PHYSICAL REVIEW A 71, 052501(2005

Virtual light-by-light scattering and the g factor of a bound electron
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The contribution of the light-by-light diagram to tlyefactor of an electron and muon bound in a Coulomb
field is obtained. For an electron in a ground state, our results are in good agreement with the results of other
authors obtained numerically for large For relatively smallZ our results have essentially higher accuracy as
compared to the previous ones. For muonic atoms, the contribution is obtained with a high accuracy in the
whole region ofZ.
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[. INTRODUCTION Z where the accuracy of the numerical calculation is reason-
The progress in experimental investigations ofgHactor able. This comparison shows the noticeable difference which

of a bound electrofil] and muon[2,3] in ions stimulated ¢an be_: attributed to th_e contrib_ution of the nexf[-to-leading
intensive theoretical investigation of various contributions toterms in theZa expansion, starting fronx(Za)°. Since the
this quantity. The contributions of self-energy, vacuum polar-numerical factor in Eq(1) is very small(~1/30), the next-
ization, and nuclear effects have been considp4ed (. An  to-leading terms could give a noticeable contribution toghe
essential part of the theoretical uncertainty has been relatddctor even at smal, if the corresponding numerical factor
to the contribution of the vacuum polarization of an externalis of order of unity.

homogeneous magnetic field in the electric field of an atom In the present paper, we generalize Ep.to the case of
(so-called the “magnetic-loop” contribution The corre-  an arbitrary bound electron state. We also calculate the next-
sponding diagram is shown in Fig. 1. In this diagram, theto-leading contribution of the magnetic loop to thefactor

double line in the fermion loop corresponds to the electroryf the electron in an arbitrary stater the magnetic moment
propagator in the Coulomb field. Note that the contributiongt the electron in this state It has the form Ag,

of the free-electron loop to the vacuum polarization of 8= o(Za)%[a, IN(1/Za)+a,], where a, , are some constants

hor_nogeneous magnetic f'?'d. vanishes due to the gauge ”&'ndal is not zero only forS states. In order to calculate this
variance. The first nonvanishing term of expansion with re-

: I . ..~ contribution, it is sufficient to take into account the diagrams
spect to the Coulomb field shown in Fig. 1 is the contribution” . . : ; 2
. . . . . of virtual light-by-light scattering and use the nonrelativistic
of virtual light-by-light scattering with one of the quanta

. L wave functions of the bound electron. Comparison of the
corresponding to the external magnetic field. The results o : :
) . X . “correctionAgy+Ag; for the 1S;,, state with the results ¢6]
numerical calculations of the magnetic-loop contrlbutlon,ShOWS that the account dfu. does not provide qood aqree-
which take into account all orders of the parameétar(Z is 91 P 9 9

ey . ment for relatively smalZ ~ 30, where the numerical calcu-
the nuclear charge numbes=¢” is the fine-structure con- lations were performed with sufficient accuracy. Thus, for
stant,i=c=1), are presented in R€i6]. At present, the most P Y- '

. : . ) suchZ it is necessary to take into account the next terms in
accurate experimental data are obtained in the region of me; ; o ;
) ) . . . a. These terms have two different origins. First, they come
dium Z. Unfortunately, in this region the uncertainty of the

results of Ref[6] is very big, being, €.g., 100% fa=12. In from the relativistic corrections to the wave function of a

Ref.[9], the leading in th&« magnetic-loop contribution to =—=—— B =
the g factor of an electron in th8 state of a hydrogenlike ion ; §
has been derived. It reads - 2x e s

Agy _ Agy _ Ta(Ze)®

6 2 43 .

wheregg is the Landé factor equal to 2 f@& state. One can

compare this correction with the result[@] for rather large FIG. 1. The diagram corresponding to the magnetic-loop contri-

bution to theg factor of a bound electron and first nonvanishing
terms of expansion of this loop with respect to the Coulomb field.
The double line denotes the electron propagator and the wave func-

