, Σ ⁰=1193 MeV, $g_{\pi NN}$ =13.21, and α $=0.64$ [6], we obtain

$$
(a_{1/2}^{K^-p})_{\text{CA}} = (a_{1/2}^{K^-p})_{\text{SKT}} + 0.024 \text{ m}_\pi^{-3}.
$$
 (3.7)

Summing up the contributions, for the *p*-wave scatting length $a_{1/2}^{K-p}$ of K^-p scattering with a total angular momentum *J*=1/2, we get

$$
a_{1/2}^{K^-p} = (a_{1/2}^{K^-p})_{\text{SKT}} - 0.007 \text{ m}_\pi^{-3}.
$$
 (3.8)

We suggest to compute the quantity $(a_{1/2}^{K-p})_{SKT}$ together with $(a_{3/2}^{K-p})_{\text{SKT}}$, the contribution of the elastic background to the *p*-wave scattering length $a_{3/2}^{K-p}$ of K^-p scattering with a total angular momentum *J*=3/2.

*4. p-wave scattering length a***3/2** *K***−***p*

The *p*-wave scattering length $a_{3/2}^{K-p}$ we represent by

$$
a_{3/2}^{K^-p} = (a_{3/2}^{K^-p})_B + \sum_R (a_{3/2}^{K^-p})_R, \tag{3.9}
$$

where $(a_{3/2}^{K-p})_B$ is the contribution of an elastic background and $(a_{3/2}^{K-p})_R$ is the contribution of the baryon resonances *R* $=\sum_{3}^{0}$, Λ_4^0 , and Σ_4^0 . The elastic background $(a_{3/2}^{K-p})_B$ does not contain rapidly changing contributions, therefore below we assume that $(a_{3/2}^{K-p})_B = (a_{3/2}^{K-p})_{SKT}$.

5. Resonance contribution to the p-wave scattering length $a_{3/2}^{K^-p}$

The phenomenological low-energy interaction of the resonance \sum_{3}^{0} with octets low-lying baryons *B*(8) and pseudoscalar mesons $P(8)$ is defined by [18,19,37] (see also [20])

$$
\mathcal{L}_{\Sigma_{3}^{0}BP}(x) = \frac{\mathcal{S}_{\pi NN}}{\sqrt{6}m_N} \overline{\Sigma}_{3\mu}^{0}(x) \left[\Sigma^{+}(x)\partial^{\mu}\pi^{-}(x) - \Sigma^{-}(x)\partial^{\mu}\pi^{+}(x)\right] \n+ p(x)\partial^{\mu}K^{-}(x) + \sqrt{3}\Lambda^{0}(x)\partial^{\mu}\pi^{0}(x)\right] \n+ \frac{\mathcal{S}_{\pi NN}}{\sqrt{6}m_N} \left[\overline{\Sigma}^{+}(x)\partial^{\mu}\pi^{+}(x) - \overline{\Sigma}^{-}(x)\partial^{\mu}\pi^{-}(x)\right] \n- \overline{p}(x)\partial^{\mu}K^{+}(x) + \sqrt{3}\overline{\Lambda}^{0}(x)\partial^{\mu}\pi^{0}(x)\right]\Sigma_{3\mu}^{0}(x),
$$
\n(3.10)

where we have written down only those interactions which contribute to the *p*-wave amplitude of low-energy *K*−*p* scattering.

Using Eq. (3.10) , we compute the contribution of the resonance $\Sigma(1385)$ to the *p*-wave scattering length $a_{3/2}^{K^-p}$,

$$
(a_{3/2}^{K^-}y)_{\Sigma_3^0} = -\frac{g_{\pi NN}^2}{36\pi m_N} \frac{1}{m_K + m_N} \frac{m_{\Sigma_3^0}}{m_{\Sigma_3^0}^2 - (m_K + m_N)^2} \left\{ \left[1 - \frac{1}{2} \frac{m_K}{m_N} - \frac{1}{4} \frac{m_K^2}{m_N^2} \right] + \frac{(m_K + m_N)}{m_{\Sigma_3^0}} \left[1 + \frac{1}{2} \frac{m_K}{m_N} \frac{(m_K + m_N)}{m_{\Sigma_3^0}} - \frac{1}{4} \frac{m_K^2}{m_N^2} \left(1 + \frac{(m_K + m_N)}{m_{\Sigma_3^0}} - \frac{(m_K + m_N)^2}{m_{\Sigma_3^0}^2} \right) \right] \right\}
$$

= 0.060 m _{π} ⁻³. (3.11)

The contribution of the resonances Λ_4^0 and Σ_4^0 to $a_{3/2}^{K^-p}$ is equal to

$$
\sum_{R=\Lambda_4^0, \Sigma_4^0} (a_{3/2}^{K-p})_R = -\frac{1}{6\pi m_N} \left[\frac{1}{\sqrt{3}} (3 - 2\alpha_4) g_{\pi NN_4} \right]^2 \frac{1}{m_K + m_N} \frac{m_{\Lambda_4^0}}{m_{\Lambda_4^0}^2 - (m_K + m_N)^2} \left\{ \left[1 - \frac{1}{2} \frac{m_K}{m_N} - \frac{1}{4} \frac{m_K^2}{m_{\Lambda_4^0}^2} \right] + \frac{(m_K + m_N)}{m_{\Lambda_4^0}} \right\} \times \left[1 + \frac{1}{2} \frac{m_K}{m_N} \frac{(m_K + m_N)}{m_{\Lambda_4^0}} - \frac{1}{4} \frac{m_K^2}{m_{\Lambda_4^0}^2} \left(1 + \frac{(m_K + m_N)}{m_{\Lambda_4^0}^0} - \frac{(m_K + m_N)^2}{m_{\Lambda_4^0}^2} \right) \right] \right\} - \frac{1}{6\pi m_N} \left[(2\alpha_4 - 1) g_{\pi NN_4} \right]^2
$$

$$
\times \frac{1}{m_K + m_N} \frac{m_{\Sigma_4^0}}{m_{\Sigma_4^0}^2 - (m_K + m_N)^2} \left\{ \left[1 - \frac{1}{2} \frac{m_K}{m_N} - \frac{1}{4} \frac{m_K^2}{m_{\Lambda_4^0}^2} \right] + \frac{(m_K + m_N)}{m_{\Sigma_4^0}} \left[1 + \frac{1}{2} \frac{m_K}{m_N} \frac{(m_K + m_N)}{m_{\Sigma_4^0}} \right] \right\} - \frac{1}{4} \frac{m_K^2}{m_N^2} \left\{ 1 + \frac{(m_K + m_N)}{m_{\Sigma_4^0}} - \frac{(m_K + m_N)^2}{m_{\Sigma_4^0}^2} \right) \right\}.
$$
(3.12)

Using the experimental data on the resonances from the octet $B_4(8)$ [20], we compute the coupling constants $g_{\pi NN_4} = 1.16$ and $\alpha_4 = 0.32$. For $m_{\Lambda_4^0} = 1890$ MeV and $m_{\Sigma_4^0} = 1840$ MeV, the numerical value of the contribution of the resonances Λ_4^0 and Σ_4^0 to the *p*-wave scattering length $a_{3/2}^{K^-p}$ reads

$$
\sum_{R=\Lambda_4^0,\Sigma_4^0} (a_{3/2}^{K-p})_R = -0.001 \text{ m}_\pi^{-3}.
$$
 (3.13)

The *p*-wave scattering length of *K*−*p* scattering with total angular momentum $J=3/2$ is given by

$$
a_{3/2}^{K^-p} = (a_{3/2}^{K^-p})_{\text{SKT}} + 0.059 \text{ m}_{\pi}^{-3}.
$$
 (3.14)

Summing up the contributions (3.8) and (3.14) , we obtain the total *p*-wave scattering length of elastic *K*−*p* scattering in the *p*-wave state,

$$
2a_{3/2}^{K-p} + a_{1/2}^{K-p} = (2a_{3/2}^{K-p} + a_{1/2}^{K-p})_{\text{SKT}} + 0.111 \text{ m}_\pi^{-3}. \quad (3.15)
$$

Now we turn to the calculation of the term $(2a_{3/2}^{K-p})$ $+a_{1/2}^{K-p}$ _{SKT}.

