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The contribution of the light-by-light diagram to theg factor of an electron and muon bound in a Coulomb
field is obtained. For an electron in a ground state, our results are in good agreement with the results of other
authors obtained numerically for largeZ. For relatively smallZ our results have essentially higher accuracy as
compared to the previous ones. For muonic atoms, the contribution is obtained with a high accuracy in the
whole region ofZ.
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I. INTRODUCTION

The progress in experimental investigations of theg factor
of a bound electronf1g and muonf2,3g in ions stimulated
intensive theoretical investigation of various contributions to
this quantity. The contributions of self-energy, vacuum polar-
ization, and nuclear effects have been consideredf4–10g. An
essential part of the theoretical uncertainty has been related
to the contribution of the vacuum polarization of an external
homogeneous magnetic field in the electric field of an atom
sso-called the “magnetic-loop” contributiond. The corre-
sponding diagram is shown in Fig. 1. In this diagram, the
double line in the fermion loop corresponds to the electron
propagator in the Coulomb field. Note that the contribution
of the free-electron loop to the vacuum polarization of a
homogeneous magnetic field vanishes due to the gauge in-
variance. The first nonvanishing term of expansion with re-
spect to the Coulomb field shown in Fig. 1 is the contribution
of virtual light-by-light scattering with one of the quanta
corresponding to the external magnetic field. The results of
numerical calculations of the magnetic-loop contribution,
which take into account all orders of the parameterZa sZ is
the nuclear charge number,a=e2 is the fine-structure con-
stant,"=c=1d, are presented in Ref.f6g. At present, the most
accurate experimental data are obtained in the region of me-
dium Z. Unfortunately, in this region the uncertainty of the
results of Ref.f6g is very big, being, e.g., 100% forZ=12. In
Ref. f9g, the leading in theZa magnetic-loop contribution to
theg factor of an electron in theSstate of a hydrogenlike ion
has been derived. It reads

Dg0

g0
=

Dg0

2
=

7asZad5

432n3 , s1d

whereg0 is the Landé factor equal to 2 forS state. One can
compare this correction with the result off6g for rather large

Z where the accuracy of the numerical calculation is reason-
able. This comparison shows the noticeable difference which
can be attributed to the contribution of the next-to-leading
terms in theZa expansion, starting fromasZad6. Since the
numerical factor in Eq.s1d is very smalls,1/30d, the next-
to-leading terms could give a noticeable contribution to theg
factor even at smallZ, if the corresponding numerical factor
is of order of unity.

In the present paper, we generalize Eq.s1d to the case of
an arbitrary bound electron state. We also calculate the next-
to-leading contribution of the magnetic loop to theg factor
of the electron in an arbitrary statesor the magnetic moment
of the electron in this stated. It has the form Dg1
=asZad6fa1 lns1/Zad+a2g, where a1,2 are some constants
anda1 is not zero only forS states. In order to calculate this
contribution, it is sufficient to take into account the diagrams
of virtual light-by-light scattering and use the nonrelativistic
wave functions of the bound electron. Comparison of the
correctionDg0+Dg1 for the 1S1/2 state with the results off6g
shows that the account ofDg1 does not provide good agree-
ment for relatively smallZ,30, where the numerical calcu-
lations were performed with sufficient accuracy. Thus, for
suchZ it is necessary to take into account the next terms in
Za. These terms have two different origins. First, they come
from the relativistic corrections to the wave function of a
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FIG. 1. The diagram corresponding to the magnetic-loop contri-
bution to theg factor of a bound electron and first nonvanishing
terms of expansion of this loop with respect to the Coulomb field.
The double line denotes the electron propagator and the wave func-
tion in a Coulomb field, the dashed line with the cross denotes the
Coulomb field, the wavy line with the square denotes the external
homogeneous magnetic field, and the internal wavy line corre-
sponds to the photon propagator.
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bound electron. Next, they come from the higher-order con-
tributions to the electron loop. Note that the diagram in Fig.
1 can be interpreted as the contribution of the scattering of
the magnetic quantum in a Coulomb fieldsvirtual Delbrück
scatteringd to the g factor. It is known that the Coulomb
corrections to the Delbrück amplitude for the momentum of
quantum q&m sm is the electron massd are numerically
small even for largeZ f11,12g. In contrast, the account of the
corrections to the wave function is very important, starting
from relatively smallZ. We calculate the correctionDg using
the relativistic wave function and the leading approximation
for the electron loop. As a result we have obtained good
agreement with the numerical data off6g even for very large
Z sdifference is 4% forZ=92d. Using such an approach, we
have calculated the corresponding correction of the electron
loop to theg factor of a bound muon.

