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We present a path-integral formulation of ’t Hooft’s derivation of quantum physics from classical physics.
The crucial ingredient of this formulation is Gozzi et al.’s supersymmetric path integral of classical mechanics.
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DOI: 10.1103/PhysRevA.71.052507 PACS number�s�: 31.15.Kb, 03.65.�w, 45.20.Jj, 11.30.Pb

I. INTRODUCTION

In recent decades, various classical, i.e., deterministic, ap-
proaches to quantum theory have been proposed. Examples
are Bohmian mechanics �1�, and the stochastic quantization
procedures of Nelson �2�, Guerra and Ruggiero �3�, and Pa-
risi and Wu �4,5�. Such approaches are finding increasing
interest in the physics community. This might be partially
ascribed to the fact that such alternative formulations help in
explaining some quantum phenomena that cannot be easily
explained with the usual formalisms. Examples are multiple
tunneling �6�, critical phenomena at zero temperature �7�,
mesoscopic physics and quantum Brownian oscillators �8�,
and quantum-field-theoretical regularization procedures
which manifestly preserve all symmetries of the bare theory
such as gauge symmetry, chiral symmetry, and supersymme-
try �9�. They allow one to quantize gauge fields, both Abelian
and non-Abelian, without gauge fixing and the ensuing cum-
bersome Faddeev-Popov ghosts �10�, etc.

The primary objective of a reformulation of quantum
theory in the language of classical, i.e., deterministic, theory
is basically twofold. On the formal side, it is hoped that this
will help in attacking quantum-mechanical problems from a
different direction using hopefully more efficient mathemati-
cal techniques than the conventional ones. Such techniques
may be based on stochastic calculus, supersymmetry, or vari-
ous new numerical approaches �see, e.g., Refs. �5,11� and
citations therein�. On the conceptual side, deterministic sce-
narios are hoped to shed new light on some old problems of
quantum mechanics, such as the origin of the superposition
rule for amplitudes and the theory of quantum measurement.
It may lead to new ways of quantizing chaotic dynamical
systems, and ultimately a long-awaited consistent theory of
quantum gravity. There is, however, a price to be paid for
this; such theories must have a built-in nonlocality to escape
problems with Bell’s inequalities. Nonlocality may be incor-
porated in numerous ways—the Bohm-Hiley quantum poten-

tial �1,12�, Nelson’s osmotic potential �2�, or Parisi and Wu’s
fifth-time parameter �4,5�.

Another deterministic access to quantum-mechanical sys-
tems was recently proposed by ’t Hooft �13,14� with subse-
quent applications in Refs. �15–21�. It is motivated by black-
hole thermodynamics �and particularly by the so-called
holographic principle �22,23��, and hinges on the concept of
information loss. This and certain accompanying nontrivial
geometric phases are able to explain the observed nonlocal-
ity in quantum mechanics. The original formulation has ap-
peared in two versions: one involving a discrete time axis
�16�, the second continuous times �14�. The goal of this pa-
per is to discuss further and gain more understanding of the
latter model. The reader interested in the discrete-time model
may find some practical applications in Refs. �24,25�. It is
not our purpose to dwell on the conceptual foundations of
’t Hooft’s proposal. Our aim is to set up a possible useful
alternative formulation of ’t Hooft’s model and quantization
scheme that is based on path integrals �11�. It makes use of
Gozzi et al.’s path-integral formulation of classical mechan-
ics �26,27� which appears to be a natural mathematical
framework for such a discussion. The condition of the infor-
mation loss, which is basically a first-class subsidiary con-
straint, can then be incorporated into path integrals by stan-
dard techniques. Although ’t Hooft’s procedure differs in its
basic rationale from stochastic quantization approaches, we
show that they share a common key feature, which is a hid-
den BRST invariance, related to the so-called Nicolai map
�28�. To be specific, we shall apply our formulation to two
classical systems: a planar mathematical pendulum and the
simplest deterministic chaotic system—the Rössler attractor.
Suitable choices of the “loss of information” condition then
allow us to identify the emergent quantum systems with a
free particle, a quantum harmonic oscillator, and a free par-
ticle weakly coupled to Duffing’s oscillator.

Our paper is organized as follows In Sec. II we quantize
’t Hooft’s Hamiltonian system by expressing it in terms of a
path integral which is singular due to the presence of second-
class primary constraints. The singularity is removed with
the help of the Faddeev-Senjanovic prescription �29,30�. It is
then shown that the fluctuating system produces a classical
partition function. In Sec. III we briefly review Gozzi et al.’s
path-integral formulation of classical mechanics in configu-
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ration space. The corresponding phase-space formulation is
more involved and will not be considered here. By imposing
the condition of a vanishing ghost sector, which is character-
istic for the underlying deterministic system, we find that the
most general Hamiltonian system compatible with such a
condition is the one proposed by ’t Hooft. In Sec. IV we
introduce ’t Hooft’s constraint which expresses the property
of information loss. This condition not only explicitly breaks
the BRST symmetry but, when coupled with the Dirac-
Bergmann algorithm, it also allows us to recast the classical
generating functional into a form representing a proper
quantum-mechanical partition function. Section V is devoted
to application of our formalism to practical examples. We
conclude with Sec. VI. For the reader’s convenience the pa-
per is supplemented with four appendixes which clarify
some finer mathematical points needed in the paper.

II. QUANTIZATION OF ’t HOOFT’S MODEL

Consider the class of systems described by Hamiltonians
of the form

H = �
a=1

N

pafa�q� . �1�

Such systems emerge in diverse physical situations, for ex-
ample, Fermi fields, chiral oscillators �20�, and noncommu-
tative magnetohydrodynamics �31�. The relevant example in
the present context is the use of Eq. �1� by ’t Hooft to for-
mulate his deterministic proposal �13�.

An immediate problem with the above Hamiltonian is its
unboundedness from below. This is due to the absence of a
leading kinetic term quadratic in the momenta pa

2 /2M, and
we shall dwell more on this point in Sec. IV. The equations
of motion following from Eq. �1� are

q̇a = fa�q�, ṗa = − pa
� fa�q�

�qa
. �2�

Note that the equation for qa is autonomous, i.e., it is decou-
pled from the conjugate momenta pa. The absence of a qua-
dratic term makes it impossible to find a Lagrangian via a
Legendre transformation. This is because the system is
singular—its Hess matrix Hab��2H /�pa�pb vanishes.

A Lagrangian yielding the equations of motion �2� can
nevertheless be found, but at the expense of doubling the
configuration space by introducing additional auxiliary vari-
ables q̄a�a=1,… ,N�. This extended Lagrangian has the form

L̄ � �
a=1

N

�q̄aq̇a − q̄afa�q�� �3�

and it allows us to define canonically conjugate momenta in

the usual way: pa��L̄ /�q̇a , p̄a��L̄ /�q̇̄a. A Legendre trans-
formation produces the Hamiltonian

H̄�pa,qa, p̄a, q̄a� = �
a=1

N

paq̇a + p̄aq̇̄a − L = �
a=1

N

q̄afa�q� . �4�

The rank of the Hess matrix is zero, which gives rise to 2N
primary constraints, which can be chosen as

�1
a = pa − q̄a � 0, �2

a = p̄a � 0. �5�

The use of the symbol � instead of = is due to Dirac �32�
and it has a special meaning: two quantities related by this
symbol are equal after all constraints have been enforced.
The system has no secondary constraints �see Appendix A�.
The matrix formed by the Poisson brackets of the primary
constraints,

��1
a�t�,�2

b�t�	 = − �ab, �6�

has a nonzero determinant, implying that all constraints are
of the second class. Note that on the constraint manifold the
canonical Hamiltonian �4� coincides with ’t Hooft’s Hamil-
tonian �1�.

To quantize ’t Hooft’s system we utilize the general
Faddeev-Senjanovic path integral formula �29,30� for time
evolution amplitudes1


q2,t2�q1,t1� = N
 Dp Dq��det���i,� j	���
i

���i�

�exp� i

q



t1

t2

dt�pq̇ − H̄�q,p��� . �7�

Using the shorthand notation �i= ��1
1 ,�2

1 ,�1
2,

�2
2 ,… ,�1

N ,�2
N	 �i=1,… ,2N�, Eq. �7� implies in our case

that


q2,t2�q1,t1� = N
 Dp Dq Dp̄ Dq̄��p − q̄���p̄�

�exp� i

q



t1

t2

dt�pq̇ + p̄q̇̄ − H̄�q,q̄,p,p̄���
= N


q�t1�=q1

q�t2�=q2

Dq Dq̄exp� i

q



t1

t2

L̄�q,q̄,q̇, q̇̄�dt�
= N


q�t1�=q1

q�t2�=q2

Dq�
a

��q̇a − fa�q�� , �8�

where ��f���t�(f�t�) is the functional version of Dirac’s �
function. This result shows that after quantization the system
described by the Hamiltonian �1� retains its deterministic
character. The paths are squeezed onto the classical trajecto-
ries determined by the differential equations q̇a= fa�q�. The
time evolution amplitude �8� contains a sum over only the
classical trajectories—there are no quantum fluctuations
driving the system away from the classical paths, which is
precisely what we expect from a deterministic dynamics.

The amplitude �8� can be brought to a more intuitive form
by utilizing the identity

��f�q� − q̇� = ��q − qcl��det M�−1, �9�

where M is a functional matrix formed by the second deriva-

tives of the action Ā�q , q̄���dt L̄�q , q̄ , q̇ , q̇̄�:

1Other path-integral s of systems with second-class constraints
such as that of Fradkin and Fradkina �33� would lead to the same
result �8�.
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Mab�t,t�� = � �2Ā
�qa�t��q̄b�t��

�
q=qcl

. �10�

The Morse index theorem then ensures that for sufficiently
short time intervals t2− t1 �before the system reaches its first
focal point�, the classical solution with the initial condition
q�t1�=q1 is unique. Note, however, that because of the first-
order character of the equations of motion we are dealing
with a Cauchy problem, which may happen to possess no
classical trajectory satisfying the two Dirichlet boundary
conditions q�t1�=q1, q�t2�=q2. If a trajectory exists, Eq. �8�
can be brought to the form


q2,t2�q1,t1� = N̄

q�t1�=q1

q�t2�=q2

Dq ��q − qcl� , �11�

where N̄�N / �det M�. We close this section by observing
that det M can be recast into more expedient form. To do this
we formally write

det M = det���t�a
b +

� fa„q�t�…
�qb�t� ���t − t���

= exp�Tr ln���t�a
b +

� fa„q�t�…
�qb�t� ���t − t����

= exp�Tr ln�t��a
b��t − t�� + G�t − t��

� fa„q�t��…
�qb�t�� ��

= exp�Tr�ln�t��exp�Tr ln��a
b��t − t��

+ G�t − t��
� fa„q�t��…

�qb�t�� �� . �12�

Here G�t− t�� is the Green’s function satisfying the equation

�tG�t − t�� = ��t − t�� .