B. Soft-kaon theorem for amplitude of elastic *K***−***p* **scattering and elastic** *p***-wave background**

Soft-kaon theorems, as a part of ChPT $[4,5]$, define amplitudes of low-energy reactions with kaons as expansions in powers of 4-momenta of kaons *k*, with kaons treated offmass shell $k^2 \neq m_K^2$. Using the reduction technique and the PCAC hypothesis [23-30], the *S*-matrix element of elastic low-energy transition $K^-p \to K^-p$ can be defined by

$$
\langle \text{out}; K^{-}(\vec{k})p(-\vec{k}, \sigma_{p})|K^{-}(\vec{q})p(-\vec{q}, \sigma_{p}); \text{in} \rangle
$$

\n
$$
= -\frac{(m_{K}^{2} - k^{2})}{\sqrt{2}F_{K}m_{K}^{2}} \frac{(m_{K}^{2} - q^{2})}{\sqrt{2}F_{K}m_{K}^{2}} \int d^{4}x d^{4}y e^{+ikx - iqy} \langle p(-\vec{k}, \sigma_{p})|
$$

\n
$$
\times \text{T}[\partial^{\mu}J_{5\mu}^{4+i5}(x) \partial^{\nu}J_{5\nu}^{4-i5}(y)]|p(-\vec{q}, \sigma_{p})\rangle, \qquad (3.16)
$$

where T is a time-ordering operator and $J_{5\mu}^{4+i5}(x)$ and $J_{5\nu}^{4-i5}(x)$ are axial-vector hadronic currents with quantum numbers of the K^- and K^+ mesons [23,25]; F_K =113 MeV is the PCAC constant of charged *K* mesons. For further reduction of the r.h.s. of Eq. (3.16) , we use the relation $[23]$

$$
T[\partial^{\mu}J_{5\mu}^{4+i5}(x)\partial^{\nu}J_{5\nu}^{4-i5}(y)] = \frac{\partial}{\partial x_{\mu}}\frac{\partial}{\partial y_{\nu}}T[J_{5\mu}^{4+i5}(x)J_{5\nu}^{4-i5}(y)] - \frac{1}{2}\frac{\partial}{\partial x_{\mu}}\{\delta(x^{0} - y^{0})[J_{50}^{4-i5}(y), J_{5\mu}^{4+i5}(x)]\} -\frac{1}{2}\frac{\partial}{\partial y_{\nu}}\{\delta(x^{0} - y^{0})[J_{50}^{4+i5}(x), J_{5\nu}^{4-i5}(y)]\} - \frac{1}{2}\delta(x^{0} - y^{0})[J_{50}^{4-i5}(y), \partial^{\mu}J_{5\mu}^{4+i5}(x)] -\frac{1}{2}\delta(x^{0} - y^{0})[J_{50}^{4+i5}(x), \partial^{\nu}J_{5\nu}^{4-i5}(y)].
$$
\n(3.17)

Substituting (3.17) into (3.16) and making integration by parts and dropping surface terms, we arrive at the expression

$$
\langle \text{out}; K^{-}(\vec{k})p(-\vec{k},\sigma_{p})|K^{-}(\vec{q})p(-\vec{q},\sigma_{p});\text{in}\rangle \n= -\frac{(m_{K}^{2}-k^{2})}{\sqrt{2}F_{K}m_{K}^{2}}\frac{(m_{K}^{2}-q^{2})}{\sqrt{2}F_{K}m_{K}^{2}}\int d^{4}x d^{4}y e^{+ikx-iqy}\left\{k^{\mu}q^{\nu}\langle p(-\vec{k},\sigma_{p})|T[J_{5\mu}^{4+i5}(x)J_{5\nu}^{4-i5}(y)]|p(-\vec{q},\sigma_{p})\rangle+\frac{1}{2}ik^{\mu}\delta(x^{0}-y^{0})\langle p(-\vec{k},\sigma_{p})|T[J_{5\mu}^{4+i5}(y)J_{5\nu}^{4-i5}(y)]|p(-\vec{q},\sigma_{p})\rangle\right. \n\times [J_{50}^{4-i5}(y), J_{5\mu}^{4+i5}(x)]|p(-\vec{q},\sigma_{p})\rangle-\frac{1}{2}iq^{\nu}\delta(x^{0}-y^{0})\langle p(-\vec{k},\sigma_{p})|[J_{50}^{4+i5}(x),J_{5\nu}^{4-i5}(y)]|p(-\vec{q},\sigma_{p})\rangle \n-\frac{1}{2}\delta(x^{0}-y^{0})\langle p(-\vec{k},\sigma_{p})|[J_{50}^{4-i5}(y),\partial^{\mu}J_{5\mu}^{4+i5}(x)]|p(-\vec{q},\sigma_{p})\rangle-\frac{1}{2}\delta(x^{0}-y^{0})\langle p(-\vec{k},\sigma_{p})|[J_{50}^{4+i5}(x),\partial^{\nu}J_{5\nu}^{4-i5}(y)]|p(-\vec{q},\sigma_{p})\rangle\right\}.
$$
\n(3.18)

From Eq. (3.18), we obtain the amplitude of elastic low-energy *K*−*p* scattering with *K*[−] mesons off-mass shell. It reads

$$
M[K^{-}(\vec{q})p(-\vec{q},\sigma_{p}) \to K^{-}(\vec{k})p(-\vec{k},\sigma_{p})]
$$
\n
$$
= \frac{(m_{K}^{2} - k^{2})}{\sqrt{2}F_{K}m_{K}^{2}} \frac{(m_{K}^{2} - q^{2})}{\sqrt{2}F_{K}m_{K}^{2}} i \int d^{4}x e^{+ikx} \Biggl\{ k^{\mu}q^{\nu} \langle p(-\vec{k},\sigma_{p})|T[J_{5\mu}^{4+i5}(x)J_{5\nu}^{4-i5}(0)]|p(-\vec{q},\sigma_{p}) \rangle
$$
\n
$$
+ \frac{1}{2}ik^{\mu}\delta(x^{0})\langle p(-\vec{k},\sigma_{p})|[J_{50}^{4-i5}(0),J_{5\mu}^{4+i5}(x)]|p(-\vec{q},\sigma_{p}) \rangle - \frac{1}{2}iq^{\nu}\delta(x^{0})\langle p(-\vec{k},\sigma_{p})|[J_{50}^{4+i5}(x),J_{5\nu}^{4-i5}(0)]|p(-\vec{q},\sigma_{p}) \rangle
$$
\n
$$
- \frac{1}{2}\delta(x^{0})\langle p(-\vec{k},\sigma_{p})|[J_{50}^{4-i5}(0),\partial^{\mu}J_{5\mu}^{4+i5}(x)]|p(-\vec{q},\sigma_{p}) \rangle - \frac{1}{2}\delta(x^{0})\langle p(-\vec{k},\sigma_{p})|[J_{50}^{4+i5}(x),\partial^{\nu}J_{5\nu}^{4-i5}(0)]|p(-\vec{q},\sigma_{p}) \rangle \Biggr\}.
$$
\n(3.19)