*Electronic address: R.N.Lee@inp.nsk.su tion in a Coulomb field, the dashed line with the cross denotes the
Electronic address: A.l.Milstein@inp.nsk.su Coulomb field, the wavy line with the square denotes the external
*Electronic address: |.S.Terekhov@inp.nsk.su homogeneous magnetic field, and the internal wavy line corre-
SElectronic address: sek@mpg.mpg.de sponds to the photon propagator.
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bound electron. Next, they come from the higher-order con- We now pass to the calculation of the amplitut& cor-
tributions to the electron loop. Note that the diagram in Fig.responding to the diagram shown in Fig. 1. It has the form
1 can be interpreted as the contribution of the scattering of

the magnetic quantum in a Coulomb fidMrtual Delbriick 7O :ef dk dq AiTALM"j'* @
scattering to the g factor. It is known that the Coulomb @2m3) 2m)®qg? a

corrections to the Delbriick amplitude for the momentum of ,

quantumg=m (m is the electron magsare numerically where the amplitudef\/l" of the virtual Delbriick Scattering
small even for larg& [11,17. In contrast, the account of the in the casek<m has the form following from the gauge
corrections to the wave function is very important, starting!invariance:

from relatively smallz. We calculate the correctiakg using

the relativistic wave function and the leading approximation M = %[5”(k -q) - gK]F(g/m, Za). (8)

for the electron loop. As a result we have obtained good m

agreement with the numerical data[6] even for very large

Z (difference is 4% foiZz=92). Using such an approach, we
have calculated the corresponding correction of the electro

loop to theg factor of a bound muon. Flg/m,Za) = (Za)2F (g/m), 9)

Note thatF is even function ofZa. In the approximation
|pading inZa (contribution of light-by-light scattering

Il. GENERAL RELATIONS with F(O):7/1152, see Re[.9] From EqS(4), (7), (8), and

(9) we obtain

Let us consider the amplitudE of interaction of homo-
eneous magnetic fielB with the electron bound in a hy- 4ka(Za)®B - ) [~ *

d o : w2 2B D [0 ) f drrfy(r)fa(r)
0

drogenlike ion. In the zero approximation, it regdse, e.g., T amiIa+ ) o
[13])
dk B-J)(~ X(_sinqr cos r) (10
* (S ) - .
TO=¢ == drr3f,(r)fo(r), qr f

em® ¥ e g ..
Using the relationM'" =[2a(Za)?(k -q)/m3]F(g/m), fol-
2 lowing from Eg.(8), and the gauge invariance of the light-
where i is the Fourier transform of the electron current by-light scattering amplitude, we can represé(d/m) in the

j(r)=y(r)yy(r), the wave functiony has the form form
f1(rQ E(of :ﬂs dQ  g- (ViM)lk=o
i (ifzmﬁ)’ 3 @M= on ) Qa-F @

Q) is the spherical spindr4] with angular momenturd and

orbital momentumL, Q=-(¢-n)Q, and x=(J+1/2)sgn(L M= 2if

-J). In Eqg. (2) we have used the relation )
, , +Q7y°+G(p+Q-a)y°G(p-)y'+G(p-Q
ik X A= (2m)°8(k)B. (4)

_ , , _ -k y°%G(p-a)y'T, (11)
Note that the sign off© is opposite to that of the Hamil- A _ .
tonian. Substituting the radial wave functiohgr) andf,(r) ~ whereG(p)=[p-m]™ is a free-electron propagator. Straight-
for the Coulomb field(see, e.g.[14]), we obtain, for the forward calculation leads to the representation of the func-

d* . .
SRy 'GPy G+ Q- )y 'G(p

arbitrary bound state, tion F in the form of a twofold integral with respect to the
Feynman parameters. The resulting formulas, being rather
TO = eB '<J>g cumbersome, are not presented here explicitly. ¥og/m
2m <1, the first two terms of the expansion of the functke(x)
have the form
2k 2ke 2k 2k
97 1—4K2< _F> - 1—4K’-’<1_ V1+(Za)l( +n)2)’ F(x):i(uﬁx). (12)
| LA 5 1152\" 35

The first term in this formula agrees with the result of Ref.

where n; is the radial quantum numbeg, is the binding [9]. Forx> 1, the asymptotics of the functidf(x) reads

energy, andy= /x>~ (Za)?. The particular cases of this for-

mula obtained earlier are presented 18]. In the nonrela- 1
tivistic approximation(Za<1), Eq. (2) turns into F(x) = > (13
0 _ B (P % Qo= 2« ©) For arbitraryx, we performed the numerical tabulation of
0 2m 0 0T 241’ the functionF(x). The result is shown in Fig. 2 and Table I.
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FIG. 2. The ratioF(x)/F(0) as a function ofk=qg/m.

