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I. INTRODUCTION

Consider the vectorucl, pertaining to a finite-dimensional
Hilbert spaceH=HA ^ HB, which describes a pure state of
two quantum systemsA and B. ucl is said to be a product
state if there existsuflAPHA and uwlBPHB such that

ucl = uflA ^ uwlB. s1d

Separable states are mixtures of product states. In other
words, the density operatorr acting onH that characterizes
the quantum state ofA andB is called separable if it can be
written as a convex combination of product vectors—that is,

r = o
i

piufi,wilkfi,wiu = o
i

piri
A

^ ri
B, s2d

where 0øpi ø1, oipi =1, andufi ,wil= ufilA ^ uwilB.
If r cannot be written as in Eq.s2d, then the state is said to

be entangled. Entanglement is one of the most fascinating
issues in quantum mechanics, not only from a theoretical
point of view f1g, but also because of its applications in the
context of quantum information theory, such as cryptography
and teleportationf2g. Therefore, it is a very interesting ques-
tion to ask whether a given state is entangled or not. Al-
though no general answer is known, there exist a great vari-
ety of separability criteria, like the partial transpose criterion
f3g, Bell’s inequalities violationf4g, and the construction of
entanglement witnessessEW’sd f5g. The first of these criteria
gives necessary and sufficient conditions when the dimen-
sion ofH is either 232 or 233, while otherwise it is just a
necessary condition. The second criterion provides only a
necessary condition. Finally, the third criterion is necessary
and sufficient in the sense that, given an entangled state,
there always exists an EW that detects it; however, it is not
known how to construct all possible EW’s, and this criterion
turns out to be a necessary separability condition once a par-
ticular set of EW’s has been chosen.

The relationship between entanglement and the uncer-
tainty principle has been investigated in several recent works
ssee, e.g.,f6gd. The key fact is that, when measuring a col-
lection of nonlocal observables on a given state, the lower
bound on the uncertainty of the outcomes is higher for sepa-
rable states than for entangled states, because of the correla-
tions inherent in the latter. Nonlocal operators possess, in
general, entangled eigenstates, while separable states cannot

be simultaneous eigenstates for the set of nonlocal operators.
Using this idea, there have been achieved variance-based
separability criteriaf7g inspired by the Heisenberg-Robertson
formulation of the uncertainty principlef8g, as well as
entropy-based separability criteriaf9,10g derived from en-
tropic uncertainty relationsf11–13g. The necessary separabil-
ity conditions obtained in this way have the advantage of
being more easily implemented in experiments, since they
are based on expectation values and probabilities for the out-
comes of measurements. On the contrary, the partial trans-
pose criterion demands complete knowledge of the density
matrix, whose experimental determination requires consider-
able effort.

In this paper we derive new separability criteria based on
a different mathematical formulation of the uncertainty prin-
ciple, the so-called Landau-Pollak uncertainty relation, and
we show that these conditions are better than those obtained
using entropies in the examples proposed so far. The article
is organized as follows. The Landau-Pollak uncertainty rela-
tion is briefly reviewed in Sec. II, where we state some prop-
erties that will be useful later on. In Sec. III, we derive new
separability conditions for two-qubit systems. In Sec. IV, we
investigate the accuracy of the resulting criteria using some
well-known examples. In Sec. V, the relationship between
one of our separability conditions and a set of optimal EW’s
is pointed out. Section VI deals with the extension of our
approach to more complex cases—i.e., bipartite systems of
qudits and multipartite systems.

