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Mean king’s problem with mutually unbiased bases and orthogonal Latin squares
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The mean king's problem with maximal mutually unbiased ba®ésB’s) in general dimensiord is
investigated. It is shown that a solution of the problem exists if and only if the maximal nuiiédy of
orthogonal Latin squares exists. This implies that there is no solutids61or d=10 dimensions even if the
maximal number of MUB’s exists in these dimensions.
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[. INTRODUCTION system and in the end she performs a projection measure-
ment in an appropriate basis on the composite system.

In quantum mechanics, one cannot predict the values of A natural question is then whether the king’s problem
two or more spin components of a spin-1/2 particle withwith MUB’s can always be solved in the same way provided
certainty, since the spin operatoeg, oy, and o, are not  that the maximal number of MUB’s exists. In this paper, we
commutable. However, one can ask whether it is possible till study this problem and show that the existence of a
retrodict the results of a spin measurement along more thagolution of the king’s problem with MUB’s is equivalent to
one possible axis. This question, also known as the meaghat of the maximal number of mutually orthogonal Latin
king's problem, was raised and solved by Vaidman,squares. A possible relation between MUB’s and orthogonal
Aharonov, and Alberf1]. Latin squares was conjectured by Woottgts].

More precisely, the problem is formulated as follows. Al-  Combined with known results on orthogonal Latin
ice prepares a spin-1/2 particle in an initial state and gives isquares, our result first gives an alternative proof of the ex-
to Bob. He measures a spin component of the particle alongtence of solutions of the king’s problem in prime power
one of thex, y, andz directions and gives the particle back to dimensions, and secondly it also implies that there is no so-
Alice. Without knowledge of Bob’s measurement direction [ytion in d=6 andd=10 dimensions even if the maximal set
and outcome, Alice performs some measurement on the pagf MUB’s can be constructed in these dimensions.
ticle. Then Bob informs Alice of his measurement direction.

Alice’s task is now to retrodict the value of spin component
along Bob’s measurement direction. II. KING’S PROBLEM WITH MUTUALLY UNBIASED

In [1] it was shown that Alice can retrodict the values of BASES

spin component with certainty by utilizing the maximally  The problem we will consider is the following. In a
entangled state of two spin-1/2 particles. The quantumgy.dimensional complex vector spa¢d, we considerd+1
optical version of this scheme was also experimentally realyrthonormal bases labeled b(=0,1,...d). By |A,a)
ized with an average success probability of 95 & (a=0,1,... d-1), we denote a state vector in bageWe

In the king’s problem of a spin-1/2 particle, Bob choosesassume that the bases are mutually unbiased
one of the three bases, each of which consists of the two '

eigenstates ofr;. A natural extension to higher dimensions,
denoted byd, involves d+1 mutually unbiased bases
(MUB’s) for Bob’s possible measurement bases. Here, two _
orthonormal basei ¢ }i-g and{|¢i)}is are said to be mu- Allcde and Bob share a maximally entangled state @h
tually unbiased ifi(¢y| 4 )?=1/d for all k andk’. For the ~® L%

1
KA alA",a")? = Spn Baar + (1 - 5AA')a' 1)

king’s problem with non-MUB’s ind=2 dimension, see 14t
[3.4]. D)= =2 [k @k, 2
The maximal number of MUB's il dimension is at most Vdik=0

d+1. It is known that ifd is a prime or a power of a prime,
there exists the maximal numbdr-1 of MUB's [5,6], but
this is not known for any other composite numbers. A maxi-

where{|k>}ﬂ;3 is a reference orthonormal base(ith In terms
of baseA, the maximally entangled staj) is written as

mal set of MUB'’s plays an important role in quantum tomog- 1 -1
raphy with Wigner functions in finite dimensiofg]. |Dy=-—=> |Aa) ® |Aa), (3)
The king’s problem with MUB’s has been successfully Vda=o

generalized to higher dimensiorts: 3[8], d=prime[9], and , — ) ,
d=power of prime[10]. In these generalizations, it was where an overlined statkp) for a state|¢) is defined as

shown that Alice can retrodict the result of Bob's measurel®)=2y/k)(k|¢)" by the use of the reference base.
ment in MUB's if Alice initially prepares al level quantum Bob randomly chooses baske {0,1,...d} and mea-
system as a subsystem of a maximally entangled compositires his local system, the second component of the tensor
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product, and obtains the outconae={0,1,... d-1}. The We find that statél) satisfying condition$6) is given by
post-measurement state is then given by d
N 1
[Pa0) = A2) @ |Aa). (4) =52 [Pasia) - [®). (10
/0 a=0
Here we note that the inner product|df, )'s is calculated ) ) N o N
as It is readily verified that the statg) satisfies the conditions
e (6) as
<(DA,a|q)A',a’> = |(A,a|A a >| ' (5)