II. GENERAL RELATIONS

Let us consider the amplitudeT of interaction of homo-
geneous magnetic fieldB with the electron bound in a hy-
drogenlike ion. In the zero approximation, it readsssee, e.g.,
f13gd

Ts0d = eE dk

s2pd3Ak · jk
* =

ekB · kJl
JsJ + 1d E0

`

drr3f1srdf2srd,

s2d

where jk is the Fourier transform of the electron current

jsrd=c̄srdgcsrd, the wave functionc has the form

csrd = S f1srdV

i f 2srdṼ
D , s3d

V is the spherical spinorf14g with angular momentumJ and

orbital momentumL, Ṽ=−ss ·ndV, and k=sJ+1/2dsgnsL
−Jd. In Eq. s2d we have used the relation

ik 3 Ak = s2pd3dskdB. s4d

Note that the sign ofTs0d is opposite to that of the Hamil-
tonian. Substituting the radial wave functionsf1srd and f2srd
for the Coulomb fieldssee, e.g.,f14gd, we obtain, for the
arbitrary bound state,

Ts0d =
eB · kJl

2m
g,

g =
2k

1 − 4k2S1 −
2k«

m
D =

2k

1 − 4k2S1 −
2k

Î1 + sZad2/sg + nrd2D ,

s5d

where nr is the radial quantum number,« is the binding
energy, andg=Îk2−sZad2. The particular cases of this for-
mula obtained earlier are presented inf13g. In the nonrela-
tivistic approximationsZa!1d, Eq. s2d turns into

T0
s0d =

eB · kJl
2m

g0, g0 =
2k

2k + 1
. s6d

We now pass to the calculation of the amplitudeTs1d cor-
responding to the diagram shown in Fig. 1. It has the form

T s1d = eE dk

s2pd3 E dq

s2pd3

4p

q2 Ak
i Mil jq

l* , s7d

where the amplitudeMil of the virtual Delbrück scattering
in the casek!m has the form following from the gauge
invariance:

Mil =
a

m3fdilsk ·qd − qiklgFsq/m,Zad. s8d

Note thatF is even function ofZa. In the approximation
leading inZa scontribution of light-by-light scatteringd,

Fsq/m,Zad = sZad2Fsq/md, s9d

with Fs0d=7/1152; see Ref.f9g. From Eqs.s4d, s7d, s8d, and
s9d we obtain

Ts1d = e
4kasZad2B · kJl

pm3JsJ + 1d E
0

`

dqFsq/mdE
0

`

drrf 1srdf2srd

3Ssinqr

qr
− cosqrD . s10d

Using the relationMii =f2asZad2sk ·qd /m3gFsq/md, fol-
lowing from Eq. s8d, and the gauge invariance of the light-
by-light scattering amplitude, we can representFsq/md in the
form

Fsq/md =
m3

2p
E dQ

Q2sq − Qd2

q · us¹kMduk=0

q2 ,

M = 2i E d4p

s2pd4SphGspdg iGsp − kdg 0fGsp + Q − qdg iGsp

+ Qdg 0 + Gsp + Q − qdg 0Gsp − qdg i + Gsp − Q

− kdg 0Gsp − qdg igj, s11d

whereGspd=fp̂−mg−1 is a free-electron propagator. Straight-
forward calculation leads to the representation of the func-
tion F in the form of a twofold integral with respect to the
Feynman parameters. The resulting formulas, being rather
cumbersome, are not presented here explicitly. Forx=q/m
!1, the first two terms of the expansion of the functionFsxd
have the form

