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Quantum circuits with uniformly controlled one-qubit gates
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Uniformly controlled one-qubit gates are quantum gates which can be represented as direct sums of two-
dimensional unitary operators acting on a single qubit. We present a quantum gate array which implements any
n-qubit gate of this type using at most2- 1 controllednoT gates, 271 one-qubit gates, and a single diagonal
n-qubit gate. To illustrate the versatility of these gates we then apply them to the decomposition of a general
n-qubit gate and a state preparation procedure. Moreover, we study their implementation using only nearest-
neighbor gates. We give upper bounds for the one-qubit and contratledate counts for all the aforemen-
tioned applications. In all four cases, the proposed circuit topologies either improve on or achieve the previ-
ously reported upper bounds for the gate counts. Thus, they provide the most efficient method for general gate
decompositions currently known.
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[. INTRODUCTION The properties of the quantum compiler and the available
. . ional devi gate primitives strongly influence the execution time of a
A quantum computer is an emerging computational devicey . antym algorithm, as is the case with their classical coun-

basehd on lencodlng cg;_lssmarll mtf)orml?tr:on "m a qgan.tumferparts. However, owing to the short decoherence times it is
mechanical systerfll]. Since the breakthrough factorization crucial to keep the usage of the computational resources as

algorithm by Shor in 19942}, progress in research on quan- |, a5 possible, even for the very first demonstrations of
tum computing has been expeditioli3]. Most quantum quantum computation.

computers involve a collection of two-level systems, a quan- In this paper, we discuss the properties of uniformly con-
tum register, in which the information is stored. The two- . j/aq one—qub,it gates which extend the concept of uni-
level systems themselves, called qubits, can also be replacrf\ mly controlled rotations introduced in Re]. We give

by arbitrary d-level systems, known as qudifd,5]. The 5 efficient implementation for these gates in terms of one-
computation is performed by the unitary temporal evolut|onqubit gates and controlledoT gates(CNOTS). Moreover, we

of the rhegldster_, fgllolwed_ Ey a meerl]suremsnt. LT order to exc bserve that our construction can be implemented effectively
ecute the desired algorithm, one has to be able to exert Sufyg, by using only nearest-neighbor gates. To illustrate the
ficient cqntrol on the Hamiltonian Of. the register to obta|n usefulness of the uniformly controlled gates, we apply them
the required propagators. These unitary propagators, acting two concrete examples: the decomposition of an arbitrary

on the register, are C"?‘”ed qua_ntum gate_s. quantum gate and a state preparation procedure. The ob-
The current paradigm for implementing quantum algo-iained quantum circuits are quite compact: in terms of the

._number ofcNOT's involved, the general gate decomposition
& brought on par with the most efficient currently known

eneral gate decompositiorl0] while requiring roughly

0% less one-qubit gates, whereas the gate counts required
to implement the state preparation circuit are halved com-
Pared to the previous implementatidd®,12). In addition to
these examples, we expect that uniformly controlled one-
Ft'ﬂjbit gates could serve as general intermediate-level building
blocks in quantum compilers when performing local optimi-
zation of polynomial quantum circuits.

on one or more qubits. The detailed decomposition of a
arbitrary quantum gate into such a sequence was first pr
sented by Barencet al. [7]. Recently, several effective
methods for implementing arbitrary quantum gates hav

considered: the preparation of quantum stdte3,12-14,
diagonal[15,16), and block-diagonal quantum computations
[17.]' The Important problem O.f the gate-optimal implemen- This paper is organized as follows. Section Il defines uni-
tation of an arbitrary two-qu_b|t gate has_als_o been rec_entl¥0rm|y controlled gates. In Sec. lll, the circuit topology
solved[18-21]. These generic quantum circuit ConStr”Ct'OnSimplementing the uniformly controlled one-qubit gates is

will serve as basic building blocks for a low-level quantum ¢, n1rcted. The implementation is based on the solution of
compiler and facilitate the optimization of the quantum gatey eigenvalue equation and is thus cognate to the quantum

arrays. . R . . multiplexor operation first introduced in Rdf10]. In Sec.
The underlying motivation for the pursuit of the optimal IV, the cosine-sine decompositiofCSD) of an arbitrary

qluantum r::ircuit d_eclomp?sitipn is Secohererﬁé@] Whg}h n-qubit gate[9] and a state preparation proced(if€]| are
plagues the practical realizations of quantum computgfs improved using this construction. Finally, in Sec. V, we con-

sider the implementation of the uniformly controlled one-
qubit gates in a linear chain of qubits with only nearest-
*Electronic address: vberghol@focus.hut.fi neighbor couplings. Section VI is devoted to a discussion
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FIG. 2. Two-qubit constant quantum multiplexor wherandu
are SU2) gatesD is a fixed diagonal gate, aridis an adjustable
diagonal gate.

