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Energies of &np; (n=6-9), 6s°ns;;, (n=7-9), 6s’nd; (n=6-8), and &°nfs, (N=5-6) states in Tl and
Pbi are obtained using relativistic many-body perturbation theory. Reduced matrix elements, oscillator
strengths, transition rates, and lifetimes are determined for the 72 poss?mil%ﬁzn’lj', electric-dipole
transitions. Electric-quadrupole and magnetic-dipole matrix elements are evaluated to ciSteig.,6
6s’mpy» (n,m=6,7) transition rates. Hyperfine constamsare evaluated for s?np,- (n=6-9), 65°ns, (n
=7-9, and &anj (n=6-9 states irf°®TI. First-, second-, third-, and all-order corrections to the energies and
matrix elements and first- and second-order Breit corrections to energies are calculated. In our implementation
of the all-order method, single and double excitations of Dirac-Fock wave functions are included to all orders
in perturbation theory. These calculations provide a theoretical benchmark for comparison with experiment and

theory.
DOI: 10.1103/PhysRevA.71.052506 PACS nuniber31.15.Ar, 31.15.Md, 32.10.Fn, 32.70.Cs
I. INTRODUCTION all-order method, in which single and douli8D) excita-
This work continues earlier relativistic many-body pertur- gﬁnosré’érg‘e Dirac-FockDF) wave functions are summed to

bation theory(RMBPT) studies of energy levels of ions with

one valence electron outside of a closed ddre/]. We con- .
. i 6 110, . change was employed by Migdalgk6] to calculate the os-
sider the three-electron systeiNd]5s’5p°5d*%s’nl in T o = strengths in Ti for 6526p,-65°nS, 5, 65°7p,-62nS, 5

and Phi as a one-electronl system witr{Nd]5525p65d106§ 6926p,-6nd;, and G27sy,-65np, transitions. Oscillator
core. ~The  ground-state  energy  of thallium strengths determined from single-configuration relativistic
[Nd]5s°5p®5d'%s°6p, treated as a one-electron system, wasHartree-Fock RHF) calculations were reported by Migdalek
calculated by Dzubat al. [8] using perturbation theory ina and Baylis[17] for the lowest 8%6p;-6s*7s,;, and &°6p;
screened Coulomb interactioRTSC), by Blundelletal.[9]  -6s%6d;, transitions. A numerical Coulomb approximation
using third-order many-body perturbation thediyBPT), = (NCA) was used by Lindgaret al. [18] to calculate the
and by Liu and Kelly[10] using the coupled-clustiCC) lifetimes of %,,, 8s,,, 95,5, 6d;, 7d;, and &I, states. Corre-
approach. Second-order MBPT energies of thallium werdation corrections to electric-dipoléE1l) matrix elements in
evaluated for the ground and excited statés’6p, 6s°7s, Tl were performed in Ref§11,13,15. Radial integrals for
and &°7p) by Hartley and Martensson-Pendiil1]. Thal-  allowedELl 6p;-ns;,, and G;-6d;, transitions were calculated
lium was treated as a three-particle system in Rgf2-15 by Dzubaet al. [13] taking into account the second-order
to evaluate the Tilionization potential and the first few en- diagram contributions. Approximate Brueckner orbitals were
ergy levels, 86p, 65°6d, and &°7s. The second-order rela- used in[11] to evaluate reduced electric-dipole matrix ele-
tivistic MBPT was used by Johnsaet al. [12] and a com- ments for §;-ns;,, transitions. Dipole matrix elements for
bined second-order MBPT plus configuration-interaction6p;-7sy/,, 6p;-6d;,, 7p;-7sy,, and ;-6d;, transitions ob-
(Cl) method was employed in Refsl3-15. In the present tained by combining MBPT and Cl methods were presented
paper, the energies ofsthp, (n=6-9), 6s’ns;, (n=7-9, by Kozlov et al. [15].

6s’nd; (n=6-8), and &nfs, (N=5-6) states in Ti and Calculations of the Pb properties including a model po-
Pbu are obtained using the third-order RMBPT and the SDtential to represent the core polarization of iPlvere re-
ported by MigdaleK19] and by Alonso-Medin&20]. Oscil-
lator strengths and relative line strengths for the
6 2P,—n %S, , transitiong(n=7-11 and for the #P,—n 25,

A relativistic semiempirical method including ex-
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probabilities for 190 lines arising from thes®s?S,,,  tance of correlation corrections on certain propertibg
6s°np 2P,, 6s°nd ?D, 6s°nf F 5, 6s6p® %S, 2P, and®'D,;  looking for a significant improvement in results when the
levels in Phi were also calculated recently by Colon and all-order method is use@dand the cases where the treatment
Alonso-Medina[21] using thecowAN code. Additionally, of Tl as a three-particle system may be importéwhere
theoretical lifetimes were calculated [ig1] for those levels  significant discrepancies still remain in the all-order g¢ase
for which lifetimes measurements were giver{22]. Those  The development of the all-order method which is capable of
theoretical results included correlation corrections by usindully treating Tl or Pi3 as a three-particle system is a difficult
scaled radial integrals in theowaN code. task and the initial study of the applicability of the all-order