The equal-time commutators read $[23,25]$

$$
\delta(x^0)[J_{50}^{4+i5}(x), J_{5\nu}^{4-i5}(0)] = [J_{\nu}^3(0) + \sqrt{3}J_{\nu}^8(0)]\delta^{(4)}(x),
$$

$$
\delta(x^0)[J_{50}^{4+i5}(x), \partial^{\nu}J_{5\nu}^{4-i5}(0)] = -i[\sigma_{44}(0) + \sigma_{55}(0)]\delta^{(4)}(x),
$$

(3.20)

where $J^3_{\nu}(0)$ and $J^8_{\nu}(0)$ are vector hadronic currents, related to the electromagnetic $J_{\nu}^{(em)}(0)$ and hypercharge $Y_{\nu}(0)$ currents by

$$
J_{\nu}^{3}(0) + \sqrt{3}J_{\nu}^{8}(0) = J_{nu}^{(em)}(0) + Y_{\nu}(0), \qquad (3.21)
$$

and $\sigma_{ab}(0)$ is a so-called σ -*term* operator. The σ -*term* operator $\sigma_{ab}(0)$ is related to the breaking of chiral symmetry. It can also be defined by the double commutator [26] $\sigma_{ab}(0)$ $=[Q_5^a(0), [Q_5^b(0), H_{\chi SB}(0)]]$, where $Q_5^a(0)$ is the axial-vector charge operator and $H_{\chi SB}$ is the Hamiltonian of strong interactions breaking of chiral symmetry. In terms of current quark fields, it reads $H_{\chi SB}(0) = m_u \bar{u}(0)u(0) + m_d \bar{d}(0)d(0)$ $+m_s\bar{s}(0)s(0)$, where $m_q(q=u,d,s)$ and $q(0)=u(0),d(0),s(0)$ are masses and interpolating fields of current quarks.

Substituting Eq. (3.20) into Eq. (3.19) and using Eq. (3.21) , we get

$$
M[K^{-}(\vec{q})p(-\vec{q},\sigma_{p}) \to K^{-}(\vec{k})p(-\vec{k},\sigma_{p})]
$$
\n
$$
= \frac{(m_{K}^{2} - k^{2})}{\sqrt{2}F_{K}m_{K}^{2}} \frac{(m_{K}^{2} - q^{2})}{\sqrt{2}F_{K}m_{K}^{2}} \left\{ k^{\mu}q^{\nu}i \int d^{4}xe^{+ikx}\langle p(-\vec{k},\sigma_{p})\right\}
$$
\n
$$
\times |\text{T}[J_{5\mu}^{4+i5}(x)J_{5\nu}^{4-i5}(0)]|p(-\vec{q},\sigma_{p})\rangle + \frac{1}{2}(k^{\mu} + q^{\mu})
$$
\n
$$
\times \langle p(-\vec{k},\sigma_{p})|J_{\mu}^{(\text{em})}(0) + Y_{\mu}(0)|p(-\vec{q},\sigma_{p})\rangle - \langle p(-\vec{k},\sigma_{p})|
$$
\n
$$
\times \sigma_{44}(0) + \sigma_{55}(0)|p(-\vec{q},\sigma_{p})\rangle \right\}.
$$
\n(3.22)

The matrix elements of the σ -*term* operator can be represented by [27-30,38]

$$
\langle p(-\vec{k}, \sigma_p) | \sigma_{44}(0) + \sigma_{55}(0) | p(-\vec{q}, \sigma_p) \rangle
$$

= $2\sigma_{KN}^{(l=1)}(t)\overline{u}(-\vec{k}, \sigma_p)u(-\vec{q}, \sigma_p),$ (3.23)

where $\sigma_{\overline{KN}}^{(1)}$ $\frac{I_{\tau}^{(I=1)}}{I_{\tau}^{(I=1)}}(t)$ is the scalar form factor [26–30,38], defining the contribution to the amplitude of $\bar{K}N$ scattering in the state with isospin *I*=1, and $t = -(\vec{k} - \vec{q})^2$ is a squared transferred

momentum. In terms of the quark-field operators, the σ -term $\sigma_{\overline{KN}}$ $\frac{I(z=1)}{I(z)}(t)$ is defined by [26,27,30,38]

$$
\sigma_{KN}^{(I=1)}(t) = \frac{m_u + m_s}{4m_N} \langle p(-\vec{k}, \sigma_p) | \vec{u}(0)u(0) + \vec{s}(0)s(0) | p(-\vec{q}, \sigma_p) \rangle.
$$
\n(3.24)

According to ChPT [4,5], the σ term is of order of squared 4-momenta of *K*[−] mesons, i.e., $\sigma_{KN}^{(l=1)}(t) \sim k^2 \sim q^2$.

Accounting for the contribution of the *K*−-meson pole and keeping the terms of order of $O(k^2)$ and $O(q^2)$ inclusively, we get the following expression for the amplitude of elastic low-energy *K[−]p* scattering [30]:

$$
M[K^{-}(\vec{q})p(-\vec{q},\sigma_{p}) \to K^{-}(\vec{k})p(-\vec{k},\sigma_{p})]
$$

\n
$$
= \overline{u}(-\vec{k},\sigma_{p}) \left\{ \frac{F_{E}^{p}(t) + F_{Y}^{p}(t)}{4F_{K}^{2}}(k+q)^{\mu}\gamma_{\mu} - \frac{1}{F_{K}^{2}}[\sigma_{KN}^{(I=1)}(t) - k^{\mu}q^{\nu}W_{\mu\nu}(\vec{k},\vec{q})] \right\} u(-\vec{q},\sigma_{p}),
$$
\n(3.25)

where we have denoted

$$
\langle p(-\vec{k}, \sigma_p) | J_{\mu}^{(\text{em})}(0) + Y_{\mu}(0) | p(-\vec{q}, \sigma_p) \rangle
$$

\n
$$
= [F_E^p(t) + F_Y^p(t)] \overline{u}(-\vec{k}, \sigma_p) \gamma_{\mu} u(-\vec{q}, \sigma_p),
$$

\n
$$
\frac{1}{2} i \int d^4x \langle p(-\vec{k}, \sigma_p) | T[J_{5\mu}^{4+i5}(x) J_{5\nu}^{4-i5}(0)] | p(-\vec{q}, \sigma_p) \rangle
$$

\n
$$
= \overline{u}(-\vec{k}, \sigma_p) W_{\mu\nu}(\vec{k}, \vec{q}) u(-\vec{q}, \sigma_p).
$$
 (3.26)

Here $F_E^p(t)$ and $F_Y^p(t)$ are the form factors of the electric and hypercharge of the proton, normalized by $F_E^p(0) = F_Y^p(0) = 1$. We have not taken into account the magnetic form factor, which does not contribute to the *s*- and *p*-wave amplitudes of *K*[−]*p* scattering at threshold.

