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The mean king’s problem with maximal mutually unbiased basessMUB’sd in general dimensiond is
investigated. It is shown that a solution of the problem exists if and only if the maximal numbersd+1d of
orthogonal Latin squares exists. This implies that there is no solution ind=6 or d=10 dimensions even if the
maximal number of MUB’s exists in these dimensions.
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I. INTRODUCTION

In quantum mechanics, one cannot predict the values of
two or more spin components of a spin-1/2 particle with
certainty, since the spin operatorssx, sy, and sz are not
commutable. However, one can ask whether it is possible to
retrodict the results of a spin measurement along more than
one possible axis. This question, also known as the mean
king’s problem, was raised and solved by Vaidman,
Aharonov, and Albertf1g.

More precisely, the problem is formulated as follows. Al-
ice prepares a spin-1/2 particle in an initial state and gives it
to Bob. He measures a spin component of the particle along
one of thex, y, andz directions and gives the particle back to
Alice. Without knowledge of Bob’s measurement direction
and outcome, Alice performs some measurement on the par-
ticle. Then Bob informs Alice of his measurement direction.
Alice’s task is now to retrodict the value of spin component
along Bob’s measurement direction.

In f1g it was shown that Alice can retrodict the values of
spin component with certainty by utilizing the maximally
entangled state of two spin-1/2 particles. The quantum-
optical version of this scheme was also experimentally real-
ized with an average success probability of 95.6%f2g.

In the king’s problem of a spin-1/2 particle, Bob chooses
one of the three bases, each of which consists of the two
eigenstates ofsi. A natural extension to higher dimensions,
denoted by d, involves d+1 mutually unbiased bases
sMUB’sd for Bob’s possible measurement bases. Here, two
orthonormal baseshufkljk=0

d−1 and huckljk=0
d−1 are said to be mu-

tually unbiased ifzkfkuck8lz
2=1/d for all k and k8. For the

king’s problem with non-MUB’s ind=2 dimension, see
f3,4g.

The maximal number of MUB’s ind dimension is at most
d+1. It is known that ifd is a prime or a power of a prime,
there exists the maximal numberd+1 of MUB’s f5,6g, but
this is not known for any other composite numbers. A maxi-
mal set of MUB’s plays an important role in quantum tomog-
raphy with Wigner functions in finite dimensionsf7g.

The king’s problem with MUB’s has been successfully
generalized to higher dimensions:d=3 f8g, d=primef9g, and
d=power of prime f10g. In these generalizations, it was
shown that Alice can retrodict the result of Bob’s measure-
ment in MUB’s if Alice initially prepares ad level quantum
system as a subsystem of a maximally entangled composite

system and in the end she performs a projection measure-
ment in an appropriate basis on the composite system.

A natural question is then whether the king’s problem
with MUB’s can always be solved in the same way provided
that the maximal number of MUB’s exists. In this paper, we
will study this problem and show that the existence of a
solution of the king’s problem with MUB’s is equivalent to
that of the maximal number of mutually orthogonal Latin
squares. A possible relation between MUB’s and orthogonal
Latin squares was conjectured by Woottersf11g.

Combined with known results on orthogonal Latin
squares, our result first gives an alternative proof of the ex-
istence of solutions of the king’s problem in prime power
dimensions, and secondly it also implies that there is no so-
lution in d=6 andd=10 dimensions even if the maximal set
of MUB’s can be constructed in these dimensions.

II. KING’S PROBLEM WITH MUTUALLY UNBIASED
BASES

The problem we will consider is the following. In a
d-dimensional complex vector spaceCd, we considerd+1
orthonormal bases labeled byAs=0,1, . . . ,dd. By uA,al
sa=0,1, . . . ,d−1d, we denote a state vector in baseA. We
assume that the bases are mutually unbiased,

zkA,auA8,a8lz2 = dAA8daa8 + s1 − dAA8d
1

d
. s1d

Alice and Bob share a maximally entangled state onCd

^ Cd,

uFl =
1
Îd

o
k=0

d−1

ukl ^ ukl, s2d

wherehukljk=0
d−1 is a reference orthonormal base inCd. In terms

of baseA, the maximally entangled stateuFl is written as

uFl =
1
Îd

o
a=0

d−1

uA,al ^ uA,al, s3d

where an overlined stateuf̄l for a stateufl is defined as
uf̄l=okuklkkufl* by the use of the reference base.