Fsxd =
7

1152
S1 +

8

35
xD . s12d

The first term in this formula agrees with the result of Ref.
f9g. For x@1, the asymptotics of the functionFsxd reads

Fsxd =
1

2x3 . s13d

For arbitraryx, we performed the numerical tabulation of
the functionFsxd. The result is shown in Fig. 2 and Table I.
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III. CORRECTION TO THE g FACTOR AT SMALL Za

In order to obtain the leading term of expansion inZa of
the amplitudeT s1d, it is sufficient to use Eq.s10d with the
substitutionFsq/md→Fs0d and the wave functions taken in
the nonrelativistic approximation. In this approximationf1srd
coincides withRsrd, the radial part of the nonrelativistic
wave function, and

f2srd =
1

2m
SR8srd +

1 + k

r
RsrdD . s14d

The correctionDg to the Landé factor is determined by
the relation

Dg

g0
=

T s1d

T 0
s0d . s15d

Taking in Eq.s10d the integral overq and then overr, we
obtain the leading contributionDg0 for the arbitrary state:

Dg0

g0
=

7asZad5

144n3s2L + 1dks2k − 1d
=

7asZad5

288n3JsJ + 1ds2J + 1d
,

s16d

wheren=nr + uku is a principal quantum number. ForS states
sL=0,k=−1d, this result is in agreement with Eq.s1d ob-
tained in Ref.f9g.

The relativistic corrections to the wave function as well as
the corrections to the magnetic loop have the relative mag-
nitude sZad2. Therefore, the termDg1 of the orderasZad6

can also be obtained with the use of the nonrelativistic wave
functions and magnetic loop in the leading approximation
slight-by-light scattering diagramsd. For LÞ0, it is sufficient
to substitute the second term of expansion ofFsxd fsee Eq.
s12dg in Eq. s10d. Then we obtain

Dg1

g0
=

2asZad6

45pn3s2L + 1ds2k − 1d2S 3

LsL + 1d
−

1

n2D . s17d

For S states, calculation ofDg1 is more complicated. For the
nS state,f1srdf2srd=sp /mdrn8srd, wherernsrd is the electron
density in the nonrelativistic approximation. Substitution of
Eq. s12d into Eq. s10d leads to a logarithmic divergence.
Therefore, it is convenient to split the region of integration
over r in Eq. s10d into two: f0,r0g and fr0,`d with 1/m
! r0!1/smZad. In the first region, we can replacer8srd by
r8s0d and take the integral overr. In the second region, we
can use the expansions12d and take the integral overq. The
sum of these two contributions, as it should be, is indepen-
dent of r0. The final result reads

FIG. 2. The ratioFsxd /Fs0d as a function ofx=q/m.

TABLE I. FunctionFsxd /Fs0d versusx=q/m; Fs0d=7/1152.