The last two terms in Eq. (3.25) are of order of $O(k^2)$, where $k^2 \sim q^2 \sim kq$. For the calculation of the *p*-wave scattering length of elastic *K*−*p* scattering, the contribution of the terms of order of $O(k^2)$ can be neglected.

From Eq. (3.25) at leading order in chiral expansion [4,5], we obtain the contribution to the *p*-wave amplitude of lowenergy elastic *K*−*p* scattering,

$$
(2a_{3/2}^{K-p} + a_{1/2}^{K-p})_{\text{SKT}} = \frac{1}{16\pi} \frac{\mu}{F_K^2} \frac{1}{m_N^2} = 0.002 \text{ m}_\pi^{-3}. \quad (3.27)
$$

Hence, the *p*-wave scattering length $(2a_{3/2}^{K-p}+a_{1/2}^{K-p})_{\text{SKT}}$ is smaller than the contribution of the resonance states and practically can be neglected for the calculation of the *p*-wave scattering lengths of elastic *K*−*p* scattering and, correspondingly, for the calculation of the energy-level shift of the *np* excited state of kaonic hydrogen. This implies that the *p*-wave scattering lengths $(2a_{3/2}^{Y_{\pi}} + a_{1/2}^{Y_{\pi}})_{SKT}$ can also be neglected in comparison with the contributions of the resonance states.

C. *p***-wave scattering length** $2a_{3/2}^{K-p} + a_{1/2}^{K-p}$ **of elastic** K^-p **scattering and energy-level shift of** *np* **excited state of kaonic hydrogen**

Substituting Eq. (3.27) into Eq. (3.15) , we obtain the *p*-wave scattering length of elastic *K*−*p* scattering,

$$
2a_{3/2}^{K^-p} + a_{1/2}^{K^-p} = 0.113 \text{ m}_\pi^{-3}.
$$
 (3.28)

Using Eq. (3.28) , we compute the shift of the energy-level of the *np* excited state of kaonic hydrogen, given by Eq. (2.13) . We get

$$
\epsilon_{np} = \frac{32}{3} \frac{1}{n^3} \left(1 - \frac{1}{n^2} \right) \epsilon_{2p},
$$
 (3.29)

where the shift of the energy-level of the 2*p* excited state is equal to

$$
\epsilon_{np} = -\frac{\alpha^5}{16} \left(\frac{m_K m_N}{m_K + m_N} \right)^4 (2a_{3/2}^{K-p} + a_{1/2}^{K-p}) = -0.6 \text{ meV.}
$$
\n(3.30)

Hence, the shift of the energy-level ϵ_{np} of the *np* excited state of kaonic hydrogen, induced by strong low-energy interactions, is smaller than 1 meV, i.e., $|\epsilon_{np}| < 1$ meV.

We would like to emphasize that unlike the shift of the energy-level of the *ns* state of kaonic hydrogen, which is defined by repulsive forces $\epsilon_{ns} = (203 \pm 15)/n^3$ eV [1], the shift of the energy-level of the *np* excited state ϵ_{np} , given by Eq. (3.29) , is caused by attractive forces.

IV. p -WAVE SCATTERING LENGTHS $2a_{3/2}^{Y\pi}+a_{1/2}^{Y\pi}$ OF **INELASTIC CHANNELS** $K^-p \to Y\pi$

The imaginary part of the *p*-wave amplitude of elastic *K*−*p* scattering at threshold, defining the total width of the excited *np* state of kaonic hydrogen, is caused by the four opened inelastic channels $K^-p \to \Sigma^+\pi^-$, $K^-p \to \Sigma^-\pi^+$, K^-p $\rightarrow \Sigma^0 \pi^0$, and $K^-p \rightarrow \Lambda^0 \pi^0$. At threshold, the contribution of these inelastic channels we describe by the *p*-wave scattering lengths $a_{1/2}^{Y\pi}$ and $a_{3/2}^{Y\pi}$ with $Y\pi = \sum^+\pi^-$, $\sum^-\pi^+$, $\sum^0_{V}\pi^0$, and $\Lambda^0\pi^0$, respectively. The *p*-wave scattering lengths $a_{1/2}^{Y\pi}$ and $a_{3/2}^{Y\pi}$ determine low-energy transitions $K^-p \to Y\pi$ with total angular moment *J*=1/2 and *J*=3/2, respectively.

The *p*-wave scattering lengths $a_j^{Y\pi}$ we represent in the form of the superposition of the background part $(a_j^{\gamma \pi})_B$ and the resonant part $\Sigma_R(a_j^Y)^T_R$. It is convenient to include the contribution of the octet of low-lying baryons $B(8)$ $=(N(940), \Lambda^0(1116), \Sigma(1193))$ to the resonant part and to define the contribution of the background as $(a_j^{Y\pi})_B = (a_j^{Y\pi})_{SKT}$. Since, as has been shown above, the contribution of the resonances $\Lambda^{0}(1890)$ and $\Sigma^{0}(1840)$ is negligibye small relative to the contribution of the resonance $\Sigma^0(1385)$, below for the calculation of the *p*-wave scattering lengths of inelastic channels $K^-p \to Y\pi$ we do not take them into account.

A. *p*-wave scattering lengths $2a_{3/2}^{\sum_{i=1}^{+}\pi^{-}}+a_{1/2}^{\sum_{i=1}^{+}\pi^{-}}$ of inelastic channel $K^-p \rightarrow \Sigma^+\pi^-$

The resonant parts of the *p*-wave scattering lengths $a_{1/2}^{\Sigma^+\pi^-}$ and $a_{3/2}^{\Sigma^+\pi^-}$ of the reaction $K^-p\to\Sigma^+\pi^-$ are equal to

$$
\sum_{R} (a_{1/2}^{x^{+}\pi})_R = \frac{1}{8\pi} \frac{1}{m_K + m_N} \left[\frac{1}{\sqrt{3}} (3 - 2\alpha) g_{\pi NN} \right] \left[\frac{2}{\sqrt{3}} \alpha g_{\pi NN} \right] \frac{1}{2\sqrt{m_{\Sigma}m_N}} \frac{1}{m_{\Lambda^0} - m_K - m_N} + \frac{1}{8\pi} \frac{1}{m_K + m_N} \left[\frac{1}{\sqrt{3}} (3 - 2\alpha_1) g_{\pi NN_1} \right]
$$
\n
$$
\times \left[\frac{2}{\sqrt{3}} \alpha_1 g_{\pi NN_1} \right] \frac{1}{2\sqrt{m_{\Sigma}m_N}} \frac{1}{m_{\Lambda^0_1} - m_K - m_N} + \frac{1}{8\pi} \frac{1}{m_K + m_N} \left[\frac{1}{\sqrt{3}} (3 - 2\alpha_2) g_{\pi NN_2} \right] \left[\frac{2}{\sqrt{3}} \alpha_2 g_{\pi NN_2} \right]
$$
\n
$$
\times \frac{1}{2\sqrt{m_{\Sigma}m_N}} \frac{1}{m_{\Lambda^0_2} - m_K - m_N} + \frac{1}{8\pi} \frac{1}{m_K + m_N} \left[(2\alpha - 1) g_{\pi NN} \right]
$$
\n
$$
\times [2(1 - \alpha) g_{\pi NN_1} \frac{1}{2\sqrt{m_{\Sigma}m_N}} \frac{1}{m_{\Sigma^0} - m_K - m_N} + \frac{1}{8\pi} \frac{1}{m_K + m_N} \left[(2\alpha_1 - 1) g_{\pi NN_1} \right]
$$
\n
$$
\times [2(1 - \alpha_1) g_{\pi NN_1} \frac{1}{2\sqrt{m_{\Sigma}m_N}} \frac{1}{m_{\Sigma^0_1} - m_K - m_N} + \frac{1}{8\pi} \frac{1}{m_K + m_N} \left[(2\alpha_2 - 1) g_{\pi NN_2} \right]
$$
\n
$$
\times [2(1 - \alpha_2) g_{\pi NN_2} \frac{1}{2\sqrt{m_{\Sigma}m_N}} \frac{1}{m_{\Sigma^0_2} - m_K - m_N} + \frac{1}{8\pi} \frac{1}{m_K + m_N} \left[(2\alpha_2 - 1) g_{\pi NN_2
$$

