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We have made an investigation on the resonances for positronium negative ion Ps− in various model plasma
environments. The 2s2 1Se autoionization resonance state in Ps− ion is determined by calculating the density of
resonance states using the stabilization method. We have also performed accurate variational calculations to
obtain ground-state energy eigenvalues of Ps− for various Debye lengths. A screened Coulomb potential
obtained from the Debye model is used to represent the interaction between the charged particles. A correlated
wave function has been used to represent the correlation effect between the three charge particles. The calcu-
lated resonance energies and widths for various Debye parameters ranging from infinity to a small value along
with the ground-state energies are reported.

DOI: 10.1103/PhysRevA.71.052503 PACS numberssd: 36.10.2k, 34.80.Bm, 36.10.Dr, 52.20.Fs

I. INTRODUCTION

The effect of external environments such as that of plas-
mas on atomic systems are currently interesting topics of
researchf1–10g. Few theoretical studies have been per-
formed to estimate the ground statesf1–8g and resonant
statesf9,10g of two-electron atoms in Debye plasma environ-
ments. In the present investigation, we have made calcula-
tions for resonance energies and widths of positronium nega-
tive ion Ps− in model plasma environments. The Ps− ion
consisting of three leptonsse+,e−,e−d is the simplest three-
body system. Few experimental investigationsf11–14g and
several theoretical studiesf15–20g are available for the case
of a free Ps−. Mills made an experimental measurement for
the annihilation rate of Ps− f11,12g. An attempt to improve
the measurement on the annihilation rate is currently being
preparedf13g. Recently, Ballinget al. f14g discussed the sta-
tus of the facility and proposed experiments, e.g., multipho-
ton ionization of Ps and photodetachment of Ps−. Several
calculations are available on the bound state of Ps− f15–17g.
Ho investigated the autoionization states of Ps− using the
complex coordinate rotation methodf18,19g. Very recently,
Igarashi and Shimamuraf20g made a theoretical investiga-
tion on the resonances in Ps− by calculating the time-delayed
matrices. Sahaet al. f21g studied the effect of Debye plasma
on the structural properties of a compressed positronium
atom. It should be mentioned in this regard that Rousselet
al. f22g performed a variational calculation of Schrödinger’s
equation for atomic hydrogen in static screened Coulomb
potentials and Rogerset al. f23g investigated the bound
eigenstates for a two-particle system interacting through a
static screened Coulomb potential. The importance of the
screened Coulomb potential in the modeling of atomic po-
tential has been discussed in the work of Steinet al. f24g.
Recently Sahaet al. f7g calculated the electron affinity of
positronium embedded in Debye plasma. In our earlier
works, we investigated the 2s2 1Se autoionization resonance
states ofH− f9g and Hef10g in the Debye plasma environ-
ments. However, in our earlier study of the 2s2 1Se autoion-
ization resonance state inH− f9g, the electron-electron
screening was not included. It is also worthy of mention in

this context that Wang and Winkler carried out an investiga-
tion on resonances for a model screened Coulomb potential
f25g. They presented an analytic method for the calculation
of shape resonances for a model problem.

In the present work, we have made a theoretical investi-
gation on the ground state and the lowest resonance state of
Ps− when it is embedded in model plasma environments. To
our knowledge, no investigation on theS-wave autoioniza-
tion states of Ps− in Debye plasmas has been reported in the
literature. A screened Coulomb potential of Debye type has
been chosen to represent the interaction in the Hamiltonian.
Correlated wave functions expanded in terms of product ba-
sis sets involving inter-particle coordinates are used to rep-
resent the correlation effects between the three charge par-
ticles. The density of resonance states has been calculated
using the stabilization method proposed by Mandelshtamet
al. f26g. In the course of studying resonances, we have per-
formed accurate variational calculations to obtain the ground
state energy eigenvalues of Ps− for various Debye lengths.
Our calculated ground state energies are comparable with the
reported results of Sahaet al. f7g. The convergence of the
calculations has been examined with the increasing number
of terms in the basis expansion. All the calculations have
been preformed on DEC-ALPHA machines using the qua-
druple precision arithmetics32 significant figuresd in the
UNIX environments.