1

where the right-hand side is given in Hd). Without know- (Ppgll) = Taﬁa,s(m), (11
V

ing Bob’s measurement bage and outcomea, Alice per-
forms a projective measurement on the composite system ifinq |1y is normalized agl |I)=1
2_ ) . L . ) ' . . .
the base]|1)}g" of C¢® C9. After the measurement, Alice is |t remains to determine the condition for Alice’s estimate
informed of Bob’s measurement bageAlice’s task is now g A) under which{|1) |d—261 is an orthonormal base ifi¢
to estimate Bob’s outcomefrom her measurement outcome ® (9. Namely, d? states _defined in Eq10) should be or-
| and Bob’s basé\. Let us write Alice’s estimate for Bob’s thogonal to each other. The inner prod(dt’) can be easily

outcome as(l,A) {0,1,... d-1}. , . . )
It is clear that Alice’s success probability is 1 if and only calculated and we find the orthogonality holds if and only if

if the following conditions are satisfied: d
(@pl)=0 fora+s(,A). ®) /\22053(,,A),S(,,,A) =1 forl=#1". (12
In the following, we will study the above conditions in de- Thjs js a necessary and sufficient condition for Alice’s suc-
tail. . . cess probability to be equal to 1.
First we show that the seb consisting ofd(d+1) states We can interpret the conditiorfd2) in terms of a set of

=d,a=d-1 ; ; H ~ . . . L . . K
{|®A,a>}ﬁ:o,§:q tis complete in the composite spac&® C.  character strings which satisfies a certain relation. Consider a
Suppose a linear relation with some coefficientg holds:  character string of lengthd+1 with each character chosen
from the sef0,1,... d-1},

2 CA,a|q)A,a> =0. (7)

Aa S=%5% 'Sy, Sae{0,1,...d-1}. (13
Multi.plying bra _vector_(CIDA,yar|. from the left and using the |, this paper, two strings ands’ of this type are said to be
relation (5), we immediately find “mutually unbiased” if they share a common character at

1 exactly one common place,
Carar E _2 Caa= 0,
A(#A") d a d
o iy . 2 O, =1. (14)

which implies that the coefficierty , should be independent A0 A

of a. Now consider the subsdt’ which consists ot® states
obtained by removingl states{|®x a)}az0a=0 from &. As-
sume a linear relation of type E(¥) for the states inb’. We
find that cy,=0 for A#0 and anya, since c,o=0 for
A+ 0 by assumption. The linear relation is then reduced to

With this definition, the necessary and sufficient condition
(12) is equivalent to the existence df mutually unbiased
strings of lengthd+1 of d kinds of characters. In Fig. 1, we
give an example of a set of nine mutually unbiased strings of
length 4 in the case ad=3. The question is for what the

a1 a1 - set of unbiased strings of this kind can be accommodated.

2 CoalPo) = o2 [P0 = Vdcg|®) =0, (9)  Before answering this question, however, we will study an-

a=0 a=0 other form of the necessary and sufficient condition on
implying co 4(=Co)=0. Thus thed? states in®’ are linearly ~ S(LA). . .
independent and the sétis complete in thei>-dimensional As mentioned beforef” normalized state)’s defined by
composite spacé?® (1. Eg. (10) should form an orthonormal base. From the or-

Next we consider another subskf obtained by remov- thogonality, we obtained the conditidd?2). Herze we study
ing d+1 state|®x a4 from @ for a givenl. Itis easy the condition derived from the completenes§"|I)(1[=1,
to see that the>- 1 states inb{’ are linearly independent and which is equivalent to the orthogonality. Since the set of
span ad?-1 subspace of?® (4, since a linear relation of states{|®a)a=g30 " is complete, the completeness of
type Eqg.(7) with caq =0 requires that all coefficients {|) Idzz(-)l can be expressed as
Caa's be zero.

