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Uniformly controlled one-qubit gates are quantum gates which can be represented as direct sums of two-
dimensional unitary operators acting on a single qubit. We present a quantum gate array which implements any
n-qubit gate of this type using at most 2n−1−1 controlled-NOT gates, 2n−1 one-qubit gates, and a single diagonal
n-qubit gate. To illustrate the versatility of these gates we then apply them to the decomposition of a general
n-qubit gate and a state preparation procedure. Moreover, we study their implementation using only nearest-
neighbor gates. We give upper bounds for the one-qubit and controlled-NOT gate counts for all the aforemen-
tioned applications. In all four cases, the proposed circuit topologies either improve on or achieve the previ-
ously reported upper bounds for the gate counts. Thus, they provide the most efficient method for general gate
decompositions currently known.
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I. INTRODUCTION

A quantum computer is an emerging computational device
based on encoding classical information into a quantum-
mechanical systemf1g. Since the breakthrough factorization
algorithm by Shor in 1994f2g, progress in research on quan-
tum computing has been expeditiousf3g. Most quantum
computers involve a collection of two-level systems, a quan-
tum register, in which the information is stored. The two-
level systems themselves, called qubits, can also be replaced
by arbitrary d-level systems, known as quditsf4,5g. The
computation is performed by the unitary temporal evolution
of the register, followed by a measurement. In order to ex-
ecute the desired algorithm, one has to be able to exert suf-
ficient control on the Hamiltonian of the register to obtain
the required propagators. These unitary propagators, acting
on the register, are called quantum gates.

The current paradigm for implementing quantum algo-
rithms is the quantum circuit modelf6g, in which the algo-
rithms are compiled into a sequence of simple gates acting
on one or more qubits. The detailed decomposition of an
arbitrary quantum gate into such a sequence was first pre-
sented by Barencoet al. f7g. Recently, several effective
methods for implementing arbitrary quantum gates have
been reportedf8–11g. In addition to these constructions, de-
compositions for certain special classes of gates have been
considered: the preparation of quantum statesf10,12–14g,
diagonalf15,16g, and block-diagonal quantum computations
f17g. The important problem of the gate-optimal implemen-
tation of an arbitrary two-qubit gate has also been recently
solvedf18–21g. These generic quantum circuit constructions
will serve as basic building blocks for a low-level quantum
compiler and facilitate the optimization of the quantum gate
arrays.

The underlying motivation for the pursuit of the optimal
quantum circuit decomposition is decoherencef22g which
plagues the practical realizations of quantum computersf3g.

The properties of the quantum compiler and the available
gate primitives strongly influence the execution time of a
quantum algorithm, as is the case with their classical coun-
terparts. However, owing to the short decoherence times it is
crucial to keep the usage of the computational resources as
low as possible, even for the very first demonstrations of
quantum computation.

In this paper, we discuss the properties of uniformly con-
trolled one-qubit gates which extend the concept of uni-
formly controlled rotations introduced in Ref.f9g. We give
an efficient implementation for these gates in terms of one-
qubit gates and controlled-NOT gatessCNOT’sd. Moreover, we
observe that our construction can be implemented effectively
also by using only nearest-neighbor gates. To illustrate the
usefulness of the uniformly controlled gates, we apply them
to two concrete examples: the decomposition of an arbitrary
quantum gate and a state preparation procedure. The ob-
tained quantum circuits are quite compact; in terms of the
number ofCNOT’s involved, the general gate decomposition
is brought on par with the most efficient currently known
general gate decompositionf10g while requiring roughly
30% less one-qubit gates, whereas the gate counts required
to implement the state preparation circuit are halved com-
pared to the previous implementationsf10,12g. In addition to
these examples, we expect that uniformly controlled one-
qubit gates could serve as general intermediate-level building
blocks in quantum compilers when performing local optimi-
zation of polynomial quantum circuits.

This paper is organized as follows. Section II defines uni-
formly controlled gates. In Sec. III, the circuit topology
implementing the uniformly controlled one-qubit gates is
constructed. The implementation is based on the solution of
an eigenvalue equation and is thus cognate to the quantum
multiplexor operation first introduced in Ref.f10g. In Sec.
IV, the cosine-sine decompositionsCSDd of an arbitrary
n-qubit gatef9g and a state preparation proceduref12g are
improved using this construction. Finally, in Sec. V, we con-
sider the implementation of the uniformly controlled one-
qubit gates in a linear chain of qubits with only nearest-
neighbor couplings. Section VI is devoted to a discussion*Electronic address: vberghol@focus.hut.fi
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and summary of the results obtained. In addition, a conjec-
ture is presented.