Choosing G�t− t��=��t− t��, and noting that the first factor in
Eq. �12� is an irrelevant constant that can be assimilated into
N we have

det M = exp�Tr ln��a
b��t − t�� + G�t − t��

� fa„q�t��…
�qb�t�� ��

= exp�Tr���t − t��
� fa„q�t�…

�qb�t� ��
= exp�1

2



t1

t2

dt �qf�q�� . �13�

In deriving Eq. �13� we have used the fact that due to the
product of the � function in the expansion of the logarithm,
all terms vanish but the first one. In evaluating the general-
ized function ��x� at the origin we have used the only con-
sistent midpoint rule �11�: ��0�=1/2. Using the identity

�exp�1

2



t1

t2

dt �qf�q���
q=qcl

=
 Dq̄ ��q̄ − q̄cl�exp�−
1

2



t1

t2

dt �q̄q̇̄� , �14�

we can finally write the amplitude of transition in the sug-
gestive form


q2,t2�q1,t1� = N

q�t1�=q1

q�t2�=q2

Dq Dq̄ ��q − qcl���q̄ − q̄cl�

�exp�−
1

2



t1

t2

dt �q̄q̇̄� = N

q�t1�=q1

q�t2�=q2

Dq Dq̄

���q − qcl���q̄ − q̄cl��det K�t2�
det K�t1�

. �15�

Here K�t� is the fundamental matrix of the solutions of the
system

q̇̄a = − q̄b
� fb�q�

�qa
. �16�

det K�t� is then the corresponding Wronskian. Note that in
the particular case when �qf�q��0, i.e., when the phase
flow preserves the volume of any domain in the configura-
tion space, the exponential in Eq. �15� can be dropped.2 Be-
cause the exponent depends only on the end points of the q̄
variable it can be removed by performing the trace over q̄.
As a result we can cast the quantum-mechanical partition
function �or generating functional� Z into the form

Z = N
 Dq Dq̄ ��q − qcl���q̄ − q̄cl�

�exp�

t1

t2

�J�t�q�t� + J̄�t�q̄�t��dt�
= N
 Dqa��qa − �qa�cl�exp�


t1

t2

dt Ja�t�qa�t�� . �17�

Here the doubled vector notation qa= �q , q̄	 and Ja��J , J̄	
was used.

III. PATH-INTEGRAL FORMULATION OF CLASSICAL
MECHANICS: CONFIGURATION-SPACE

APPROACH

Expressions �11� and �17� formally coincide with the
path-integral formulation of classical mechanics in configu-
ration space proposed by Gozzi �26� and further developed
by Gozzi, Reuter, and Thacker �27� �see also Ref. �21� for
recent applications�. Let us briefly review aspects of this
which will be needed here. Consider the path-integral of the
generating functional of a quantum-mechanical system with
action A�q�:

2This corresponds to the situation when there are no attractors in
the configuration space �q.
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ZQM = N
 Dq e−iA�q�/qexp�
 J�t�q�t�dt� . �18�

We assume in this context that there are no constraints that
would make the measure more complicated as in Eq. �7�.
Gozzi et al. proposed to describe classical mechanics by a
generating functional of the form �18� with an obviously
modified integration measure which gives equal weight to all
classical trajectories and zero weight to all others,

ZCM = Ñ
 Dq ��q − qcl�exp�
 J�t�q�t�dt� . �19�

Although the form of the partition function �19� is not de-
rived but postulated, we show in Appendix B that it can be
heuristically understood either as the “classical” limit of the
stochastic-quantization partition function, or as a result of the
classical limit of the closed-time-path integral for transition
probability of systems coupled to a heat bath. This, in turn,
indicates that it would be formally more correct to associate
Eq. �19� with the probability of transition or �via the
stochastic-quantization passage� with the Euclidean ampli-
tude of transition �34�. Albeit Eq. �19� cannot be generally
obtained from Eq. �18� by a semiclassical limit as in the
WKB method �which can be recognized by the absence of a
phase factor exp�i /qA�qcl�� in Eq. �19�� it may happen that
even ordinary amplitudes of transition possess this form.
This is the case, for instance, when the number of degrees of
freedom is doubled or when one deals with closed-time-path
formulation of thermal quantum theory. Yet, whatever is the
origin or motivation for Eq. �19�, it will be its formal struc-
ture and mathematical implications that will interest us here
most.

To proceed we note that an alternative way of writing Eq.
�19� is

ZCM = Ñ
 Dq ���A
�q

�det� �2A
�qa�t��qb�t��

�
�exp�
 J�t�q�t�dt� . �20�

By representing the � functional in the usual way as a func-
tional Fourier integral,

���A
�q

� =
 D� exp�i

t1

t2

dt ��t�
�A

�q�t�� , �21�

and the functional determinant as a functional integral over
two real time-dependent Grassmannian ghost variables ca�t�
and c̄a�t�,

det� �2A
�qa�t��qb�t��

� =
 Dc Dc̄ exp�

t1

t2

dt

t1

t2

dt�c̄a�t�

�
�2A

�qa�t��qb�t��
cb�t��� , �22�

we obtain

ZCM =
 Dq D� Dc Dc̄ exp�iS + 

t1

t2

dt J�t�q�t�� ,

�23�

with the new action

S�q, c̄,c,�� � 

t1

t2

dt ��t�
�A

�q�t�

− i

t1

t2

dt

t1

t2

dt�c̄a�t�
�2A

�qa�t��qb�t��
cb�t�� .

�24�

Since ZCM together with the action �24� formally result from
the classical limit of the stochastic-quantization partition
function, it comes as no surprise that S exhibits BRST �and
anti-BRST� supersymmetry. It is simple to check that S does
not change under the supersymmetry transformations

�BRSTq = �̄c, �BRSTc = 0, �BRSTc̄ = − i�̄�, �BRST� = 0,

�25�

where �̄ is a Grassmann-valued parameter �the corresponding
anti-BRST transformations are related with Eq. �25� by
charge conjugation�. Indeed, the variations of the two terms
in Eq. �24� read

�BRST�

t1

t2

dt ��t�
�A

�q�t�� = �̄

t1

t2

dt

t1

t2

dt��a�t�

�
�2A

�qa�t��qb�t��
cb�t�� , �26�

�BRST�

t1

t2

dt

t1

t2

dt�c̄a�t�
�2A

�qa�t��qb�t��
cb�t���

= − i�̄

t1

t2

dt

t1

t2

dt��a�t�
�2A

�qa�t��qb�t��
cb�t��

+ 

t1

t2

dt

t1

t2

dt�

t1

t2

dt�c̄a�t�

�
�3A

�qa�t��qb�t���qc�t��
�̄cc�t��cb�t�� . �27�

The second term on the right-hand side RHS of Eq. �27�
vanishes because the functional derivative of A is symmetric
in c↔b whereas the term cccb is anti-symmetric. Inserting
Eqs. �26� and �27� into the action we clearly find �BRSTS
=0. As noted in �27�, the ghost fields c̄ and c are mandatory
at the classical level as their role is to cut off the fluctuations
perpendicular to the classical trajectories. On the formal
side, c̄ and c may be identified with Jacobi fields �27,35�.
The corresponding BRST charges are related to Poincaré-
Cartan integral invariants �36�.

By analogy with the stochastic quantization the path inte-
gral �23� can, of course, be rewritten in a compact form with
the help of a superfield �26,34�
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	a�t,�, �̄� = qa�t� + i�ca�t� − i�̄c̄a�t� + i�̄��a�t� , �28�

in which � and �̄ are anticommuting coordinates extending
the configuration space of qa variable to a superspace. The
latter is nothing but the degenerate case of supersymmetric
field theory in d=1 in the superspace formalism of Salam
and Strathdee �37�. In terms of superspace variables we see
that


 d�̄ d� A��� =
 dt d�̄ d� L�q�t� + i�c�t�

− i�̄c̄�t� + i�̄���t��

=
 d�̄ d� A�q� +
 dt d�̄ d�

��i�c�t� − i�̄c̄�t� + i�̄���
�A

�q�t�

+
 dt dt�d�̄ d� �ca�t�
�2A

�qa�t��qb�t��
�̄c̄�t�� .

�29�

Using the standard integration rules for Grassmann variables,
this becomes equal to −iS. Together with the identity D�
=Dq Dc Dc̄ D� we may therefore express the classical par-
tition functions �19� and �20� as a supersymmetric path inte-
gral with fully fluctuating paths in superspace

ZCM =
 D� exp�−
 d� d�̄ A�����, �̄�

+
 dt d� d�̄ ��t,�, �̄���t,�, �̄�� . �30�

Here we have defined the supercurrent ��t ,� , �̄�= �̄�J�t�.
It is interesting to find the most general form of an action

A for which the classical path integral �30� coincides with
the quantum-mechanical path integral of the system, or, in
other words, for which a theory would possess at the same
time deterministic and quantal character. As already men-
tioned, the Grassmannnian ghost variables are responsible
for the deterministic nature of the partition function. It is
obvious that if the ghost sector could somehow be factored
out we would extend the path integration to all fluctuating
paths in q space. By formally writing

�2A
�qk�t��ql�t��

= Fkl�t,t�,qm,
�A
�qn

�, k,l,m,n = 1,…,N ,

�31�

we see that the factorization will occur if and only if the
�distribution valued� functional Fkl�¯� is qm independent
when evaluated on shell, i.e., Fkl�t , t� ,qm ,0�=Fkl�t , t��. This
is a simple consequence of Eq. �20� where the determinant is
factorizable if and only if it is q independent at �A /�q=0.