and

$$
(a_{3/2}^{\Sigma^+\pi^-})_R = \frac{g_{\pi NN}^2}{36\pi m_N m_K + m_N m_{\Sigma_3^0} - m_N - m_K} \sqrt{\frac{m_\Sigma}{m_N}} \left(1 + \frac{1}{4} \frac{m_K m_K + m_N}{m_{\Sigma_3^0}}\right) = -0.082 \text{ m}_\pi^{-3}.
$$
 (4.2)

The total *p*-wave scattering length of the reaction $K^-p \to \Sigma^+\pi^-$ is equal to

$$
2a_{3/2}^{\Sigma^+\pi^-} + a_{1/2}^{\Sigma^+\pi^-} = (2a_{3/2}^{\Sigma^+\pi^-} + a_{1/2}^{\Sigma^+\pi^-})_{\text{SKT}} - 0.180 \text{ m}_\pi^{-3}.
$$
 (4.3)

B. *p*-wave scattering lengths of
$$
2a_{3/2}^{\sum_{\tau}^{\tau} +} + a_{1/2}^{\sum_{\tau}^{\tau} +}
$$
 of inelastic channel $K^-p \to \sum_{\tau}^{\tau} +$

The resonant parts of the *p*-wave scattering lengths $a_{1/2}^{\sum_{i=1}^{n} \pi^{+}}$ and $a_{3/2}^{\sum_{i=1}^{n} \pi^{+}}$ of the reaction $K^{-}p \to \sum_{i=1}^{n} \pi^{+}$ are equal to

$$
\sum_{R} (a_{1/2}^{\sum_{\pi} \pi^{+}})_{R} = \frac{1}{8\pi} \frac{1}{m_{K} + m_{N}} \left[\frac{1}{\sqrt{3}} (3 - 2\alpha) g_{\pi NN} \right] \left[\frac{2}{\sqrt{3}} \alpha g_{\pi NN} \right] \frac{1}{2\sqrt{m_{2}m_{N}}} \frac{1}{m_{\Lambda^{0}} - m_{K} - m_{N}} + \frac{1}{8\pi} \frac{1}{m_{K} + m_{N}} \left[\frac{1}{\sqrt{3}} (3 - 2\alpha_{1}) g_{\pi NN_{1}} \right]
$$

\n
$$
\times \left[\frac{2}{\sqrt{3}} \alpha_{1} g_{\pi NN_{1}} \right] \frac{1}{2\sqrt{m_{2}m_{N}}} \frac{1}{m_{\Lambda^{0}_{1}} - m_{K} - m_{N}} + \frac{1}{8\pi} \frac{1}{m_{K} + m_{N}} \left[\frac{1}{\sqrt{3}} (3 - 2\alpha_{2}) g_{\pi NN_{2}} \right]
$$

\n
$$
\times \left[\frac{2}{\sqrt{3}} \alpha_{2} g_{\pi NN_{2}} \right] \frac{1}{2\sqrt{m_{2}m_{N}}} \frac{1}{m_{\Lambda^{0}_{2}} - m_{K} - m_{N}} - \frac{1}{8\pi} \frac{1}{m_{K} + m_{N}} \left[(2\alpha - 1) g_{\pi NN} \right] \left[2(1 - \alpha) g_{\pi NN} \right]
$$

\n
$$
\times \frac{1}{2\sqrt{m_{2}m_{N}}} \frac{1}{m_{\Sigma^{0}} - m_{K} - m_{N}} - \frac{1}{8\pi} \frac{1}{m_{K} + m_{N}} \left[(2\alpha_{1} - 1) g_{\pi NN_{1}} \right] \left[2(1 - \alpha_{1}) g_{\pi NN_{1}} \right]
$$

\n
$$
\times \frac{1}{2\sqrt{m_{2}m_{N}}} \frac{1}{m_{\Sigma^{0}_{1}} - m_{K} - m_{N}} - \frac{1}{8\pi} \frac{1}{m_{K} + m_{N}} \left[(2\alpha_{2} - 1) g_{\pi NN_{1}} \right] \left[2(1 - \alpha_{2}) g_{\pi NN_{2}} \right] \frac{1}{2\sqrt{m_{2}m_{N}}} \frac{1
$$

and

$$
(a_{3/2}^{\Sigma^{-}\pi^{+}})_{R} = -(a_{3/2}^{\Sigma^{+}\pi^{-}})_{R} = +0.082 \text{ m}_{\pi}^{-3}.
$$
\n(4.5)

The total *p*-wave scattering length of the reaction $K^-p \to \Sigma^-\pi^+$ is equal to

$$
2a_{3/2}^{\Sigma^{-}\pi^{+}} + a_{1/2}^{\Sigma^{-}\pi^{+}} = (2a_{3/2}^{\Sigma^{-}\pi^{+}} + a_{1/2}^{\Sigma^{-}\pi^{+}})_{SKT} + 0.160 \text{ m}_{\pi}^{-3}.
$$
 (4.6)

C. *p***-wave scattering lengths of** $2a_{3/2}^{\sum_{0}^{0}n} + a_{1/2}^{\sum_{0}^{0}n}$ **of inelastic channel** $K^-p \to \sum_{0}^{0}n^0$ The resonant parts of the *p*-wave scattering lengths $a_{1/2}^{\Sigma^0 \pi^0}$ and $a_{3/2}^{\Sigma^0 \pi^0}$ of the reaction $K^-p \to \Sigma^0 \pi^0$ are equal to