Bob randomly chooses baseAP h0,1, . . . ,dj and mea-
sures his local system, the second component of the tensor
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product, and obtains the outcomeaP h0,1, . . . ,d−1j. The
post-measurement state is then given by

uFA,al ; uA,al ^ uA,al. s4d

Here we note that the inner product ofuFA,al’s is calculated
as

kFA,auFA8,a8l = zkA,auA8,a8lz2, s5d

where the right-hand side is given in Eq.s1d. Without know-
ing Bob’s measurement baseA and outcomea, Alice per-
forms a projective measurement on the composite system in

the basehuIljI=0
d2−1 of Cd ^ Cd. After the measurement, Alice is

informed of Bob’s measurement baseA. Alice’s task is now
to estimate Bob’s outcomea from her measurement outcome
I and Bob’s baseA. Let us write Alice’s estimate for Bob’s
outcome asssI ,AdP h0,1, . . . ,d−1j.

It is clear that Alice’s success probability is 1 if and only
if the following conditions are satisfied:

kFA,auIl = 0 for a Þ ssI,Ad. s6d

In the following, we will study the above conditions in de-
tail.

First we show that the setF consisting ofdsd+1d states
huFA,aljA=0,a=0

A=d,a=d−1 is complete in the composite spaceCd ^ Cd.
Suppose a linear relation with some coefficientscA,a holds:

o
A,a

cA,auFA,al = 0. s7d

Multiplying bra vectorkFA8,a8u from the left and using the
relation s5d, we immediately find

cA8,a8 + o
AsÞA8d

1

d
o
a

cA,a = 0, s8d

which implies that the coefficientcA,a should be independent
of a. Now consider the subsetF8 which consists ofd2 states
obtained by removingd stateshuFA,aljAÞ0,a=0 from F. As-
sume a linear relation of type Eq.s7d for the states inF8. We
find that cA,a=0 for AÞ0 and anya, since cA,0=0 for
AÞ0 by assumption. The linear relation is then reduced to

o
a=0

d−1

c0,auF0,al = c0o
a=0

d−1

uF0,al = Îdc0uFl = 0, s9d

implying c0,as;c0d=0. Thus thed2 states inF8 are linearly
independent and the setF is complete in thed2-dimensional
composite spaceCd ^ Cd.

Next we consider another subsetFI9 obtained by remov-
ing d+1 stateshuFA,ssI,AdljA=0

d from F for a givenI. It is easy
to see that thed2−1 states inFI9 are linearly independent and
span ad2−1 subspace ofCd ^ Cd, since a linear relation of
type Eq. s7d with cA,ssI,Ad=0 requires that all coefficients
cA,a’s be zero.

Now we go back to the conditionss6d for Alice’s mea-

surement basehuIljI=0
d2−1 and estimatessI ,Ad. The conditions

s6d require that each stateuIl should be orthogonal to the
sd2−1d-dimensional subspace spanned byFI9 and can be
uniquely determined up to an irrelevant phase factor.

We find that stateuIl satisfying conditionss6d is given by

uIl =
1
Îd

o
A=0

d

uFA,ssI,Adl − uFl. s10d

It is readily verified that the stateuIl satisfies the conditions
s6d as

kFA,auIl =
1
Îd

da,ssI,Ad, s11d

and uIl is normalized askI u Il=1.
It remains to determine the condition for Alice’s estimate

ssI ,Ad under whichhuIljI=0
d2−1 is an orthonormal base inCd

^ Cd. Namely, d2 states defined in Eq.s10d should be or-
thogonal to each other. The inner productkI u I8l can be easily
calculated and we find the orthogonality holds if and only if

o
A=0

d

dssI,Ad,ssI8,Ad = 1 for I Þ I8. s12d

This is a necessary and sufficient condition for Alice’s suc-
cess probability to be equal to 1.

We can interpret the conditionss12d in terms of a set of
character strings which satisfies a certain relation. Consider a
character strings of lengthd+1 with each character chosen
from the seth0,1, . . . ,d−1j,

s= s0s1s2 ¯ sd, sA P h0,1, . . . ,d − 1j. s13d

In this paper, two stringss ands8 of this type are said to be
“mutually unbiased” if they share a common character at
exactly one common place,

o
A=0

d

dsA,sA8
= 1. s14d

With this definition, the necessary and sufficient condition
s12d is equivalent to the existence ofd2 mutually unbiased
strings of lengthd+1 of d kinds of characters. In Fig. 1, we
give an example of a set of nine mutually unbiased strings of
length 4 in the case ofd=3. The question is for whatd the
set of unbiased strings of this kind can be accommodated.
Before answering this question, however, we will study an-
other form of the necessary and sufficient condition on
ssI ,Ad.