In this paper, we conduct both MBPT and SD all-ordermethod to Tl as a one-particle system is necessary. We find
calculations of Tl and Phi properties. Such calculations that the SD all-order method works well for the calculation
permit one to investigate the convergence of perturbationf the Tl properties even without consideration of the three-
theory and estimate the theoretical error of predicted data. Iparticle states. Another important result of this study is that
the present paper, we evaluate reduced matrix elements, oge did not find the poor agreement between third-order en-
cillator strengths, transition rates, and lifetimes for the 72ergies and experiment that occurs for all heavy alkali-metal
possiblenlj—n’lj’, electric-dipole transitions in Tland Phi. atoms. It is knowr{1,6] that the addition of third-order con-
Our results are compared with theoretical results from Reftributions to the energy for heavy alkali-metal atoms does
[15] and with experimental measurements from Refshot bring energies into closer agreement with experiment.
[23-26 in Tl and Refs[21,27 in Pbu. We find, however, that this is not the case fon @hd Phi,

The relativistic Hartree-FocKkHFR) cowan code was Where third-order calculations produce values in reasonably
used by Biemout and Quinef28] to calculate the good agreement with experiment and all-order SD calcula-
6 2P,,,—6%P,, magnetic-dipole and electric-quadrupole tions, when modified to include all third-order contributions,
transition probabilities in Tl and Phi. Magnetic-dipole and give even better results.
electric-quadrupole transition rates fofP,,,—n’ 2Py, tran-
sitions (n,n’=6,7) in Tl were presented by Neuffer and
Commins[29], where valence-electron wave functions were  We start from the “no-pair” Hamiltoniaf32]
generated as numerical solutions of the Dirac equation in a
modified Tietz central potential. In present paper, we extend H=Ho+V, (1)
those studies by using relativistic MBPT and SD all-orderyhereH, andV, can be written in a second-quantized form
methods to obtairab initio results with detailed consider- g
ation of the correlation effects.

Approximate Brueckner orbitals were used [ihl] to Ho=> eaa;, (2
evaluate the hyperfine constants for the ground and excited [
states(6py 5, 6Psjo 7512, and By,) in 2°°TI. Results for the
hyperfine constants for, 7p;, 7sy,, and &J; states iP%°Tl V= 1 5 it 5
were obtained by combining MBPT and CI methods by Ko- 79 <~ Yijki & 8 &3, (3
zlov et al. [15]. In the present paper, we calculate hyperfine .
constantsA for 652npj (n=6-9, 6s°ns,, (Nn=7-9, and where negative energfpositror states are excluded from
6s?nd; (n=6-9 states in?*Tl using the relativistic MBPT the sums. The quantities; are eigenvalues of the one-
and SD all-order methods. Our SD results are compared witlectron Dirac-Fock equations with a frozen core and the
the theoretical results from RdfL5] and with experimental —two-particle matrix elemeng; is the Coulomb matrix ele-
measurements from Refi29-31. ment.

In summary, this work presents both a systematic calcu- Considering neutral Tl as a system with one valence elec-
lation of various T and Phi properties and a study of the tron we carry out our calculations starting with t&™* DF
importance of high-order correlation corrections to thosePotential[Nd]5s*5p®5d'%s’. There are a number of advan-
properties. One of the aspects of our work was to study théages associated with this potential, including a greatly re-
effectiveness of the all-order method when it is applied toduced number of the Goldstone diagraj88], a clean sepa-
three-particle systems such as Tl orPlbhe advantage of ration of the core and valence states, and one set of single-
the all-order method is that it treats correlations in a ratheparticle states, leading to important simplifications in the
compete way yielding excellent results for the alkali-metalcalculation of excitation energies and transition matrix ele-
atoms. We note that its implementation is entirely differentments. Thus, when considering the total energy of different
from the configuration interaction method. The trade-off forvalence states of a one-electron atom, that energy can be
the application of the all-order method is that its derivationwritten as
and formulation is complicated even for the simplest case of E-E +E 4)
the systems with one electron above the closed shells. More- v oeore
over, the method is numerically demanding. Our work haswvhereE.,.is the same for all valence statesBecause the
established that the all-order method is clearly suitable fofirst-order correlation correction to valence removal energies
accurate calculations of properties of Tl and*PBy per-  vanishes for &/N! DF potential, the first nonvanishing cor-
forming calculations using both the all-order method andrections are found in second order. The expression for the
third-order MBPT, we were able to study the relative impor-second-order energg? is [34]

II. ENERGIES OF Tl 1 AND Pbu
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ESP. We drop the index in the E?, E\?, andES" designa-
tions in the text and tables below.