In order to provide a correct Feynman weight to every
path we must, in addition, identify

A�q� = 

t1

t2

dt �m

�A�q�
�qm

, �32�

as can be seen from Eq. �24� after factoring out the second
term. Assuming that L=L�ql , q̇l� �i.e., a scleronomic system�
and that the Hessian is regular, the condition �32� shows that
�k=�k�ql , q̇k�. In addition, it is obvious on dimensional
grounds that ��l�= �ql�. This, in turn, implies that �k=
klql,
where 
lk is some real �t-independent� matrix. To determine
the latter we functionally expand A in Eq. �32� around qk and
compare both sides. The resulting integrability condition
reads

�� ji − 
 ji�
�A

�qj�t�
��t − t�� = 
ljqj�t�

�2A
�ql�t��qi�t��

, �33�

which is evidently compatible with the condition �31�. When

ij is diagonalizable we can pass to a polar basis and write
Eq. �32� in more manageable form, namely,

A�q� = 

t1

t2

dt�
i


iqi�t�
�A�q�
�qi�t�

. �34�

For simplicity, we do not use new symbols for transformed
q’s.

To proceed we assume that the kinetic energy is quadratic
in q and q̇. Then Eq. �34� implies that Lkin must be linear in
q̇. As such, one can always write �modulo the total deriva-
tive�

Lkin = �
i,j

Bijqi�t�q̇j�t� , �35�

with B being an upper triangular matrix. Comparing Lkin on
both sides of Eq. �34� we arrive at the equation

�
m − 1�Bim = Bmi
m ⇒ �B − BT�
 = B , �36�

with no Einstein’s summation convention applied here. Be-
cause B is upper triangular, the first part of Eq. �36� implies
that the only eigenvalues of 
ij are 1 and 0. Thus, 
 can be
reduced to the block form


 = �0 0

0 1
� , �37�

where 1 is an r�r �r�N� unit matrix. Using the equation
�B−BT�
=B we see that B has the block structure

B = �0 B2

0 0
� �38�

where B2 is an �N−r��r matrix. To determine r we use the
fact that 
 is idempotent, i.e. 
2=
. Multiplying �B−BT�

=B by 
 we find

B
 = B, BT
 = 0. �39�

From B
=B it follows that rank�B�=rank�
�=r, whereas
BT�1−
�=BT implies that rank�BT�=rank�1−
�. Utilizing
the identity rank�B�=rank�BT� we derive r=rank�
�
=rank�1−
�= �N−r�, and thus r=N /2. Thus the condition
�34� can be satisfied only for an even number N of degrees of
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freedom. An immediate further consequence of Eq. �38� is
that we can rewrite Eq. �35� as

Lkin = �
i,j=1

N/2

Bi,�N/2+j�q̇iqN/2+j . �40�

Denoting 
N/2+i, qN/2+i and �N/2+i �i=1,… ,N /2� as 
̄i, q̄i, and

�̄i, respectively �hence, �=0 and �̄= q̄�, then Eq.�34� reads

Ā�q,q̄� = 

t1

t2

dt q̄�t�
�Ā�q,q̄�

�q̄�t�
. �41�

Here Ā�q , q̄�=A�q1 ,… ,q2N�.

The result �41� can be obtained also in a different way. Indeed, in Appendix C we show that Eq. �34� is a so-called Euler-like
functional

A�q� = 

t1

t2

dt r�t�L�r−
1�t�q1�t�,…,r−
N�t�qN�t�,
d�r−
1�t�q1�t��

dt
,…,

d�r−
N�t�qN�t��
dt

� , �42�

with r�t� being an arbitrary function of qk whose variations vanish at the ends �r�ti�=�r�tf�=0 if all �qk’s have this property.
In particular, we may chose r to be any finite power qk

1/
k �for k=1,… ,N�, in which case

A�q� = 

t1

t2

dt qk
1/
kL� q1

qk

1/
k

,…,1
↓
k

,…,
qN

qk

N/
k

,
d�q1/qk


1/
k�
dt

,…,0
↓
k

,…,
d�qN/qk


N/
k�
dt

� . �43�

Assuming, as before, that the kinetic term in L is quadratic in
q and q̇, we arrive at 
 as in �37�, and the action �43� reduces
again to �41�.

One can incorporate the constraints on 
i �or �i� by in-
serting a corresponding � functional into the path integral
�23�. This leads to the most general generating functional
with the above-stated property:

ZCM =
 Dq Dq̄ D� D�̄�������̄ − q̄�

�exp�i

t1

t2

dt �
�Ā�q,q̄�

�q
+ i


t1

t2

dt �̄
�Ā�q,q̄�

�q̄

+ 

t1

t2

dt�
k=1

N

Jkqk�
=
 Dq Dq̄ exp�i


t1

t2

dt q̄
�Ā�q,q̄�

�q̄
+ 


t1

t2

dt�
k=1

N

Jkqk�
=
 Dq Dq̄ exp�i


t1

t2

dt L̄ +
 dt�
k=1

N

Jkqk� . �44�

An irrelevant normalization factor has been dropped. The

Lagrangian L̄ coincides precisely with the Lagrangian �3�,
and describes therefore ’t Hooft’s deterministic system.
Hence within the above assumptions there are no other sys-
tems with the peculiar property that their full quantum prop-
erties are classical. Among other things, the latter also indi-
cates that the Koopman–von Neumann operatorial
formulation of classical mechanics �38� when applied to

’t Hooft systems must agree with its canonically quantized
counterpart.

IV. ’t HOOFT’S INFORMATION LOSS AS A FIRST-CLASS
PRIMARY CONSTRAINT

As observed in Sec. II, the Hamiltonian �1� is not bounded
from below, and this is true for any function f i. Thus, no
deterministic system with dynamical equations q̇i= f i�q� can
describe a physically acceptable quantum world. Its Hamil-
tonian would not be stable and we could build a perpetual
motion machine. To deal with this problem we will employ
’t Hooft’s procedure �13�. We assume that the system �1� has
n conserved, irreducible charges Ci, i.e.,

�Ci,H	 = 0, i = 1,…,n . �45�

In order to enforce a lower bound upon H, ’t Hooft split the
Hamiltonian as H=H+−H− with both H+ and H− having
lower bounds. Then he imposed the condition that H− should
be zero on the physically accessible part of phase space, i.e.,

H− � 0. �46�

This will make the actual dynamics governed by the reduced
Hamiltonian H+, which is bounded from below, by defini-
tion.

To ensure that the above splitting is conserved in time one
must require that �H− ,H	= �H+ ,H	=0. The latter is equiva-
lent to the statement that �H+ ,H−	=0. Since the charges Ci in
Eq. �45� form an irreducible set, the Hamiltonians H+ and H−
must be functions of the charges and H :H+=F+�Ck ,H� and
H−=F−�Ck ,H�. There is a certain amount of flexibility in
finding F− and F+, but for convenience’s sake we confine
ourselves to the following choice:
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H+ =
�H + �

i

ai�t�Ci�2

4�
i

ai�t�Ci

, H− =
�H − �

i

ai�t�Ci�2

4�
i

ai�t�Ci

,

�47�

where ai�t� are independent of q and p and will be specified
later. The lower bound is then achieved by choosing
�iai�t�Ci to be positive definite. In the following it will also
be important to select the combination of Ci’s in such a way
that it depends solely on q �this condition may not necessar-
ily be achievable for general fa�q��. Thus by imposing
H−�0 we obtain the weak reduced Hamiltonian H�H+
��iai�t�Ci.

The constraint �46� �or �47�� can be motivated by dissipa-
tion or information loss �14,15,19�. In Appendix D we show
that the explicit constraint �46� does not generate any new
�i.e., secondary� constraints when added to the existing con-
straints �5�. In addition, this new set of constraints corre-
sponds to 2N second-class constraints and one first-class
constraint �see also Appendix D�. It is well known in the
theory of constrained systems that the existence of first-class
constraints signals the presence of a gauge freedom in
Hamiltonian theory. This is so because the Lagrange multi-
pliers affiliated with first-class constraints cannot be fixed
from dynamical equations alone �32�. The time evolution of
observable �physical� quantities, however, cannot be affected
by the arbitrariness in Lagrange multipliers. To remove this
superfluous freedom that is left in the formalism we must
pick up a gauge, i.e., impose a set of conditions that will
eliminate the above redundancy from the description. It is
easy to see that the number of independent gauge conditions
must match the number of first-class constraints. Indeed, the
requirement on a physical quantity �say f� to have a unique
time evolution on the constraint submanifold M, i.e.,

ḟ � �f ,H̄	 + �
i=1

m

vi�f ,�i	 + �
k=1

m�

uk�f ,�k	 , �48�

implies that

�f ,�i	 � 0. �49�

The constraints �i and �k represent first- and second-class
constraints, respectively. First-class constraints have, by defi-
nition, weakly vanishing Poisson brackets with all other con-
straints; any other constraint that is not first class is second
class. While the Lagrange multipliers uk can be uniquely
fixed from the dynamics by consistency conditions �see Ap-
pendixes A and D� this cannot be done for the vi’s. In this
way �49� represents an obligatory condition for a quantity f
to be observable. Equation �49� can be considered as a set of
m first-order differential equations on the constrained surface
with the relation ��i ,� j	�0 serving as the integrability con-
ditions �32,39�.Thus, f is uniquely defined by its values on
the the submanifold of the initial conditons for �49�. As a
result, the above initial value surface describes the true de-
grees of freedom. By denoting the dimension of the con-
straint manifold as D we see that the dimension of the sub-

manifold of initial conditions must be D−m. We can take
this submanifold to be a surface �* specified by the equations

�i = 0, i = 1,…,m ,

�k = 0, k = 1,…,m�,


l = 0, l = 1,…,m . �50�

The m subsidiary conditions 
l are the sought gauge con-
straints. The functions 
l must clearly satisfy the condition

det��
l,�i	� � 0, �51�

as only in such a case can we determine specific values for
the multipliers vi from the dynamical equation for 
l �this is
because the time derivative of any constraint, and hence also

l, must be zero�. Therefore only when the condition �51� is
satisfied do the constraints �50� indeed describe the surface
of the initial conditions.

