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Energies of 6s2npj sn=6–9d, 6s2ns1/2 sn=7–9d, 6s2ndj sn=6–8d, and 6s2nf5/2 sn=5–6d states in TlI and
PbII are obtained using relativistic many-body perturbation theory. Reduced matrix elements, oscillator
strengths, transition rates, and lifetimes are determined for the 72 possible 6s2nlj-6s2n8l j8

8 electric-dipole
transitions. Electric-quadrupole and magnetic-dipole matrix elements are evaluated to obtain 6s2np3/2-
6s2mp1/2 sn,m=6,7d transition rates. Hyperfine constantsA are evaluated for 6s2npj sn=6–9d, 6s2ns1/2 sn
=7–9d, and 6s2ndj sn=6–8d states in205Tl. First-, second-, third-, and all-order corrections to the energies and
matrix elements and first- and second-order Breit corrections to energies are calculated. In our implementation
of the all-order method, single and double excitations of Dirac-Fock wave functions are included to all orders
in perturbation theory. These calculations provide a theoretical benchmark for comparison with experiment and
theory.
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I. INTRODUCTION

This work continues earlier relativistic many-body pertur-
bation theorysRMBPTd studies of energy levels of ions with
one valence electron outside of a closed coref1–7g. We con-
sider the three-electron systemfNdg5s25p65d106s2nl in Tl I

and PbII as a one-electronnl system withfNdg5s25p65d106s2

core. The ground-state energy of thallium
fNdg5s25p65d106s26p, treated as a one-electron system, was
calculated by Dzubaet al. f8g using perturbation theory in a
screened Coulomb interactionsPTSCId, by Blundellet al. f9g
using third-order many-body perturbation theorysMBPTd,
and by Liu and Kellyf10g using the coupled-clustersCCd
approach. Second-order MBPT energies of thallium were
evaluated for the ground and excited statess6s26p, 6s27s,
and 6s27pd by Hartley and Martensson-Pendrillf11g. Thal-
lium was treated as a three-particle system in Refs.f12–15g
to evaluate the TlI ionization potential and the first few en-
ergy levels, 6s26p, 6s26d, and 6s27s. The second-order rela-
tivistic MBPT was used by Johnsonet al. f12g and a com-
bined second-order MBPT plus configuration-interaction
sCId method was employed in Refs.f13–15g. In the present
paper, the energies of 6s2npj sn=6–9d, 6s2ns1/2 sn=7–9d,
6s2ndj sn=6–8d, and 6s2nf5/2 sn=5–6d states in TlI and
PbII are obtained using the third-order RMBPT and the SD

all-order method, in which single and doublesSDd excita-
tions of the Dirac-FocksDFd wave functions are summed to
all orders.

A relativistic semiempirical method including ex-
change was employed by Migdalekf16g to calculate the os-
cillator strengths in TlI for 6s26pj-6s2ns1/2, 6s27pj-6s2ns1/2,
6s26pj-6s2ndj, and 6s27s1/2-6s2npj transitions. Oscillator
strengths determined from single-configuration relativistic
Hartree-FocksRHFd calculations were reported by Migdalek
and Baylis f17g for the lowest 6s26pj-6s27s1/2 and 6s26pj
-6s26dj8 transitions. A numerical Coulomb approximation
sNCAd was used by Lindgärdet al. f18g to calculate the
lifetimes of 7s1/2, 8s1/2, 9s1/2, 6dj, 7dj, and 8dj states. Corre-
lation corrections to electric-dipolesE1d matrix elements in
Tl I were performed in Refs.f11,13,15g. Radial integrals for
allowedE1 6pj-ns1/2 and 6pj-6dj8 transitions were calculated
by Dzubaet al. f13g taking into account the second-order
diagram contributions. Approximate Brueckner orbitals were
used inf11g to evaluate reduced electric-dipole matrix ele-
ments for 6pj-ns1/2 transitions. Dipole matrix elements for
6pj-7s1/2, 6pj-6dj8, 7pj-7s1/2, and 7pj-6dj8 transitions ob-
tained by combining MBPT and CI methods were presented
by Kozlov et al. f15g.

Calculations of the PbII properties including a model po-
tential to represent the core polarization of PbII were re-
ported by Migdalekf19g and by Alonso-Medinaf20g. Oscil-
lator strengths and relative line strengths for the
6 2PJ–n 2S1/2 transitionssn=7–11d and for the 72PJ–n 2S1/2
transitionssn=8–11d were presented in Ref.f19g. Transition
probabilities for the 72PJ–n 2S1/2 sn=8–11d, 7 2PJ–n 2DJ8
sn=7,8,10d, 7 2S1/2–7 2PJ, and 62DJ–n 2FJ8

sn=5–7d tran-
sitions were calculated by Alonso-Medinaf20g. Transition
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probabilities for 190 lines arising from the 6s2ns2S1/2,
6s2np 2PJ, 6s2nd 2DJ, 6s2nf 2FJ, 6s6p2 2S1/2,

2,4PJ, and2,4DJ
levels in PbII were also calculated recently by Colon and
Alonso-Medina f21g using theCOWAN code. Additionally,
theoretical lifetimes were calculated inf21g for those levels
for which lifetimes measurements were given inf22g. Those
theoretical results included correlation corrections by using
scaled radial integrals in theCOWAN code.