As mentioned before,d2 normalized statesuIl’s defined by
Eq. s10d should form an orthonormal base. From the or-
thogonality, we obtained the conditions12d. Here we study

the condition derived from the completenessoI=0
d2−1uIlkI u=1,

which is equivalent to the orthogonality. Since the set of
states huFA,aljA=0,a=0

A=d,a=d−1 is complete, the completeness of

huIljI=0
d2−1 can be expressed as

o
I=0

d2−1

kFA,auIlkI uFA8,a8l = kFA,auFA8,a8l. s15d

Using Eq.s11d for the left-hand side and Eqs.s5d ands1d for
the right-hand side, we obtain
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o
I=0

d2−1

da,ssI,Adda8,ssI,A8d = ddA,A8da,a8 + s1 − dA,A8d, s16d

which is also one form of a necessary and sufficient condi-
tion for Alice to guess Bob’s outcome with certainty.

The conditions16d turns out to be that of the existence of
d+1 orthogonald by d Latin squares. First we introduce the
definition of orthogonal Latin squares formulated by Woot-
ters f11g.

Consider a collection ofd2 points, which can be regarded
as points of ad3d square lattice. They are divided intod
groups so that each group consists ofd points and any point
belongs to only one group. A way of partitioning of this kind
is called “striation” ord3d Latin square. Two Latin squares
are said to be orthogonal if each group of either Latin square
has exactly one point in common with each group in the
other.

Let us label a point byIs=0,1, . . . ,d2−1d, a group by
as=0,1, . . . ,d−1d, and a Latin square byA. Then a Latin
squareA is uniquely characterized by its “striation function”
ssI ,Ad. Namely,a=ssI ,Ad means that pointI in Latin square
A belongs to groupa.

Now it is easy to see that the conditions16d can be satis-
fied by some estimatessI ,Ad if and only if there existd+1
orthogonald3d Latin squares. The if part is clear since the
left-hand side of Eq.s16d counts the number of common
points belonging to groupa in Latin squareA and groupa8
in Latin squareA8. On the other hand, summing overa8 in

Eq. s16d, we obtain oI=0
d2−1da,ssI,Ad=d. This means estimate

ssI ,Ad is a striation function and Eq.s16d implies that two
Latin squaresA andA8 are orthogonal ifAÞA8. An example
of a set of four orthogonal 333 Latin squares is given in
Fig. 1.

Some known results on the maximum numberMsdd of
d3d mutually orthogonal Latin squares are summarized in
f11g as follows.

sid For anyd, Msddød+1.
sii d If d is a power of a prime,Msdd=d+1.
siii d Ms6d=3.
sivd If d−1 or d−2 is divisible by 4, and ifd is not the

sum of the squares of two integers, thenMsdd,d+1.
svd Ms10d,11.
If d is a power of a prime, there exists a maximal set of

MUB’s in Cd f6g and there exist maximald+1 orthogonal
d3d Latin squares. The latter can be seen by explicitly con-
structing them with the striation function

s„si, jd,A… = H j − Ai sA = 0,1, . . . ,d − 1d
i sA = dd J

si, j = 0,1, . . . ,d − 1dsI = jd + id, s17d

where j −Ai on the right-hand side should be calculated un-
der the rules of the fieldFsdd, which are reduced to the
ordinary calculus modulod whend is a prime. See Fig. 1 for
an example in the case ofd=3. Therefore, the mean king’s
problem of the type considered in this paper has a solution.
This is what Aravind has already shown explicitlyf10g, and
the present paper provides an alternative proof.

Whend is not a power of a prime, it is in general an open
question how many MUB’s exist inCd. However, we know
that there does not exist maximald+1 orthogonald3d Latin
squares ford=6 or d=10. Thus we conclude that there is no
solution to the king’s problem of the type considered in this
paper in these dimensions, even if there exists a maximal set
of MUB’s.

We have obtained two forms of conditions: the existence
of d2 mutually unbiased strings of lengthd+1 andd+1 or-
thogonald3d Latin squares. Both conditions are necessary
and sufficient conditions for the existence of a solution of the
king’s problem. This implies that the two conditions are
equivalent to each other. In the next section, however, we
will directly show the equivalence without resorting to the
king’s problem.