FIG. 1. Uniformly controlled one-qubit ga@k[U(Z)] stands for
a sequence df-fold controlled gatedJ; e U(2), wherei=1, ..., %,
acting on the qubit. Cf is used to denote anoT whose control and target qubits

are thekth andtth, respectively. SimilarIyD} refers to aD

and summary of the results obtained. In addition, a conjec3at€ acting on the qubiisandj.
ture is presented.

IIl. CONSTANT QUANTUM MULTIPLEXOR

IIl. UNIFORMLY CONTROLLED GATES Let us start by studying the two-qubit gaffg[U(2)], the

We define a uniformly controlled one-qubit gaFtﬁU(Z)] matrix representation of vyhich cor_lsists of two u_nitary
to be a sequence dtfold controlled one-qubit gates in 2 2 blocks. We show that it can be implemented using the
which all the # control node configurations are utilized. All Circuit presented in Fig. 2. We call this circuit a constant
the one-qubit gates in the sequence act on the dulsiée guantum multiplexor after a related circuit in R¢L0]. It

Fig. 1. We use the symbGI{‘[U(Z)] to denote a generic gate can be used .to cqnstruct any2 block-diagonal twp-qubit
of this type, whereas the full definition of a particular gate by multiplexing the contents of the one-qubit gates

K ; " andv together with the help of a fixed diagonal entangling
F{IU(2)] gate entails the definition of all the (B) gates two-qubit gate, whence the name.

k
{Ui}izzl' ) The main difference between the proposed and the origi-
Let us now consider the s&(2") CU(2") of all gates of  ng| constructions is that we can effect the operation using a
the form F{™'[U(2)]. EachU e G(2") is a Z-dimensional  fixed entangling gateD, which is locally equivalent to a
unitary operator that can be expressed as a direct sum @fngle cnoT. The trade-off is an additional diagonal gate
two-dimensional unitary operatots;, all operating in sub- trailing the circuit, but in many applications it can be elimi-
spaces whose basis vectors differ only in the qubit nated by merging it with an adjacent gate.

U:@izznllui. Since all the operators i6,(2") have identical In matrix form, the implementation of the galg[U(2)]
invariant subspaces, the set is closed under multiplicatiofs
and inversion; assuming that B e G,(2"), we have i
()= )
AB—Zn_lAB G(2" 1 SR ASLIANCIATL.A
_-iii ioi € t( )' ( ) R I®u \__;;__/\_7E;TJ (3)

wherea, b, u, andv are unitary and andd are diagonal
unitary 2X 2 matrices. This yields the matrix equations

a=r'udv, (4)

on-1

Al= _ealAi‘l e G(2"). 2)
1=

These properties makg,(2") a subgroup of 2"). We point
out that the matrix representations of all the gate&i(2") b=rud™ (5)
can be m.ade §|multa.ne_ou.sly<2 block d|agonal in the stan- or, equivalently,

dard basis using a similarity transformation—namely, a per-

mutation of the qubits, in which the quliiis mapped to the X:=ab =rfucfu’r®, (6)
qubit n.
As a special case of uniformly controlled one-qubit gates, v=dur’b=dfu'ra. (7)

we define uniformly controlled rotatio9], in which all the
two-dimensional operatord); belong to the same one- Equation(6) may be recast into a form reminiscent of an
parameter subgroup of (2)—e.g., the group of rotations e€igenvalue decomposition:
about thez axis. The elements of this particular subgroup are _ +
denoted as{[R,]. rXr = uchu’. ®
We extend the notation to accommodate also uniformlyNote thatX is fixed by the matrices. andb, butr can be
controlled multiqubit gates; b¥X[U(2%] we denote a se- chosen freely. By diagonalizing the matriXr, we find the
quence ok-fold controlleds-qubit gates which act on the set similarity transformatioru and the eigenvalue matréé. The
7T of target qubits. matrix v is obtained by inserting the results into E@).
For convenience, we use a shorthand notation for the SinceXe U(2), we may express it using the parametriza-
cNOT and the below-defined two-qubit galle The symbol  tion
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FIG. 3. Elementary gate sequence for Bgate, wheréd is the .
Hadamard gate arfd,=R,(7/2). GateP=e"™* is an adjustment of @— ¢
R