Now we go back to the condition®) for Alice’s mea- d*-1
surement basé|l) {’:251 and estimates(l,A). The conditions D (Pp )| Dpr o) = (Pl P o). (15
(6) require that each statg) should be orthogonal to the =0
(d?>-1)-dimensional subspace spanned ®y and can be Using Eq.(11) for the left-hand side and Eqg) and(1) for
uniquely determined up to an irrelevant phase factor. the right-hand side, we obtain
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A —> j=> (i) For anyd, M(d)<d+1.
olo|ofo loj1]2 o112 (i) If dis a power of a primeM(d)=d+1.
olz2|1]1] *lofal2] (202 (i) M(6)=3.
r (o[22l ‘Y[o[i]2 210 (iv) If d=1 ord-2 is divisible by 4, and ifd is not the
(L. 1)11]0 (A=0) (A=1) sum of the squares of two integers, thditd) <d+1.
1lo]2]1 (v) M(10) < 11.
11210[2 0]1]2 0]0]0 If dis a power of a prime, there exists a maximal set of
2|2|2]0 1[2]0 1]1]1 MUB’s in C9 [6] and there exist maximal+1 orthogonal
2l1]0]1 01 2|2 dxd Latin squares. The latter can be seen by explicitly con-
2lo]1]2 (A=2) (2=3) structing them with the striation function
s(I,R) s((i,7),R)

j-Ai (A=0,1,...d-1)

S((i’j)’A):{i (A=d)

FIG. 1. Example of nine mutually unbiased strings and four
orthogonal 3x 3 Latin squares. On the left, stringgl,A) as a
9X 4 matrix are shown. When each row is regarded as a string of (i,j=0,1,...d=-D(=jd+1), 17
length 4, any pair of nine strings shares a character at exactly one
common place. On the right, four mutually orthogonat 3 Latin ~ Wherej—Ai on the right-hand side should be calculated un-
squares are shown, which are constructed by the séma) inter-  der the rules of the field=(d), which are reduced to the
preted as a striation function. In this examgij,j),A) is takento  ordinary calculus moduld whend is a prime. See Fig. 1 for

be j-Ai (mod 3 for A=0, 1, 2 andi for A=3. The site(i,j) ina  an example in the case df=3. Therefore, the mean king’s

square is numbered dy=3j +i). problem of the type considered in this paper has a solution.
This is what Aravind has already shown explicifi0], and
d?-1 the present paper provides an alternative proof.
> s Sar sian = dOpnrSaar + (1= 8pn), (16) Whend is not a power of a prime, it is in general an open
1=0 asATar s A) AR Taa AR question how many MUB'’s exist ifiY. However, we know

hich is al ¢ ¢ d suffici d_that there does not exist maxindkt 1 orthogonal X d Latin
which Is also one form of a necessary and sufficient condigq, ares fod=6 or d=10. Thus we conclude that there is no

tloq_;‘]or Al|c§ to giJGess Bob’s OUthomE W'trf] ‘;]e“a'f.“y- . solution to the king's problem of the type considered in this
e condition(16) turn; out to be t "’.lt oft € existence o paper in these dimensions, even if there exists a maximal set
d+1 orthogonald by d Latin squares. First we introduce the of MUB'’s

definition of orthogonal Latin squares formulated by Woot-
ters[11].

Consider a collection of® points, which can be regarded
as points of ad X d square lattice. They are divided intb
groups so that each group consistglgfoints and any point

We have obtained two forms of conditions: the existence
of d? mutually unbiased strings of length+1 andd+1 or-
thogonald X d Latin squares. Both conditions are necessary
and sufficient conditions for the existence of a solution of the
o =7 king’s problem. This implies that the two conditions are
belongs to only one group. A way of partitioning of this kind equivalent to each other. In the next section, however, we

is called “striation” ord X d Latin square. Two Latin squares iy girectly show the equivalence without resorting to the
are said to be orthogonal if each group of either Latin squar%ng,S problem

has exactly one point in common with each group in the

other. . ) Ill. MUTUALLY UNBIASED STRINGS AND

Let us label a point byl(=0,1,... d*-1), a group by ORTHOGONAL LATIN SQUARES
a(=0,1,...d-1), and a Latin square bA. Then a Latin ) . ) ) )
squareA is uniquely characterized by its “striation function” ~ AS shovyn in the precgdmg section, the follgwmg relatlons
s(I,A). Namely,a=s(I,A) means that pointt in Latin square ~ are the existence conditions df mutually unbiased strings