The preceding discussion implies that in our case the sur-
face �* is defined by

��q,q̄,p,p̄� = 0, 
�q,q̄,p,p̄� = 0, �52�

�i�q,q̄,p,p̄� = 0, i = 1,…,2N . �53�

The explicit form of � is found in Appendix D where we
show that ��H−�aiCi. Apart from condition �51� we shall
further restrict our choice of 
 to functions satisfying the
simultaneous equations

�
,�i	 = 0, i = 1,…,2N . �54�

Such a choice is always possible �at least in a weak sense�
�30� and it will prove crucial in the following.

In order to proceed further we begin by reexamining Eq.
�44�. The latter basically states that

ZCM =
 Dq ��q − qcl�exp�

t1

t2

dt q�t�J�t�� . �55�

We may now formally invert the steps leading to Eq. �8�, i.e.,
we introduce auxiliary momentum integrations and go over
to the canonical of �55�. Correspondingly Eq. �55� can be
recast into

ZCM =
 Dp Dq Dp̄ Dq̄��det���i,� j	���
i=1

2N

���i�

�exp�i

t1

t2

dt�pq̇ + p̄q̇̄ − H� + 

t1

t2

dt�qJ + q̄J̄�� .

Due to � functions in the integration we could substitute

’t Hooft’s Hamiltonian H for the canonical Hamiltonian H̄. It
should be stressed that despite its formal appearance and the
phase-space disguise, the latter is still the classical partition
function of Gozzi et al.

To include the constraints �52� into Eq. �44� we must be a
bit cautious. A naive intuition would dictate that the func-
tional � functions ��
� and ���� should be inserted into the
path-integral measure for ZCM. This would be, however, too
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simplistic as a mere inclusion of � functions into ZCM would
not guarantee that the physical content of the theory that
resides in the generating functional ZCM is independent of the
choice 
. Indeed, utilizing the fact that the generators of
gauge transformations are the first-class constraints �39� we
can write that

�
 = ��
,�	 + C� � ��
,�	 . �56�

Here � is an infinitesimal quantity. The corresponding gauge
generator �� generates the infinistesimal canonical transfor-
mations

q → q + �q, p → p + �p, �q = ���,q	, p = ���,p	 ,

q̄ → q̄ + �q̄, p̄ → p̄ + �p̄, �q̄ = ���,q̄	, p̄ = ���,p̄	 .

�57�

It follows immediately that the corresponding generating
function is

G�q,q̄,P,P̄� = qP + q̄P̄ + �� + o��2� . �58�

The canonical transformations �57� result in changing � and
�i by

�� = A� , �59�

��i = ���i,�	 = Bi� + Dij� j . �60�

Here A ,Bi ,C and Dij are some phase-space functions of or-
der �. Note that in our case the gauge algebra is Abelian. As
a consequence of Eqs. �59� and �60� we find

���� → �1 + Tr�A��−1���� , �61�

�
i

���i� → �1 + Tr�D��−1�
i

���i� , �62�

��det���i,� j	�� → �1 + Tr�D����det���i,� j	�� �63�

�here Tr�A�=�tA�t�, etc.�. In �63� we have used the fact that
in the path-integral measure are present ���� and ���i�, and

so we have dropped on the RHS’s of �61�–�63� the vanishing
terms. The infinitesimal gauge transformations described
hitherto clearly show that ZCM is dependent on the choice of

 �the term with �1+Tr�A�� does not get canceled�. To ensure
the gauge invariance we need to factor out the “orbit vol-
ume” from the definition of ZCM. This will be achieved by a
procedure that is akin to the Faddeev–Popov–De Witt trick.
We define the functional

��
�−1 =
 Dg ��
g� , �64�

with 
g representing the gauge transformed 
. The super-
script g in Eq. �64� denotes an element of the Abelian gauge
group generated by �. We point out that the functional �64� is
manifestly gauge invariant since

��
g��−1 =
 Dg ��
g�g� =
 D�g�g���
g�g� = ��
�−1.

�65�

The second identity holds because of the invariance of the
group measure under composition, i.e., Dg=D�g�g�. Equa-
tions �64� and �65� allow as to write “1” as

1 = �
��
� 
 Dg . �66�

To find an explicit form of ��
� we can apply the infinitesi-
mal gauge transformation �56�. Then


g = 
 + ��
,�	 + C�

⇒ ��
�−1 =
 D� ��
 + ��
,�	 + C��

⇒ ���
�−1��* = �det��
,�	��−1, �67�

with the obvious notation det��
�t� ,��t��	�=�t�
�t� ,��t�	.
Upon insertion of Eq. �66� into ZCM we obtain

ZCM =
 Dp Dq Dp̄ Dq̄ �det��
,�	����det���i,� j	����
������
i=1

2N

���i� exp�i

t1

t2

dt�pq̇ + p̄q̇̄ − H̄� + 

t1

t2

dt�qJ + q̄J̄�� ,

�68�

where3 the group volume GV=�Dg has been factored out as
desired. The partition function �68� is now clearly �locally�
independent of the choice of the gauge constraints 
. This is
because under the transformation �59� we have

det��
,�	� → �1 + Tr�A��det��
 + �
,�	� , �69�

and hence the partition function ZCM as obtained by Eq. �68�
takes the same form as the untransformed one, but with 

replaced by 
+�
. Because we deal with canonical transfor-
mations it is implicit in our derivation that the action in the
new variables is identical, to within a boundary term, with
the original action. In path integrals this might be invalidated

3If F is any phase-space function then ��� ,���F=����F
−����F=���F , �� ,�		=0.
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by the path roughness and related ordering problems.4 For
simplicity’s sake we shall further assume that the latter are
absent or harmless. This happens, for instance, when canoni-
cal transformations are linear. In such cases an infinitesimal
change in 
 does not alter the physical content of the theory
present in ZCM. This conclusion may generally not be true
globally throughout phase space. Global gauge invariance,
however, is mandatory in our case since we need a global
equivalence between the partition functions ZCM and ZQM
and not mere perturbative correspondence. Thus the potenti-
ality of Gribov’s copies must be checked in every individual
problem separately.

In passing we may notice that if we arrange the con-
straints in one set ��a	= �
 ,� ,�i	 we can write Eq. �68� as

ZCM =
 Dp Dq Dp̄ Dq̄��det���a,�b	�� �
a=1

2N+2

���a�

� exp�i

t1

t2

dt�pq̇ + p̄q̇̄ − H� + 

t1

t2

dt�qJ + q̄J̄�� .

�70�

By comparison with Eq. �7� we retrieve a well known result
�39,41�, namely, that the set ��a	 of 2N+2 constraints can be
viewed as a set of second-class constraints. Thus, by fixing a
gauge we have effectively converted the original system of
2N second-class and one first-class constraints into 2N+2
second-class constraints.

In view of Eqs. �6� and �54�, we can perform a canonical
transformation in the full phase space in such a way that the
new variables are P1=
 ,Q1+i=�2i , P1+i=�2i−1 ; i=1,… ,N .
After a trivial integration over Pa and Q1+i we find that

ZCM =
 DP̄ DQ̄ DQ1������det� ��

�Q1
���

�exp�i

t1

t2

dt�P̄Q̄
˙

− K� + 

t1

t2

dt Q̄j� , �71�

where P̄a and Q̄a are the remaining canonical variables span-
ning the �2N−2�-dimensional phase space. To within a time
derivative term the new Hamiltonian is done by the prescrip-

tion K�P̄ ,Q̄ ,Q1�=H�P̄ ,Q̄ , P1=0 ,Q1 ,Q1+i=0, P1+i=0�. The

sources j are correspondingly transformed sources J and J̄.
Utilizing the identity

�����det� ��

�Q1
�� = ��Q1 − Q1

*�P̄,Q̄�� , �72�

we can finally write

ZCM =
 DP̄ DQ̄ exp�i

t1

t2

dt�P̄Q̄
˙

− K*� + 

t1

t2

dt Q̄j� .

�73�

Here K*�P̄ ,Q̄�=K�P̄ ,Q̄ ,Q1=Q1
*�P̄ ,Q̄��. In view of Eq. �D7�

we can alternatively write ZCM as

ZCM =
 DP̄ DQ̄ exp�i

t1

t2

dt�P̄Q̄
˙

− H+
*� + 


t1

t2

dt Q̄j� ,

�74�

where H+
* =H+�P̄ ,Q̄ ,Q1=Q1

*�P̄ ,Q̄� , Pa=0,Q1+i=0�. In pass-

ing we may notice that P̄a and Q̄a are true canonical vari-
ables on the submanifold �* of the initial conditions for Eq.
�49�. Indeed, in terms of a noncanonical system of variables

��i	= �� ;
 ;�i ;Q̄ ; P̄	 the Poisson bracket of any two observ-
able quantities �say f and g� on the constraint manifold M is

��f ,g	�M = ���
a,b

��a,�b	
� f

��a

�g

��b
��

M
= �

i,j
�P̄i,Q̄j	

� f*

� P̄i

�g*

�Q̄j

= �
i,j

�ij
� f*

�Q̄i

�g*

�Q̄ j

, �75�

with �Q̄ j	= �Q̄ ; P̄	 and with

f*�Q̄,P̄� = f�� = 0,
 = 0,�i = 0,Q̄,P̄� ,

g*�Q̄,P̄� = g�� = 0,
 = 0,�i = 0,Q̄,P̄�

representing the physical quantities on M. The latter depend

only on the canonical variables Q̄ and P̄, which are the in-
dependent variables on �*. In deriving Eq. �75� we have used
the fact that various terms are vanishing on account of Eqs.
�49� and �54�. So, for instance, ��� ,�i	� f /��i��M
=0, ��i , P̄j	=0, ��i , Q̄j	=0, ��
 ,�i	� f /�
��M=0, etc. The ma-
trix �ij stands for the �2N−2�� �2N−2� symplectic matrix.

ZCM as defined by Eqs. �73� and �74� does not generally
represent a �classical� deterministic system. This is because
the constraint �=0 explicitly breaks the BRST invariance of
ZCM, which �as illustrated in Sec. III� is key in preserving the
classical nature of the partition function. Indeed, using the
relations �
 , p̄a	= �
 , pa− q̄a	=0 we immediately obtain

�
,�	 = �
a
� �


�qa
� ��

�pa
+

��

� q̄a
� −

�


�pa

��

�qa
� , �76�

which implies that

��
,�	�M,q̄a=�a
= �

a
� �
*

�qa

��*

��a
−

�
*

��a

��*

�qa
� � �
*,�*	 .