II. UNIFORMLY CONTROLLED GATES

We define a uniformly controlled one-qubit gateFt
kfUs2dg

to be a sequence ofk-fold controlled one-qubit gates in
which all the 2k control node configurations are utilized. All
the one-qubit gates in the sequence act on the qubitt; see
Fig. 1. We use the symbolFt

kfUs2dg to denote a generic gate
of this type, whereas the full definition of a particular
Ft

kfUs2dg gate entails the definition of all the Us2d gates

hUiji=1
2k

.
Let us now consider the setGts2nd,Us2nd of all gates of

the form Ft
n−1fUs2dg. Each UPGts2nd is a 2n-dimensional

unitary operator that can be expressed as a direct sum of
two-dimensional unitary operatorsUi, all operating in sub-
spaces whose basis vectors differ only in the qubitt:

U= % i=1
2n−1

Ui. Since all the operators inGts2nd have identical
invariant subspaces, the set is closed under multiplication
and inversion; assuming thatA,BPGts2nd, we have

AB= %
i=1

2n−1

AiBi P Gts2nd, s1d

A−1 = %
i=1

2n−1

Ai
−1 P Gts2nd. s2d

These properties makeGts2nd a subgroup of Us2nd. We point
out that the matrix representations of all the gates inGts2nd
can be made simultaneously 232 block diagonal in the stan-
dard basis using a similarity transformation—namely, a per-
mutation of the qubits, in which the qubitt is mapped to the
qubit n.

As a special case of uniformly controlled one-qubit gates,
we define uniformly controlled rotationsf9g, in which all the
two-dimensional operatorsUi belong to the same one-
parameter subgroup of Us2d—e.g., the group of rotations
about thez axis. The elements of this particular subgroup are
denoted asFt

kfRzg.
We extend the notation to accommodate also uniformly

controlled multiqubit gates; byFT
k fUs2sdg we denote a se-

quence ofk-fold controlleds-qubit gates which act on the set
T of target qubits.

For convenience, we use a shorthand notation for the
CNOT and the below-defined two-qubit gateD. The symbol

Ct
k is used to denote aCNOT whose control and target qubits

are thekth andtth, respectively. Similarly,Dj
i refers to aD

gate acting on the qubitsi and j .

III. CONSTANT QUANTUM MULTIPLEXOR

Let us start by studying the two-qubit gateF2
1fUs2dg, the

matrix representation of which consists of two unitary
232 blocks. We show that it can be implemented using the
circuit presented in Fig. 2. We call this circuit a constant
quantum multiplexor after a related circuit in Ref.f10g. It
can be used to construct any 232 block-diagonal two-qubit
gate by multiplexing the contents of the one-qubit gatesu
and v together with the help of a fixed diagonal entangling
two-qubit gate, whence the name.

The main difference between the proposed and the origi-
nal constructions is that we can effect the operation using a
fixed entangling gateD, which is locally equivalent to a
single CNOT. The trade-off is an additional diagonal gateR
trailing the circuit, but in many applications it can be elimi-
nated by merging it with an adjacent gate.

In matrix form, the implementation of the gateF2
1fUs2dg

is

s3d

wherea, b, u, and v are unitary andr and d are diagonal
unitary 232 matrices. This yields the matrix equations

a = r†udv, s4d

b = rud†v s5d

or, equivalently,

Xª ab† = r†ud2u†r†, s6d

v = du†r†b = d†u†ra. s7d

Equation s6d may be recast into a form reminiscent of an
eigenvalue decomposition:

rXr = ud2u†. s8d

Note thatX is fixed by the matricesa and b, but r can be
chosen freely. By diagonalizing the matrixrXr, we find the
similarity transformationu and the eigenvalue matrixd2. The
matrix v is obtained by inserting the results into Eq.s7d.

SinceXPUs2d, we may express it using the parametriza-
tion

FIG. 1. Uniformly controlled one-qubit gateFt
kfUs2dg stands for

a sequence ofk-fold controlled gatesUi PUs2d, wherei =1, . . . ,2k,
acting on the qubitt.

FIG. 2. Two-qubit constant quantum multiplexor wherev andu
are SUs2d gates,D is a fixed diagonal gate, andR is an adjustable
diagonal gate.