x Fsxd /Fs0d x Fsxd /Fs0d x Fsxd /Fs0d x Fsxd /Fs0d x Fsxd /Fs0d x Fsxd /Fs0d

0.0 1.0 0.42 1.07 1.5 0.927 5.0 0.222 26 3.81310−3 128 3.75310−5

0.05 1.01 0.44 1.07 1.6 0.897 5.5 0.184 28 3.1310−3 144 2.66310−5

0.1 1.02 0.46 1.07 1.7 0.867 6.0 0.154 30 2.55310−3 160 1.94310−5

0.15 1.03 0.48 1.08 1.8 0.837 6.5 0.13 32 2.12310−3 176 1.46310−5

0.16 1.03 0.5 1.08 1.9 0.806 7.0 0.11 36 1.52310−3 192 1.13310−5

0.17 1.04 0.55 1.08 2.0 0.776 7.5 9.45310−2 40 1.12310−3 208 8.91310−6

0.18 1.04 0.6 1.08 2.1 0.746 8.0 8.15310−2 44 8.55310−4 224 7.16310−6

0.19 1.04 0.65 1.08 2.2 0.716 9 6.18310−2 48 6.66310−4 240 5.82310−6

0.2 1.04 0.7 1.08 2.3 0.687 10 4.79310−2 52 5.28310−4 256 4.8310−6

0.22 1.04 0.75 1.08 2.4 0.659 11 3.78310−2 56 4.26310−4 288 3.38310−6

0.24 1.05 0.8 1.07 2.5 0.631 12 3.04310−2 60 3.49310−4 320 2.47310−6

0.26 1.05 0.85 1.07 2.6 0.605 13 2.47310−2 64 2.89310−4 352 1.86310−6

0.28 1.05 0.9 1.06 2.7 0.579 14 2.04310−2 72 2.05310−4 384 1.43310−6

0.3 1.06 0.95 1.05 2.8 0.554 15 1.7310−2 80 1.5310−4 416 1.13310−6

0.32 1.06 1.0 1.05 2.9 0.531 16 1.43310−2 88 1.14310−4 448 9.04310−7

0.34 1.06 1.1 1.03 3.0 0.508 18 1.05310−2 96 8.8310−5 480 7.36310−7

0.36 1.06 1.2 1.01 3.5 0.409 20 7.86310−3 104 6.95310−5 512 6.07310−7

0.38 1.07 1.3 0.981 4.0 0.331 22 6.05310−3 112 5.58310−5 1000 8.18310−8

0.4 1.07 1.4 0.955 4.5 0.27 24 4.76310−3 120 4.55310−5 2000 1.03310−8
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Dg1

g0
=

4asZad6

135pn3 Sln
1

Za
− a − bnD ,

a = −
1

2
+

35

8
E

0

`

dx ln xF9sxd < 2.6,

bn = − C +
1

rn8s0d
E

0

`

dr lnsmZardrn9srd, s18d

whereC=0.577. . . is the Euler constant. For eachn, the co-
efficient bn can be easily calculated so thatb1= ln 2<0.693,
b2=5/8=0.625, b3=55/54+lns2/3d<0.613, and b`=C
+ln 2−2/3<0.604.

IV. CORRECTION TO THE g FACTOR AT ZaÈ1

As was pointed out in the Introduction, the sumDg0
+Dg1 gives a good approximation toDg only for small Z.
For intermediateZ, it is necessary to account for the next
terms inZa. The largest corrections are due to the significant
difference between the relativistic wave function and the
nonrelativistic one already at intermediateZ. At the same
time, the difference between the functionF and its leading
approximationsZad2F results in corrections which are nu-
merically small even for largeZ. Using the numerical results
for Fsxd and the relativistic wave functions, we have per-
formed the tabulation ofDg for variousZ, usingT s1d from
Eq. s1d as an approximation toTs1d. The results of this tabu-
lation for 1S1/2, 2S1/2, and 2P1/2 states are presented in Table
II. For the 1S1/2 state, we also present the contribution of the
first two terms of expansion inZa, Eqs.s18d and s16d, and
the correctionDgnr obtained with the use of nonrelativistic
wave functions. The results for 1S1/2 are also shown in
Fig. 3.

For Z,10, both Dg0+Dg1 and Dgnr coincide with Dg
with an accuracy better than 1%. The difference grows with
Z, reaching 10% atZ,30 for Dg0+Dg1 and atZ,50 for
Dgnr.

In Table II, we also show the results of numerical tabula-
tion from Ref. f6g for the 1S1/2 state. For 30,Z,70, our
result for Dg agrees with that obtained in Ref.f6g within
1%–2% percent. The difference between these two results for
Z,30 is due to the poor accuracy of the numerical results of
Ref. f6g. ForZ.70 the difference increases and becomes 8%

for Z=92. This difference corresponds to the contribution of
next-to-leading terms in the magnetic loop, which was taken
into account in Ref.f6g and omitted in our paper. Thus, the
effect of these terms is small in a wide region ofZ, while the
relativistic effects in the wave function become important
already at relatively smallZ.