�77�

Here the notations 
*�q ,��=
�q ,p=� , q̄=� , p̄=0� and
�*�q ,��=��q ,� ,� ,0� were used. We also took advantage of
the fact that q̄=� as indicated in Sec. III. So the generating
functional �73� �or �74�� can be rewritten as

4In the literature this phenomenon frequently goes under the name
of the Edwards-Gulyaev effect �40�.
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ZCM�J = 0� =
 Dq D� Dc̄ Dc exp�iS����*���
*�

��det��
*,�*	�� , �78�

where the integration over the ghost fields was reintroduced
for convenience. By reformulating ZCM in terms of q ,� ,c
and c̄ we can now easily check the BRST invariance. The
BRST transformations �25� imply that

�BRST �* =
��*

�qi
�̄ci = − �̄£XQ BRST

�*,

�̄BRST �* = −
��*

�qi
�c̄i = − �̄£XQ̄ BRST

�*. �79�

Here £XQ BRST
and £XQ̄ BRST

represent the Lie derivatives with

respect to flows generated by the BRST and anti-BRST
charges, respectively. Analogous relations hold also for 
*.
Correspondingly, to the lowest order in �̄ we can write

��
*� → �1 − Tr��̄£XQ BRST
��−1��
*� ,

�det��
*,�*	�� → �1 − Tr��̄£XQ BRST
���det��
*,�*	�� . �80�

The transformations �80� show that the term
��
*��det��
* ,�*	�� in Eq. �78� is the BRST invariant �as, of
course, are both the integration measure and the effective
action S�. However, because the variation �BRST���*� is not
compensated in Eq. �78� we have in general �BRSTZCM�J
=0��0. An analogous result applies also to the anti-BRST
transformation.

We should note that the condition �BRSTZCM�J=0��0
only indicates that the classical path-integral structure is de-
stroyed; it does not, however, ensure that the ensuing ZCM
can be recast into a form describing a proper quantum-
mechanical generating functional. The straightforward path-
integral such as �73� emerges only after the gauge freedom
inherent in the “information loss” condition � is properly
fixed via the gauge constraint 
. Let us finally emphasize
once more that the partition function �73� �or �74�� has arisen
as a consequence of the application of the classical Dirac-
Bergmann algorithm for singular systems to the classical
path integral of Gozzi et al.

V. EXPLICIT EXAMPLES

A. Free particle

Although the preceding construction may seem a bit ab-
stract, its implementation is quite straightforward. Let us
now illustrate this with two systems. As a warm-up example
we start with the Hamiltonian

H = L3 = xpy − ypx, �81�

which is known to represent the angular momentum with
values unbounded from below. Alternatively, Eq. �81� can be
regarded as describing the mathematical pendulum. This is
because the corresponding dynamical equation �2� for q is a

plane pendulum equation with the pendulum constant l /g
=1. The Lagrangian �3� reads

L̄ = x̄ẋ + ȳẏ + x̄y − ȳx . �82�

It is well known �42� that the system has two �functionally
independent� constants of motion—Casimir functions. For
Eq. �81� they read

C1 = x2 + y2, C2 = xpx + ypy . �83�

The charge C1 corresponds to the conserved radius of the
orbit while C2 is the Noether charge of dilatation invariance
of the Lagrangian �82� under the transformations
�x̄ , ȳ ,x ,y�� �e−sx̄ ,e−sȳ ,esx ,esy�. As only C1 is p indepen-
dent, the functions F+ and F− of this system are according to
Eq. �47� chosen as

F+ =
�H + a1C1�2

4a1C1
, F− =

�H − a1C1�2

4a1C1
. �84�

Hence H−=0 implies that H+�a1�x2+y2�. Here a1 is some
constant to be specified later. The ensuing first-class con-
straint is

� = xpy − ypx − a1x2 − a1y2 − p̄x̄ȳ + 2a1p̄x̄x + p̄ȳx̄ + 2a1p̄ȳy

� H − a1C1. �85�

The gauge condition can then be chosen in the form

= p̄ȳ −y. Indeed, we easily find that

�
,�	 = p̄x̄ − x � 0,

�
,�i	 = 0, i = 1,…,4. �86�

The advantage of our choice of 
 is that it will not run into
Gribov ambiguities, i.e.,the equation �=0 will have a glo-
bally unique solution for Q1 on �*. This should be contrasted
with such choices as, e.g., 
= px or 
= py, which also satisfy
the conditions �86�, but lead to two Gribov copies each.

With the above choice of 
 we may directly write the
canonical transformations

P1 = 
 = p̄ȳ − y, Q1 = py ,

P2 = px − x̄, Q2 = p̄x̄,

P3 = py − ȳ, Q3 = p̄ȳ ,

P̄ = p̄x̄ − x, Q̄ = px. �87�

It might be checked that the transformation Jacobian is in-
deed 1. In the new canonical variables the Hamiltonian K
reads

K�P̄,Q̄,Q1� = H�P̄,Q̄,Pa = 0,Q1,Q2 = 0,Q3 = 0� = − P̄Q1.

�88�

The functional � function �72� has the form
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��Q1 − Q1
*�P̄,Q̄�� = ��Q1 + a1P̄� , �89�

and hence K*�P̄ , Q̄�=H+
*�P̄ , Q̄�=a1P̄2. Let us now set a1

=1/2m�. After changing variables Q̄�t� to Q̄�t� /� we obtain
not only the correct “quantum-mechanical” path-integral
measure

DQ̄ DP̄ � �
i

�dQ̄�ti�dP̄�ti�
2��

� , �90�

but also the prefactor 1 /� in the exponent. So Eq. �74� re-
duces to the quantum partition function for a free particle of
mass m. As the constant a1 represents the choice of units �or
scale factor� for C1 we see that the quantum scale � is imple-
mented into the partition function via the choice of the “loss
of information” constraint.

B. Harmonic oscillator

The system �81� can also be used to obtain the quantized
linear harmonic oscillator. This is possible by observing that
not only is C1=x2+y2 a constant of motion for �81� but also
C1=x2+y2+c with c being any q- and p-independent con-
stant. So in particular we can choose c=c�q̄�. The functional
dependence of c on q̄ cannot be, however, arbitrary. The
requirement that ’t Hooft’s constraint should not generate
any new �i.e., secondary� constraint represents quite a severe
restriction. Indeed, in order to satisfy Eq. �D2� the following
condition must hold �see Appendix D�:

�
i=0

2N

ei��i,H̄	 = − �
a,i

ai�Ci, p̄a	�pa,H̄	 = �
i,k,a

ai
�ci�q̄�
� q̄a

q̄k
� fk�q�

�qa

�91�

which for the system in question is weakly zero only if

x̄
�c�q̄�

� ȳ
− ȳ

�c�q̄�
� x̄

= 0. �92�

The latter equation has the solution �modulo an irrelevant
additive constant� c�q̄�=d2�x̄2+ ȳ2�. Here d2 represents a
multiplicative constant. Hence we have that C1 has the gen-
eral form

C1 = x2 + y2 + d2�x̄2 + ȳ2� . �93�

It will be further convenient to choose a1=−1/2d.The result-
ing first-class constraint then reads

� = xpy − ypx +
1

2d
x2 +

1

2d
y2 −

d

2
x̄2 −

d

2
ȳ2 − ȳp̄x̄ + x̄p̄ȳ

−
1

d
xp̄x̄ −

1

d
yp̄ȳ + dx̄px + dȳpy

� H +
1

2d
C1. �94�

If we choose the gauge condition to be


 = p̄ȳ + dpx − y , �95�

it ensures that

�
,�	 = 2p̄x̄ − 2x − 2dpy � 0,

�
,�i	 = 0, i = 1,…,4. �96�

In addition, we shall see that Eq. �95� guarantees the unique
global solution of the equation �=0 for Q1 on �* �hence it
avoids the undesired Gribov ambiguity�.

The canonical transformation discussed in Sec. IV now
takes the form

P1 = 
 = p̄ȳ + dpx − y, Q1 = py ,

P2 = px − x̄, Q2 = p̄x̄,

P3 = py − ȳ, Q3 = p̄ȳ ,

P̄ = p̄x̄ + dpy − x, Q̄ = px, �97�

and the Hamiltonian K reads

K�P̄,Q̄,Q1� = − P̄Q1 + dQ1
2 − dQ̄2. �98�

The functional � function �72� now has the form

��Q1 − Q1
*�P̄,Q̄�� = ��Q1 −

1

2d
P̄� . �99�

This finally implies that the Hamiltonian on the physical

space �* has the form K*�P̄ , Q̄�=H+
*�P̄ , Q̄�=−�1/4d�P̄2

−dQ̄2. By choosing d=−m� /2 and transforming Q̄� Q̄ /� in
the path integral �73� �or �74�� we obtain the quantum parti-
tion function for a system described by the Hamiltonian

�1/2m�P̄2+ �m /2�Q̄2, i.e., the linear harmonic oscillator with
unit frequency. This is precisely the result which in the con-
text of the system �81� was originally conjectured by ’t Hooft
in Ref. �14�. Note again that the fundamental scale �sugges-
tively denoted as �� was implemented into the theory via the
“loss of information” condition.

C. Free particle weakly coupled to Duffing’s oscillator

There is no difficulty, in principle, in carrying over our
procedure to nonlinear dynamical systems. As an illustration
we will consider here the Rössler system. This is a three-
dimensional continuous-time chaotic system described by
the three autonomous nonlinear equations

dx

dt
= − y − z ,

dy

dt
= x + Ay ,

dz

dt
= B + xz − Cz , �100�

where A ,B, and C are adjustable constants. The associated
’t Hooft Hamiltonian reads
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H = − px�y + z� + py�x + Ay� + pz�B + xz − Cz� , �101�

and the Lagrangian �3� has the form

L̄ = x̄ẋ + ȳẏ + z̄ż + x̄�y + z� − ȳ�x + Ay� − z̄�B + xz + Cz� .