II. THE METHOD

The nonrelativistic Hamiltonian describing the positro-
nium negative ion embedded in Debye plasmas characterized
by the parameterD is given by

H = −
1
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where 1, 2, and 3 denote the two electron 1, 2 and the pos-
itron respective andr ij is the relative distance between the
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particlei and j . A particular value of the screening parameter
D corresponds to the range of plasma conditions, as the De-
bye parameter is a function of electron density and electron
temperature. The smaller values ofD are associated with
stronger screening. A parametrized screening potential ap-
proximated the effects of the plasma charges on the interac-
tion between a bound electron and the atomic nuclei, as well
as that between the two electrons.

For the1Se states of the Ps− atom, we have employed the
wave function

C = s1 + P12do
i=1

N

Ci expfs− air32 − bir31 − gir21dvg, s2d

where ai ,bi ,gi are the nonlinear variational parameters,
Cisi =1, . . . . ,Nd are the linear expansion coefficients,v is a
scaling constant to be discussed later in the text, andP12 is
the permutation operator defined byP12fsr32,r31,r12d
= fsr31,r32,r12d. To obtain the ground-state energy of Ps− we
first set v=1. The wave functions of Eq.s2d have been
widely used in the several bound states calculations of two
electron systems in model plasma environmentsf6,7,10g.

Following the work of Frolovf27g, we have used a quasir-
andom process to choose the nonlinear variational param-
etersai, bi, and gi. According to the multibox strategy for
constructing highly accurate bound state wave function for
three-body systemsf27g, the parametersai, bi, andgi will be
chosen from the three positive intervalfA1

skd ,A2
skdg, fB1

skd ,B2
skdg,

and fC1
skd ,C2

skdg; wherek=modsi ,3d+1, 1ø i øN:

ai = h1
skdFkk1

2
isi + 1dÎ2llsA2

skd − A1
skdd + A1

skdG ,

bi = h2
skdFkk1

2
isi + 1dÎ3llsB2

skd − B1
skdd + B1

skdG ,

gi = h3
skdFkk1

2
isi + 1dÎ5llsC2

skd − C1
skdd + C1

skdG , s3d

where the symbolkk¯ll designates the fractional part of a
real number. The positive scaling factorsh1

skd, h2
skd, andh3

skd

will be equal to 1 in the first stage and in the second stage it
will be varied. But for the present problem we have set

FIG. 1. sad Stabilization plots for the 2s2 1Se state of Ps−. sbd Calculated densityscirclesd and the fitted Lorenztianssolid lined corre-
sponding to the 2s2 1Se state of Ps−.

FIG. 2. sad Stabilization plots for the 2s2 1Se state of Ps− in Debye plasma environments forD=30. sbd Calculated densityscirclesd and
the fitted Lorenztianssolid lined corresponding to the 2s2 1Se state of Ps− for D=30.
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A1
skd=0,A2

skd=a; B1
skd=0,B2

skd=b; C1
skd=0,C2

skd=c; and h1
skd

=1,h2
skd=1,h3

skd=l. Ultimately, four variation parametersa,
b, c, andl are used in the entire calculations.

III. RESULTS AND DISCUSSION

We have used the stabilization method to extract reso-
nance energies and widths by calculating the density of reso-

nance states. After diagonalization of the Hamiltonians1d
using the basis functionss2d with different v values, we
obtained the energy levelsEsvd which leads to a stabilization
plot from which resonance position can be identified. The
scaling parameterv in the wave functionfEq. s2dg can be
considered as the reciprocal range of a “soft” wallf28g. De-
tail discussions are available in the recent work of Kar and

TABLE I. The convergence of resonance energiessErd and widthssGd using the basis expansion 300, 400,
and 500 for Debye parametersD=1.8, 2, 4, 9, 10, 20, 50, and infinity, along with the ground-state energies
sEPs−d. The notation Af−Bg stands for A310−B.