In this paper, we conduct both MBPT and SD all-order
calculations of TlI and PbII properties. Such calculations
permit one to investigate the convergence of perturbation
theory and estimate the theoretical error of predicted data. In
the present paper, we evaluate reduced matrix elements, os-
cillator strengths, transition rates, and lifetimes for the 72
possiblenlj-n8l j8

8 electric-dipole transitions in TlI and PbII.
Our results are compared with theoretical results from Ref.
f15g and with experimental measurements from Refs.
f23–26g in Tl I and Refs.f21,27g in PbII.

The relativistic Hartree-FocksHFRd COWAN code was
used by Biemout and Quinetf28g to calculate the
6 2P1/2–6 2P3/2 magnetic-dipole and electric-quadrupole
transition probabilities in TlI and PbII. Magnetic-dipole and
electric-quadrupole transition rates forn 2P1/2–n8 2P3/2 tran-
sitions sn,n8=6,7d in Tl were presented by Neuffer and
Comminsf29g, where valence-electron wave functions were
generated as numerical solutions of the Dirac equation in a
modified Tietz central potential. In present paper, we extend
those studies by using relativistic MBPT and SD all-order
methods to obtainab initio results with detailed consider-
ation of the correlation effects.

Approximate Brueckner orbitals were used inf11g to
evaluate the hyperfine constants for the ground and excited
statess6p1/2, 6p3/2, 7s1/2, and 7p1/2d in 205Tl. Results for the
hyperfine constants for 6pj, 7pj, 7s1/2, and 6dj states in205Tl
were obtained by combining MBPT and CI methods by Ko-
zlov et al. f15g. In the present paper, we calculate hyperfine
constantsA for 6s2npj sn=6–9d, 6s2ns1/2 sn=7–9d, and
6s2ndj sn=6–8d states in205Tl using the relativistic MBPT
and SD all-order methods. Our SD results are compared with
the theoretical results from Ref.f15g and with experimental
measurements from Refs.f29–31g.

In summary, this work presents both a systematic calcu-
lation of various TlI and PbII properties and a study of the
importance of high-order correlation corrections to those
properties. One of the aspects of our work was to study the
effectiveness of the all-order method when it is applied to
three-particle systems such as Tl or Pb+. The advantage of
the all-order method is that it treats correlations in a rather
compete way yielding excellent results for the alkali-metal
atoms. We note that its implementation is entirely different
from the configuration interaction method. The trade-off for
the application of the all-order method is that its derivation
and formulation is complicated even for the simplest case of
the systems with one electron above the closed shells. More-
over, the method is numerically demanding. Our work has
established that the all-order method is clearly suitable for
accurate calculations of properties of Tl and Pb+. By per-
forming calculations using both the all-order method and
third-order MBPT, we were able to study the relative impor-

tance of correlation corrections on certain propertiessby
looking for a significant improvement in results when the
all-order method is usedd and the cases where the treatment
of Tl as a three-particle system may be importantswhere
significant discrepancies still remain in the all-order cased.
The development of the all-order method which is capable of
fully treating Tl or Pb+ as a three-particle system is a difficult
task and the initial study of the applicability of the all-order
method to Tl as a one-particle system is necessary. We find
that the SD all-order method works well for the calculation
of the Tl properties even without consideration of the three-
particle states. Another important result of this study is that
we did not find the poor agreement between third-order en-
ergies and experiment that occurs for all heavy alkali-metal
atoms. It is knownf1,6g that the addition of third-order con-
tributions to the energy for heavy alkali-metal atoms does
not bring energies into closer agreement with experiment.
We find, however, that this is not the case for TlI and PbII,
where third-order calculations produce values in reasonably
good agreement with experiment and all-order SD calcula-
tions, when modified to include all third-order contributions,
give even better results.

II. ENERGIES OF Tl I AND Pb II

We start from the “no-pair” Hamiltonianf32g

H = H0 + VI , s1d

whereH0 andVI can be written in a second-quantized form
as

H0 = o
i

«iai
†ai , s2d

VI =
1

2 o
i jkl

gijklai
†aj

†alak, s3d

where negative energyspositrond states are excluded from
the sums. The quantities«i are eigenvalues of the one-
electron Dirac-Fock equations with a frozen core and the
two-particle matrix elementgijkl is the Coulomb matrix ele-
ment.