We useB-splines[36] to generate a complete set of basis
Ynoba(Jabry ~ Jabun) DF wave functions for use in the evaluation of MBPT and
+> > . (5) . )
 an €atéep—en—é, all-order expressions. For Thnd Phi, we use 40 splines of

o order k=7 for each angular momentum. The basis orbitals
We use indicesa andb to label core states and andnto  gre constrained to cavities of radiR=85 a.u. andR

designate any excited states. The second-order Coulombgs g y. for T and Phi, respectively. The cavity radius is

Breit contribution B)” is obtained from thee? EeXpression  chosen large enough to accommodate Blb@d 5; orbitals
given by Eq.(5) by changinggij — i+ Py and keeping  considered here and small enough that 40 splines can ap-
only terms that are linear iby. The by is a two-particle  roximate inner-shell DF wave functions with good preci-
matrix element of the Breit interactidi35]: sion.
o A . Results of our energies for the lowest states of neutral Tl
B=-"la-a-Jlaray=(ar-Fo)(az-F1)l1, () and Thike Pb ions are summarized in Tablalcomplete set
12 of states is given in Tables | and Il of the accompanying
where a; is a Dirac matrix,f1,=rq,/r15, and a is a fine  EPAPS documeri37]). The first six rows of Table | give the
structure constant. The first-order Breit correctioanUé) lowest-order DF energieg®, second- and third-order Cou-
=3.[0,a0a— Byaa - lomb correlation energie&® andE®, first-order Breit con-
Even with the elimination of a large set of Goldstone tribution B, second-order Coulomb-Bre&® corrections,
diagrams made possible by the use of ¥he! DF potential, —and Lamb shift contributior, 5. We take the sum of these
there are still a large number of terms, 52, in the expressiogix contributions to be our final third-order RMBPT results,

for the third-order valence removal energﬁ?)_ The corre- Egt) listed in the seventh row of Table I. We list the all-order

sponding formula foiE'® was presented by Blundedt al. ~ SD energies in the row'labeIeEf’D and the part of the third-
[9], where the 52 terms were grouped into 12 terms withorder energies omitted in the SD calculation in rﬁ@tra We
distinct energy denominators: note thatESP contains arE®® contribution. We take the sum
of the six terms£©, ESD, E®) B, B@), andE,g to be our
E@=E® 4+ ... 4 gL (7) g Sp . extra k
v A L final all-order result€=y; listed in the ninth row of Table I.
four-particle sums over virtual states and sums over corétandards and TechnologMIST) databas¢38] are given in
states row labeledEyst. The differences between our calculations
: . . . e _
The all-order single-double method was discussed previand NIST datagE'¥ = o —Enist and SESP=EgP—Eysr, are

ously in Refs[2-7]. Briefly, we represent the wave function given in the last two rows of Table I, respectively.
¥, of a one-valence-electron atom@%;qffD with As expected, the largest correlation contribution to the

valence energy comes from the second-order t&f, As
we shown above, this term is simple to calculate in compari-
son withE® andESP terms. Thus, we calculate tf#? term
with better accuracy thaB® and ESP terms.
®) To increase the accuracy of our calculations we use 50
splines of ordek=9 for each angular momentum to calculate
E®@. The second-order enerds? includes partial waves up
Where(IJU is the lowest-order atomic wave function, which is to Imax: 10 and is extrap0|ated to account for contributions
taken to be the frozen-core DF wave function of a state from h|gher partia| Wave$see, for examp|e' Ref$39,4q)
We note that we again start from\d~* DF potential. Sub-  As an example of the convergence# with the number of
stituting the wave functionW$® into the many-body partial waved, consider the Py, state in neutral TI. Calcu-
Schrédinger equation, with the Hamiltonian given by Eqgs.jations of E©@ with I,,,=8, 9, and 10 yieldE®@(6p, ) =
(1)—(3), one obtains the coupled equations for the single- and.76g82, -7708, and -7724 ¢t respectively. Extrapolation
double-excitation coefficientSiy,, pma Pmnar 8Ndpmnan T of these calculations yields =7737, 7747, and -7753%m
coupled equations for the excitation coefficients are SOWe(ﬂespectiver. Therefore, we estimate the numerical uncer-
iteratively. We use the resulting excitation coefficients totainty of E@(6p,),) to be approximately 10 crh. Similar

evaluate hyperfine constants and multipole matrix elementsonyergence patterns are found for all other states consid-
The valenceEfD energy given by ered.