D sa.u.d

Ground-state
and resonance
energies and
width sa.u.d

N

300 400 500

` −EPs− 0.2620050686 0.2620050701 0.2620050702

−Er 0.076030 0.076030 0.076030

G 4.30f−5g 4.32f−5g 4.31f−5g

50 −EPs− 0.2424865646 0.2424865663 0.2424865663

−Er 0.057024 0.057025 0.057025

G 4.22f−5g 4.27f−5g 4.26f−5g

20 −EPs− 0.2149738338 0.2149738357 0.2149738358

−Er 0.033172 0.033172 0.033172

G 3.62f−5g 3.66f−5g 3.64f−5g

10 −EPs− 0.1736181575 0.1736181598 0.1736181600

−Er 0.007736 0.007736 0.007736

G 1.17f−5g 1.16f−5g 1.16f−5g

9 −EPs− 0.1651598570 0.1651598595 0.1651598596

−Er 0.004629 0.004629 0.004629

G 7.5f−6g 6.31f−6g 6.32f−6g

4 −EPs− 0.0798460693 0.0798460754 0.0798460757

3 −EPs− 0.0449254087 0.0449254114 0.0449254117

2 −EPs− 0.0059655900 0.0059656590 0.0059656643

1.8 −EPs− 0.0011178572 0.0011183487 0.0011184443

FIG. 3. sad Stabilization plots for the 2s2 1Se state of Ps− in the Debye plasma environments forD=10. sbd Calculated densityscirclesd
and the fitted Lorenztianssolid lined corresponding to the 2s2 1Se state of Ps− for D=10.
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Ho f28g. Varying the Debye lengthD from infinity to small
values, different resonance parameterssenergy and widthd
have been obtained.

To extract the resonance energyEr and the resonance
width G, we have calculated the density of resonance states
for a single energy level with the help of the following for-
mula;

rnsEd = UEnsvi+1d − Ensvi−1d
vi+1 − vi−1

U
Ensvid=E

−1

, s4d

where the indexi is theith value forv and the indexn is for
thenth resonance. After calculating the density of resonance
statesrnsEd with the above formulas4d, we fit it to the fol-
lowing Lorentzian form that yields resonance energyEr and
total width G, with

rnsEd = y0 +
A

p

G

2

sE − Erd2 + SG

2
D2 , s5d

wherey0 is the baseline offset,A is the total area under the
curve from the base line,Er is the center of the peak, andG
denotes the full width of the peak of the curve at half height.

To construct the stabilization plot, we have used an ex-
pansion length ofN=500 in the basis functions2d. The sta-
bilization diagramfin Fig. 1sadg corresponding to the Debye
lengthD tends to` sa.u.d in the range ofv=0.4–1.0 shows
the stabilization character nearE=−0.076sa.u.d. We use 301
points to cover the range ofv from 0.4 to 1.0 in the mesh
size of 0.002. We have calculated the density of resonance
states for the individual energy levels in the rangev=0.4 to
1.0, with one energy level at a time. The calculated density
of resonance states from the single energy eigenvalue is then
fitted to Eq.s5d, and the one that gives the best fitswith the
least chi squared to the Lorentzian form is considered as the
desired results for that particular resonance. Figure 1sbd
shows the fitting of the density of resonance states for the

TABLE II. Comparison of the ground-state energies of Ps−sEPs−d
with the reported results of Sahaet al. f7g along with the electron
affinity sEPs−EPs−d of positronium.