[

3

the global phase and may be omitted. 1 D B
X X FIG. 5. Constant multiplexor step for &-fold uniformly
x:( * _2>ei¢’/2, (9) controlled U2) gate, eliminating the uniform control node on the
X2 X qubit m.

where|x,|?+|x,|2=1 and detX)=€'¢. The characteristic poly- y . - -
nomial of the matrixXr is FIU@]=Fi[RIFTTUIDIF U], (14)

_ : This elimination step is presented in Fig. 5.

—\2 2 25 /2 2.2

det(rXr —\I) =A% = M(rixg +rox)€ #2 +rirze . (10) The elimination of uniform control nodes can be contin-
ued recursively until only one-qubit gatesyoT's and uni-

The main result of this section is that for akywe can find formlv controlledR. qates remain. The recursive decompo-
r such that the roots of the polynomial, and hence the eigen- y 2 0 ' P

values ofrXr, are two fixed antipodal points on the unit sition _f proc::feds as follows:
circle in the complex plane. This is accomplished by choosFunction {F{U(2)]):

ing (i) If k=0, return.
_ (if) Choose one of the control qubits Perform the elimi-
ry = elifAlo-dl2-ardxy+k] (11)  nation step of Fig. 5 which results in the ga#&sD, B, and
R.
r, = g2l 5-g/2+argxy) sma] (12) (iii) Replace theFf‘l[U(Z)] gateA with f(A).

(iv) (optiona) Transform theD gate into acNOT as shown
Above, k andm are arbitrary integers witk+m odd andsis  in Fig. 3; merge the resulting one-qubit gates to surrounding
the desired argument for one of the eigenvales gates.
_ (v) Replace théFk"[U(2)] gateB with (B).
P= e° (vi) If there is aD gate from another level of the recursion
B _dd) (13 following the FK[R,] gateR, commuteR through it towards
the right and merg® with the nextF/{U(2)] gate. Note that
For convenience, let us choose /2. Hence the diagonal diagonal gates always commute.
gateD obtains the fixed fornD=¢€(™47227z_|t can be real- (vii) Return.
ized straightforwardly using an Ising-type Hamiltonian or,
alternatively, it can be decomposed intocaoT and one-
qubit gates as shown in Fig. 3. The resulting diagonal Bate
assumes the form of a uniformly controlledotation in the
most significant bit,F}[Rﬂ. The entire circuit is shown in
Fig. 4.
Now we turn our attention to the decomposition of an 1L ' ) ’
arbitraryF't‘[U(Z)] gate, wheré> 1. First we pick one of the cascade ok dlstlnct_ unlfor_mly controlledz_rotatlons, Wh_|ch
control qubits,m. This qubit pairs the two-dimensional in- COesponds to a single diagorak-1)-qubit gateAy.;. Fig-

variant subspaces of the gate in a unique fashion. Hence ti€ 7@ presents this decomposition for the 98U (2)].

method of Eq(3) may be used'2! times in parallel, which V. EXAMPLES

effectively eliminates the uniform control node on the chosen '

qubit m. The operation may be performed using a sirigfe This section illustrates how the uniformly controlled one-
gate and a compensating diagonal gate which again assum@dbit gates can be applied to efficiently solve two problems:

the form of a uniformly controlled rotation FX[R,]:
T 1T 1T X
. .
FIG. 4. Constant quantum multiplexor for two qubits. Here the (a) (b) ()
SU(2) gatesu’ andv’ include some of the local gates which trans-

form thecnoT into a D gate. For the implementation of the gate FIG. 6. Some simplification rules for uniformly controlled2)
FIR,], see Fig. 1(a). gates.