II. LANDAU-POLLAK UNCERTAINTY RELATION

Let X denote a Hermitian operator representing some
physical observable in a finite-dimensional Hilbert space of
dimensionD, with a complete set of orthonormal eigenvec-
tors huxilj si =1,2,… ,Dd and N distinct eigenvaluessN
øDd. For n=1,2,… ,N, the probabilitypnsXd of finding the
stater in the nth eigenspace ofX si.e., the probability of
obtaining thenth possible outcome in a measurement ofXd is
given by

pnsXd = TrfPnsXdrg, s3d

where PnsXd denotes the projection operator on thenth
eigenspace ofX.
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The uncertainty principle states that, for general pairs of
observablesX and Y, the outcomes of a simultaneous mea-
surement cannot both be fixed with arbitrary precision. One
way to express this fact mathematically is through the
Landau-Pollak uncertainty relation

arccosÎmax
n

pnsXd + arccosÎmax
n

pnsYd ù arccosc, s4d

where

c = csX,Yd ; max
i,j

uukxiuyjl. s5d

The relevance of this inequality in quantum mechanics was
first pointed out by Uffinkf14g, who translated to the quan-
tum language the original work of Landau and Pollak on
uncertainty in signal theoryf15g.

The expressions

MrsPd = So
n=1

N

spnd1+rD1/r

, r . − 1, s6d

measure the concentration of the probability distributionP
=sp1,p2,… ,pNd. They are closely related to the Rényi entro-
pies f16g,

Hq
sRdsPd =

1

1 − q
lnSo

n=1

N

spndqD, q . 0, s7d

and the Tsallis entropiesf17g,

Hq
sTdsPd =

1

1 − q
So

n=1

N

spndq − 1D, q . 0, s8d

both of which include the usualsShannond entropy as the
particular caseq=1. The quantitiesMrsPd were first used as
measures of uncertainty in quantum mechanics in Refs.
f12,14g, where a summary of their properties is given; a
more detailed analysis can be found inf18g. Here we will
just mention thatMrsPd is a continuous nondecreasing func-
tion of r, with the limiting value

M`sPd = max
n

pn, s9d

andMrsPd is convex inP—i.e., for 0ølø1,

MrflP1 + s1 − ldP2g ø lMrsP1d + s1 − ldMrsP2d.

s10d

Taking into account Eq.s9d, the Landau-Pollak uncer-
tainty relations4d can be written as

arccosÎM`sXd + arccosÎM`sYd ù arccosc. s11d

Maximizing the sumM`sXd+M`sYd under the constraint
s11d, we obtain the uncertainty inequality

M`sXd + M`sYd ø 1 + c, s12d

which is weaker thans11d but has a simpler and more natural
form.

III. SEPARABILITY CONDITIONS
FOR TWO-QUBIT SYSTEMS

Consider the following observables acting on a bipartite
two-dimensional Hilbert space:

Z = sz
A

^ sz
B, X = sz

A
^ sx

B, s13d

wheresi
j si =x,y,z; j =A,Bd are the standard Pauli operators

acting on thej qubit. SinceZ andX commute, for this pair of
observables we have thatc=1, and the right-hand side of
s11d vanishes, imposing no restriction on the possible out-
comes of measurements. The trivial lower bound 0 ins11d is
attained, for instance, if the measured state is one of the four
maximally entangled elements of the Bell basis,

uf±l =
1
Î2

su00l ± u11ld,

uc±l =
1
Î2

su01l ± u10ld, s14d

where we consideru0l and u1l to be eigenvectors ofsz cor-
responding to the eigenvalues +1 and −1, respectively.

However, if Z and X act on a separable state, the lower
bound 0 is not attainable, which enables the possibility of
obtaining a separability condition. This can be done by using
lemma 1 off10g, which we quote here.