BERGHOLM et al. PHYSICAL REVIEW A 71, 052330s2005d

052330-2



X = S x1 x2

− x̄2 x̄1
Deif/2, s9d

whereux1u2+ ux2u2=1 and detsXd=eif. The characteristic poly-
nomial of the matrixrXr is

detsrXr − lId = l2 − lsr1
2x1 + r2

2x̄1deif/2 + r1
2r2

2eif. s10d

The main result of this section is that for anyX, we can find
r such that the roots of the polynomial, and hence the eigen-
values of rXr, are two fixed antipodal points on the unit
circle in the complex plane. This is accomplished by choos-
ing

r1 = esi/2dfd−f/2−argsx1d+kpg, s11d

r2 = esi/2dfd−f/2+argsx1d+mpg. s12d

Above,k andm are arbitrary integers withk+m odd andd is
the desired argument for one of the eigenvaluesli:

d2 = Seid

− eid D . s13d

For convenience, let us choosed=p /2. Hence the diagonal
gateD obtains the fixed formD=eisp/4dsz^sz. It can be real-
ized straightforwardly using an Ising-type Hamiltonian or,
alternatively, it can be decomposed into aCNOT and one-
qubit gates as shown in Fig. 3. The resulting diagonal gateR
assumes the form of a uniformly controlledz rotation in the
most significant bit,F1

1fRzg. The entire circuit is shown in
Fig. 4.

Now we turn our attention to the decomposition of an
arbitraryFt

kfUs2dg gate, wherek.1. First we pick one of the
control qubits,m. This qubit pairs the two-dimensional in-
variant subspaces of the gate in a unique fashion. Hence the
method of Eq.s3d may be used 2k−1 times in parallel, which
effectively eliminates the uniform control node on the chosen
qubit m. The operation may be performed using a singleDt

m

gate and a compensating diagonal gate which again assumes
the form of a uniformly controlledz rotationFm

k fRzg:

Ft
kfUs2dg = Fm

k fRzgFt
k−1fUs2dgDt

mFt
k−1fUs2dg. s14d

This elimination step is presented in Fig. 5.
The elimination of uniform control nodes can be contin-

ued recursively until only one-qubit gates,CNOT’s and uni-
formly controlledRz gates remain. The recursive decompo-
sition f proceeds as follows:

Function f(Ft
kfUs2dg):

sid If k=0, return.
sii d Choose one of the control qubitsm. Perform the elimi-

nation step of Fig. 5 which results in the gatesA, D, B, and
R.

siii d Replace theFt
k−1fUs2dg gateA with fsAd.

sivd soptionald Transform theD gate into aCNOT as shown
in Fig. 3; merge the resulting one-qubit gates to surrounding
gates.

svd Replace theFt
k−1fUs2dg gateB with fsBd.

svid If there is aD gate from another level of the recursion
following the Fm

k fRzg gateR, commuteR through it towards
the right and mergeR with the nextFt

kfUs2dg gate. Note that
diagonal gates always commute.

svii d Return.

The simplification rules of Fig. 6 are used throughout the
decomposition. Because of stepsvid, only the rightmost of
the Fj

k−ifRzg gates actually needs to be implemented on each
level of the recursion. The resulting quantum circuit consists
of two parts: an alternating sequence of 2k one-qubit gates

and 2k−1 CNOT gates, which we denote byF̃t
kfUs2dg, and a

cascade ofk distinct uniformly controlledz rotations, which
corresponds to a single diagonalsk+1d-qubit gateDk+1. Fig-
ure 7sad presents this decomposition for the gateF4

3fUs2dg.

IV. EXAMPLES

This section illustrates how the uniformly controlled one-
qubit gates can be applied to efficiently solve two problems:

FIG. 3. Elementary gate sequence for theD gate, whereH is the
Hadamard gate andRz=Rzsp /2d. GateP=e−ip/4 is an adjustment of
the global phase and may be omitted.

FIG. 4. Constant quantum multiplexor for two qubits. Here the
SUs2d gatesu8 andv8 include some of the local gates which trans-
form the CNOT into a D gate. For the implementation of the gate
F1

1fRzg, see Fig. 10sad.

FIG. 5. Constant multiplexor step for ak-fold uniformly
controlled Us2d gate, eliminating the uniform control node on the
qubit m.

FIG. 6. Some simplification rules for uniformly controlled Us2d
gates.
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the decomposition of a generaln-qubit gate and the prepara-
tion of an arbitrary quantum state.