052508-8

$$
\sum_{R} (a_{1/2}^{\sum_{0}^{0} \pi^{0}})_{R} = \frac{1}{8\pi} \frac{1}{m_{K} + m_{N}} \left[\frac{1}{\sqrt{3}} (3 - 2\alpha) g_{\pi NN} \right] \left[\frac{2}{\sqrt{3}} \alpha g_{\pi NN} \right] \frac{1}{2\sqrt{m_{\Sigma} m_{N}}} \frac{1}{m_{\Lambda^{0}} - m_{K} - m_{N}} + \frac{1}{8\pi} \frac{1}{m_{K} + m_{N}} \left[\frac{1}{\sqrt{3}} (3 - 2\alpha_{1}) g_{\pi NN_{1}} \right]
$$

$$
\times \left[\frac{2}{\sqrt{3}} \alpha_{1} g_{\pi NN_{1}} \right] \frac{1}{2\sqrt{m_{\Sigma} m_{N}}} \frac{1}{m_{\Lambda^{0}_{1}} - m_{K} - m_{N}} + \frac{1}{8\pi} \frac{1}{m_{K} + m_{N}} \left[\frac{1}{\sqrt{3}} (3 - 2\alpha_{2}) g_{\pi NN_{2}} \right]
$$

$$
\times \left[\frac{2}{\sqrt{3}} \alpha_{2} g_{\pi NN_{2}} \right] \frac{1}{2\sqrt{m_{\Sigma} m_{N}}} \frac{1}{m_{\Lambda^{0}_{2}} - m_{K} - m_{N}} = (-0.015 + 0.006 - 0.001) \text{ m}_{\pi}^{-3} = -0.010 \text{ m}_{\pi}^{-3} \tag{4.7}
$$

and

$$
(a_{3/2}^{\Sigma^0 \pi^0})_R = 0.
$$
\n(4.8)

The total *p*-wave scattering length of the reaction $K^-p \to \Sigma^0 \pi^0$ is equal to

$$
2a_{3/2}^{\Sigma^0 \pi^0} + a_{1/2}^{\Sigma^0 \pi^0} = (2a_{3/2}^{\Sigma^0 \pi^0} + a_{1/2}^{\Sigma^0 \pi^0})_{\text{SKT}} - 0.010 \text{ m}_\pi^{-3}.
$$
 (4.9)

D. *p*-wave scattering lengths of
$$
2a_{3/2}^{\Lambda^0 \pi^0} + a_{1/2}^{\Lambda^0 \pi^0}
$$
 of inelastic channel $K^-p \to \Lambda^0 \pi^0$

The resonant parts of the *p*-wave scattering lengths $a_{1/2}^{\Lambda^0 \pi^0}$ and $a_{3/2}^{\Lambda^0 \pi^0}$ of the reaction $K^-p \to \Lambda^0 \pi^0$ are equal to

$$
\sum_{R} (a_{1/2}^{\Lambda^0 \pi^0})_R = \frac{1}{8\pi} \frac{1}{m_K + m_N} \left[-(2\alpha - 1)g_{\pi NN} \right] \left[\frac{2}{\sqrt{3}} \alpha g_{\pi NN} \right] \frac{1}{2\sqrt{m_N m_N}} \frac{1}{m_{\Sigma^0} - m_K - m_N} + \frac{1}{8\pi} \frac{1}{m_K + m_N} \left[-(2\alpha_1 - 1)g_{\pi NN_1} \right]
$$

\n
$$
\times \left[\frac{2}{\sqrt{3}} \alpha_1 g_{\pi NN_1} \right] \frac{1}{2\sqrt{m_N m_N}} \frac{1}{m_{\Sigma_1^0} - m_K - m_N} + \frac{1}{8\pi} \frac{1}{m_K + m_N} \left[-(2\alpha_2 - 1)g_{\pi NN_2} \right]
$$

\n
$$
\times \left[\frac{2}{\sqrt{3}} \alpha_2 g_{\pi NN_2} \right] \frac{1}{2\sqrt{m_N m_N}} \frac{1}{m_{\Sigma_2^0} - m_K - m_N} = (0.006 - 0.005 - 0.001) \text{ m}_\pi^{-3} = 0 \tag{4.10}
$$

and

$$
(a_{3/2}^{\Lambda^0 \pi^0})_R = \frac{\sqrt{3} g_{\pi NN}^2}{36 \pi m_N m_K + m_N m_{\Sigma_3^0} - m_N - m_K} \sqrt{\frac{m_{\Lambda^0}}{m_N}} \left(1 + \frac{1}{4} \frac{m_K m_K + m_N}{m_{\Sigma_3^0}}\right) = -0.137 \text{ m}_\pi^{-3}.
$$
 (4.11)

The total *p*-wave scattering length of the reaction *K*−*p* $\rightarrow \Lambda^0 \pi^0$ is equal to

$$
2a_{3/2}^{\Lambda^0 \pi^0} + a_{1/2}^{\Lambda^0 \pi^0} = (2a_{3/2}^{\Lambda^0 \pi^0} + a_{1/2}^{\Lambda^0 \pi^0})_{\text{SKT}} - 0.274 \text{ m}_\pi^{-3}.
$$
\n(4.12)

E. *p***-wave scattering lengths of inelastic reactions** $K^-p \to Y\pi$ **and energy-level width of** *np* **excited state of kaonic hydrogen**

According to the estimate Eq. (3.27) , the contribution of the *p*-wave scattering lengths $(2a_{3/2}^{Y\pi} + a_{1/2}^{Y\pi})_{SKT}$ can be neglected in comparison with the contribution of the baryon resonances. Therefore, below we neglect $(2a_{3/2}^{Y\pi} + a_{1/2}^{Y\pi})_{SKT}$ for the estimate of the energy-level width of the *np* excited state of kaonic hydrogen.

Using Eqs. (4.3) , (4.6) , and (4.12) and substituting them into Eq. (2.13) , we compute the energy-level width of the np excited state of kaonic hydrogen,

$$
\Gamma_{np} = \frac{32}{3} \frac{1}{n^3} \left(1 - \frac{1}{n^2} \right) \Gamma_{2p}.
$$
 (4.13)

The partial width Γ_{2p} of the energy-level of the 2*p* excited state of kaonic hydrogen is equal to

$$
\Gamma_{2p} = \frac{\alpha^5}{24} \left(\frac{m_K m_N}{m_K + m_N} \right)^4 \sum_{Y\pi} \left(2a_{3/2}^{Y\pi} + a_{1/2}^{Y\pi} \right)^2 k_{Y\pi}^3 = 2 \text{ meV}
$$
\n(4.14)

or $\Gamma_{2p}=3\times10^{12} \text{ s}^{-1}$.

The lifetime of the 2*p* state of kaonic hydrogen, defined by the decays of kaonic hydrogen into hadronic states $(K^-p)_{2p} \to Y\pi$, where $Y\pi = \Sigma^+\pi^-$, $\Sigma^-\pi^+$, $\Sigma^0\pi^0$, and $\Lambda^0\pi^0$, is equal to $\tau_{2p}=3.4\times10^{-13}$ s. It is much smaller than the lifetime of the *K*[−] meson, τ_{K^-} =1.24×10⁻⁸ s [20], which is the upper limit on the lifetime of kaonic hydrogen. Thus, the rates of the hadronic decays of kaonic hydrogen in the *np* excited states are comparable with the rates of the deexcitation of kaonic hydrogen $np \rightarrow 1s$, caused by the emission of the x rays $[7-13]$.

The result obtained for the partial width of the excited 2*p* state of kaonic hydrogen, given by Eq. (4.14) , is important for the theoretical analysis of the *x*-ray yields in kaonic hydrogen $[7-13]$.