Ill. CORRECTION TO THE g FACTOR AT SMALL Za

In order to obtain the leading term of expansiorZia of
the amplitude7 @, it is sufficient to use Eq(10) with the
substitutionF(g/m) — F(0) and the wave functions taken in
the nonrelativistic approximation. In this approximatifr)
coincides withR(r), the radial part of the nonrelativistic
wave function, and

The correctionAg to the Landé factor is determined by

L

a0 = o R0+ %R0 ).

the relation

Taking in Eq.(10) the integral oveq and then over, we
obtain the leading contributioAg, for the arbitrary state:

Ag 71

9 TV

(14)

(15
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Ago _ 7a(Za)® _ 7a(Za)®
Jo 144%2L+ Dk(2k—-1) 288%)(J+1)(2)+1)’
(16)

wheren=n, +|«| is a principal quantum number. F8rstates
(L=0,xk=-1), this result is in agreement with E¢l) ob-
tained in Ref[9].

The relativistic corrections to the wave function as well as
the corrections to the magnetic loop have the relative mag-
nitude (Za)?. Therefore, the term\g, of the ordera(Za)®
can also be obtained with the use of the nonrelativistic wave
functions and magnetic loop in the leading approximation
(light-by-light scattering diagramsFor L #0, it is sufficient
to substitute the second term of expansiorF&f) [see Eq.
(12)] in Eq. (10). Then we obtain

Ag, 2a(Za)® ( 3 1)

=1 3 5 -=/|. A7

Qo 45mn°(2L+1)(2x-1)°\L(L+1) n
For S states, calculation akg; is more complicated. For the
nSstate,f(r)f,(r)=(w/m)p;(r), wherep,(r) is the electron
density in the nonrelativistic approximation. Substitution of
Eqg. (12 into Eg. (10) leads to a logarithmic divergence.
Therefore, it is convenient to split the region of integration
over r in Eq. (10) into two: [0,ry] and [rg,) with 1/m
<rg<<1l/(mZa). In the first region, we can replagé(r) by
p’(0) and take the integral over In the second region, we
can use the expansidf?) and take the integral ovey. The
sum of these two contributions, as it should be, is indepen-
dent ofry. The final result reads

TABLE I. FunctionF(x)/F(0) versusx=q/m; F(0)=7/1152.

X F(x)/F(0) X F(x)/F(0) X F(x)/F(0) X F(x)/F(0) X F(x)/F(0) X F(x)/F(0)
0.0 1.0 0.42 1.07 1.5 0.927 5.0 0.222 26 31073 128 3.75x10°°
0.05 1.01 0.44 1.07 1.6 0.897 5.5 0.184 28 81073 144 2.66x 107
0.1 1.02 0.46 1.07 1.7 0.867 6.0 0.154 30 283 160 1.94< 1075
0.15 1.03 0.48 1.08 1.8 0.837 6.5 0.13 32 203 176 1.46<107°
0.16 1.03 0.5 1.08 1.9 0.806 7.0 0.11 36 E03 192 1.13 1073
0.17 1.04 0.55 1.08 2.0 0.776 75 94302 40 1.12x 1073 208 8.91x 1076
0.18 1.04 0.6 1.08 2.1 0.746 8.0 814802 44 8.55< 1074 224 7.16x 1076
0.19 1.04 0.65 1.08 2.2 0.716 9 644072 48 6.66x 1074 240 5.82¢< 1076
0.2 1.04 0.7 1.08 2.3 0.687 10 4X4902 52 5.28< 104 256 4.8<10°°
0.22 1.04 0.75 1.08 2.4 0.659 11  3X8072 56 4.26x10% 288 3.38< 107
0.24 1.05 0.8 1.07 2.5 0.631 12 384072 60 3.49x10% 320 2.47x 1076
0.26 1.05 0.85 1.07 2.6 0.605 13 241072 64 2.89x10% 352 1.86< 1076
0.28 1.05 0.9 1.06 2.7 0.579 14 284072 72 2.05<10* 384 1.43<10°°
0.3 1.06 0.95 1.05 2.8 0.554 15 K202 80 1.5x10°* 416 1.13x10°®
0.32 1.06 1.0 1.05 2.9 0.531 16 143072 88 1.14<10*% 448 9.04x 1077
0.34 1.06 1.1 1.03 3.0 0.508 18 184072 96 8.8x107° 480 7.36x 1077
0.36 1.06 1.2 1.01 35 0.409 20 7840° 104  6.9510° 512 6.07< 1077
0.38 1.07 1.3 0.981 4.0 0.331 22 6X30° 112 55810° 1000 8.18x10°8
0.4 1.07 1.4 0.955 45 0.27 24  43X40° 120 455<10° 2000 1.0 10°8
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0.04 for Z=92. This difference corresponds to the contribution of
next-to-leading terms in the magnetic loop, which was taken
into account in Ref[6] and omitted in our paper. Thus, the
effect of these terms is small in a wide regionZpfwhile the
relativistic effects in the wave function become important
already at relatively smal.