III. MUTUALLY UNBIASED STRINGS AND
ORTHOGONAL LATIN SQUARES

As shown in the preceding section, the following relations
are the existence conditions ofd2 mutually unbiased strings
of lengthd+1 composed of a set ofd characters,

o
A=0

d

dssI,Ad,ssI8,Ad = sd + 1ddI,I8 + s1 − dI,I8d

sI,I8 = 0,1, . . . ,d2 − 1d, s18d

wheressI ,AdP h0,1, . . . ,d−1j should be regarded as a char-
acter at theAth place of stringsI. On the other hand, the
existence ofd+1 mutually orthogonal Latin squares implies

o
I=0

d2−1

da,ssI,Adda8,ssI,A8d = ddA,A8da,a8 + s1 − dA,A8d

sA,A8 = 0,1, . . . ,dd,

FIG. 1. Example of nine mutually unbiased strings and four
orthogonal 333 Latin squares. On the left, stringsssI ,Ad as a
934 matrix are shown. When each row is regarded as a string of
length 4, any pair of nine strings shares a character at exactly one
common place. On the right, four mutually orthogonal 333 Latin
squares are shown, which are constructed by the samessI ,Ad inter-
preted as a striation function. In this example,s(si , jd ,A) is taken to
be j −Ai smod 3d for A=0, 1, 2 andi for A=3. The sitesi , jd in a
square is numbered byIs=3j + id.
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sa,a8 = 0,1, . . . ,d − 1d, s19d

where ssI ,Ad should be interpreted as a striation function,
meaning pointI in Latin squareA belongs to groupa
=ssI ,Ad. We will show that the two conditionss18d ands19d
are in fact equivalent as expected from the argument in the
preceding section.

We will show the equivalence by explicitly “diagonaliz-
ing” the two conditions. First we define the Fourier trans-
form of da,ssI,Ad as

uA,a:I ;
1

d
o
a=0

d−1

vaada,ssI,Ad, s20d

wherev is a primitivedth root of unity. We note thatuA,0:I is
given by 1/d, independent ofA andI. In terms of the Fourier
transformu, the two conditionss18d ands19d are then rewrit-
ten as

o
A=0

d

o
a=0

d−1

uA,a:I
* uA,a:I8 = dI,I8 +

1

d
s21d

and

o
I=0

d2−1

uA,a:IuA8,a8:I
* = dA,A8da,a8 + da,0da8,0s1 − dA,A8d, s22d

respectively.
RecallinguA,0:I =1/d, we introduce ad23d2 matrix UJ,I

in the following way. Here the subscriptJ collectively rep-
resents either one ofd2−1 pairs sA,aÞ0d or pair sA=0,
a=0d. Let us define the matrixU as

UJ,I = HuA,a:I if J = sA,a Þ 0d
u0,0:I if J = s0,0d.

J s23d

The two conditionss21d and s22d turn out to beU+U=1
andUU+=1, respectively, which are evidently equivalent to
each other. We thus conclude that a set ofd2 mutually unbi-
ased strings with lengthd+1 is equivalent to the existence of

d+1 mutually orthogonald3d Latin squares.

IV. CONCLUDING REMARKS

We have shown that a solution of the king’s problem with
MUB’s requires the maximal number of orthogonal Latin
squares. Therefore, we can conclude that there is no solution
to the problem in some composite number of dimensionss6
and 10d for which the maximal set of orthogonal Latin
squares is known not to exist.

One can, however, ask whether there is a solution to the
king’s problem with non-MUB’s. Let us impose three restric-
tions on the problem: the initial state prepared by Alice is a
maximally entangled state, Alice can perform only a projec-
tive measurementsnot POVMd, and Bob’s set of measure-
ment bases is complete. By completeness of a set of bases,
we mean an unknown state is completely determined by re-
peated measurements in those bases, if infinitely many cop-
ies of the state are available.

In the case ofd=2, Horibeet al. f4g studied the king’s
problem with non-MUB’ssbases given by three nonorthogo-
nal spin directionsd by allowing Alice to perform POVM
measurement. It was found that a solution to the problem
with the three restrictions exists only if the three spin direc-
tions are orthogonalsMUB’sd. For general dimensions, we
conjecture that the king’s problem with the three restrictions
has a solution only if the set of bases is the maximal set of
MUB’s.

It should be noted that we can construct a solution to the
king’s problem with non-MUB’s if the completeness condi-
tion of the bases is omitted. Assume that a composite dimen-
siond is factored asd1d2 by two prime powers. Factoring the
d-dimensional space into two subsystems with dimensiond1
andd2, we have a solution of the king’s problem withdi +1
MUB’s for each subsystemi =1,2. Nowtaked+1 bases on
the composite system out ofsd1+1dsd2+1d bases given by
tensor products of the two MUB’s of subsystems. These
d+1 bases are not in general MUB’s on the composite sys-
tem. But it is clear that there is a solution to the king’s
problem with these bases.
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