SD_ O ~ ~ ~ Owing to the numerical complexity of tHeSP calculation
E, _%gvavmpma’L %bgabvmpmva“ %agvam”omma © e usel, =6 in our all-order calculations. As we noted
above, the second-ord&? is contained in theeSP value.
does not include a certain part of the third-order contributionTherefore, we use our high-precision calculationE&¥ de-
This part of the third-order contributiorES()tra is given in  scribed above to account for the contributions of the higher
Ref. [5] and needs to be calculated separately. We use oyrartial waves. We simply replad&?[l,,,,=6] value with the

third-order energy code to separate Efjftraand add it to the final high-precision second-order vaIE«,%a,:

E(Z) — 2 2 gaumn(gmna; B gmrva)

mn a €at& " &n&n

1
‘PED: 1+ E pmaazqaa"' 5 2 Pmna@:nalabaa
ma mnab

i T4t
+ E Prmv@mdy T E Pmra@m@ndad, o,

m#v mna
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TABLE |. Zeroth-order (DF), second-, and third-order Coulomb correlation energi€% single-double CoulomiESP, E,S()trai and
first-order Breit and second-order Coulomb-Breit correctiBff to the energies of Tiland Phi. The total energie(;Et(g’t):E(°)+E(2)+E(3>
+BV+B@+E g, Si)?: EQ+ESP+ED +BW+B@+E ) for TI1 and Phi are compared with experimental energigsr [38], SE=Eyy
—EnisT- Units: cm™.

Contr. @2 6Py 7sy2 6dyz Sfsn 6pyz 6Pz TSy 6dip 5fs2
Tl Pbu

E©@ -43824 -36636 -21109 -12218 -6863 -114546 -100787 -58728 -46790 -27730
E@ -7753 -6747 -2024  -958 -98 -9473 -8807 -3911 -4438 -1099
E® 2534 2414 663 296 25 2947 3007 1331 1354 340
BW 259 135 26 3 0 460 264 71 35 0
B®@ -421  -291 -46 -8 0 -623 -472 -108 -74 -4
Es -2 0 3 0 0 -3 1 10 0 0
Eggg -49205 -41125 -22486 -12886 —-6936 -121238 -106794 -61335 -49914 -28493
ESD -5972 -5446 -1958 -1104 -97 -7239 -6956 -3766 -5129 -1078
SN 694 807 266 152 16 732 934 510 664 170
EZD -49266 -41432 -22818 -13175 -6945 -121218 -107016 -62010 -51294 -28642
Enist -49264 -41471 -22787 -13146 -6948 -121243 -107162 -61795 -51503 -28729
SE® 59 346 301 260 12 5 368 460 1589 236
SESP -2 39 -31 -29 3 25 146  -215 209 87

S"?al:ESD+ Egizn)aI_E(Z)[lmax: 6]. errors of the sums fronh,,,>4 should be proportionally

smaller than the estimated error of tB€ calculation.

We illustrate this procedure for thep§, state. The value of The first-order Breit energiegolumnB'" of Table ) in-
E@(6p,,) calculated with 40 splines of ordé&=7 andl,,, clude retardation, whereas the second-order Coulomb-Breit
=7 is equal to —7548 ch. The value ofE?(6p,,) calcu- €nergies(column B@ of Table ) are evaluated using the
lated with 50 splines of ordek=9, I,.,=10, and including unretarded Breit operator. The Lamb sfHi{s is approxi-
extrapolation is equal to —7753 cfa The difference be- mated as the sum of the one-electron self-energy and the

. i . first-order vacuum-polarization energy. The vacuum-
tween the two values is equal to —205¢mWe add this s R :
additional contribution to thgvalue &°P calculated with 40 polarization contribution is calculated from the Uehling po-

; - tential using the results of Fullerton and RinKer]. The
splines of ordek=7 andl,,;,=6. A similar value of the ad- G -
d?tional term(-145 cm?) is found for the @4, State. How- self-energy contribution is estimated for thep,;, andps,
hi bution i h I 9/2 5% f I orbitals by interpolating among the values obtained by
ever, this contribution is much smallét—20 cm™) for all  145_44 using Coulomb wave functions. For this purpose, an
other valence states considered in this work. We give th

. D: ®&ffective nuclear chargg. is obtained by finding the value
final results for the all-order enerds™ in Table |. of Ze required to give a Coulomb orbital with the same

ﬁlgwecrj numll)erl of partial Wa"r?*maX:A' agddg' is lésed N average(r) as the DF orbital. It should be noted that the
a third-order calcu athn. Since the asympt t EPENdences  alues ofE, s are very smal(E s=<3 cni for Tl andE, g

of the second- and third-order energies are sinitiath fall <10 cnit for Pbu)

off as1™#), we use the second-order remainder as a guide to The totalE® in Table I is the sum of six term&®, E?
estimate the numerical error in the third-order contribution. tot ' ’

3 g B®@ i i -
Using the breakdown of the results for tB&(6p,,,), with E, B, B, andE, . We find that the correlation correc
A . tions to energies in neutral Tl and Tl-like Pb are large, espe-
contribution froml,,,,>4 up toe (equal to 9.5% we esti-

i (2) j 0,
. B cially for the @ states. For exampl&'< is about 20% of
mate tﬁle numerical errors foE _(1691/2) to be equal 1o 0 3ngE® is about 40% oE®? for the 6p; states of neutral
240 cn1-. A similar value(-180 cm*+) is found for the §5,