V. CORRECTION Ag FOR MUONIC ATOMS

0 20 40 60 80
z

The correctiomg to theg factor of a bound muon due to
FIG. 3. The correctiomg for 1S,. Solid curve: the exact re- the electron magnetic loop can be obtained from &)
sult. Dashed curveAgy+Ag;. Dotted curveAg,,. with fi(r) andf,(r) being the wave functions of the muon.

The asymptotics ofAg for uZa/(mm)=1.52/?>1 (u is
A 6 the muon magscan be calculated as follows. We split the
01 4a(Za) 1 . . . X > :

=== —3(In — —a- bn)1 region of integration oveg in Eq. (10) into two: [0,qy] and

9o  135mn Za [Qg,%) With m<gy<<uZa/n?. In the first region we can re-
place[(qr)~Isingr-cosqr] by (gr)?/3 and take the integral
overr. In the second region we can use the asymptotics, EqQ.
(13), and take the integral over. Summing these two con-
tributions, we obtain

1 35(”%
a=—-—+—| dxInxF'(x) = 2.6,
2 8]0 ®)

1 (” 2a(Za)?
bp=-C+— f drin(mzanpyn, (19 Agae= 6222 in(uzaim) - A- B,
pn(o) 0 3w
whereC=0.577... is the Euler constant. For eagctthe co- o
efficientb,, can be easily calculated so that=In 2~ 0.693, A= 2] dyIn y(yy(y3|:(y)) ~ 2.24,
b,=5/8=0.625, b3=55/54+In(2/3)~0.613, and b..=C 0
+In2-2/3~=0.604.
4 4 s ~
B=C--- —f dxxg?l(x)fz(x)ln X,
IV. CORRECTION TO THE g FACTOR AT Za~1 3 Za(l-2xelu) ),

As was pointed out in the Introduction, the sulg, ~ _
+Ag; gives a good approximation tag only for small Z. f,x) = (uZa) 32 (M uZa),  fo(X) = (uZa) 3% (X uZa),
For intermediateZ, it is necessary to account for the next (19)
terms inZa. The largest corrections are due to the significant
difference between the relativistic wave function and thewhereg is defined in Eq(5). For the 55,,, state we obtain
nonrelativistic one already at intermediafe At the same

time, the difference between the functighand its leading g= 2(1 +2y), B=C- 4 +y(2y+2)-In2,
approximation(Za)?F results in corrections which are nu- 3 3
merically small even for larg&. Using the numerical results y= \E'TZa)z. (20)

for F(x) and the relativistic wave functions, we have per-
formed the tabulation oAg for variousZ, usingT® from For n=n,+|x|>1, we have
Eq. (1) as an approximation t&Y. The results of this tabu-

lation for 1S, 5, 2S;,5, and 2P,,, states are presented in Table g=go= 2 ,
Il. For the 1S, state, we also present the contribution of the 2k+1
first two terms of expansion ida, Egs.(18) and(16), and
the correctionAg,, obtained with the use of nonrelativistic
wave functions. The results forSl, are also shown in

B=C+In(n%2). (21)

Formula(19) can be interpreted as follows. In Réf.5]
the logarithmic contribution of the electron vacuum polariza-
tion to the magnetic moment of a heavy nucleus was calcu-

Fig. 3. :
For Z<10, both Ago+Ag; and Ag,, coincide with Ag lated. The result obtained has the form
with an accuracy better than 1%. The difference grows with Ag 2a(Za)’H(Za)
Z, reaching 10% aZ~ 30 for Agy+Ag; and atZ~50 for e 3, IN(1/MRyye) (22
Agyy.