A belongs to groum. of lengthd+1 composed of a set af characters,
Now it is easy to see that the conditi¢h6) can be satis- d

fied by some estimats(l,A) if and only if there exisd+1 > Ssumsirny=(d+1)8, +(1-68,)

orthogonald X d Latin squares. The if part is clear since the A=0 ' ’

left-hand side of Eq(16) counts the number of common

points belonging to group in Latin squareA and groupa’ (1,1"=0,1, ... d°-1), (19
in Latin squareA’. On the other hand, summing ovaf in
Eq. (16), we obtainEf‘jgléa,S(,,A):d. This means estimate
s(l,A) is a striation function and Eq16) implies that two
Latin square#\ andA’ are orthogonal iA+# A’. An example

wheres(l,A) €{0,1, ... d-1} should be regarded as a char-
acter at theAth place of strings,. On the other hand, the
existence ofd+1 mutually orthogonal Latin squares implies

of a set of four orthogonal 8 3 Latin squares is given in -1
Fig. 1. _ > Oas(1,m) 0 s1.a7) = AOparGaar + (1= Opar)
Some known results on the maximum numibé¢d) of 1=0

dxd mutually orthogonal Latin squares are summarized in
[11] as follows. (ALA'=0,1,...4),
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(a,a’'=0,1,...d-1), (19 d+1 mutually orthogonatl X d Latin squares.

where s(I,A) should be interpreted as a striation function, IV. CONCLUDING REMARKS

meaning pointl in Latin squareA belongs to groupa We have shown that a solution of the kina’ .
_ ) - g’s problem with
=s(l,A). We will show that the two condition&l8) and(19) MUB'’s requires the maximal number of orthogonal Latin

are in fact equivalent as expected from the argument in theq ares. Therefore, we can conclude that there is no solution

preceding section. . o __ to the problem in some composite number of dimensiéns
. We will show the equivalence by explicitly “diagonaliz- 54 19 for which the maximal set of orthogonal Latin
ing” the two conditions. First we define the Fourier trans-Squares is known not to exist.

form of 8,51, @s One can, however, ask whether there is a solution to the

d-1 king’s problem with non-MUB'’s. Let us impose three restric-
Up ol = = 0851 ) (20)  tions on the problem: the initial state prepared by Alice is a
daso maximally entangled state, Alice can perform only a projec-

tive measuremeninot POVM), and Bob’s set of measure-
ment bases is complete. By completeness of a set of bases,
we mean an unknown state is completely determined by re-
peated measurements in those bases, if infinitely many cop-
ies of the state are available.
d d-1 1 In the case ofd=2, Horibeet al. [4] studied the king's
D D Up pUarr = 8y + = (21)  problem with non-MUB’s(bases given by three nonorthogo-
A=0e=0 Tod nal spin directions by allowing Alice to perform POVM
measurement. It was found that a solution to the problem
with the three restrictions exists only if the three spin direc-
d?-1 tions are orthogonalMUB'’s). For general dimensions, we
> UpatUps o = OanrOmar + 8000w o1 = San), (22)  conjecture that the king's problem with the three restrictions
1=0 T has a solution only if the set of bases is the maximal set of
MUB’s.

It should be noted that we can construct a solution to the
king’s problem with non-MUB'’s if the completeness condi-
tion of the bases is omitted. Assume that a composite dimen-
siond is factored asl,d, by two prime powers. Factoring the
d-dimensional space into two subsystems with dimension

Upgr if J=(Aa#0) andd,, we have a solution of the king's problem wit+ 1
oo if 3=(0,0) (23)  MUB's for each subsysterie1,2. Nowtaked+1 bases on

0,01 o the composite system out ¢fl;+1)(d,+1) bases given by

The two conditiong21) and (22) turn out to beU*U=1  tensor products of the two MUB’s of subsystems. These
andUU* =1, respectively, which are evidently equivalent to d+1 bases are not in general MUB’s on the composite sys-
each other. We thus conclude that a setomutually unbi-  tem. But it is clear that there is a solution to the king's
ased strings with lengtti+1 is equivalent to the existence of problem with these bases.

wherew is a primitivedth root of unity. We note thati o, is
given by 1M, independent ofA andl. In terms of the Fourier
transformu, the two conditiong18) and(19) are then rewrit-
ten as

and

respectively.

Recallingup o, =1/d, we introduce ad?x d? matrix Uy,
in the following way. Here the subscrigtcollectively rep-
resents either one af®-1 pairs (A,a#0) or pair (A=0,
a=0). Let us define the matrik as

Ui =
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