. N 3 Tl. Despite the evident slow convergence of the perturbation
state. Numerical uncertainties are much smdfler20 cm™) theory expansion, the (,, energy from the third-order

for all other states considered in this work. It should be noteq gpT calculation is within 0.2% of the measured ionization
that a limited number of partial waves were used by KOZ|0Venergy for the By, state of neutral Tl and improves for
et al. [15] to calculate the MBPT diagram contributiokis higher valence states and for'P9.03%. The order of lev-
=5) and for solving the random-phase approximation equag|g changes from Tl to PbFor example, the 5, and &s),
tions (1=4). states, which are in the 13th and 19th places for neutral TI,
The contributionE'Y, _ given in Table | accounts for the are in the 9th and 15th places for'PIn the columnsE® of
part of the third-order MBPT correction that is not included Table |, we compare our results for the energy levels of in-
in the SD energy. The values Efx)tra are smaller than the terest in Th and Phi with NIST data[38]. The differences
values of E® by a factor of 3. As a result, the estimated sE® betweenE( and Eysr are generally small, except for

052506-4



EXCITATION ENERGIES, HYPERFINE CONSTANTS, PHYSICAL REVIEW A 71, 052506(2005

TABLE Il. Reduced electric-dipole matrix elements in first, second, third, and all orders of perturbation theoryaindTPhi.

Transition Z(DF) Z(DF+2) Z(DF+2+3 Z(SD) Z(DF) Z(DF+2) Z(DF+2+3) Z(SD)
Th Pbu

6p1/2 7S1o 2.0484 1.9122 1.6613 1.8200 1.3753 1.2966 1.1715 1.0085
6Pz 7S12 3.9655 3.6551 3.0780 3.3945 2.6208 2.3611 2.2085 2.0529
6py1/» 6ds/, 2.7215 2.4497 2.3033 2.3739 2.8176 2.3669 2.1956 2.0661
6D3/2 603/ 1.6334 1.4983 1.3628 1.4193 1.5267 1.3053 1.2081 1.2177
6D3/2 60s), 4.8402 4.4464 3.8568 4.1692 45018 3.8655 3.6018 3.4345
the results for the 65, 7s,/,, andnd; states. One cause of z‘(ng = <qr$>|z|qr£0>> = Zy (13)

these discrepancies is the limitation of the number of partial i . )

waves, | in the E® calculation. The second cause for wherez,, is tge one-electron corresponding matrix element
these discrepancies is the omission of the fourth- and highef46]. Since!’ is a DF function, we use Z®P designation
order correlation corrections in the theoretical values. Andinstead ofZ® below.

other possible cause of the discrepancies is the omission of The second-order Coulomb correction to the transition
three-particle interactions in our single-particle model spaceMatrix element in the DF case with thé'™* potential is
The importance of thes86d+6s6p2 mixing for TI1 was em-  given by[47]

phasized by Johnsoet al.[12].

The totalELY in Table | is the sum of six term&©, ESP, D Zar( Gurwa = Guna) > (Gueun = Guan)Zna
ED  BY, B, andE . The column labeledESP in Table na €at& TEnT8w na EatEwTENTE
| gives differences between oab initio results and the rec- (14)

ommended valuels38]. The SD results agree better with the ) ) )
recommended values than the third-order MBPT results, exIne second-order Breit corrections are obtained from Eq.
cept for the ionization potential of Riwhere the differences (14) by changinggyy to by [35]. ,

with experiment are small for both calculations. Better agree- The third-order Coulomb correction is obtained from Egs.
ment of the all-order values with experiment demonstrate$10) and(12) as

the importance of the higher-order correlation contributions. (3) _ p(2) (0) (0) 2 (&) (6N

Those differences between the present theoretical results and Zu = (W |ZPW,7) + (O |ZPW7) + (0|21
the recommended values that were not improved by the SD
method are most probably due to the omission of three-
particle interactions mentioned previously.

1
= SZRlw W) + (WD), (15

where the last term arises from the normalization condition.

The contributions t(zfv) were separated as
Ill. ELECTRIC-DIPOLE MATRIX ELEMENTS,

OSCILLATOR STRENGTHS, TRANSITION RATES, 23 = 7(RPA 4 7(BO) 4 7(SR) 4 Z(norm (16)

AND LIFETIMES IN TI 1 AND Pb . . . .
' ! in Ref. [45]. We include the corresponding set of the high-

The one-body matrix element of the operalbis given order contributions using the well known random phase ap-
by [2] proximation (RPA) in Z®PA term using the procedure de-
scribed in Ref[45]. The subscript BO stands for Brueckner
(v, |Zv,) orbitals. The last two terms in Eq16) describe structural
wo = 7 : (100 radiation,ZSR, and normalizationZ™™ terms.
VU WX W[ P) In all-order SD calculation, we substitute the all-order SD
\IffD wave function into the matrix element expression given
by Eg. (10). In the result,Z5> is presented in the following

whereW, is the exact wave function for the many-body “no-
pair” HamiltonianH:

form [2]:
HWY,)=EWV,). 11 @4 ... (t)
v,)=E[¥,) (11) Z\(,\iD)=ZW"f+Z + - +Z , 17
In MBPT, we expand the many-electrdn, in powers ofV, VA +NW)(L+N,)
as whereZz,, is the lowest-orde(DF) matrix element given by
Eq. (13) and the termg®, k=a- -t are linear or quadratic
W,y =[O+ WDy + | @@y + [y 4+ ... (12)  functions of the excitation coefficients introduced in E&).