V. CONCLUSION

The quantum field theoretic model of the description of low-energy *KN* interaction in the *s*-wave state near threshold, which we have suggested in $[1,6]$, is extended on the analysis of low-energy *KN* interactions in the *p*-wave state near threshold. We would like to emphasize that our approach to the description of low-energy *KN* interaction in the *s*-wave state near threshold agrees well with the nonrelativistic effective field theory based on ChPT by Gasser and Leutwyler, which has been recently applied by Meißner *et al.* [3] to the calculation of the energy-level displacement of the *ns* state of kaonic hydrogen and systematic corrections to the energylevel displacement of the *ns* state, caused by QCD isospin breaking and electromagnetic interactions. The result for the energy-level displacement of the *ns* state of kaonic hydrogen has been obtained in $\lceil 3 \rceil$ in terms of the *s*-wave scattering lengths a_0^0 and a_0^1 of $\overline{K}N$ scattering with isospin $I=0$ and *I* =1, respectively. The *s*-wave scattering lengths a_0^0 and a_0^1 have been treated as free parameters of the approach. Using our results for the *s*-wave scattering lengths a_0^0 and a_0^1 [1,6] and keeping leading terms in QCD isospin breaking and electromagnetic interactions, i.e., accounting for only the contribution of Coulombic photons, we have shown that the numerical value of the energy-level displacement of the *ns* state of kaonic hydrogen, computed by Meißner *et al.* [3], agrees well with both our theoretical prediction $[1]$ and recent experimental data by the DEAR Collaboration $[2]$ within 1.5 standard deviations. Hence, our approach to the description of low-energy dynamics of strong low-energy *KN* interactions at threshold agrees well with a general description of strong low-energy interactions of hadrons within nonrelativistic effective field theory based on ChPT $[3-5]$.

The detection of the *x* rays of the *x*-ray cascade processes, leading to the deexcitation of kaonic hydrogen from the excited states to the ground state, is the main experimental tool for the measurement of the energy-level displacement of the ground state of kaonic hydrogen, caused by strong lowenergy interactions $[2,39]$. The main transitions in kaonic hydrogen, which are measured experimentally for the extraction of the energy-level displacement of the ground state, are $3p \rightarrow 1s$ and $2p \rightarrow 1s$, i.e., the reactions $(K^-p)_{3p} \rightarrow (K^-p)_{1s}$ *+* γ and $(K^-p)_{2p}$ → $(K^-p)_{1s}$ + γ .

As has been pointed out by Markushin and Jensen, the yields of *x* rays of these transitions are quite sensitive to the

value of Γ_{2p} [13]. Using Γ_{2p} as an input parameter taking values from the region 0.1 meV $\leq \Gamma_{2p} \leq 0.9$ meV, Markushin and Jensen $[13]$ have found that their theoretical predictions for the *x*-ray yields in kaonic hydrogen agree well with the experimental data on the *x*-ray yields detected by the KEK Collaboration $[40]$, which have been used for the extraction of the energy-level displacement of the ground state of kaonic hydrogen, for Γ_{2p} =0.3 meV=4.6×10¹¹ s⁻¹ and ϵ_{1s} =320 eV and Γ_{1s} =400 eV.

Recent experimental data on the energy-level displacement of the ground of kaonic hydrogen obtained by the DEAR Collaboration $\lceil 2 \rceil$ were smaller by a factor of 2 than the experimental data by the KEK Collaboration $[40]$. Our theoretical analysis of the energy-level displacement of the 2*p* excited state of kaonic hydrogen has shown that the rate of the hadronic decays of kaonic hydrogen from the 2*p* excited state is equal to $\Gamma_{2p}=2$ meV= 3×10^{12} s⁻¹, which is an order of magnitude larger than the phenomenological value $\Gamma_{2p}=0.3$ meV=4.6×10¹¹ s⁻¹, used by Markushin and Jensen as an input parameter [13].

Thus, the computed value $\Gamma_{2p}=2$ meV of the energy-level of the 2*p* excited state of kaonic hydrogen can be applied to the theoretical analysis of the *x*-ray yields in kaonic hydrogen of recent experimental data by the DEAR Collaboration $[2]$ using the the following input parameters: (1) the experimental setup $[39]$ and (2) the theoretical predictions for the hadronic energy-level displacements of the 2p state, ϵ_{2p} = −0.6 meV, Γ_{2p} =2.0 meV, and the ground state, ϵ_{1s} =203 eV and Γ_{1s} =226 eV, of kaonic hydrogen [1].

VI. COMMENT ON THE RESULT

After this paper was accepted for publication, Faifman and Men'shikov presented the calculated yields for the *K* series of *x* rays for kaonic hydrogen in dependence of the hydrogen density $[41]$. They have shown that the use of the theoretical value $\Gamma_{2p}=2$ meV of the width of the 2*p* state of kaonic hydrogen, computed in our work, leads to good agreement with the experimental data, measured for the K_{α} line by the KEK Collaboration $[40]$. They have also shown that the results of cascade calculations with other values of the width of the 2*p* excited state of kaonic hydrogen, used as an input parameter, disagree with the available experimental data. The results obtained by Faifman and Men'shikov contradict those by Jensen and Markushin [13]. Therefore, as has been accentuated by Faifman and Men'shikov [41], further analysis of the experimental data by the DEAR Collaboration should allow us to perform a more detailed comparison of the theoretical value $\Gamma_{2p}=2$ meV with other phenomenological values of the width of the 2*p* state of kaonic hydrogen Γ_{2p} , used as input parameters.

- [1] A. N. Ivanov, M. Cargnelli, M. Faber, J. Marton, N. I. Troitskaya, and J. Zmeskal, Eur. Phys. J. A 21, 11 (2004).
- [2] M. Cargnelli et al. (DEAR Collaboration), Kaonic Nuclear Clusters—Miniworkshop (IMEP, Wien), February, 2004; in

Proceedings of HadAtom03 Workshop, October, 2003, ECT* (Trento, Italy), e-print hep-ph/0401204.

f3g U.-G. Meißner, U. Raha, and A. Rusetsky, Eur. Phys. J. C **35**, 349 (2004).