Considering neutral Tl as a system with one valence elec-
tron we carry out our calculations starting with theVN−1 DF
potentialfNdg5s25p65d106s2. There are a number of advan-
tages associated with this potential, including a greatly re-
duced number of the Goldstone diagramsf33g, a clean sepa-
ration of the core and valence states, and one set of single-
particle states, leading to important simplifications in the
calculation of excitation energies and transition matrix ele-
ments. Thus, when considering the total energy of different
valence states of a one-electron atom, that energy can be
written as

E = Ev + Ecore, s4d

whereEcore is the same for all valence statesv. Because the
first-order correlation correction to valence removal energies
vanishes for aVN−1 DF potential, the first nonvanishing cor-
rections are found in second order. The expression for the
second-order energyEs2d is f34g

SAFRONOVA, SAFRONOVA, AND JOHNSON PHYSICAL REVIEW A71, 052506s2005d

052506-2



Ev
s2d = o

mn
o
a

gavmnsgmnav − gmnvad
«a + «v − «n − «m

+ o
n

o
ab

gnvbasgabnv − gabvnd
«a + «b − «n − «v

. s5d

We use indicesa andb to label core states andm andn to
designate any excited states. The second-order Coulomb-
Breit contributionBv

s2d is obtained from theEv
s2d expression

given by Eq.s5d by changinggijkl →gijkl +bijkl and keeping
only terms that are linear inbijkl . The bijkl is a two-particle
matrix element of the Breit interactionf35g:

B = −
a

r12
Fa1 · a2 −

1

2
fa1 · a2 − sa1 · r̂ 12dsa2 · r̂ 12dgG , s6d

where a1 is a Dirac matrix, r̂ 12=r 12/ r12, and a is a fine
structure constant. The first-order Breit correction isBv

s1d

=oafbvava−bvaavg.
Even with the elimination of a large set of Goldstone

diagrams made possible by the use of theVN−1 DF potential,
there are still a large number of terms, 52, in the expression
for the third-order valence removal energyEv

s3d. The corre-
sponding formula forEv

s3d was presented by Blundellet al.
f9g, where the 52 terms were grouped into 12 terms with
distinct energy denominators:

Ev
s3d = EA

s3d + ¯ + EL
sLd. s7d

Expressions7d includes terms with one-, two-, three-, and
four-particle sums over virtual states and sums over core
states.

The all-order single-double method was discussed previ-
ously in Refs.f2–7g. Briefly, we represent the wave function
Cv of a one-valence-electron atom asCv>Cv

SD with

Cv
SD = F1 + o

ma

rmaam
† aa +

1

2 o
mnab

rmnabam
† an

†abaa

+ o
mÞv

rmvam
† av + o

mna

rmnvaam
† an

†aaavGFv, s8d

whereFv is the lowest-order atomic wave function, which is
taken to be the frozen-core DF wave function of a statev.
We note that we again start from aVN−1 DF potential. Sub-
stituting the wave functionCv

SD into the many-body
Schrödinger equation, with the Hamiltonian given by Eqs.
s1d–s3d, one obtains the coupled equations for the single- and
double-excitation coefficientsrmv, rma, rmnva, andrmnab. The
coupled equations for the excitation coefficients are solved
iteratively. We use the resulting excitation coefficients to
evaluate hyperfine constants and multipole matrix elements.

The valenceEv
SD energy given by

Ev
SD = o

ma

g̃vavmrma+ o
mab

gabvmr̃mvab + o
mna

gvamnr̃mnva s9d

does not include a certain part of the third-order contribution.
This part of the third-order contribution,Eextra

s3d , is given in
Ref. f5g and needs to be calculated separately. We use our
third-order energy code to separate outEextra

s3d and add it to the

Ev
SD. We drop the indexv in the Ev

s2d, Ev
s2d, andEv

SD designa-
tions in the text and tables below.

We useB-splinesf36g to generate a complete set of basis
DF wave functions for use in the evaluation of MBPT and
all-order expressions. For TlI and PbII, we use 40 splines of
order k=7 for each angular momentum. The basis orbitals
are constrained to cavities of radiiR=85 a.u. and R
=65 a.u. for TlI and PbII, respectively. The cavity radius is
chosen large enough to accommodate all 6l j and 5f j orbitals
considered here and small enough that 40 splines can ap-
proximate inner-shell DF wave functions with good preci-
sion.

Results of our energies for the lowest states of neutral Tl
and Tl-like Pb ions are summarized in Table Isa complete set
of states is given in Tables I and II of the accompanying
EPAPS documentf37gd. The first six rows of Table I give the
lowest-order DF energiesEs0d, second- and third-order Cou-
lomb correlation energiesEs2d andEs3d, first-order Breit con-
tribution Bs1d, second-order Coulomb-BreitBs2d corrections,
and Lamb shift contributionELS. We take the sum of these
six contributions to be our final third-order RMBPT results,
Etot

s3d listed in the seventh row of Table I. We list the all-order
SD energies in the row labeledESD and the part of the third-
order energies omitted in the SD calculation in rowEextra

s3d . We
note thatESD contains anEs2d contribution. We take the sum
of the six termsEs0d, ESD, Eextra

s3d , Bs1d, Bs2d, andELS to be our
final all-order resultsEtot

SD listed in the ninth row of Table I.
The recommended values from the National Institute of
Standards and TechnologysNISTd databasef38g are given in
row labeledENIST. The differences between our calculations
and NIST data,dEs3d=Etot

s3d−ENIST anddESD=Etot
SD−ENIST, are

given in the last two rows of Table I, respectively.
As expected, the largest correlation contribution to the

valence energy comes from the second-order term,Es2d. As
we shown above, this term is simple to calculate in compari-
son withEs3d andESD terms. Thus, we calculate theEs2d term
with better accuracy thanEs3d andESD terms.