In Table I, we also show the results of numerical tabula-whereR, is the nuclear radiug}, < 1/m. The coefficient
tion from Ref.[6] for the 1S, state. For 3&cZ<70, our  (Za)*H(Za) was calculated exactly ida—i.e., with an ac-
result for Ag agrees with that obtained in Rgi6] within ~ count of all Coulomb corrections to the electron loop. The
1%—2% percent. The difference between these two results fdunction H(Z«) tends to unity wheiZa— 0 and significantly
Z<30 is due to the poor accuracy of the numerical results ofliffers from unity only for very larg&Z. The large logarithm
Ref.[6]. ForZ> 70 the difference increases and becomes 8%n(1/mR,,.) in Eq. (22) appears as a result of integration
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TABLE II. The quantityn®Ag in units 10, calculated in various approximations fo8l, 2S;,,, and
2P, states. Our results are obtained with the account for the magnetic loop in the leading approximation
(contribution of light-by-light scattering The quantityAg,, denotes the correction obtained with the use of
Eq. (10) with the functionsfy(r) andf,(r) taken in the nonrelativistic approximation; see Etf).

1S, 28y 2Py
z Agot+Ag; Agyy Ag Ag (Ref. [6]) 8Ag 8Ag
1 4935<107° 4.934x10° 4.934x10° 4.936x10° 1.638x107°
2 1.58x 1077 1.58x 1077 1.58x 1077 1.58x 1077 5.26Xx 1078
3 1.2x10°6 1.2x10°° 1.2x10°° 1.2x 1078 4.01x 1077
4 5.04x 1076 5.04x 10°° 5.04x 10°° 5.05x 1076 1.69x 1076
5 1.53x10°° 1.53%x 107° 1.54x 1075 1.54x 1075 5.18x 10°®
6 3.79x10°° 3.8x107° 3.81x10° 3.82x107° 1.29x 107°
7 8.16x 1075 8.17x107° 8.2x107° 8.23x107° 2.81x107°
8 1.58x 10 1.58x 1074 1.59x 1074 1.6x 10 5.49x 107°
9 2.83x 104 2.84x 104 2.86x 107 2.87x107* 9.94x 10°°
10  4.76x10™% 4.78x10% 4.82x 10 4.84x 1074 1.69x 1074
11 7.61x10™% 7.66x 104 7.72x 107 3(3)x 10 7.76x 1074 2.73x 10
12 1.17x 1073 1.18x 1073 1.19x 1073 4(5)x 107 1.19x 1078 4.24x10°*

13 1.72x10°3 1.74x 1073 1.76x 1073 8(5) x 1074 1.77x 1073 6.35x 107
14 2.48<10°° 2.51x10°3 2.54x10°  1.41.0x10°%  2.56x10° 9.25x 1074

15 3.46x 1078 3.52x 1073 3.57x10°3 2(1)x 1073 3.6x 1073 1.31x 1073
16 4.74x 1073 4.82x 1073 4.9x10°3 3(1)x 103 4.95%x 1073 1.82x 1073
17 6.35x 1073 6.48%x 1073 6.6x 1073 5(2) x 1073 6.67x 1073 2.48x 1073

18  8.36x10°° 8.56x 1073 8.73x 1073 6(2) x 1073 8.83x 1073 3.31x 1073
20  1.39x107? 1.43x 1072 1.46x 1072 1.0(3) X 1072 1.48x 1072 5.66x 1073
24  3.28<1072 3.45x 1072 3.56x 1072 3.33)x 102 3.63x 1072 1.44x 1072
28  6.72x1072 7.22x 1072 7.53%x 1072 6.93) x 1072 7.7x10°2 3.19x 1072