A. Cosine-sine decomposition

Recently, we introduced a methodf9g for decomposing a
given generaln-qubit gateU into a sequence of elementary
gates using the cosine-sine decomposition. In this approach,
the CSD is applied recursively. Each recursion step decom-
poses ak-fold uniformly controlled s-qubit gate, where
k+s=n, into two sk+1d-fold uniformly controlled
ss−1d-qubit gates and a singlesn−1d-fold uniformly con-
trolled y rotation:

FT
k fUs2sdg = FT\hmj

k+1 fUs2s−1dgFm
n−1 fRygFT\hmj

k+1 fUs2s−1dg.

s15d

Above,T is the set ofs target qubits for the Us2sd gates and
m is the operational qubit for the step. Note that, in this
notation, a Us2nd gate may be denoted asFN

0 fUs2ndg, where
N is the set of all then qubits. When applied to an arbitrary
n-qubit gate, the recursion of Eq.s15d finally yields the de-
composition

Us2nd = Fn
n−1fUs2dg p

i=1

2n−1−1

Fn−gsid
n−1 fRygFn

n−1fUs2dg, s16d

where g is the so-called ruler function, given by Sloane’s
sequence A001511f23g. The order of the noncommuting op-
erators in the product is always taken to be from left to right.
Note that theFn−gsid

n−1 fRyg gates may as well be considered as

generalFn−gsid
n−1 fUs2dg gates.

We continue by decomposing the uniformly controlled
gates into one-qubit gates andCNOT’s. Starting from the last
gate in Eq.s16d, we write the diagonal partDn separately:

Fn
n−1fUs2dg = DnF̃n

n−1fUs2dg. s17d

The diagonal partDn can then be merged with the neighbor-
ing Fn−1

n−1fRyg gate, which is transformed into a general gate of
type Fn−1

n−1fUs2dg. Again, the diagonal part can be separated
and merged into the next gateFn

n−1fUs2dg. Continuing this
process sequentially, we finally obtain

Us2nd = DnF̃n
n−1fUs2dg p

i=1

2n−1−1

F̃n−gsid
n−1 fUs2dgF̃n

n−1fUs2dg.

s18d

This decomposition involves 2n−1 gates of typeF̃t
n−1fUs2dg,

each of which takes 2n−1−1 CNOT’s and 2n−1 one-qubit rota-
tions to implement. The final diagonal gateDn is imple-
mented using the same construction as in Ref.f9g. After
eliminating oneCNOT and n one-qubit gates, we obtain a
circuit of 1

24n− 1
22n−2 CNOT’s and 1

24n+ 1
22n−n−1 one-qubit

gates.
Table I presents a comparison between the improved CSD

and the most efficient previously known decomposition, the
NQ decompositionf10g. The number ofCNOT’s in the NQ
decomposition is from Ref.f10g. None of the other results
have been published previously.

B. State preparation

We have recently addressedf12g the problem of preparing
an arbitraryn-qubit quantum stateubln starting from an arbi-
trary stateualn. This transformation could be used, e.g., to
produce complex entangled multiqubit states for studying or
to prepare the required initial state for a quantum algorithm
starting from the natural initial state of the quantum com-
puter.

The state preparation circuit first transforms the stateualn
into ue1ln and, then, using the same strategy, backwards from
ue1ln to ubln. The ualn to ue1ln transformation consists of a
sequence of gate pairs

Sa = p
i=1

n

hsFi
i−1fRygFi

i−1fRzgd ^ I2n−ij. s19d

The effect of the gate pairFi
i−1fRygFi

i−1fRzg on the stateuali is
to nullify half of its elements:

FIG. 7. Implementation of the gateF4
3fUs2dg

using sad general CNOT’s, sbd only nearest-
neighborCNOT’s. The gateshuij and hui8j belong
to SUs2d. The alternating sequence ofCNOT’s and

SUs2d gates is denoted byF̃4
3fUs2dg. The right-

most sequence of uniformly controlledz rotations
corresponds to a single diagonal gate, denoted by
D4. For the nearest-neighbor implementation of
uniformly controlled rotations, see Fig. 11.

TABLE I. Comparison of the upper bounds for the gate counts
required to implement a generaln-qubit gate using then-qubit sNQd
decompositionf10g and the improved CSD. The fixed Us4d gates
may be taken to beCNOT’s.