V. CORRECTION Dg FOR MUONIC ATOMS

The correctionDg to theg factor of a bound muon due to
the electron magnetic loop can be obtained from Eq.s10d
with f1srd and f2srd being the wave functions of the muon.
The asymptotics ofDg for mZa / smn2d<1.5Z/n2@1 sm is
the muon massd can be calculated as follows. We split the
region of integration overq in Eq. s10d into two: f0,q0g and
fq0,`d with m!q0!mZa /n2. In the first region we can re-
placefsqrd−1sinqr−cosqrg by sqrd2/3 and take the integral
over r. In the second region we can use the asymptotics, Eq.
s13d, and take the integral overq. Summing these two con-
tributions, we obtain

Dgas= g
2asZad2

3p
flnsmZa/md − A − Bg,

A = 2E
0

`

dy ln y]ysy3Fsydd < 2.24,

B = C −
4

3
−

4

Zas1 − 2k«/mdE0

`

dxx3f̃1sxd f̃2sxdln x,

f̃1sxd = smZad−3/2f1sx/mZad, f̃2sxd = smZad−3/2f2sx/mZad,

s19d

whereg is defined in Eq.s5d. For the 1S1/2 state we obtain

g =
2

3
s1 + 2gd, B = C −

4

3
+ cs2g + 2d − ln 2,

g = Î1 − sZad2. s20d

For n=nr + uku@1, we have

g = g0 =
2k

2k + 1
, B = C + lnsn2/2d. s21d

Formulas19d can be interpreted as follows. In Ref.f15g
the logarithmic contribution of the electron vacuum polariza-
tion to the magnetic moment of a heavy nucleus was calcu-
lated. The result obtained has the form

Dg

g
=

2asZad2HsZad
3p

lns1/mRnucld, s22d

whereRnucl is the nuclear radius,Rnucl!1/m. The coefficient
sZad2HsZad was calculated exactly inZa—i.e., with an ac-
count of all Coulomb corrections to the electron loop. The
functionHsZad tends to unity whenZa→0 and significantly
differs from unity only for very largeZ. The large logarithm
lns1/mRnucld in Eq. s22d appears as a result of integration

FIG. 3. The correctionDg for 1S1/2. Solid curve: the exact re-
sult. Dashed curve:Dg0+Dg1. Dotted curve:Dgnr.
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over distancer in the regionRnucl! r !1/m. We can con-
sider the muonic atom as some nucleus with the effective
radiusRnucl,n2/mZa. In the casemZa / smn2d@1, we have
Rnucl!1/m. Substituting this radius into Eq.s22d and replac-
ing HsZad→1 swhich corresponds to the contribution of
light-by-light scatteringd, we obtain the logarithmically am-
plified term in Eq.s19d. Note that the coefficientn2 in Rnucl
corresponds to the asymptotics ofB in Eq. s19d at n@1.

Strictly speaking, the charge of such effective nucleus is
Z−1, but notZ. However, under the conditionmZa / smn2d
<1.5Z/n2@1, this difference is not important.

In Table III, we presentDg for the 1S1/2 state of a muonic
atom calculated for arbitraryZ. For comparison, we present
also the asymptotics, Eq.s19d. As it should be, the accuracy
of the asymptoticss19d increases withZ being 4% for
Z=40 and 1% forZ=92.

TABLE II. The quantityn3Dg in units 10−6, calculated in various approximations for 1S1/2, 2S1/2, and
2P1/2 states. Our results are obtained with the account for the magnetic loop in the leading approximation
scontribution of light-by-light scatteringd. The quantityDgnr denotes the correction obtained with the use of
Eq. s10d with the functionsf1srd and f2srd taken in the nonrelativistic approximation; see Eq.s14d.