�102�

The Rössler system is considered to be the simplest possible
chaotic attractor with important applications in far-from-
equilibrium chemical kinetics �43�. It also frequently serves
as a playground for studying, e.g., period-doubling bifurca-
tion cycles or Feigenbaum’s universality theory. For the sake
of an explicit analytic solution we will confine ourselves
only to the special case when A=B=C=0. With such a
choice of parameters the Rössler system can be expressed in
a scalar form as y�=yẏ+ ẏÿ− ẏ which ensures its integrability
�44�. The latter implies that in this regime Rössler’s system
does not posses chaotic attractors.

To proceed further, we should realize that because Ci are
supposed to be p independent their finding is equivalent to
specifying the first integrals of the system �100� �i.e., func-
tions that are constant along lines of �x ,y ,z� satisfying
�100��. In other words, the differential equations �100� rep-
resent a characteristic system for the differential equation
�H ,Ci	=0. It is simple to see that the first integrals of the
above Rössler system are x2+y2+2z and ze−y; hence we can
identify C1 and C2 with

C1 = �x2 + y2 + 2z�2, C2 = z2e−2y . �103�

The previous choice provides indeed positive and irreducible
charges. The first-class constraint � then reads

� = − px�y + z� + pyx + pzxz − a1�x2 + y2 + 2z�2 − a2z2e−2y

− p̄x̄�ȳ + z̄z − 4a1x�x2 + y2 + 2z�� + p̄ȳ�x̄ + 4a1y�x2 + y2

+ 2z� − 2a2z2e−2y� + p̄z̄�x̄ − z̄x + 4a1�x2 + y2 + 2z�

+ 2a2ze−2y� � H − a1C1 − a2C2. �104�

Explicit values of a1 and a2 will be fixed in footnote 5 below.
A little algebra shows that the gauge condition 
 can be
selected, for instance, as


 = p̄x̄ − y . �105�

Such a choice satisfies the necessary conditions

�
,�	 = p̄ȳ + p̄z̄ + x � 0, �
,�i	 = 0, i = 1,…,6.

�106�

The above 
 also allows us to perform the following linear
canonical transformation:

P1 = 
 = p̄x̄ − y, Q1 = py ,

P2 = px − x̄, Q2 = p̄x̄,

P3 = py − ȳ, Q3 = p̄ȳ ,

P4 = pz − z̄, Q4 = p̄z̄,

P̄1 = �p̄z̄/d − z/d�/�2, Q̄1 = �2dpz − p̄x̄/c + x/c�/�2,

P̄2 = �2cpx − p̄z̄/d + z/d�/�2, Q̄2 = �x/c − p̄x̄/c�/�2.

�107�

Here c and d represent arbitrary real constants to be specified
later. The transformation �107� secures the unique global so-
lution Q1 for �=0 on �*. To show this it is sufficient to
observe that �H−a1C1−a2C2���* is linear in Q1. Indeed,

�H − a1C1 − a2C2��* = �2c Q1Q̄2 − �2c�Q̄1 − Q̄2�Q̄2P̄1

+ d/c�P̄1 + P̄2�P̄1 − A�P̄1�2

− B P̄1�Q̄2�2 − C�Q̄2�4, �108�

with A=2d2�4a1+a2� ,B=−8�2a1dc2, and C=4a1c4. As a re-
sult

K*�P̄,Q̄� = H+
*�P̄,Q̄� = A�P̄1�2 + B P̄1�Q̄2�2 + C�Q̄2�4.

�109�

Inserting this into Eq. �73� �or Eq. �74�� and integrating over

P̄1 and P̄2 we obtain the following chain of identities:

ZCM =
 DP̄ DQ̄ exp�i

t1

t2

dt�P̄Q̄
˙

− A�P̄1�2

− BP̄1�Q̄2�2 − C�Q̄2�4 + Q̄j��
=
 DQ̄1DQ̄2 ��Q̄˙ 2�exp�i


t1

t2

dt� 1

4A
�Q̄˙ 1 − B�Q̄2�2�2

− C�Q̄2�4 + Q̄j��
= lim

a→0+


 DQ̄1DQ̄2exp�i

t1

t2

dt� 1

4A
�Q̄˙ 1�2 +

1

4a
�Q̄˙ 2�2

−
B

2A
Q̄
˙

1�Q̄2�2�� exp�i

t1

t2

dt�� B2

4A
− C�

��Q̄2�4 + Q̄j�� . �110�

As an explanatory step we should mention that the formal
measure in the second equality of Eq. �110� has the explicit
time-sliced form

DQ̄1DQ̄2 � �
i
� dQ̄1�ti�

�4�i�A
dQ̄2�ti�� , �111�

while in the third equality the shorthand notation DQ̄1DQ̄2
stands for
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DQ̄1DQ̄2 � �
i
� dQ̄1�ti�

�4�i�A
dQ̄2�ti�
�4�ia�

� . �112�

The symbol � represents the infinitesimal width of the time
slicing. During our derivation we have used the Fresnel in-
tegral



−�

�

dx e−iax2+ix� =��

a
ei��2/a−��/4 =��

ia
ei�2/�4a�, a � 0,

�113�

and the ensuing representation of the Dirac � function:

lim
a→0+

� 1

4i�a
ei�2/�4a� = ���� . �114�

In the following we perform the scale transformation

Q̄2 /�a��2m2Q̄2 and set A=1/ �2m1� ,B=1/ ��m1m2�, and
C=1/m2. 5 The resulting partition function then reads

ZCM = lim
g→0+


 DQ̄1DQ̄2exp�i

t1

t2

dt�m1

2
�Q̄˙ 1�2 +

m2

2
�Q̄˙ 2�2��

� exp�i

t1

t2

dt�g�m1m2

2
Q̄
˙

1�Q̄2�2

−
m2g2

4
�Q̄2�4 + Q̄j�� , �115�

where we have set g=2�2a. The system thus obtained

describes a pure anharmonic �Duffing’s� oscillator �Q̄2
oscillator� weakly coupled through the Rayleigh interaction

with a free particle �Q̄1 particle�. Alternatively, when m1
=m2=m we can interpret the Lagrangian in Eq. �115� as a
planar system describing a particle of mass m in a quartic

scalar potential e	�Q̄�=mg2/4�Q̄2�4 and a vector potential

eA= (gm�1/2�Q̄2�2 ,0) �i.e., in the linear magnetic field

B3=�3ij�iAj =−gm�2Q̄2 /e�.
It is preferable to set m1�m1� and m2�m2 /�. The latter

corresponds to the scale factors a2=1/ �2m1�� and a1

=1/ �8m1��. After rescaling Q̄1�t�� Q̄1�t� /� the partition
function �115� boils down to the usual quantum-mechanical
partition function with the path-integral measure

DQ̄ � �
i
� dQ̄1�ti�

�2�i��/m1

dQ̄2�ti�
�2�i��/m2

� �116�

and with 1/� in the exponent. Hence, just as found in the
previous two cases, the choice of ’t Hooft’s condition ensures
that the Planck constant enters the partition function �115� in
a correct quantum-mechanical manner. In turn, � enters only
via the scale factors a1 and a2 �the factors d and c are �
independent� and hence it represents a natural scale on which
the “loss of information” condition operates. In other words,
whenever one would be able to “measure” or determine from
“first principles” the “loss of information” condition one
could, in principle, determine the value of the fundamental
quantum scale �.

As a final note we mention that the ’t Hooft quantization
procedure can be straightforwardly extended to other nonlin-
ear systems and particularly to systems possessing chaotic
behavior �e.g., strange attractors�. In general cases this might
be, however, hindered by our inability to find the correspond-
ing first integrals �and hence Ci’s� in the analytic form. It is
interesting to notice that machinery outlined above allows to
find the emergent quantistic system for the configuration-
space strange attractors. This is because in ’t Hooft’s “quan-
tization” one only needs the dynamical equations in the con-
figuration space. The latter should be contrasted with the
Hamiltonian �or symplectic� systems where strange attractors
cannot exist in the phase space on account of the Liouville
theorem �45�.

VI. CONCLUSIONS AND OUTLOOK

In this paper we have attempted to substantiate the recent
proposal of ’t Hooft in which quantum theory is viewed as
not a complete final theory, but as in fact an emergent phe-
nomenon arising from a deeper level of dynamics. The un-
derlying dynamics are taken to be classical mechanics with
singular Lagrangians supplied with an appropriate informa-
tion loss condition. With plausible assumptions about the ac-
tual nature of the constraint dynamics, quantum theory is
shown to emerge when the classical Dirac-Bergmann algo-
rithm for constrained dynamics is applied to the classical
path integral of Gozzi et al..

There are essentially two different tactics for implement-
ing the classical path integrals in ’t Hooft’s quantization sce-
nario. The first is to apply the configuration-space formula-
tion �26�. This is suited to situations when ’t Hooft’s systems
are phrased through the Lagrangian description. The alterna-
tive approach is to start with the phase-space version �27�.
The latter provides a natural framework when the Hamil-
tonian formulation is of interest or where the language of
symplectic geometry is preferred. It should be, however,
stressed that it is not merely a matter of a computational
convenience which method is actually employed. In fact,
both approaches are mathematically and conceptually very
different �as they are also in conventional quantum mechan-
ics �11,46��. Besides, the methodology for handling singular
systems is distinct in Lagrangian and Hamiltonian formula-
tions �see Refs. �39,41� and citation’s therein�. In passing, we
should mention that the currently popular Hamilton-Jacobi

5This choice is equivalent to the solution:

a1 =
a2

4
, d =

1

2�2a2m1

, c = ±
1

�4 a2m2

.

Without loss of generality we can set d=1/2; then

a2 =
1

2m1
, a1 =

1

8m1
, c = ± 23/4

4�m1

m2
.
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�47� and Legendre-Ostrogradski� �48� approaches for a treat-
ment of constrained systems, though highly convenient in
certain cases �e.g., in higher-order Lagrangian systems�, have
not found as yet any particular utility in the present context.