The simplification rules of Fig. 6 are used throughout the
decomposition. Because of stéyi), only the rightmost of
the F}‘"[RZ'] gates actually needs to be implemented on each
level of the recursion. The resulting quantum circuit consists
of two parts: an alternating sequence &fdhe-qubit gates

and -1 cNoT gates, which we denote B§}[U(2)], and a
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FIG. 7. Implementation of the gafej[U(2)]
using (a) general cnoTs, (b) only nearest-
neighborcnoTs. The gatequ;} and{u/} belong
to SU(2). The alternating sequence afoT’s and
SU(2) gates is denoted b[U(2)]. The right-
most sequence of uniformly controlledotations
corresponds to a single diagonal gate, denoted by
A,. For the nearest-neighbor implementation of
uniformly controlled rotations, see Fig. 11.

the decomposition of a genenalqubit gate and the prepara- 2nlg
tion of an arbitrary quantum state. UM = AFU(2)] 1_{ Fﬂji(i)[U(Z)]Fﬂ'l[U(Z)].
1=
A. Cosine-sine decomposition (18)

Recently, we introduced a methf@] for decomposing a This decomposition involves™2 1 gates of typéf{U(2)],
given generah-qubit gateU into a sequence of elementary each of which takes™!-1 cNoT's and 2! one-qubit rota-
gates using the cosine-sine decomposition. In this approactipns to implement. The final diagonal gatg, is imple-
the CSD is applied recursively. Each recursion step deconmented using the same construction as in Ref. After
poses ak-fold uniformly controlled s-qubit gate, where eliminating onecNOT and n one-qubit gates, we obtain a
k+s=n, into two (k+1)-fold uniformly controlled circuit of %4“—%2”—2 CNOTs and %4”+%2”—n—1 one-qubit
(s—1)-qubit gates and a singlen—1)-fold uniformly con-  gates.

trolled y rotation: Table | presents a comparison between the improved CSD
and the most efficient previously known decomposition, the
- - - NQ decompositior] 10]. The number ofcNOTs in the N
FE LU = Py LU IR [R P, [Uh). Q decompositior{10]. The nu in the NQ

decomposition is from Ref.10]. None of the other results
(15 have been published previously.

. . B. State preparation
Above, 7T is the set ofs target qubits for the (25 gates and

m is the operational qubit for the step. Note that, in this Ve have recently addressgtP] the problem of preparing
notation, a W2") gate may be denoted @[U(Z”)], where an arbitraryn-qubit quantum stath),, starting from an arbi-

A'is the set of all ther qubits. When applied to an arbitrary a1y statela),. This transformation could be used, e.g., to
n-qubit gate, the recursion of E€L5) finally yields the de- produce complex entangled multiqubit states for studying or
composition to prepare the required initial state for a quantum algorithm

starting from the natural initial state of the quantum com-
puter.
R 1 - The state preparation circuit first transforms the sfate
U2") =Fy U] H FroalRIFTU@], (16)  into |e), and, then, using the same strategy, backwards from
=1 lepn to |b),. The |a), to |e)), transformation consists of a
sequence of gate pairs

2nig

where vy is the so-called ruler function, given by Sloane’s
sequence A00151[R3]. The order of the noncommuting op-

erators in the product is always taken to be from left to right.
Note that theF - ;,)[Ry] gates may as well be considered as

generaIFn_y(,)[U 2)] gates.

We continue by decomposing the uniformly controlled
gates into one-qubit gates andoTs. Starting from the last
gate in Eq.(16), we write the diagonal par, separately:

S = [H{FEIRIFRD) ® Ion-i}. (19)
i=1

The effect of the gate paf| [R/JF| '[R,] on the statda); is
to nullify half of its elements:

TABLE |. Comparison of the upper bounds for the gate counts
required to implement a genermalqubit gate using tha-qubit (NQ)
decomposition 10] and the improved CSD. The fixed(4) gates