To increase the accuracy of our calculations we use 50
splines of orderk=9 for each angular momentum to calculate
Es2d. The second-order energyEs2d includes partial waves up
to lmax=10 and is extrapolated to account for contributions
from higher partial wavesssee, for example, Refs.f39,40gd.
As an example of the convergence ofEs2d with the number of
partial wavesl, consider the 6p1/2 state in neutral Tl. Calcu-
lations of Es2d with lmax=8, 9, and 10 yieldEs2ds6p1/2d=
−7682, −7708, and −7724 cm−1, respectively. Extrapolation
of these calculations yields −7737, −7747, and −7753 cm−1,
respectively. Therefore, we estimate the numerical uncer-
tainty of Es2ds6p1/2d to be approximately 10 cm−1. Similar
convergence patterns are found for all other states consid-
ered.

Owing to the numerical complexity of theESD calculation
we use lmax=6 in our all-order calculations. As we noted
above, the second-orderEs2d is contained in theESD value.
Therefore, we use our high-precision calculation ofEs2d de-
scribed above to account for the contributions of the higher
partial waves. We simply replaceEs2dflmax=6g value with the
final high-precision second-order valueEfinal

s2d :

EXCITATION ENERGIES, HYPERFINE CONSTANTS,… PHYSICAL REVIEW A 71, 052506s2005d

052506-3



Efinal
SD = ESD + Efinal

s2d − Es2dflmax= 6g.

We illustrate this procedure for the 6p1/2 state. The value of
Es2ds6p1/2d calculated with 40 splines of orderk=7 andlmax

=7 is equal to −7548 cm−1. The value ofEs2ds6p1/2d calcu-
lated with 50 splines of orderk=9, lmax=10, and including
extrapolation is equal to −7753 cm−1. The difference be-
tween the two values is equal to −205 cm−1. We add this
additional contribution to the value ofESD calculated with 40
splines of orderk=7 andlmax=6. A similar value of the ad-
ditional terms−145 cm−1d is found for the 6p3/2 state. How-
ever, this contribution is much smallers1–20 cm−1d for all
other valence states considered in this work. We give the
final results for the all-order energyESD in Table I.

A lower number of partial waves,lmax=4 and 5, is used in
a third-order calculation. Since the asymptoticl dependences
of the second- and third-order energies are similarsboth fall
off as l−4d, we use the second-order remainder as a guide to
estimate the numerical error in the third-order contribution.
Using the breakdown of the results for theEs2ds6p1/2d, with
contribution fromlmax.4 up to` sequal to 9.5%d, we esti-
mate the numerical errors forEs3ds6p1/2d to be equal to
240 cm−1. A similar values−180 cm−1d is found for the 6p3/2

state. Numerical uncertainties are much smallers1–20 cm−1d
for all other states considered in this work. It should be noted
that a limited number of partial waves were used by Kozlov
et al. f15g to calculate the MBPT diagram contributionssl
=5d and for solving the random-phase approximation equa-
tions sl =4d.

The contributionEextra
s3d given in Table I accounts for the

part of the third-order MBPT correction that is not included
in the SD energy. The values ofEextra

s3d are smaller than the
values ofEs3d by a factor of 3. As a result, the estimated

errors of the sums fromlmax.4 should be proportionally
smaller than the estimated error of theEs3d calculation.

The first-order Breit energiesscolumnBs1d of Table Id in-
clude retardation, whereas the second-order Coulomb-Breit
energiesscolumn Bs2d of Table Id are evaluated using the
unretarded Breit operator. The Lamb shiftELS is approxi-
mated as the sum of the one-electron self-energy and the
first-order vacuum-polarization energy. The vacuum-
polarization contribution is calculated from the Uehling po-
tential using the results of Fullerton and Rinkerf41g. The
self-energy contribution is estimated for thes, p1/2, andp3/2
orbitals by interpolating among the values obtained by
f42–44g using Coulomb wave functions. For this purpose, an
effective nuclear chargeZeff is obtained by finding the value
of Zeff required to give a Coulomb orbital with the same
averagekrl as the DF orbital. It should be noted that the
values ofELS are very smallsELSø3 cm−1 for Tl I andELS
ø10 cm−1 for PbIId.

The totalEtot
s3d in Table I is the sum of six terms,Es0d, Es2d,

Es3d, Bs1d, Bs2d, andELS. We find that the correlation correc-
tions to energies in neutral Tl and Tl-like Pb are large, espe-
cially for the 6p states. For example,Es2d is about 20% of
Es0d andEs3d is about 40% ofEs2d for the 6pj states of neutral
Tl. Despite the evident slow convergence of the perturbation
theory expansion, the 6p1/2 energy from the third-order
MBPT calculation is within 0.2% of the measured ionization
energy for the 6p1/2 state of neutral Tl and improves for
higher valence states and for Pb+ s0.03%d. The order of lev-
els changes from Tl to Pb+. For example, the 5f5/2 and 6f5/2
states, which are in the 13th and 19th places for neutral Tl,
are in the 9th and 15th places for Pb+. In the columndEs3d of
Table I, we compare our results for the energy levels of in-
terest in TlI and PbII with NIST dataf38g. The differences
dEs3d betweenEtot

s3d andENIST are generally small, except for

TABLE I. Zeroth-order sDFd, second-, and third-order Coulomb correlation energiesEsnd, single-double CoulombESD, Eextra
s3d , and

first-order Breit and second-order Coulomb-Breit correctionsBsnd to the energies of TlI and PbII. The total energiessEtot
s3d=Es0d+Es2d+Es3d