Let r=rA ^ rB be a product state on a bipartite Hilbert
spaceH=HA ^ HB, and letA sBd be observables with non-
zero eigenvalues onHA sHBd. Then,

PsA ^ B,rd a PsA,rAd,

PsA ^ B,rd a PsB,rBd s15d

hold. The notationPsQ s“P majorizesQ” d means that, if
P=sp1,p2,… ,pNd and Q=sq1,q2,… ,qNd denote two prob-
ability distributions written in decreasing ordersi.e., p1
ùp2ù ¯ ùpN andq1ùq2ù ¯ ùqNd, then

o
i=1

k

pi ù o
i=1

k

qi s16d

for all kP f1,… ,Ng.
It follows from the previous definition that Eq.s15d im-

plies the inequalities

M`sA ^ B,rd ø M`sA,rAd,

M`sA ^ B,rd ø M`sB,rBd. s17d

Therefore, if rsep denotes an arbitrarysmixedd separable
state—i.e.,rsep=oipiri

A
^ ri

B—and A1,A2,B1,B2 are observ-
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ables with nonzero eigenvalues, we have that

M`sA1 ^ B1,rsepd + M`sA2 ^ B2,rsepd

ø o
i

pi„M`sA1 ^ B1,ri
A

^ ri
Bd + M`sA2 ^ B2,ri

A
^ ri

Bd…

ø o
i

pi„M`sA1,ri
Ad + M`sA2,ri

Ad…

ø o
i

pi„1 + csA1,A2d… = 1 +csA1,A2d, s18d

where we have used Eqs.s10d and s12d in addition tos17d.
Since bothsz andsx have the eigenvalues +1 and −1, they
satisfy the conditions of the above lemma, and use of Eq.
s18d with the well-known valuecssz,sxd=1/Î2 gives

M`sZ,rsepd + M`sX,rsepd ø 1 +
1
Î2

< 1.71. s19d

We have seen that the method developed by Gühne and
Lewenstein inf10g to derive separability conditions from
entropic uncertainty relations can also be applied to the
Landau-Pollak uncertainty relation. However, as we shall
prove in the following, inequalitys19d can be improved by
performing a direct maximization of the sum ofM`sZd and
M`sXd in product states; the bound attained in this way will
be valid for any separable state because of the convexity of
M`.

An arbitrary product state is of the forms1d with

uflA = cosau0lA + eidsinau1lA,

uwlB = cosbu0lB + eigsinbu1lB, s20d

wherea ,bP f0,p /2g andd ,gP f0,2pd. Both Z andX have
the eigenvalues +1 and −1, and the corresponding eigen-
space projectors are

P+sZd = u00lk00u + u11lk11u,

P−sZd = u01lk01u + u10lk10u,

P±sXd = uf±lkf±u + uc±lkc±u. s21d

Therefore, according to Eq.s3d, the probabilities of finding
the pure separable states1d ands20d in these eigenspaces are,
respectively,

p+sZd = scosa cosbd2 + ssina sinbd2,

p−sZd = 1 − scosa cosbd2 − ssina sinbd2,

p±sXd =
1

2
s1 ± cosd cosg sin 2a sin 2bd. s22d

Sincep±sZd do not depend ond and g and sin 2a sin 2b is
always non-negative, the maximum value ofM`sZd
+M`sXd equals the maximum of the functions

f±sa,bd = p±sZd +
1

2
s1 + sin 2a sin 2bd, s23d

which occurs whena= ±b. Thus we find our first necessary
separability condition

M`sZ,rsepd + M`sX,rsepd ø
3

2
. s24d

If for a certain stateM`sZd+M`sXd.3/2, then Eq.s24d im-
plies that the state is entangled.

As shown inf9g, the introduction of a third observable,

Y = sy
A

^ sy
B, s25d

enables the possibility of obtaining a more accurate separa-
bility condition, due to the fact that we are then using the
maximal number of complementary observables available
for each subsystemf19g. Unfortunately, no generalization of
the Landau-Pollak uncertainty relation is known for sets of
more than two observablesfleaving aside the one that is
trivially obtained from Eq.s12dg, which prevents us from
using Gühne and Lewenstein’s method in this case. There-
fore, we will follow the direct maximization procedure in
order to set an upper bound for the sum ofM`sXd , M`sYd,
andM`sZd in separable states.