FU(2)]= AFTHU©2)]. (17)  may be taken to benoTs.
The diagonal parf\,, can then be merged with the neighbor- Gate type NQ IcSD
ing Fp l[Ry] gate, which is transformed into a general gate ofFixed U4) %4n_gzn+1 %4n_%2n_2
type Fi-i[U(2)]. Again, the dlagolnal part can be separatedR R, San-3on43 an—1
and merged into the next gakg {U(2)]. Continuing this ;. g2 g Son_1 laneionon-1

process sequentially, we finally obtain
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FIG. 8. Quantum circuit for transforming an arbitranyqubit l & - - e
FIG. 9. cnoT cascade which can be efficiently implemented us-

state|a), into the standard basis stde),. The diagonal gatea/
exactly cancel the\; part of the adjacen| '[U(2)] gate. The re-

sulting gates are of the fornﬁi‘l[u(z)] which is efficient to  ing nearest-neighbarnoT's [26].
implement.

vy

A. Uniformly controlled one-qubit gates

i-1 i-1 — |a’
Fi [Ry]':: [RJla)i =[a")i-1 ®[0);. (20) To get the recursion rule for the nearest-neighbor imple-

Hence, each successive gate pair nullifies half of the eler_nentation of a uniformly controlled one-qubit gate, we sim-

ments of the state vector that have not yet been nullified, anBIy. modify the funptionf of Sec. Ill by.r.naking stefiv)
we haveS,Ja),=|e,), up to a global phase. obligatory and adding a new step after it:

X -1, n-1, (iv @) Insert an identity in the form of aNOT cascade and
_ I;I_?W we note that the pair of gates, [RV]F“ [R] its inverse, a similar cascade, into the circuit next to the
=F{U(2)] may be replaced by the gate

cNoT gateC{". The cascades consist of the gagswherei
runs over the qubits connecting the qubitsandt. Absorb
one of the cascades into tRg{U(2)] gateB and replace the
other, together with the originatNOT, using nearest-
neighborcNoT's as illustrated in Fig. 9.

Friu)]=AlFTu@], (21)

since the diagonal gate

t_ AOf 1t The complexity of the nearest-neighbor implementation
An= 80 @100+ Apcy @ [ 22 depends on the relative order of the target and control qubits,
does not mix the states: and the order in which the uniform control nodes are elimi-
nated. Since the number of nearest-neightyaoT's required
ATFPU2)]|a)n = Al(1a Vo1 @ [0)1) = (AT @ )n-1) © [0)4 increases linearly with the distance between the control and

target qubits of the entanglingnoT, we first eliminate the
nodes that are farthest apart from the target qubit. Let us

After combining n-1 pairs of adjacenfX,,[R,JFk,,[R,] ~assume that & {U(2)] gate acts on a chain of conse-
gates wher&=1, ... n—1 we find that the entire circuit for guentqubits. lh=S5, it is advantageous to use a sequence of
transforming|a) to |b) requires 2<2"-2n-2 cNoTs and ~ SWap gates to move the target qubit next to the center of the
2% 2'-n-2 one-qubit gates. Ifa) or |b) coincides with one  chain before the operation and back after it. A swap gate can
of the basis vectorge), the gate counts are halved in the be reallzeg using three consecutivRoTs. Taking this into
leading order. The method presented here yields a factor-of-@ccount, &]~{U(2)] gate can be implemented using at most
improvement in the gate counts compared to the previous
results[12,10. The circuit for this transformation is illus-
trated in Fig. 8.

=[a")p-1® |0);. (23

5 , neven,
Cup(ns) = 62“ +2n- 65— (24)

, hodd,

Wl Wik

V. LINEAR CHAIN OF QUBITS
WITH NEAREST-NEIGHBOR COUPLINGS
nearest-neighbocNoTs, wheres=1,...]n/2] is the dis-
In many of the proposed physical implementations oftance of the target qubttfrom the end of the chain. Figure
quantum computers, such as charge-coupled quantum dotgh) depicts the resulting circuit for the care 4 ands=1.
[24] and NMR-based systenj25], the qubits are spatially ~ Now consider &-fold uniformly controlled rotation gate
situated in such a way that only nearest-neighbor interactionsf[Ra], where the rotation axia is perpendicular to the
are feasible. This does not imply that long-range gates argyis. It can be decomposed using the recursion step pre-
impossible to construct, but it renders such operations rath&janted in Fig. 1(). To minimize thecNOT count, we mirror
hard to implement. In this section we consider a quantumyt each recursion step the circuit of the latter uniformly con-
register consisting of a chain of qubits with only nearest-ygjled gate, which results in the cancellation of two nearest-
neighbor interactions and show that the construction prenejghborcnoT cascades. For the same reason as in the pre-
sented for F{‘[U(Z)] can be translated into an efficient vious paragraph, the recursion step is first applied to the
nearest-neighboicNoT implementation. The technique is control qubits furthest apart from the target. The implemen-
based on the circuit identity shown in Fig. 9. tation for the gate ;" *[R,] requires at most
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m neighbor gates is straightforward. We follow the reasoning of