The normalization term#,, are quadratic functions of the
The denominator in Eq10) arises from the normalization excitation coefficients. As a result of such a procedure, cer-
condition that starts to contribute in the third ordéb]. In  tain sets of many-body perturbation theory terms are
the lowest order, we find summed to all orders.
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TABLE lll. Reduced electric-dipole matrix elements iniTED find correlation correctionZ?*3 to be very large, 10%—-30%
valuesZSP are compared with theoreticZ{"®® and experimental for many cases. All results given in Table Il are obtained

Z/®® data given in Ref[15] and references therein. using length form of the matrix elements. Length-form and

velocity-form matrix elements differ typically by 1%-10%

Transition Z(SD Z(theo zeP  for the DF matrix elements and 1%-3% for the second-order
matrix elements.

6p1/2-7S1/2 1.82 177 1.81£0.02 The electric-dipole matrix elements evaluated in the all-

6p1/2-603/2 2.37 2.30 2.30£0.09 order SD approximation are given in the columns labeled

6D31- 7Sy 3139 3.35 3.28+0.04 Z©P [Eq. (17)] of Table Il. The SD matrix elementgs®

6ps/-60 1.42 1.40 1.38+0.07 include Z® completely, along with important fourth- and

higher-order corrections. The fourth-order corrections omit-

6p3/2-60s/> 417 4.08 4.0£0.2 404 from the SD matrix elements were discussed recently by
P12 1S172 5.90 5.96 5.87£0.08 48] TheZzSP values are smaller than tf&PF*? values and
7p1/2-6d3 10.58 10.86 larger than th&®F*2+3 values for all Tl transitions given in
P32 7S 7.87 7.98 7.88+0.11 Table Il and some of the Rbtransitions.

7pa/-60s/ 4.75 4.90 In Table Ill, we compare our SD da@*" for redlﬁced
7D3-60 5 14.40 14.88 electric-dipole matrix elements in Tith theoreticalz(te°?

and experimentaZ®*® data given by Kozlowet al.[15] and
references therein. Our SD data are in excellent agreement
The calculation of the transition matrix elements provideswith experimental and theoretical data from Ref$4,15
another test of the quality of atomic-structure calculationsobtained by combining MBPT and CI methods.
and another measure of the size of correlation corrections. Transition ratesh, (s™), oscillator strength¢f), and line
Reduced electric-dipole matrix elements between low-lyingstrengthsS (a.u) for the 72 transitions in Tiland Phi are too
states of Tl and Phi calculated in the third-order RMBPT voluminous to include here. They are tabulated and com-
and in the all-order SD approximation are presented in Tabl@ared with experiment in Tables IV-VI of the accompanying
Il. We include only a limited number of transitions in this EPAPS documernit37], respectively. We use theoretical en-
table to illustrate our results. A complete set of transitions isergies obtained in the SD approximati@, and the SD
available as supplementary data in Table Il of R&f7]. matrix elements to calculate those values using well-known
Our calculations of reduced matrix elements in theexpressiongsee, for example[38]). For convenience, we
lowest-, second-, and third-ord&t” in neutral Tl and Tl-like  present wavelengths for all transitions in Tables IV-VI of
Pb ion are carried out following the method described above37]. The largest oscillator strengths agree with experimental
The lowest order DF value is obtained from E@3). The  results within the corresponding uncertainties in many cases.
values ofZ(PF*2 gre the sum of the second-order correlationOur SD results for the wavelengths are in excellent agree-
correctionZ? given by Eq.(14) and the DF matrix elements ment with experimental wavelengths; the discrepancies are
Z®P_ The third-order matrix elemen&PF*2*3 include the about 0.01%-0.1%.
DF values, the second-ord2f results, and the third-order ~ We calculate lifetimes of thap;, ns,, (n=7-9), nd; (n
Z® correlation correction given by the E(¢L6). The term  =6-8), andnfs;, (n=5-6) states in Tl and Phi using SD
Z(RPA contains contributions not only from the third-order results for dipole matrix elements and energies. We compare
but also from higher-order RPA corrections as noted abovethese lifetimes7S? with available experimental measure-
The BO corrections give the largest contributiongf. The  ments in Table IV. The experimental data fori Ere from
ratio of ZB® and Z°P terms is about 5%-15%. The term Refs.[24,25 and the Ph data are from Ref21] and refer-
Z(RPA is about 5%—-10% of th&PP term. The smallest con- ences therein. Experimental results ¥ were given in
tributions (about 1% are from the structural radiatio@S®R, Refs. [25,21] with 5% and 10% errors, respectively. Our
and normalizationZ™™, terms. The basis set used here ispresent values are in excellent agreement with experimental
the same as in the calculation of the energy contributions. Weesults except for one case, the; 4 state in Phi. This is

TABLE V. Lifetimes 7 of thenl levels in Tli and Phi in ns. The SD data are compared with experi-
mental results for Tl from Refs.[24,25 and for Phi from Ref.[21] and references therein.