The observableY has the same eigenvalues asZ and X,
with eigenspace projectors

P±sYd = uf7lkf7u + uc±lkc±u, s26d

and the corresponding probabilities for the pure separable
states1d and s20d are

p±sYd =
1

2
s1 ± sind sing sin 2a sin 2bd. s27d

Since sin 2a sin 2b is non-negative and the maximum overd
and g of the four functions of the form
±ssind sing±cosd cosgd= ±cossd7gd equals 1, we only
have to find the maximum of the functions

g±sa,bd = p±sZd + 1 +
sin 2a sin 2b

2
= f±sa,bd +

1

2
.

s28d

Recalling the derivation of Eq.s24d, we obtain our second
necessary separability condition

M`sX,rsepd + M`sY,rsepd + M`sZ,rsepd ø 2. s29d

Taking into account thatM`sY,rsepdù1/2, we see that con-
dition s24d can be derived froms29d, so that the latter is
stronger than the former.

Attending tof7,9g, the best separability conditions are ob-
tained by choosing as observables the three orthogonal com-
ponents of the total spin of the system,
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Si = si
A

^ IB + IA ^ si
B si = x,y,zd, s30d

whereI denotes the identity operator. These observables all
have the eigenvalues ±2snondegenerated and 0 stwo-time
degenerated, with eigenspace projectors

P±sSxd =
1

2
suf+l ± uc+ldskf+u ± kc+ud,

P0sSxd = uf−lkf−u + uc−lkc−u,

P±sSyd =
1

2
suf−l ± uc+ldskf−u ± kc+ud,

P0sSyd = uf+lkf+u + uc−lkc−u,

P+sSzd = u00lk00u, P−sSzd = u11lk11u,

P0sSzd = u01lk01u + u10lk10u, s31d

and the corresponding probabilities for the generic pure state
s1d and s20d are

p±sSxd =
1

4
s1 ± cosd sin 2ads1 ± cosg sin 2bd,

p0sSxd =
1

2
s1 − cosd cosg sin 2a sin 2bd,

p±sSyd =
1

4
s1 ± sind sin 2ads1 ± sing sin 2bd,

p0sSyd =
1

2
s1 − sind sing sin 2a sin 2bd,

p+sSzd = scosa cosbd2, p−sSzd = ssina sinbd2,

p0sSzd = scosa sinbd2 + ssina cosbd2. s32d

We therefrom see that the maximum value ofoiM`sSid for
product states is the maximum of

wsa,bd = psSzd + 1 +
sin 2a sin 2b

2
, s33d

which is easily found to be equal to 2. Thus we get our third
necessary separability condition

M`sSx,rsepd + M`sSy,rsepd + M`sSz,rsepd ø 2. s34d

Another interesting possibility is that of measuring a non-
degenerate Bell diagonal observable,

B = l1uf+lkf+u + l2uf−lkf−u + l3uc+lkc+u + l4uc−lkc−u,
s35d

with li Þl j when i Þ j . The probability distribution for the
outcomes ofB acting on the pure separable states1d ands20d
is

pf±sBd =
1

2
fscosa cosbd2 + ssina sinbd2 ± jsa,bdz+sd,gdg,

pc±sBd =
1

2
fscosa sinbd2 + ssina cosbd2 ± jsa,bdz−sd,gdg,

s36d

wherejsa ,bd= 1
2sin 2a sin 2b and z±sd ,gd=cossd±gd. The

non-negativity ofjsa ,bd implies thatM`sBd is the maxi-
mum overa andb of the functions

h1sa,bd =
1

2
fscosa cosbd2 + ssina sinbd2 + jsa,bdg,

h2sa,bd =
1

2
fscosa sinbd2 + ssina cosbd2 + jsa,bdg,

s37d

and, therefore,

M`sBd ø
1

2
. s38d

This last necessary separability condition is not new, since it
was previously derived by Gühne and Lewensteinf10g using
a different method. As pointed out by these authors, condi-
tion s38d is equivalent to the set of four optimal EW’s:

Wf± =
1

2
I − uf±lkf±u, Wc± =

1

2
I − uc±lkc±u. s39d

IV. ACCURACY OF THE SEPARABILITY
CONDITIONS

Next we will test the power as entanglement detectors of
the separability conditions derived in the previous section, by
applying them to states whose separability limits are already
known. We will also compare our separability conditions
with previous criteria. All the probabilities below are calcu-
lated using Eq.s3d and the projectors found in Sec. III.