D −EPs− −EPs EPs−EPs−

` 0.2620050702 0.250000000 0.012005070

0.2620050702a sexactd 0.012005068b

0.262005068b

100 0.2521260115 0.240148053b 0.0119779585

0.252126009b 0.011977956b

70 0.2479656736

50 0.2424865663 0.230584818b 0.0119017483

0.242486564b 0.011901746b

40 0.2377556768

30 0.2300010975

20 0.2149738358 0.203529015b 0.0114448208

0.214973833b 0.011444818b

15 0.2005771456

10 0.1736181600 0.163340426b 0.0102777340

0.173618156b 0.010277730b

9 0.1651598596

8 0.1549479742

7 0.1423956851

6 0.1266427187

5 0.1064096775 0.099188041b 0.0072216365

0.106409646b 0.007221605b

4 0.0798460757 0.074058510b 0.0057875657

0.079845972b 0.005787462b

3 0.0449254117

2 0.0059656643 0.005142875b 0.0008227893

0.005908326b 0.000765451b

1.8 0.0011184443

aRefs.f15–17g.
bRef. f7g.

TABLE III. The resonance energysErd and widthsGd of the Ps−

ion for various Debye parameters. The notation Af−Bg stands for
A310−B. Results are in atomic units.

D −Er G

` 0.076030 4.31f−5g
0.07603044a 4.3034f−5ga

0.076029b 4.3f−5gb

100 0.066260 4.31f−5g

70 0.062231 4.29f−5g

50 0.057025 4.26f−5g

40 0.052633 4.21f−5g

30 0.045674 4.09f−5g

20 0.033172 3.64f−5g

15 0.022642 2.95f−5g

10 0.007736 1.16f−5g

9 0.004629 6.32f−6g
aRef. f19g.
bRef. f20g.
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20th eigenvalue of the stabilization plot. From the fit, we
obtain the resonance energyEr =−0.076030 a.u. and the cor-
responding width asG=4.31310−5 a.u. The resonance en-
ergy and width are nicely comparable with the reported re-
sults of Hof19g and Igarashiet al. f20g. The circles are the
results of the actual calculations of the density of resonance
states using formulas4d and the solid line is the fitted Lorent-
zian form of the correspondingrnsEd. The stabilization plots
in Figs. 2sad and 3sad for D=30 andD=10, respectively,
show the stabilization character near the energyE
=−0.046sa.u.d andE=−0.0077sa.u.d. Figures 2sbd and 3sbd
show the fittings of the density of resonance states for the
21st and 17th eigenvalues, respectively, corresponding to the
stabilization plots in Figs. 2sad and 3sad.

Table I shows the convergence of the ground state ener-
gies, resonance energies and the widths forN=300, 400, and
500 basis terms withD=1.8, 2, 3, 4, 9, 10, 20, 50, and
infinity. For N=300 and 400 terms we have used the same
parameters as those for the 500-term basis functions. It is
seen from Table I that the convergence of the resonance en-
ergies and widths are quite good. In the present work, before
we calculate the resonances for Ps− in Debye plasmas, we
first optimize the nonlinear parameters in Eq.s2d to obtain an

accurate ground state energy of Ps− for different Debye pa-
rameters. The ground-state energies of Ps− ion sEPs−d ob-
tained from our calculations for various Debye lengths are
presented in Table II, along with the ground-state energies of
PssEPsd and the calculated electron affinitysEPs−EPs−d of the
positronium atom. The ground state energies of positronium
atom sEPsd are taken from the reported results of Sahaet al.
f7g. For the Debye length tends to infinity, our calculated
ground-state energy value of −0.2620050702 a.u. reported in
Table II compares well with the best results of
−0.2620050702 a.u. available in the literaturef15–17g. We
have compared our calculated ground-state energies of Ps−

ion with the available results of Sahaet al. f7g for various
Debye lengths in Table II, along with the electron affinity of
the Ps atom. Our calculated ground-state eigenenergy values
for D=2, . . . ,100 are lower than those published in the lit-
erature. All the results presented in Table II are for theN
=500 basis function of Eq.s2d.

It is also interesting to mention here that the same set of
nonlinear parameters are needed in our calculations for the
optimization of the ground-state energies up toD=4. The
best values of this parameters area=2.84,b=2.34,c=0.30,
and l=0.44. For Dø3, we have observed that the only

FIG. 5. sad The 2s2 1Se resonance energyEr for different values of Debye parameterD ssolid lined. The dashed line denotes the Pss2Sd
threshold energy.sbd Resonance widthG corresponding to the resonance energy insad for different values of Debye parameterD.