: 3 K : - : 5' nodd,
Ra & iRa 4

nearest-neighbozNoTS.

Y

2 i —e ¢ Sec. IV B and simply replace trﬁ‘l[U(Z)] gates with their
P = i ,5 : nearest-neighbor counterparts, using the decomposition de-
k—q rived in the beginning of this section. We find that the imple-
; m Ra & @ & mentation of the state preparation circuit requires at most

(b) 1 i m 10 E n even,
2—¢— o109 er—10 Coeln) = 2"+ 2n? - 12n+ 10 (27)

L2 A

FIG. 10. Recursion step for decomposing a uniformly controlled
rotation using(a) cNoT's and (b) nearest-neighbarNoT's, applied
to the qubitm. Note that the circuit diagrams may also be mirrored
horizontally.

VI. DISCUSSION

In this paper we have studied the properties and the utili-
zation of uniformly controlled one-qubit gates. We have de-
rived a recursive circuit topology which implements an arbi-
trary k-fold uniformly controlled one-qubit gate using at
most X one-qubit gates,"2 1 cNoT's and a single diagonal

(25)  (k+1)-qubit gate. This construction is especially efficient if
., nodd, the gate is to implemented only up to a diagonal—e.g., when
the phase factors of each basis vector can be freely chosen.
nearest-neighbarnoTs. Figure 11 displays an example cir- Y& have also shown that this kind of freedom appears in the
cuit for the case=5 ands=2. implementation of an arbitrarg-qubit quantum gate and in
the rotation of an arbitrary state vector into another. The
leading-order complexity of the circuit for an arbitrary
B. Cosine-sine decomposition n-qubit gate is;4" cNOT's and an equal number of one-qubit

The decomposition of an arbitrary-qubit gate is gates, which are the lowest gate counts reported.
achieved exactly as in Sec. IV A, but now the order in which ~ The techniques presented above are also amenable to ex-
the CSD steps of Eq15) are applied to the qubits affects the perimental realizations of a quantum computer in which the
final gate count. As seen in E(R4), it is favorable to have quantum register consists of a one-dimensional chain of qu-
the target qubit of a uniformly controlled one-qubit gate asPits with only nearest-neighbor interactions. For example,
close to the center of the chain as possible. Consequently, viee number of the nearest-neighbmyoT's in the presented
start the decomposition from the ends of the qubit chaindecomposition of am-qubit gate is in the leading ordéﬂn,
moving alternatingly towards the center. In this fashion, awhich is appreciably below the lowest previously reported
generaln-qubit gate can be implemented using at most value 0f%4” [10]. Furthermore, the structure of the nearest-
neighbor circuit allows several gate operations to be ex-

I} neven,
’ 6

Wl Wik

. gzn_ §, n even, ialcuted]c 1?1 palrallg:,r]which may further reduce the execution
5 o ime of the algorithm.
Cy(n) = 64n n2"-2n+ 1 (26) In Ref. [9], it was speculated that the gate count of the
52”— 3’ nodd, quantum CSD could be reduced by combining adjacent uni-
formly controlled rotations into single uniformly controlled
nearest-neighbaZNoOT's. one-qubit gates, which was realized in this paper. To further

reduce the number aNOT's in the circuit, also the control
nodes of thecNOT's should be used to separate the one-qubit
gates carrying the degrees of freedom. However, uniformly
With the help of the results derived above, the implemen-<controlled one-qubit gates cannot be used as the sole basic
tation of the general state preparation circuit using nearesbuilding blocks of the circuit in this kind of a construction.

C. State preparation

FIG. 11. Implementation of a uniformly controlledrotation using nearest-neighboroT’s.
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