- [4] J. Gasser and H. Leutwyler, Phys. Lett. **125B**, 321 (1983); **125B**, 325 (1983).
- [5] J. Gasser, Nucl. Phys. B, Proc. Suppl. **86**, 257 (2000), and references therein; H. Leutwyler, πN Newsletter 15, 1 (1999); Ulf-G. Meißner, *ibid.* **13**, 7 (1997); H. Leutwyler, Ann. Phys. (N.Y.) 235, 165 (1994); G. Ecker, Prog. Part. Nucl. Phys. 36, 71 (1996); **35**, 1 (1995); Nucl. Phys. B, Proc. Suppl. **16**, 581 (1990); J. Gasser, Nucl. Phys. B 279, 65 (1987); J. Gasser and H. Leutwyler, *ibid.* **250**, 465 (1985); Ann. Phys. (N.Y.) **158**, 142 (1984); Phys. Lett. **125B**, 321 (1983).
- [6] A. N. Ivanov, M. Cargnelli, M. Faber, H. Fuhrmann, V. A. Ivanova, J. Marton, N. I. Troitskaya, and J. Zmeskal, Eur. Phys. J. A 23, 79 (2005).
- f7g T. B. Day, G. A. Snow, and J. Sucher, Phys. Rev. Lett. **3**, 61 (1959); R. K. Adair, *ibid.* **3**, 438 (1959); M. Leon and H. A. Bethe, Phys. Rev. 127, 636 (1962).
- [8] T. E. O. Ericson and F. Scheck, Nucl. Phys. B 19, 450 (1970).
- [9] E. Borie and M. Leon, Phys. Rev. A 21, 1460 (1980).
- f10g T. Koike, T. Harada, and Y. Akaishi, Phys. Rev. C **53**, 79 $(1996).$
- [11] T. P. Terada and R. S. Hayano, Phys. Rev. C $\,$ **55**, 73 (1997).
- [12] M. P. Faifman et al., *Physics and Detectors for DAPHNE*, *Frascati, 1999, Physics of the Atomic Cascades in Kaonic and Hydrogen and Deuterium*, Frascati Physics Series Vol. XVI, pp. 637–641; M. P. Faifman and L. I. Men'shikov, *Cascade Processes in Kaonic and Muonic Atoms, Proceedings of the International Workshop on Exotic Atoms—Future Perspectives*, at Institute of Medium Energy Physics of Austrian Academy of Sciences, November, 2002, Vienna, Austria, pp. 185– 196.
- f13g V. E. Markushin and T. S. Jensen, Nucl. Phys. A **691**, 318c (2001); T. S. Jensen and V. E. Markushin, *ibid.* **689**, 537 (2001) ; Eur. Phys. J. D **19**, 165 (2002) ; e-print physics/ 0205076; e-print physics/0205077.
- [14] A. N. Ivanov, M. Faber, A. Hirtl, J. Marton, and N. I. Troitskaya, Eur. Phys. J. A **19**, 413 (2004).
- [15] *Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables*, edited by M. Abramowitz and I. A. Stegun, Applied Mathematics Series No. 55 (National Bureau of Standards, Washington, D.C., 1972).
- f16g L. D. Landau and E. M. Lifshitz, in *Quantum Mechanics*, Volume 3 of Course of Theoretical Physics (Pergamon Press, Oxford, 1965), pp. 116-128.
- [17] S. Gasiorowicz, *Elementary Particle Physics* (Wiley, New York, 1967).
- [18] M. M. Nagels et al., Nucl. Phys. B 147, 189 (1979).
- [19] T. E. O. Ericson and W. Weise, *Pions and Nuclei* (Clarendon Press, Oxford, 1988).
- [20] D. E. Groom *et al.* (Particle Data Group), Eur. Phys. J. C 15, $1(2000)$.
- f21g C.-H. Lee, D.-P. Min, and M. Rho, Phys. Lett. B **326**, 14 s1994d; C.-H. Lee, G. E. Brown, and M. Rho, *ibid.* **335**, 266 (1994); C.-H. Lee, G. E. Brown, D.-P. Min, and M. Rho, Nucl. Phys. A **585**, 401 (1995); C.-H. Lee, D.-P. Min, and M. Rho, *ibid.* **602**, 334 (1996).
- [22] S. Gasiorowicz and D. A. Geffen, Rev. Mod. Phys. 41, 531 $(1969).$
- [23] S. L. Adler and R. Dashen, *Current Algebras* (Benjamin, New

York, 1968).

- [24] M. Ericson and M. Rho, Phys. Lett. **36B**, 93 (1971).
- [25] V. De Alfaro, S. Fubini, G. Furlan, and C. Rossetti, *Currents in* Hadron Physics (North-Holland, Amsterdam, 1973).
- [26] E. Reya, Phys. Rev. D 6, 200 (1972); 7, 3472 (1973); Rev. Mod. Phys. 46, 545 (1974).
- [27] J. F. Gunion, P. C. Mcamee, and M. D. Scadron, Nucl. Phys. B **123**, 445 (1977).
- [28] B. di Claudio, A. M. Rodriguez-Vargas, and G. Violini, Z. Phys. C 3, 75 (1979).
- [29] T. E. O. Ericson, Phys. Lett. B **195**, 116 (1987).
- [30] E. E. Kolomeitsev, PhD thesis, 1998; http://www.physik.tudresden.de/publik/1998/diss_kolomeitsev.ps
- $[31]$ R. L. Jaffe, Phys. Rev. D 13, 267 (1977) .
- [32] N. N. Achasov, S. A. Devyanin, and G. N. Shestakov, Sov. J. Nucl. Phys. 32, 566 (1980); Phys. Lett. 96B, 168 (1980); **108B**, 134 (1982); Z. Phys. C **16**, 55 (1982); Sov. Phys. Usp. 27, 161 (1984); N. N. Achasov and G. N. Shestakov, Z. Phys. C 41, 309 (1988); N. N. Achasov, Nucl. Phys. B, Proc. Suppl. **21**, 189 (1991); N. N. Achasov and G. N. Shestakov, Sov. Phys. Usp. 34, 471 (1991); N. N. Achasov, V. V. Gubin, and V. I. Shevchenko, Phys. Rev. D 56, 203 (1997); N. N. Achasov and V. N. Gubin, *ibid.* **56**, 4084 (1997); N. N. Achasov, Phys. Usp. 41, 1149 (1998); N. N. Achasov and G. N. Shestakov, Phys. At. Nucl. **62**, 505 (1999); N. N. Achasov, Nucl. Phys. A **675**, 279c (2000) N. N. Achasov and A. V. Kiselev, Phys. Lett. B 534, 83 (2002); N. N. Achasov, Phys. At. Nucl. 65, 546 (2002).
- [33] S. Krewald, R. H. Lemmer, and F. P. Sassen, e-print hep-ph/ 0307288; F. P. Sassen, S. Krewald, and J. Speth, Phys. Rev. D **68**, 036003 (2003); S. Krewald, *Kaonium and mesonexchange models of meson-meson interactions*, invited talk at the Workshop on *HADATOM03* at ECT* in Trento, Italy, October, 2003.
- [34] M. Primavera, *Results from DAPHNE*, Proceedings of the Workshop on *Chiral Dynamics* at University of Bonn, Bonn, Germany, September, 2003, p. 22, e-print hep-ph/0311212.
- [35] H.-Ch. Schröder *et al.*, Eur. Phys. J. C 21, 473 (2001).
- [36] T. E. O. Ericson, B. Loiseau, and S. Wycech, Phys. Lett. B **594**, 76 (2004).
- [37] A. N. Ivanov, M. Nagy, and N. I. Troitskaya, Phys. Rev. C 59, 451 (1999).
- [38] J. Gasser, H. Leutwyler, and M. E. Sainio, Phys. Lett. B 253, 252 (1991); **253**, 260 (1991); V. Bernard, N. Kaiser and Ul-G. Meißner, Z. Phys. C 60, 111 (1993); B. Borasoy, Eur. Phys. J. C 8, 121 (1999); J. Gasser and M. E. Sainio, *Sigma-Term Physics*, invited talk given at the Workshop *Physics and Detectors for DAPHNE*, Frascati, November, 1999.
- [39] G. Beer *et al.*, Prog. Theor. Phys. Suppl. **149**, 240 (2003).
- [40] T. M. Ito et al. (KEK Collaboration), Phys. Rev. C 58, 2366 $(1998).$
- [41] M. P. Faifman and L. I. Men'shikov, *A new approach to kinetic analysis of cascade processes in* μ ^{*−}p and K[−]p hydrogen atoms*,</sup> invited talk at Workshop on exotic atoms " $EXA⁰⁵$ " at Stefan Meyer Institute of subatomic Physics of Austrian Academy of Sciences, February, 2005, Vienna, Austria; http:// www.oeaw.ac.at/smi/exa05/program.htm.