+Bs1d+Bs2d+ELS,Etot
SD=Es0d+ESD+Eextra

s3d +Bs1d+Bs2d+ELSd for Tl I and PbII are compared with experimental energiesENIST f38g, dE=Etot

−ENIST. Units: cm−1.

Contr. 6p1/2 6p3/2 7s1/2 6d3/2 5f5/2 6p1/2 6p3/2 7s1/2 6d3/2 5f5/2

Tl I PbII

Es0d −43824 −36636 −21109 −12218 −6863 −114546 −100787 −58728 −46790 −27730

Es2d −7753 −6747 −2024 −958 −98 −9473 −8807 −3911 −4438 −1099

Es3d 2534 2414 663 296 25 2947 3007 1331 1354 340

Bs1d 259 135 26 3 0 460 264 71 35 0

Bs2d −421 −291 −46 −8 0 −623 −472 −108 −74 −4

ELS −2 0 3 0 0 −3 1 10 0 0

Etot
s3d −49205 −41125 −22486 −12886 −6936 −121238 −106794 −61335 −49914 −28493

ESD −5972 −5446 −1958 −1104 −97 −7239 −6956 −3766 −5129 −1078

Eextra
s3d 694 807 266 152 16 732 934 510 664 170

Etot
SD −49266 −41432 −22818 −13175 −6945 −121218 −107016 −62010 −51294 −28642

ENIST −49264 −41471 −22787 −13146 −6948 −121243 −107162 −61795 −51503 −28729

dEs3d 59 346 301 260 12 5 368 460 1589 236

dESD −2 39 −31 −29 3 25 146 −215 209 87
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the results for the 6p3/2, 7s1/2, andndj states. One cause of
these discrepancies is the limitation of the number of partial
waves, lmax in the Es3d calculation. The second cause for
these discrepancies is the omission of the fourth- and higher-
order correlation corrections in the theoretical values. An-
other possible cause of the discrepancies is the omission of
three-particle interactions in our single-particle model space.
The importance of the 6s26d+6s6p2 mixing for Tl I was em-
phasized by Johnsonet al. f12g.

The totalEtot
SD in Table I is the sum of six terms:Es0d, ESD,

Eextra
s3d , Bs1d, Bs2d, andELS. The column labeleddESD in Table

I gives differences between ourab initio results and the rec-
ommended valuesf38g. The SD results agree better with the
recommended values than the third-order MBPT results, ex-
cept for the ionization potential of PbII where the differences
with experiment are small for both calculations. Better agree-
ment of the all-order values with experiment demonstrates
the importance of the higher-order correlation contributions.
Those differences between the present theoretical results and
the recommended values that were not improved by the SD
method are most probably due to the omission of three-
particle interactions mentioned previously.

III. ELECTRIC-DIPOLE MATRIX ELEMENTS,
OSCILLATOR STRENGTHS, TRANSITION RATES,

AND LIFETIMES IN Tl I AND Pb II

The one-body matrix element of the operatorZ is given
by f2g

Zwv =
kCwuZuCvl

ÎkCvuCvlkCwuCwl
, s10d

whereCv is the exact wave function for the many-body “no-
pair” HamiltonianH:

HuCvl = EuCvl. s11d

In MBPT, we expand the many-electronCv in powers ofVI
as

uCvl = uCv
s0dl + uCv

s1dl + uCv
s2dl + uCv

s3dl + ¯ . s12d

The denominator in Eq.s10d arises from the normalization
condition that starts to contribute in the third orderf45g. In
the lowest order, we find

Zwv
s1d = kCw

s0duZuCv
s0dl = zwv, s13d

wherezwv is the one-electron corresponding matrix element
f46g. SinceCw

s0d is a DF function, we use aZsDFd designation
instead ofZs1d below.

The second-order Coulomb correction to the transition
matrix element in the DF case with theVN−1 potential is
given by f47g

Zwv
s2d = o

na

zansgwnva − gwnavd
«a + «v − «n − «w

+ o
na

sgwavn − gwanvdzna

«a + «w − «n − «v
.

s14d

The second-order Breit corrections are obtained from Eq.
s14d by changinggijkl to bijkl f35g.