A. Werner states

Werner statesf20g are mixtures of a completely random
state and a maximally entangled pure state. In the case of two
qubits and choosing the maximally entangled state to be the
singlet state, they read

rW =
1 − p

4
IA ^ IB + puc−lkc−u, s40d

wherepP f0,1g. These states are known to be separable iff
pø1/3 sseef21g and references thereind. The probabilities
of finding rW in each eigenspace when measuring the observ-
ables of Sec. III are

p±sXd = p±sYd = p±sZd =
1 7 p

2
,

p0sSid =
1 + p

2
,
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p±sSid = pf±sBd = pc+sBd =
1 − p

4
,

pc−sBd =
1 + 3p

4
. s41d

Thus we have

o
t=X,Z

M`st,rWd = 1 + p,

o
t=X,Y,Z

M`st,rWd =
3s1 + pd

2
,

o
i=x,y,z

M`sSi,rWd =
3s1 + pd

2
,

M`sB,rWd =
1 + 3p

4
. s42d

We see from these results that the separability condition
s24d detects entanglement whenp.1/2, while s29d, s34d,
and s38d detect entanglement whenp.1/3. It is worth not-
ing that in this case the three latter separability conditions,
like variance-based criteriaf7g, are optimal in the sense that
they are able to detect all the entangled states. All four con-
ditions improve the bound obtained inf9g using Shannon
entropiessp.0.55d, as well as those derived inf10g by
means of Tsallis entropiessp.1/Î3d and Bell’s inequality
criterion sp.1/Î2d. Even more, when measuring the same
observablessi.e., when using the same experimental settingd,
our conditions always improve on the bounds given by the
Shannon and Tsallis entropic conditions, respectively:p
.0.78 andp.1/Î2 when measuringX andZ; p.0.65 and
p.1/Î3 when measuringX,Y, andZ; p.0.55 when mea-
suringSx, Sy, andSz; andp.0.74 when measuringB sin the
last two cases only Shannon entropic conditions are avail-
abled.

B. Gisin states

Gisin statesf22g are mixtures of the same fraction of the
pure statesu00l and u11l and any pure superposition of the
statesu01l and u10l. That is,

rG = puxlkxu +
1 − p

2
su00lk00u + u11lk11ud, s43d

where uxl=cosau01l+eibsinau10l, aP f0,p /2g, b
P f0,2pd, andpP f0,1g. The staterG is known to be sepa-
rable iff f3g

p ø
1

1 + sin 2a
. s44d

In this case,

p±sXd = p±sYd =
1 ± p sin 2a cosb

2
,

p+sZd = 1 − p, p−sZd = p,

p±sSxd = p±sSyd =
1

2
p+sXd,

p0sSxd = p0sSyd = p−sXd,

p±sSzd = pf±sBd =
1 − p

2
, p0sSzd = p,

pc±sBd =
ps1 ± sin 2a cosbd

2
, s45d

which leads to

o
t=X,Z

M`st,rGd = maxhp,1 −pj +
1 + p sin 2aucosbu

2
,

o
t=X,Y,Z

M`st,rGd = maxhp,1 −pj + 1 + p sin 2a ucosbu,

o
i=x,y,z

M`sSi,rGd

= maxHp,
1 − p

2
J

+ 2 maxH1 − p sin 2a cosb

2
,
1 + p sin 2a cosb

4
J ,

M`sBd = maxH1 − p

2
,
ps1 + sin 2aucosbud

2
J . s46d

These results imply that conditionss24d, s29d, s34d, and
s38d detect entanglement whenp. s1+ 1