32 0.123 0.136 0.144 0.138 0.148 6231072
36 0.207 0.238 0.254 0.249 0.262 0.118
40 0.325 0.389 0.421 0.410 0.437 0.206
44 0.481 0.607 0.665 0.658 0.695 0.341
48 0.676 0.907 1.01 1.01 1.06 0.545
52 0.904 1.31 1.48 1.48 1.56 0.841
56 1.15 1.84 2.1 2.12 2.24 1.26
60 1.41 251 2.92 2.95 3.13 1.85
64 1.63 3.35 3.97 4.03 4.29 2.66
68 1.77 4.4 53 5.39 5.77 3.76
72 1.78 5.67 6.96 7.11 7.62 5.23
76 155 7.2 9.0 9.24 9.93 7.18
80 0.983 9.02 11.5 11.9 12.8 9.75
83 0.252 10.6 13.7 14.2 15.3 12.2
88 -1.77 13.7 18.1 18.9 20.5 17.5
92 -4.34 16.5 225 235 255 23.1

over distance in the regionR,,g<r<1/m. We can con- Strictly speaking, the charge of such effective nucleus is
sider the muonic atom as some nucleus with the effectiv—-1, but notZ. However, under the conditiopZa/(mrf)
radiusR, ¢~ n?/ uZa. In the caseuZa/(mr?)>1, we have ~1.57/n?s> 1, this difference is not important.

Rhua<<1/m. Substituting this radius into E¢22) and replac- In Table Ill, we presenig for the 1S,,, state of a muonic
ing H(Za)—1 (which corresponds to the contribution of atom calculated for arbitrarg. For comparison, we present
light-by-light scattering, we obtain the logarithmically am- also the asymptotics, E¢L9). As it should be, the accuracy
plified term in Eq.(19). Note that the coefficiem? in R,  of the asymptotics(19) increases withZ being 4% for
corresponds to the asymptotics Bfin Eqg. (19 atn>1. Z=40 and 1% forz=92.
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TABLE Ill. Ag in units 10° for 1S,,, state of muonic atomAg, is the asymptotic$19).

z Ag Aas z Ag Aas

1 1.043x 1072 -0.2701 24 159.5 145.9
2 0.1274 -0.6226 28 233.7 217.9
3 0.484 -0.7983 32 324.0 306.1
4 1.186 -0.6592 36 430.8 411.0
5 2.317 -0.109 40 554.4 532.8
6 3.944 0.9268 44 694.9 671.5
7 6.124 2.508 48 852.3 827.4
8 8.904 4.687 52 1026.0 1000.0
9 12.33 7.506 56 1217.0 1189.0
10 16.43 11.0 60 1424.0 1395.0
11 21.24 15.22 64 1646.0 1616.0
12 26.8 20.17 68 1883.0 1852.0
13 33.13 25.9 72 2134.0 2103.0
14 40.26 32.42 76 2398.0 2366.0
15 48.2 39.77 80 2673.0 2641.0
16 56.98 47.96 83 2886.0 2854.0
17 66.62 57.01 88 3251.0 3219.0
18 77.14 66.94 90 3400.0 3368.0
20 100.9 89.52 92 3550.0 3519.0

In summary, we found higher-order magnetic-loop correc-behavior is very peculiar. All known contributions to the
tions to the boundy factor in ordera(Za)® for an arbitrary  boundg factor scale a2 or n"3. The correction found in
state. Despite a small coefficient in the leading term of ordethis paper does not contain such a strong suppression factor.
a(Za)® and the logarithmic enhancement of the higher-ordeiThis correction is a dominant bound-state QED correction
contribution, the leading term still dominates f@d=6 and  for a bound muon, which even for th&;}, state supersedes
Z=8, important for experiment. Previously used numericalthe free-vacuum polarization terfif]. The results obtained
results show a certain underestimation of the magnetic-loogignificantly diminish the uncertainty of the theoretical pre-
contribution for Z<20. The theoretical description of this dictions for theg factor of a bound particle.
contribution presented in this paper is more reliable. The
difference of less than a few percent between our analytic ACKNOWLEDGMENT
results and the numerical calculations of R&f at highZ
(80-90 shows that the contribution of the higher-order terms ~ This work was supported in part by the Russian Science
in the magnetic loop may be safely neglectedZez50. We  Support Foundation, RFBR Grant Nos. 03-02-16510 and 03-
also calculated the correctidyy for the bound muon, and its 02-16843.
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