1S1/2 2S1/2 2P1/2

Z Dg0+Dg1 Dgnr Dg Dg sRef. f6gd 8Dg 8Dg

1 4.935310−9 4.934310−9 4.934310−9 4.936310−9 1.638310−9

2 1.58310−7 1.58310−7 1.58310−7 1.58310−7 5.26310−8

3 1.2310−6 1.2310−6 1.2310−6 1.2310−6 4.01310−7

4 5.04310−6 5.04310−6 5.04310−6 5.05310−6 1.69310−6

5 1.53310−5 1.53310−5 1.54310−5 1.54310−5 5.18310−6

6 3.79310−5 3.8310−5 3.81310−5 3.82310−5 1.29310−5

7 8.16310−5 8.17310−5 8.2310−5 8.23310−5 2.81310−5

8 1.58310−4 1.58310−4 1.59310−4 1.6310−4 5.49310−5

9 2.83310−4 2.84310−4 2.86310−4 2.87310−4 9.94310−5

10 4.76310−4 4.78310−4 4.82310−4 4.84310−4 1.69310−4

11 7.61310−4 7.66310−4 7.72310−4 3s3d310−4 7.76310−4 2.73310−4

12 1.17310−3 1.18310−3 1.19310−3 4s5d310−4 1.19310−3 4.24310−4

13 1.72310−3 1.74310−3 1.76310−3 8s5d310−4 1.77310−3 6.35310−4

14 2.48310−3 2.51310−3 2.54310−3 1.4s1.0d310−3 2.56310−3 9.25310−4

15 3.46310−3 3.52310−3 3.57310−3 2s1d310−3 3.6310−3 1.31310−3

16 4.74310−3 4.82310−3 4.9310−3 3s1d310−3 4.95310−3 1.82310−3

17 6.35310−3 6.48310−3 6.6310−3 5s2d310−3 6.67310−3 2.48310−3

18 8.36310−3 8.56310−3 8.73310−3 6s2d310−3 8.83310−3 3.31310−3

20 1.39310−2 1.43310−2 1.46310−2 1.0s3d310−2 1.48310−2 5.66310−3

24 3.28310−2 3.45310−2 3.56310−2 3.3s3d310−2 3.63310−2 1.44310−2

28 6.72310−2 7.22310−2 7.53310−2 6.9s3d310−2 7.7310−2 3.19310−2

32 0.123 0.136 0.144 0.138 0.148 6.37310−2

36 0.207 0.238 0.254 0.249 0.262 0.118

40 0.325 0.389 0.421 0.410 0.437 0.206

44 0.481 0.607 0.665 0.658 0.695 0.341

48 0.676 0.907 1.01 1.01 1.06 0.545

52 0.904 1.31 1.48 1.48 1.56 0.841

56 1.15 1.84 2.1 2.12 2.24 1.26

60 1.41 2.51 2.92 2.95 3.13 1.85

64 1.63 3.35 3.97 4.03 4.29 2.66

68 1.77 4.4 5.3 5.39 5.77 3.76

72 1.78 5.67 6.96 7.11 7.62 5.23

76 1.55 7.2 9.0 9.24 9.93 7.18

80 0.983 9.02 11.5 11.9 12.8 9.75

83 0.252 10.6 13.7 14.2 15.3 12.2

88 −1.77 13.7 18.1 18.9 20.5 17.5

92 −4.34 16.5 22.5 23.5 25.5 23.1
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In summary, we found higher-order magnetic-loop correc-
tions to the boundg factor in orderasZad6 for an arbitrary
state. Despite a small coefficient in the leading term of order
asZad5 and the logarithmic enhancement of the higher-order
contribution, the leading term still dominates forZ=6 and
Z=8, important for experiment. Previously used numerical
results show a certain underestimation of the magnetic-loop
contribution for Z,20. The theoretical description of this
contribution presented in this paper is more reliable. The
difference of less than a few percent between our analytic
results and the numerical calculations of Ref.f6g at high Z
s80–90d shows that the contribution of the higher-order terms
in the magnetic loop may be safely neglected forZ&50. We
also calculated the correctionDg for the bound muon, and its

behavior is very peculiar. All known contributions to the
boundg factor scale asn−2 or n−3. The correction found in
this paper does not contain such a strong suppression factor.
This correction is a dominant bound-state QED correction
for a bound muon, which even for the 1S1/2 state supersedes
the free-vacuum polarization termf7g. The results obtained
significantly diminish the uncertainty of the theoretical pre-
dictions for theg factor of a bound particle.
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