Level 78D 7expt Level ASD) expt

Tli, =81 Pbi, Z=82
781/ 7.43 7.45+0.2 A 1.68 7.2+0.9
7P1s2 61.8 63.1+1.7 [ 16.9 15.2+1.7
7P3s2 47.3 48.6+1.3 Bas 10.4 10.3+1.2
8p1/2 177.6 184.1+4.4 s/ 4.05 3.4+0.4
8Pz 1235 127.7+4.9 B2 4.43 5.9+0.6
9p1/n 375.1 391.1+21.8 B2 11.5 11.6+1.5
9P 251.3 273.6+13.5
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TABLE V. Reduced matrix elements of the electric-quadrupole and magnetic-dipole operators in first, second, third, and all orders of
perturbation theory in Tiland Phi.

Transition Z(DF) Z(DF+2) Z(DF+2+3) Z(SD) Z(DF) Z(DF+2) Z(DF+2+3‘) Z(SD)
Th Pbu
Electric-quadrupole transitions
6p1/2 6p3/» 15.2950 15.4716 12.4935 13.1672 9.1374 9.1936 8.1941 8.2784
6p1/2 P32 7.1787 7.2776 5.7125 6.3019 4.0244 4.1182 3.8682 4.0294
6p3/2 P12 15.8767 15.9107 11.7256 13.2822 8.0165 8.0706 7.3327 7.6247
P12 P32 127.7551 128.1446 110.4106 114.0819 53.1141 53.1487 47.8697 48.6564
Magnetic-dipole transitions
6p1/2 6p3/2 1.1354 1.1358 1.0959 1.1366 1.1372 1.1375 1.0963 1.1371
6p1/2 TPsj 0.1022 0.1016 0.0771 0.1020 0.0971 0.0965 0.0832 0.0971
6p3/» P12 0.1228 0.1218 0.1137 0.1077 0.1169 0.1160 0.1197 0.1161
P12 TPaj 1.1387 1.1380 1.1345 1.1384 1.1391 1.1393 1.1261 1.1379

unexpected since we have perfect agreement betwen
and 7t from Ref.[24] for the 7, state in Th. As one can

see from Table 1V, the lifetime values in iThre larger than
the lifetime values in Pb by a factor of 4. In this case, it
seems strange tha®* for the 7%, state in Phi is almost

identical with 7t for the 7, state in Tl.

est and second orders of perturbation theory were given by
Safronovaet al. [49]. Third-order and all-order calculations
are done in the same way as the calculation&bfmatrix
elements. In Table V, we presda? andM1 matrix elements
in the Z(®P, Z(OF+2  7(DF+2+3 ' and Z(SD) gpproximations for
6P1/2-6P3/2 6P1/2- P32, 7P1/2-6P3s2, @and 1y~ 7p3 2 transi-
tions in Th and Phi. These four transitions in Tlwere
investigated for the first time if29]. The importance of the
Breit contribution to the calculation of thep;-n"p;, matrix
elements in Tl was underlined in Ref.29]. We also found
Reduced matrix elements of the electric-quadrugé®)  that the second-order Breit contributions are larger than the
and magnetic-dipoléM 1) operators in lowest, second, third, Coulomb contributions, which are unusually small for the
and all orders of perturbation theory are given in Table V forabove-mentione&2 andM1 transitions. As a result, the dif-
Tl and Phi. Detailed descriptions of the calculations of the ference betweez®P and ZP™2 presented in Table V is
reduced matrix elements of tle2 andM1 operators in low- rather small, about 0.3%—1%. The largest Coulomb contribu-

IV. ELECTRIC-QUADRUPOLE AND MAGNETIC-DIPOLE
TRANSITIONS IN Tl 1 AND Pbu

TABLE VI. Wavelengths\ (A) and transition rates for electric-quadrup@{§? and magnetic-dipol@M* (s™) transitions in Th and Phi
calculated in the SD approximation. The SD daeare compared with theoretical calculations given in RgX9] (b) and[28] (c). Numbers
in brackets represent powers of 10.