Throughout this paper we have considered only the
configuration-space formulation of classical path integrals.
�Incidently, the phase-space path integral which appears in
Sec. IV �after Eq. �55�� is not the phase-space path integral
of Gozzi, Reuter, and Thacker �27� but rather Gozzi’s
configuration-path �26� integral with extra degrees of free-
dom.� By choosing to work within such a framework we
have been able to render a number of formal steps more
tractable �e.g., BRST analysis is reputed to be simpler in the
configuration space, uniqueness proof for ’t Hooft systems is
easy and transparent in the Lagrange description, etc.�. The
key advantage, however, lies in two observations. First, the
position-space path integral of Gozzi et al. provides a con-
ceptually clean starting point in view of the fact that it rep-
resents the classical limit of both the stochastic-quantization
path integral and the closed-time-path integral for the transi-
tion probability of systems coupled to a heat bath. Such a
connection is by no means obvious in the canonical path-
integral as both the Parisi-Wu stochastic quantization and the
Feynman-Vernon formalism �with ensuing closed-time-path
integral� are intrinsically formulated in the configuration
space. Second, according to ’t Hooft’s conjecture the “loss of
information” condition should operate in the position space
where it is supposed to eliminate some of the transient tra-
jectories leaving behind only stable �or near to stable� orbits
�14�. Hence working in configuration space may allow one to
probe the plausibility of ’t Hooft’s conjecture. The price that
has been paid for this choice is that the configuration space
must have been doubled. This is an unavoidable step when-
ever one wishes to obtain first-order autonomous dynamical
equations directly from the Lagrange formulation �a fact well
known in the theory of dissipative systems �49��. Our analy-
sis in Appendix B suggests that the auxiliary coordinates q̄i
may be related to relative coordinates on the backward-
forward time path in the Feynman-Vernon approach. �Such
coordinates also go under the names fast variables �50� or
quantum noise variables �51�.� On the formal side, the aux-
iliary variables q̄i are nothing but Gozzi’s Lagrange multipli-

ers �i �in our case denoted as �̄i�.
In order to incorporate the “loss of information” into our

scheme, we have introduced in Sec. IV an auxiliary momen-
tum integration to go over to the canonical representation.
Such a step, though formal, allowed us to treat our con-
strained system via the standard Dirac-Bergmann procedure.
It should be admitted that such a choice is by no means
unique, e.g., methodologies for treatment of classical con-
strained systems in configuration space do exist �39,41�. The
decision to apply the Dirac-Bergmann algorithm was mainly
motivated by its conceptual simplicity and direct applicabil-
ity to path integrals. On the other hand, we do not expect that
the presented results should undergo any substantial changes
when some other scheme would be utilized. It should be
further emphasized that while we have established the math-
ematical link �Eqs. �52� and �D7�� between the “loss of in-
formation” condition and first-class constraints, it is not yet

clear if this connection has more direct physical interpreta-
tion �although various proposals exist in the literature
�14,19,24��. Such an understanding would not only help to
develop this approach for more complicated physical situa-
tions but also allow affiliation in a systematic fashion of a
quantum system to an underlying classical dynamics. Work
along those lines is currently in progress.

To illustrate the presented ideas we have considered two
simple systems; the planar pendulum and the Rössler system.
In the pendulum case we have taken advantage of free choice
of an additive constant in the charge C1. This in turn, allowed
us to impose’t Hooft’s constraints in two distinct ways. In the
case of Rössler’s system two p-independent, irreducible
charges C1 and C2 exist. For definiteness sake we have con-
structed in the latter case the “loss of information” condition
with the additive constant set to zero. With this we were able
to convert the corresponding classical path integrals into path
integrals describing a quantized free particle, a harmonic os-
cillator, and a free particle weakly coupled to Duffing’s os-
cillator. As a by-product we could observe that our prescrip-
tion provides a surprisingly rigid structure with rather tight
maneuvering space for the emergent quantum dynamics. In-
deed, when the classical dynamics is fixed, the ’t Hooft con-
dition is formulated via linear combination of charges Ci
which correspond to the first integrals of the autonomous
dynamical equations for q, i.e., Eq. �2�. Due to the explicit
form of ’t Hooft’s Hamiltonian the constraint is of the first
class and so we must remove the redundancy in the descrip-
tion by imposing the gauge condition 
. By requiring that the
consistency conditions �51� and �54� are satisfied, that the
choice of 
 does not induce Gribov ambiguity, and that the
canonical transformations defined in Sec. IV are linear, we
substantially narrowed down the class of possible emergent
quantum systems. Note also, that when we start with the
N-dimensional classical system �q variables�, the emergent

quantum dynamics has �N−1� dimensions �Q̄ variables�. In-
deed, by introducing the auxiliary degrees of freedom q̄
we obtain 4N-dimensional phase space which is constrained
by 2N+2 conditions ��i, �, and 
�, which leaves behind

�2N−2�-dimensional phase space Q̄ , P̄. This disparity be-
tween the dimensionality of the classical and emergent quan-
tum systems vindicates in part the terminology “information
loss” used throughout the text.

An important conclusion of this work is that ’t Hooft’s
quantization proposal seems to provide a tenable scenario
which allows for deriving certain quantum systems from
classical physics. It should be stressed that although we as-
sumed throughout that the deeper level dynamics is the clas-
sical �Lagrangian or Hamiltonian� one, there is in principle
no fundamental reason that would preclude starting with
more exotic premises. In particular, our conceptual reasoning
would go unchanged if we had begun with Lagrangians op-
erating over coordinate superspaces �pseudoclassical me-
chanics �52�� or with the currently much discussed discrete
classical mechanics �i.e., having foam-, fractal-, or crystal-
like configuration space� �53�, etc. The only prerequisite for
such approaches is the possibility of formulating a corre-
sponding variant of Gozzi’s path integral, and a method for
implementing the “loss of information” constraint in such
integrals.
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There are many interesting applications of the above
method. Applications to chaotic dynamical systems espe-
cially seem quite pertinent. After all, central to our reasoning
is a �doubled� set of real first-order dynamical equations6

which, under favorable conditions, may by associated with a
chaotic dynamics in the configuration space. We should em-
phasize that the reader should not confuse the above with the
extensively studied but unrelated notion of chaos in Hamil-
tonian systems—we do not deal here with dynamical equa-
tions on symplectic manifolds. This is important, as Hamil-
tonian systems forbid per se the existence of attractive orbits
which are otherwise key in ’t Hooft’s proposal. In this re-
spect our approach is parallel with some more conventional
approaches. Indeed, a direct “quantization” of the equations
of the motion—originally proposed by Feynman �54�—is
one of the techniques for tackling quantization of dissipative
systems �55,56�. In field theories this line of reasoning was
recently extended by Biró, Müller and Matinyan �19� who
demonstrated that quantum gauge field theories can emerge
in the infrared limit of a higher-dimensional classical �non-
Abelian� gauge field theory, known to have chaotic behavior
�57�.

We finally wish to comment on two more points. First, in
cases where one strives for an explicit reparametrization in-
variance �or general covariance� of the emergent quantum
system the presented framework is not very suitable. The
absence of explicit covariance in both Dirac-Bergmann and
Fadeev-Senjanovic algorithms makes the actual analysis
very cumbersome or even impossible. In fact, expressions
�68� and �70� are evidently not generally covariant due to the
presence of time-independent constraints in the measure. Al-
though generalizations that include covariant constraints do
exist �33,58,59� they result in gauge fixing conditions which
depend not only on the canonical variables but also on the
Lagrange multipliers �or explicit time�. Such gauge con-
straints are, however, incompatible with our Poisson bracket
analysis used in Sec. IV and Appendixes A and D. Hence, if
the emergent quantum system is supposed to be reparametri-
zation invariant �e.g., relativistic particle, canonical gravity,
relativistic string, etc.� a new framework for the path-integral
implementation of ’t Hooft’s scheme must be sought. Sec-
ond, the formalism of functional integrals is sometimes de-
ceptive when taken too literally. The latter is the case, for
instance, when gauge conditions are imposed and/or canoni-
cal transformations performed. The difficulty involved is
known as the Edwards-Gulyaev effect �11,40,46� and it re-
sides in the exact nature of the limiting sequence of the finite
dimensional integrals which constitute the path integral. As a
result the classical canonical transformation does not leave,
in general, the measure of the path integral Liouville invari-
ant but instead induces an anomaly �46,60�. Thus, for our
construction to be meaningful it should be shown that the
canonical transformations in Sec. IV are unaffected by the
Edwards-Gulyaev effect. Fortunately, in cases when the gen-
erating function is at most quadratic �making canonical

transformations linear� and not explicitly time dependent, it
can be shown �29,60,61� that the anomaly is absent. It was
precisely for this reason that more general transformations
were not considered in the present paper. Clearly, both men-
tioned points are of key importance for further development
of our procedure and, due to their delicate nature, they de-
serve a separate discussion.

Let us end with the remark that the notorious problem
with operator ordering known from canonical approaches has
an elegant solution in path integrals. The ordering is there
naturally generated by the necessary physical requirement
that path integrals must be invariant under coordinate trans-
formations �65�.
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APPENDIX A

In this appendix we show that the system �1� has no sec-
ondary constraints. In contrast to the primary constraints
which are a consequence of the noninvertibility of the veloci-
ties in terms of the p’s and q’s, secondary constraints result
from the equations of motion. To show their absence in ’t
Hooft’s system we start with the observation that the time
derivative of any function f�q ,p� is given by �39�

ḟ � �f ,H̄	 + uj�f ,� j	 . �A1�

Here ua are the Lagrange multipliers to be determined by the
consistency conditions

0 � �̇i � ��i,H̄	 + uj��i,� j	 . �A2�

The latter is nothing but the statement that constraints �as
functions of q and p� must hold at any time. If all uj could
not be determined from the consistency condition �A2� then
we would have the so-called secondary constraints. In our
case we have

��1
a,H̄	 = −

�H̄

�qa
�” 0,

��2
a,H̄	 = − fa�q��” 0, ��1

a,�2
b	 = − �ab. �A3�

Using the fact that ��i , H̄	�0 and det ���i ,� j	�=1, the inho-
mogeneous system of linear equations �A2� can be uniquely
resolved with respect to uj, thus implying the absence of
secondary constraints.