FIG. 4. sad The ground state energy of Ps− for various Debye lengthD. sbd The ground-state energy of Ps− for different values of 1/D.
Dashed line denotes the Pss1Sd threshold energy.
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variations in the scaling factorl are sufficient for optimiza-
tion of the ground-state energies using 500 basis terms. The
value ofl is equal to 0.3, 0.24, and 0.16 forD=3, 2, and 1.8
respectively. We have not optimized the ground-state ener-
gies using 300 or 400 terms.

Table III presents the resonance energies and widths for
various Debye lengths ranging from infinityscorresponding
to no screeningd to a small value 9scorresponding to strong
screeningd along with the nonlinear parameters used in the
wave functions. The results for the 2s2 1Se resonant state of
Ps− ion are comparable with the reported results of Hof19g
and Igarashi and Shimamuraf20g.

All the results shown in Figs. 1–6 and Tables II and III are
obtained using the 500-term wave functions. The ground-
state energies of Ps− obtained from our calculations are pre-
sented in Figs. 4sad and 4sbd as functions ofD and 1/D,
respectively, along with the Pss1Sd threshold energy. The
Pss1Sd threshold energy values are taken from the reported
results of Sahaet al. f7g. Our calculated resonance energies
associated with the PssN=2d threshold are shown in Figs.
5sad and 6sad, along with the Pss2Sd threshold energies for
different values ofD and 1/D, respectively, with the corre-
sponding widths are plotted in Figs. 5sbd and 6sbd. The val-
ues of Pss2Sd energy are taken from the reported results of
Rogerset al. f23g by considering the Pss2Sd threshold energy
as the half ofHs2Sd threshold with the proper scaling ofD. It
is apparent from Table II and Fig. 4 that the system will be
gradually destabilized with stronger Debye screening and ul-
timately the system will be ionized. The threshold value of
Debye length for which the system will be ionized is about
D=1.8.

From Fig. 5sbd and Table III, it is seen that the resonance
width G decreases with decreasing value ofD. The situation
can be explained in the following way: The 2s2 1Se state in
Ps− is a “1” state, and the two electrons are located on
opposite sides of the positron. The movements of the two
electrons are moving toward the positron “in phase.” The

autoionization of such a state is through the momentum
transfer, as one of the electrons is “knocked out” by the other
via the positron. Apparently, when the electron-positron
screening is increasedsdecreasingD, increasing 1/Dd, the
movement of the electrons will be slowed down. As a result,
the lifetime of the autoionization process will be prolonged,
leading to the narrowing of the resonance width, a conse-
quence of the uncertainty principle.

It should be mentioned here that we have not found any
resonances forDø8. If a resonance were to exist forD
ø8, it would be located at a region very near the Pss2Sd
threshold. However, calculations for such resonances would
require more extensive basis sets in the wave functions, and
no attempt is made to carry out large-scale calculations here.
It is of interest to search for such resonances in future inves-
tigations.

IV. CONCLUSIONS

This work presents a calculation of the 2s2 1Se autoioniz-
ation resonance for positronium negative ion embedded in
Debye plasma environments. The 2s2 1Se state resonance en-
ergies and widths for various Debye parameters ranging from
infinity to small valuesup to 9d have been reported. The
accurate ground state energies have also been reported for
the Debye length ranging from infinity to small valuessup to
1.8d. The stabilization method is used to extract resonance
energies and widths. This method is a practical method to
calculate resonance parameterssEr ,Gd. Our present work
will provide useful information to the plasma physics re-
search community, as well as to the positron physics com-
munity that is interested in such a three-lepton system.
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FIG. 6. sad The 2s2 1Se resonance energyEr as a function of 1/D ssolid lined. The dashed line denotes the Pss2Sd threshold energy.sbd
Resonance widthG corresponding to the resonance energy insad as a function of 1/D.
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