Transition A AE? AV
Tl
6P/ 6ps/ a 12862 0.1379 4.094
b 0.158 4.085
c 0.1978 4.268
6p1/2 P32 a 2861 58.05 2.996
b 55.2 3.31
6p3/» P12 a 3819 121.5 2.810
b 72.8 2.18
P12 P32 a 99900 3.66-4] 8.769-3]
b 3.69-4] 8.706-3]
Pbi
6p1/2 6p3/2 a 7074 1.083 24.63
c 1.365 25.2
6p1/2 P32 a 1298 1236 29.13
6Pz P12 a 1663 2557 395.3
P12 P32 a 35549 0.0117 0.1944
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tions arise from the Bruekner-orbitZ(®° correction which TABLE VII. Hyperfine constantsA (in MHz) for the np; with
is especially large foE2 matrix elements in TI; the ratio n=6-9, ns;, with n=7-9, and @ levels in 2Tl (1=1/2 u
7B0) /7P is about 0.13-0.25. =1.638 213 5. The SD data are compared with theoretical and ex-

Transition rates for th&2 transitionsAF? andM1 transi- ~ Perimental results from Ref15] (a), Ref. [29] (b), Ref.[30] (c),
tionsA* (s3) in TI1 and Phi calculated in the SD approxi- and Ref[31] (d).
mation are presented in Table VI. The SD d&@hgare com-
pared with theoretical calculations given in Rd®28,29 (b,  -€Vel
¢). The differences between our results and those fromg, = 17414 21390 21663  21310.8+0.6
[28,29 for A®2 and AM! can be explained by the additional

ADP) A(SD Altheo) Alexpt

1302 353 248 265.0+0.6
rrelation corrections taken in nt in our calculations,. >’
correlation corrections taken into account in our calculatio s.isl/2 7381 12506 12666 12297 2+18
7 1942 224 21 2155.5+0.
V. HYPERFINE CONSTANTS FOR NEUTRAL Pas2 o 8 99: 2> 5+ O;
THALLIUM P32 187.9 294.3 2 311.4+0.
_ _ 603 207 -42.1 -41 -42.9+0.4
Calculations of hyperfine constants follow the same patgg,, 8.66 215.4 183 226.9+0.%
tern as calculat[ons (_)f the reduc_Ed, E2, qndMl matrix 85,/ 2479 3908 2320 3870.8+1.4
elements described in the previous section. The magneti
. . ; 1/2 730 836 708 788.5+0.9
moment and nuclear spin used in the present calculations are g p
taken from[50]. 8ps3» 72.1 122 6 130.2+0.
Contributions to the SD values for the66d;, and &, %Sz 1127 1657 1900 1779.4+1.9
states in°*°T| are given in Table VII of the accompanying 91 356 401 378.4+0.8
EPAPS documenit37]. In Table VII, we list hyperfine con-  9pg, 35.7 62.1 67.1£02
stantsA for Tl and compare our values with available theo- 7., 11.0 456 -56.3+0%
retical and experimental data from Reff$5,29,30 and ref- 74~ 455 135 180.2+0%
erences therein. In this table, we present the first-obfe? o 6.10 _320 —42.3+0%
and all-orderAS? values for thenp. levels withn=6-9 32 ' ' DY
) ' 8dg) 2.53 83.1 130.6+0%

ns,, levels withn=7-9, and @; levels. The largest dis-
agreements between our SD data and the experimental vaReferencd15].
ues occur for By, and 8lg, states. The correlation correc- "Referencd29).
tion for 6pg, state is of the same order of magnitude as theReferencg30].
DF value and has an opposite sign. With such a cancellatiofReferencd 31].
it is difficult to calculateA(6ps/,) accurately. The best agree-

ment with experimental measurements is found for thg,6  order SD study of the reduced matrix elements, oscillator
and by, states; the differences of oArvalues with experi- strengths, and transition rates for the 72 possiténie
ment for these states are 0.4% and 0.3%, respectively. Fops2n/| |, electric-dipole transitions is conducted. Electric-

other state£7s,,, 7psy2, 6d;, 8pj, and 9y) the discrepancies g, adrupole and magnetic-dipole matrix elements are evalu-

range from 2% to 7%. We note that the correlation COIMeCyted to calculate thesBnp,,-65npy, transition rates. Hy-

tions to A values are very large for essentially all of the perfine constants are presented fefr (N=6-9), 6s2ns,,
states. Yet we find that the SD method produces results ifh:7—8) and &°nd (n=6-8 states i:f12°5rl isot;)pes We
1 ] -

good agreement with experiment in most cases.

believe that our energies and transition rates will be useful in

analyzing existing experimental data and in planning future
VI. CONCLUSION measurements.

In summary, a systematic relativistic MBPT study of the
energies of &np; (n=6-9), 6s’ns;;, (N=7-9, 6s°nd; (n
=6-8), and &°nfs, (N=5-6) states in Tl and Phi is pre- The work of W.R.J. was supported in part by National
sented. The energy values are in good agreement with exisécience Foundation Grant No. PHY-01-39928. The work of

ing experimental energy data and provide a theoretical refetd.1.S. was supported by DOE/NNSA under UNR Grant No.
ence database for the line identification. A systematic allDE-FC52-01NV14050.
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