The third-order Coulomb correction is obtained from Eqs.
s10d and s12d as

Zwv
s3d = kCw

s2duZuCv
s0dl + kCw

s0duZuCv
s2dl + kCw

s1duZuCv
s1dl

−
1

2
Zwv

s1dfkCv
s1duCv

s1dl + kCw
s1duCw

s1dlg, s15d

where the last term arises from the normalization condition.
The contributions toZwv

s3d were separated as

Zwv
s3d = ZsRPAd + ZsBOd + ZsSRd + Zsnormd s16d

in Ref. f45g. We include the corresponding set of the high-
order contributions using the well known random phase ap-
proximation sRPAd in ZsRPAd term using the procedure de-
scribed in Ref.f45g. The subscript BO stands for Brueckner
orbitals. The last two terms in Eq.s16d describe structural
radiation,ZsSRd, and normalization,Zsnormd, terms.

In all-order SD calculation, we substitute the all-order SD
Cv

SD wave function into the matrix element expression given
by Eq. s10d. In the result,Zwv

SD is presented in the following
form f2g:

Zwv
sSDd =

zwv + Zsad + ¯ + Zstd

Îs1 + Nwds1 + Nvd
, s17d

whereZwv is the lowest-ordersDFd matrix element given by
Eq. s13d and the termsZskd, k=a¯ t are linear or quadratic
functions of the excitation coefficients introduced in Eq.s8d.
The normalization termsNw are quadratic functions of the
excitation coefficients. As a result of such a procedure, cer-
tain sets of many-body perturbation theory terms are
summed to all orders.

TABLE II. Reduced electric-dipole matrix elements in first, second, third, and all orders of perturbation theory in TlI and PbII.

Transition ZsDFd ZsDF+2d ZsDF+2+3d ZsSDd ZsDFd ZsDF+2d ZsDF+2+3d ZsSDd

Tl I PbII

6p1/2 7s1/2 2.0484 1.9122 1.6613 1.8200 1.3753 1.2966 1.1715 1.0085

6p3/2 7s1/2 3.9655 3.6551 3.0780 3.3945 2.6208 2.3611 2.2085 2.0529

6p1/2 6d3/2 2.7215 2.4497 2.3033 2.3739 2.8176 2.3669 2.1956 2.0661

6p3/2 6d3/2 1.6334 1.4983 1.3628 1.4193 1.5267 1.3053 1.2081 1.2177

6p3/2 6d5/2 4.8402 4.4464 3.8568 4.1692 4.5018 3.8655 3.6018 3.4345
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The calculation of the transition matrix elements provides
another test of the quality of atomic-structure calculations
and another measure of the size of correlation corrections.
Reduced electric-dipole matrix elements between low-lying
states of TlI and PbII calculated in the third-order RMBPT
and in the all-order SD approximation are presented in Table
II. We include only a limited number of transitions in this
table to illustrate our results. A complete set of transitions is
available as supplementary data in Table III of Ref.f37g.

Our calculations of reduced matrix elements in the
lowest-, second-, and third-orderZsnd in neutral Tl and Tl-like
Pb ion are carried out following the method described above.
The lowest order DF value is obtained from Eq.s13d. The
values ofZsDF+2d are the sum of the second-order correlation
correctionZs2d given by Eq.s14d and the DF matrix elements
ZsDFd. The third-order matrix elementsZsDF+2+3d include the
DF values, the second-orderZs2d results, and the third-order
Zs3d correlation correction given by the Eq.s16d. The term
ZsRPAd contains contributions not only from the third-order
but also from higher-order RPA corrections as noted above.
The BO corrections give the largest contributions toZs3d. The
ratio of ZsBOd and ZsDFd terms is about 5%–15%. The term
ZsRPAd is about 5%–10% of theZsDFd term. The smallest con-
tributionssabout 1%d are from the structural radiation,ZsSRd,
and normalization,Zsnormd, terms. The basis set used here is
the same as in the calculation of the energy contributions. We

find correlation correctionsZs2+3d to be very large, 10%–30%
for many cases. All results given in Table II are obtained
using length form of the matrix elements. Length-form and
velocity-form matrix elements differ typically by 1%–10%
for the DF matrix elements and 1%–3% for the second-order
matrix elements.

The electric-dipole matrix elements evaluated in the all-
order SD approximation are given in the columns labeled
ZsSDd fEq. s17dg of Table II. The SD matrix elementsZsSDd

include Zs3d completely, along with important fourth- and
higher-order corrections. The fourth-order corrections omit-
ted from the SD matrix elements were discussed recently by
f48g. TheZsSDd values are smaller than theZsDF+2d values and
larger than theZsDF+2+3d values for all TlI transitions given in
Table II and some of the PbII transitions.

In Table III, we compare our SD dataZsSDd for reduced
electric-dipole matrix elements in TlI with theoreticalZstheord

and experimentalZsexptd data given by Kozlovet al. f15g and
references therein. Our SD data are in excellent agreement
with experimental and theoretical data from Refs.f14,15g
obtained by combining MBPT and CI methods.

Transition ratesAr ss−1d, oscillator strengthssfd, and line
strengthsS sa.u.d for the 72 transitions in TlI and PbII are too
voluminous to include here. They are tabulated and com-
pared with experiment in Tables IV–VI of the accompanying
EPAPS documentf37g, respectively. We use theoretical en-
ergies obtained in the SD approximationEtot

SD and the SD
matrix elements to calculate those values using well-known
expressionsssee, for example,f38gd. For convenience, we
present wavelengths for all transitions in Tables IV–VI of
f37g. The largest oscillator strengths agree with experimental
results within the corresponding uncertainties in many cases.
Our SD results for the wavelengths are in excellent agree-
ment with experimental wavelengths; the discrepancies are
about 0.01%–0.1%.