APPENDIX B

We show here that Gozzi’s configuration-space path inte-
gral results from the “classical” limit of the stochastic-
quantization partition function, i.e., the limit where the width

6Nontrivial are only the equations over actual configuration space.
The dynamical equations for the auxiliary variables q̄i are linear and
hence they are not relevant in this connection
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of a noise distribution tends to zero. For this purpose we start
with the form of the partition function for stochastic quanti-
zation as written down by Zinn-Justin �34,62�:

ZSC�J� =
 Dq Dc Dc̄ D� exp�− S�q,c, c̄,��

+
 J�x�q�x�dx� , �B1�

where

S � − w��� +
 ��x�� �q�x�
��

+
�A

�q�x�
�dx −
 dx dx�c̄a�x�

�� �

��
�ab��x − x�� +

�2A
�qa�x��qb�x��

�cb�x�� �B2�

and

exp�w���� � 
 D� exp�− ���� +
 dx ��x���x�� ,

�B3�

with D� exp�−����� being the functional measure of noise.
Here x= �t ,�� and dx=dt d� where � is the Parisi-Wu ficti-
tious time. The dynamical equation for q�x� is described by
the Langevin equation

�q�x�
��

+ � �A�q�
�q

�
q=q�x�

= ��x� , �B4�

with the initial condition q�t ,0�=q�t�. For Gaussian noise of
variance 2�, the noise measure is

D�exp�− ����� = �
i,x

d�i�x�
2��q

exp�−
1

4q

 dx �2�x�� ,

�B5�

and �B1� takes the form

ZSC�J� =
 Dq D� �� �q

��
+

�A�q�
�q

− ��det� �

��
�ab��x − x��

+
�2A

�qa�x��qb�x��
�exp�− ���� +
 J�x�q�x�dx�

=
 Dq D� ��q − q����exp�− ���� +
 J�x�q�x�dx� ,

�B6�

where ��f�q����t,���f�q�t ,���� and q����x� is a solution of
Eq. �B4�. Using the representation

��x� = lim
�→0+

1

2���
e−x2/�4��, �B7�

we get in the limit of zero distribution width �i.e., �→0+�
that

ZSC�J,q� →
 Dq ��q − q�0��exp�
 J�x�q�x�dx� .

�B8�

Choosing a special source J�x�=J�t����� we can sum in the
path integral solely over configurations with q�t ,0�=q�t� as
other configurations will contribute only to an overall nor-
malization constant. Thus we finally obtain

lim
�→0+

ZSC�J,�� = ZCM�J� . �B9�

Next we show that Gozzi’s configuration-space partition
function �19� results from the “classical” limit of the closed-
time-path integral for the transition probability of a system
coupled to a thermal reservoir at some temperature T. By the
classical limit we mean the high temperature and weak heat
bath coupling limit.

The path-integral treatment of systems that are linearly
coupled to a thermal bath of harmonic oscillators was first
considered by Feynman and Vernon �63�. For our purpose it
will be particularly convenient to utilize the so-called Ohmic
limit version, as discussed in Refs.�11,64�:

ZFV�J+,J−� =
 Dq+Dq−exp� i

�
†A�q+� − A�q−�‡

+
 dt�J+�t�q+�t� − J−�t�q−�t���
� exp�− i

m�

2�

 dt�q+�t� − q−�t��

��q̇+�t� + q̇−�t��R�
�exp�−

m�

q2�

 dt
 dt��q+�t� − q−�t��

�K�t,t���q+�t�� − q−�t���� . �B10�

Here the paths q+�t� and q−�t� are associated with the for-
ward and backward movement of the particles in time. The
superscript R indicates a negative shift in the time argument
of the velocities with respect to positions. The latter ensures
the causality of the friction forces �64�. In addition, m repre-
sents the particle mass �for simplicity we assume here that all
system particles have the same mass�, �=1/T, and � is the
friction constant �or thermal reservoir coupling�. The func-
tion K�t , t�� is the bath correlation function. As argued in
�11,64�, at high temperatures K�t , t�����t− t��. Introducing
the new set of variables q= �q++q−� /2 and q̄= �q+−q−�
�i.e.,the center-of-mass and fast coordinates� we can in the
high-temperature case recast �B10� into
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ZFV�J, J̄� =
 Dq Dq̄exp� i

�
�A�q + q̄/2� − A�q − q̄/2�� +
 dt�J�t�q�t� − J̄�t�q̄�t���

�exp�− i
m�

�

 dt q̄�t��q̇�t��R −

m�

�2�

 dt q̄2�t�� . �B11�

Here the self-explanatory notation J= �J+−J−� and J̄=−�J++J−� /2 was used. Let us now define �=2m� /�, integrate over q̄,
and go to the classical limit �→0. Then we obtain the following chain of equations:

lim
�→0

ZFV�J, J̄� = lim
�→0


 Dq Dq̄ exp� i

�

 dt q̄�t�� �A

�q�t�
− m��q̇�t��R + i�J̄�t�� −

�

2q2 
 dt q̄2�t��exp�
 dt J�t�q�t��
= lim

�→0

 Dq exp�−

1

2�

 dt� �A

�q�t�
− m��q̇�t��R + i�J̄�t��2

+
 dt J�t�q�t��
= lim

�→0

 Dq J�q�exp�−

1

2�

 dt� �A

�q�t�
− m�q̇�t� + iqJ̄�t��2

+
 dt J�t�q�t��
=
 Dq ���A

�q
+ i�J̄�J�q�exp�
 dt J�t�q�t��

=
 Dq ��q − q�J̄��exp�
 dt J�t�q�t�� . �B12�

The Jacobian J�q� results from transition to the “unretarded”
velocities and its explicit form reads �64�

J�q� = det� �

�t
�ab��t − t�� +

�2A
�qa�t��qb�t��

� . �B13�

The coordinates q�J̄� are solutions of the equation of the mo-
tion

�A�q�
�q�t�

= − i�J̄�t� . �B14�

In the limit �→0, we find again the Gozzi et al. partition
function

lim
�→0

ZFV�J,0� = lim
�→0

lim
�→0

ZFV�J, J̄� = ZCM�J� . �B15�

APPENDIX C

In this appendix we prove that Eq. �34� is a special case of
the Euler-like functionals �42�. Let us first show that Eq. �34�
can be replaced by an action of the form �42�. Indeed, be-
cause of the homogeneity of Eq. �34�, we can immediatley
replace it by

A�r
iqi� = �
i

 dt 
ir


i�t�qi�t�
�A�r
iqi�
�r
i�t�qi�t�

=
 dt r�t�
�A�r
iqi�

�r�t�
. �C1�

Since this is true for any r�t�, we see that


 dtdt�r�t�
�2A�r
iqi�
�r�t��r�t��

= 0. �C2�

This simply expresses the fact that the functional A�r
iqi� is
linear in r�t�. The right-hand side of Eq. �C1� has then pre-
cisely the Euler form �42�.

The reverse direction is proved in the following way: We
first recast Eq. �42� in the general form


 dt r�t�L„q�t�,q̇�t�… =
 dt L�r
i�t�qi�t�,d„r
i�t�qi�t�…/dt� .

�C3�

Applying the variation �dt � /�r�t� to Eq. �C3� we obtain

A�q� =
 dt�
i


ir

i−1qi�t�� �L

�r
i�t�qi�t�

−
d

dt

�L

��d�r
i�t�qi�t��/dt�� . �C4�

This relation must hold for all r�t�, and hence by choosing
r�t�=1 we arrive at the required result

A�q� =
 dt�
i


iqi�t�
�A�q�
�qi�t�

. �C5�

APPENDIX D

Here we prove the fact that inclusion of the subsidiary
constraint �46� in the primary constraints �5� does not pro-
duce any secondary constraints. The secondary constraints
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result from the consistency conditions �A2� or, in other
words, occur when existing constraints are incompatible with
the equation of motion.

We first observe that the condition H−�0 can be equiva-

lently represented by the condition �H̄−�iaiCi���0�0. If
we now add the subsidiary constraint �0 to the remaining 2N
constraints �i and again require that the constraints �i re-
main �weakly� zero at all times we have

0 � �̇i � ��i,H̄	 + uj��i,� j	, i, j = 0,1…,2N . �D1�

Since there is an odd number of constraints and because
��i ,� j	 is an antisymmetric matrix we have that
det���i ,� j	�=0. From the analysis in Appendix A it is clear
that the rank of the matrix ��i ,� j	 is 2N and hence it has one
null eigenvector, say e. Thus, Eq. �D1� implies the constraint

�
i=0

2N

ei��i,H̄	 � 0. �D2�

If the latter represented a new nontrivial constraint �i.e., a
constraint that cannot be written as a linear combination of
constraints �i� we would need to include such a new con-
straint �the so-called secondary constraint� in the list of ex-
isting constraints and go again through the consistency con-
dition �D1�. Fortunately, the condition �D2� is automatically
satisfied and hence it does not constitute any new constraint.
Indeed, by choosing

e =�
1

��0,�2
a	

��1
a,�0	

��0,�2
b	

��1
b,�0	
]

��0,�2
N	

��1
N,�0	

� =�
1

fa�q�

−
��0

�qa

fb�q�

−
��0

�qb

]

fN�q�

−
��0

�qN

� , �D3�

and using ��0 , H̄	=0 together with �A3� we obtain

�
i=0

2N

ei��i,H̄	 = − �
i,a

ai�t�fa�q�
�Ci

�qa
= �

i=1

n

ai�t��H,Ci	 = 0.

�D4�

As the latter is zero �even strongly� there is no new con-
straint condition generated by inclusion of �0 in the original
set of �primary� constraints. Note that the key in obtaining
�D4� was the fact that the Ci’s are p-independent constants of
motion.

The rank of ��i ,� j	 being 2N means that there is one
relation

�
i=0

2N

ei��i,� j	 � 0. �D5�

Any linear combination of the constraints �i is again a con-
straint. So, particularly if we define �=�iei�i, we obtain that
� has weakly vanishing Poisson brackets with all constraints,
i.e.,

��,�i	 � 0, i = 1,…,2N . �D6�

Thus, according to Dirac’s classification �see, e.g., Ref. �32��
� is a first-class constraint. The remaining 2N constraints
�which do not have vanishing Poisson brackets with all other
constraints� are of the second class. Note particularly that the
explicit form for � reads

� = �
i=0

2N

ei�i = �H − �
i=1

n

aiCi� − �
a=1

N

p̄a
��0

�qa
, �D7�

which is clearly weakly identical to H−�iaiCi. Observe that

it is H and not H̄ that is present in Eq. �D7�.
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