Gate type NQ iCSD

Fixed Us4d 1
2 4n− 3

2 2n+1 1
2 4n− 1

2 2n−2

Ry, Rz
9
8 4n− 3

2 2n+3 4n−1

or SUs2d 17
24 4n− 3

2 2n− 1
3

1
2 4n+ 1

2 2n−n−1
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Fi
i−1fRygFi

i−1fRzguali = ua8li−1 ^ u0l1. s20d

Hence, each successive gate pair nullifies half of the ele-
ments of the state vector that have not yet been nullified, and
we haveSaualn= ue1ln up to a global phase.

Now we note that the pair of gatesFn
n−1fRygFn

n−1fRzg
=Fn

n−1fUs2dg may be replaced by the gate

F̃n
n−1fUs2dg = Dn

†Fn
n−1fUs2dg, s21d

since the diagonal gate

Dn
† = Dn−1

0†
^ u0lk0u + Dn−1

1†
^ u1lk1u s22d

does not mix the states:

Dn
†Fn

n−1fUs2dgualn = Dn
†sua8ln−1 ^ u0l1d = sDn−1

0† ua8ln−1d ^ u0l1

= ua9ln−1 ^ u0l1. s23d

After combining n−1 pairs of adjacentFk+1
k fRygFk+1

k fRzg
gates wherek=1, . . . ,n−1 we find that the entire circuit for
transforming ual to ubl requires 232n−2n−2 CNOT’s and
232n−n−2 one-qubit gates. Ifual or ubl coincides with one
of the basis vectorsueil, the gate counts are halved in the
leading order. The method presented here yields a factor-of-2
improvement in the gate counts compared to the previous
results f12,10g. The circuit for this transformation is illus-
trated in Fig. 8.

V. LINEAR CHAIN OF QUBITS
WITH NEAREST-NEIGHBOR COUPLINGS

In many of the proposed physical implementations of
quantum computers, such as charge-coupled quantum dots
f24g and NMR-based systemsf25g, the qubits are spatially
situated in such a way that only nearest-neighbor interactions
are feasible. This does not imply that long-range gates are
impossible to construct, but it renders such operations rather
hard to implement. In this section we consider a quantum
register consisting of a chain of qubits with only nearest-
neighbor interactions and show that the construction pre-

sented for F̃t
kfUs2dg can be translated into an efficient

nearest-neighborCNOT implementation. The technique is
based on the circuit identity shown in Fig. 9.

A. Uniformly controlled one-qubit gates

To get the recursion rule for the nearest-neighbor imple-
mentation of a uniformly controlled one-qubit gate, we sim-
ply modify the function f of Sec. III by making stepsivd
obligatory and adding a new step after it:

siv ad Insert an identity in the form of aCNOT cascade and
its inverse, a similar cascade, into the circuit next to the
CNOT gateCt

m. The cascades consist of the gatesCt
i, wherei

runs over the qubits connecting the qubitsm and t. Absorb
one of the cascades into theFt

jfUs2dg gateB and replace the
other, together with the originalCNOT, using nearest-
neighborCNOT’s as illustrated in Fig. 9.

The complexity of the nearest-neighbor implementation
depends on the relative order of the target and control qubits,
and the order in which the uniform control nodes are elimi-
nated. Since the number of nearest-neighborCNOT’s required
increases linearly with the distance between the control and
target qubits of the entanglingCNOT, we first eliminate the
nodes that are farthest apart from the target qubit. Let us

assume that aF̃t
n−1fUs2dg gate acts on a chain ofn conse-

quent qubits. Ifnù5, it is advantageous to use a sequence of
swap gates to move the target qubit next to the center of the
chain before the operation and back after it. A swap gate can
be realized using three consecutiveCNOT’s. Taking this into

account, aF̃t
n−1fUs2dg gate can be implemented using at most

CUs2dsn,sd =
5

6
2n + 2n − 6s−5

1

3
, n even,

5

3
, n odd, 6 s24d

nearest-neighborCNOT’s, where s=1, . . . ,dn/2e is the dis-
tance of the target qubitt from the end of the chain. Figure
7sbd depicts the resulting circuit for the casen=4 ands=1.

Now consider ak-fold uniformly controlled rotation gate
Ft

kfRag, where the rotation axisa is perpendicular to thex
axis. It can be decomposed using the recursion step pre-
sented in Fig. 10sbd. To minimize theCNOT count, we mirror
at each recursion step the circuit of the latter uniformly con-
trolled gate, which results in the cancellation of two nearest-
neighborCNOT cascades. For the same reason as in the pre-
vious paragraph, the recursion step is first applied to the
control qubits furthest apart from the target. The implemen-
tation for the gateFt

n−1fRag requires at most

FIG. 8. Quantum circuit for transforming an arbitraryn-qubit
stateualn into the standard basis stateue1ln. The diagonal gatesDi

†

exactly cancel theDi part of the adjacentFi
i−1fUs2dg gate. The re-

sulting gates are of the formF̃i
i−1fUs2dg which is efficient to

implement.