We calculate lifetimes of thenpj, ns1/2 sn=7–9d, ndj sn
=6–8d, andnf5/2 sn=5–6d states in TlI and PbII using SD
results for dipole matrix elements and energies. We compare
these lifetimestsSDd with available experimental measure-
ments in Table IV. The experimental data for TlI are from
Refs.f24,25g and the PbII data are from Ref.f21g and refer-
ences therein. Experimental results fortexpt were given in
Refs. f25,21g with 5% and 10% errors, respectively. Our
present values are in excellent agreement with experimental
results except for one case, the 7s1/2 state in PbII. This is

TABLE III. Reduced electric-dipole matrix elements in TlI. SD
valuesZsSDd are compared with theoreticalZstheord and experimental
Zsexptd data given in Ref.f15g and references therein.

Transition ZsSDd Zstheord Zsexptd

6p1/2-7s1/2 1.82 1.77 1.81±0.02

6p1/2-6d3/2 2.37 2.30 2.30±0.09

6p3/2-7s1/2 3.39 3.35 3.28±0.04

6p3/2-6d3/2 1.42 1.40 1.38±0.07

6p3/2-6d5/2 4.17 4.08 4.0±0.2

7p1/2-7s1/2 5.90 5.96 5.87±0.08

7p1/2-6d3/2 10.58 10.86

7p3/2-7s1/2 7.87 7.98 7.88±0.11

7p3/2-6d3/2 4.75 4.90

7p3/2-6d5/2 14.40 14.88

TABLE IV. Lifetimes t of the nl levels in TlI and PbII in ns. The SD data are compared with experi-
mental results for TlI from Refs.f24,25g and for PbII from Ref. f21g and references therein.

Level tsSDd texpt Level tsSDd texpt

Tl I, Z=81 PbII, Z=82

7s1/2 7.43 7.45±0.2 7s1/2 1.68 7.2±0.9

7p1/2 61.8 63.1±1.7 7p1/2 16.9 15.2±1.7

7p3/2 47.3 48.6±1.3 7p3/2 10.4 10.3±1.2

8p1/2 177.6 184.1±4.4 7d3/2 4.05 3.4±0.4

8p3/2 123.5 127.7±4.9 5f5/2 4.43 5.9±0.6

9p1/2 375.1 391.1±21.8 6f5/2 11.5 11.6±1.5

9p3/2 251.3 273.6±13.5
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unexpected since we have perfect agreement betweentSD

andtexpt from Ref.f24g for the 7s1/2 state in TlI. As one can
see from Table IV, the lifetime values in TlI are larger than
the lifetime values in PbII by a factor of 4. In this case, it
seems strange thattexpt for the 7s1/2 state in PbII is almost
identical withtexpt for the 7s1/2 state in TlI.

IV. ELECTRIC-QUADRUPOLE AND MAGNETIC-DIPOLE
TRANSITIONS IN Tl I AND Pb II

Reduced matrix elements of the electric-quadrupolesE2d
and magnetic-dipolesM1d operators in lowest, second, third,
and all orders of perturbation theory are given in Table V for
Tl I and PbII. Detailed descriptions of the calculations of the
reduced matrix elements of theE2 andM1 operators in low-

est and second orders of perturbation theory were given by
Safronovaet al. f49g. Third-order and all-order calculations
are done in the same way as the calculations ofE1 matrix
elements. In Table V, we presentE2 andM1 matrix elements
in the ZsDFd, ZsDF+2d, ZsDF+2+3d, andZsSDd approximations for
6p1/2-6p3/2, 6p1/2-7p3/2, 7p1/2-6p3/2, and 7p1/2-7p3/2 transi-
tions in Tl I and PbII. These four transitions in TlI were
investigated for the first time inf29g. The importance of the
Breit contribution to the calculation of thenpj-n8pj8 matrix
elements in TlI was underlined in Ref.f29g. We also found
that the second-order Breit contributions are larger than the
Coulomb contributions, which are unusually small for the
above-mentionedE2 andM1 transitions. As a result, the dif-
ference betweenZsDFd and ZsDF+2d presented in Table V is
rather small, about 0.3%–1%. The largest Coulomb contribu-

TABLE VI. Wavelengthsl sÅd and transition rates for electric-quadrupoleAr
E2 and magnetic-dipoleAr

M1 ss−1d transitions in TlI and PbII

calculated in the SD approximation. The SD datasad are compared with theoretical calculations given in Refs.f29g sbd andf28g scd. Numbers
in brackets represent powers of 10.