FIG. 9. CNOT cascade which can be efficiently implemented us-
ing nearest-neighborCNOT’s f26g.
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CRsn,sd =
5

6
2n + 3n − 6s−5

4

3
, n even,

5

3
, n odd, 6 s25d

nearest-neighborCNOT’s. Figure 11 displays an example cir-
cuit for the casen=5 ands=2.

B. Cosine-sine decomposition

The decomposition of an arbitraryn-qubit gate is
achieved exactly as in Sec. IV A, but now the order in which
the CSD steps of Eq.s15d are applied to the qubits affects the
final gate count. As seen in Eq.s24d, it is favorable to have
the target qubit of a uniformly controlled one-qubit gate as
close to the center of the chain as possible. Consequently, we
start the decomposition from the ends of the qubit chain,
moving alternatingly towards the center. In this fashion, a
generaln-qubit gate can be implemented using at most

CUsnd =
5

6
4n − n2n − 2n +5

5

6
2n −

5

3
, n even,

1

2
2n −

1

3
, n odd, 6 s26d

nearest-neighborCNOT’s.

C. State preparation

With the help of the results derived above, the implemen-
tation of the general state preparation circuit using nearest-

neighbor gates is straightforward. We follow the reasoning of

Sec. IV B and simply replace theF̃i
i−1fUs2dg gates with their

nearest-neighbor counterparts, using the decomposition de-
rived in the beginning of this section. We find that the imple-
mentation of the state preparation circuit requires at most

CSPsnd =
10

3
2n + 2n2 − 12n +5

14

3
, n even,

10

3
, n odd, 6 s27d

nearest-neighborCNOT’s.

VI. DISCUSSION

In this paper we have studied the properties and the utili-
zation of uniformly controlled one-qubit gates. We have de-
rived a recursive circuit topology which implements an arbi-
trary k-fold uniformly controlled one-qubit gate using at
most 2k one-qubit gates, 2k−1 CNOT’s and a single diagonal
sk+1d-qubit gate. This construction is especially efficient if
the gate is to implemented only up to a diagonal—e.g., when
the phase factors of each basis vector can be freely chosen.
We have also shown that this kind of freedom appears in the
implementation of an arbitraryn-qubit quantum gate and in
the rotation of an arbitrary state vector into another. The
leading-order complexity of the circuit for an arbitrary
n-qubit gate is1

24n CNOT’s and an equal number of one-qubit
gates, which are the lowest gate counts reported.

The techniques presented above are also amenable to ex-
perimental realizations of a quantum computer in which the
quantum register consists of a one-dimensional chain of qu-
bits with only nearest-neighbor interactions. For example,
the number of the nearest-neighborCNOT’s in the presented
decomposition of ann-qubit gate is in the leading order5

64n,
which is appreciably below the lowest previously reported
value of 9

24n f10g. Furthermore, the structure of the nearest-
neighbor circuit allows several gate operations to be ex-
ecuted in parallel, which may further reduce the execution
time of the algorithm.

In Ref. f9g, it was speculated that the gate count of the
quantum CSD could be reduced by combining adjacent uni-
formly controlled rotations into single uniformly controlled
one-qubit gates, which was realized in this paper. To further
reduce the number ofCNOT’s in the circuit, also the control
nodes of theCNOT’s should be used to separate the one-qubit
gates carrying the degrees of freedom. However, uniformly
controlled one-qubit gates cannot be used as the sole basic
building blocks of the circuit in this kind of a construction.

FIG. 10. Recursion step for decomposing a uniformly controlled
rotation usingsad CNOT’s and sbd nearest-neighborCNOT’s, applied
to the qubitm. Note that the circuit diagrams may also be mirrored
horizontally.

FIG. 11. Implementation of a uniformly controlleda rotation using nearest-neighborCNOT’s.
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Finally, the authors conjecture that the constant quantum
multiplexor circuit, presented for 232 gates in Eqs.
s3d–s14d, could be extended to handle general 2n32n gates
as well. If this proves to be the case, a straightforward gen-
eralization of the techniques presented in this paper would
lead to a further reduction of theCNOT’s needed for the syn-
thesis of a general multiqubit gate.
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