Transition l Ar
E2 Ar

M1

Tl I

6p1/2 6p3/2 a 12862 0.1379 4.094

b 0.158 4.085

c 0.1978 4.268

6p1/2 7p3/2 a 2861 58.05 2.996

b 55.2 3.31

6p3/2 7p1/2 a 3819 121.5 2.810

b 72.8 2.18

7p1/2 7p3/2 a 99900 3.66f−4g 8.765f−3g
b 3.69f−4g 8.706f−3g

PbII

6p1/2 6p3/2 a 7074 1.083 24.63

c 1.365 25.2

6p1/2 7p3/2 a 1298 1236 29.13

6p3/2 7p1/2 a 1663 2557 395.3

7p1/2 7p3/2 a 35549 0.0117 0.1944

TABLE V. Reduced matrix elements of the electric-quadrupole and magnetic-dipole operators in first, second, third, and all orders of
perturbation theory in TlI and PbII.

Transition ZsDFd ZsDF+2d ZsDF+2+3d ZsSDd ZsDFd ZsDF+2d ZsDF+2+3d ZsSDd

Tl I PbII

Electric-quadrupole transitions

6p1/2 6p3/2 15.2950 15.4716 12.4935 13.1672 9.1374 9.1936 8.1941 8.2784

6p1/2 7p3/2 7.1787 7.2776 5.7125 6.3019 4.0244 4.1182 3.8682 4.0294

6p3/2 7p1/2 15.8767 15.9107 11.7256 13.2822 8.0165 8.0706 7.3327 7.6247

7p1/2 7p3/2 127.7551 128.1446 110.4106 114.0819 53.1141 53.1487 47.8697 48.6564

Magnetic-dipole transitions

6p1/2 6p3/2 1.1354 1.1358 1.0959 1.1366 1.1372 1.1375 1.0963 1.1371

6p1/2 7p3/2 0.1022 0.1016 0.0771 0.1020 0.0971 0.0965 0.0832 0.0971

6p3/2 7p1/2 0.1228 0.1218 0.1137 0.1077 0.1169 0.1160 0.1197 0.1161

7p1/2 7p3/2 1.1387 1.1380 1.1345 1.1384 1.1391 1.1393 1.1261 1.1379
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tions arise from the Bruekner-orbitalZsBOd correction which
is especially large forE2 matrix elements in Tl; the ratio
ZsBOd /ZsDFd is about 0.13–0.25.

Transition rates for theE2 transitionsAr
E2 andM1 transi-

tionsAr
M1 ss−1d in Tl I and PbII calculated in the SD approxi-

mation are presented in Table VI. The SD datasad are com-
pared with theoretical calculations given in Refs.f28,29g sb,
cd. The differences between our results and those from
f28,29g for Ar

E2 andAr
M1 can be explained by the additional

correlation corrections taken into account in our calculations.

V. HYPERFINE CONSTANTS FOR NEUTRAL
THALLIUM

Calculations of hyperfine constants follow the same pat-
tern as calculations of the reducedE1, E2, andM1 matrix
elements described in the previous section. The magnetic
moment and nuclear spin used in the present calculations are
taken fromf50g.

Contributions to the SD values for the 6pj, 6dj, and 7s1/2
states in205Tl are given in Table VII of the accompanying
EPAPS documentf37g. In Table VII, we list hyperfine con-
stantsA for Tl and compare our values with available theo-
retical and experimental data from Refs.f15,29,30g and ref-
erences therein. In this table, we present the first-orderAsDFd

and all-orderAsSDd values for thenpj levels with n=6–9,
ns1/2 levels with n=7–9, and 6dj levels. The largest dis-
agreements between our SD data and the experimental val-
ues occur for 6p3/2 and 8d5/2 states. The correlation correc-
tion for 6p3/2 state is of the same order of magnitude as the
DF value and has an opposite sign. With such a cancellation
it is difficult to calculateAs6p3/2d accurately. The best agree-
ment with experimental measurements is found for the 6p1/2
and 7p1/2 states; the differences of ourA values with experi-
ment for these states are 0.4% and 0.3%, respectively. For
other statess7s1/2, 7p3/2, 6dj, 8pj, and 9pjd the discrepancies
range from 2% to 7%. We note that the correlation correc-
tions to A values are very large for essentially all of the
states. Yet we find that the SD method produces results in
good agreement with experiment in most cases.

VI. CONCLUSION

In summary, a systematic relativistic MBPT study of the
energies of 6s2npj sn=6–9d, 6s2ns1/2 sn=7–9d, 6s2ndj sn
=6–8d, and 6s2nf5/2 sn=5–6d states in TlI and PbII is pre-
sented. The energy values are in good agreement with exist-
ing experimental energy data and provide a theoretical refer-
ence database for the line identification. A systematic all-

order SD study of the reduced matrix elements, oscillator
strengths, and transition rates for the 72 possible 6s2nlj
-6s2n8l j8

8 electric-dipole transitions is conducted. Electric-
quadrupole and magnetic-dipole matrix elements are evalu-
ated to calculate the 6s2np1/2-6s2np3/2 transition rates. Hy-
perfine constants are presented for 6s2npj sn=6–9d, 6s2ns1/2

sn=7–8d, and 6s2ndj sn=6–8d states in205Tl isotopes. We
believe that our energies and transition rates will be useful in
analyzing existing experimental data and in planning future
measurements.
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