2sin 2aucosbud−1, p
. s1+sin 2aucosbud−1, p. s1−sin 2a cosbd−1, and p. s1
+sin 2aucosbud−1, respectivelyfnotice that the restriction im-
posed bys34d is meaningful only whenbP sp /2 ,3p /2dg.
Thus we find that in this case the best separability conditions
are s29d and s38d, though in general they are not optimal.
When b=0,p all entangled states are detected bys29d and
s38d, but asb departs from these values the separability con-
ditions fail to detect an increasing amount of entangled
states, until forb=p /2 ,3p /2 no entanglement is detected.
For values ofb such thatucosbu.Î2−1, conditionss29d and
s38d improve the bound given by Bell’s inequality criterion,
p. f1+sÎ2−1dsin 2ag−1 f22g. It is worth noting that, due to
the dependence of the probabilities on two parameters, to
establish which states are detected by the entropic separabil-
ity criteria is mathematically cumbersome and has to be car-
ried out by numerical analysis.
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C. Mixtures of a singlet and a maximally polarized pair

The states

r0 = puc−lkc−u + s1 − pdu00lk00u, s47d

with pP f0,1g, are known by the positive partial transpose
criterion to be separable only ifp=0 f3g. The probabilities
for the observables of Sec. III are now

p±sXd = p±sYd =
1 7 p

2
,

p0sSxd = p0sSyd =
1 + p

2
,

p±sSxd = p±sSyd =
1 − p

4
,

p+sZd = p+sSzd = 1 − p,

p−sZd = p0sSzd = pc−sBd = p,

p−sSzd = pc+sBd = 0,

pf±sBd =
1 − p

2
, s48d

and, therefore,

o
t=X,Z

M`st,r0d = maxhp,1 −pj +
1 + p

2
,

o
t=X,Y,Z

M`st,r0d = maxhp,1 −pj + 1 + p,

o
i=x,y,z

M`sSi,r0d = maxhp,1 −pj + 1 + p,

M`sBd = maxHp,
1 − p

2
J . s49d

We thus find that conditions24d detects entanglement for
p.2/3, while it suffices to havep.1/2 in order to detect
entangled states using conditionss29d, s34d, ands38d. These
bounds are not optimal, but they improve on that derived
from the violation of Bell’s inequality,p.0.8 f3g. Further-
more, as in the case of Werner states, in each measurement
setting the bounds provided by our conditions are better than
those obtained using Shannon entropies:p.0.85 when mea-
suring X and Z; p.0.73 when measuringX, Y, and Z; p
.0.55 when measuringSx, Sy, and Sz; and p.0.78 when
measuringB.

V. EQUIVALENCE OF CONDITION (29)
AND THE SET OF OPTIMAL EW’S (39)

The necessary separability conditions38d is equivalent to
the set of optimal EW’s s39d f10g. Using the three-

dimensional space representation of density matrices with
coordinates TrsXrd , TrsYrd, and TrsZrd ssee Refs.f10,23gd,
this equivalence means that conditions38d is able to recog-
nize the octahedron containing all separable states, which
lies inside the tetrahedron whose vertices are the Bell states
and contains all possible states.

For the three families of states considered in the previous
section, the separability conditionss29d and s38d detect the
same entangled states, which suggests that they are equiva-
lent. In the following we will prove that this is indeed the
case, so that conditions29d is also equivalent to the set of
optimal EW’ss39d and has the same success at detecting the
octahedron that contains the separable states.

Condition s38d can be stated as

0 ø TrsuBSilkBSiursepd ø
1

2
, s50d

whereuBSil is any element of the Bell basiss14d. Taking into
account the identitiesf10g

Trsuf±lkf±urd =
1 ± TrsXrd 7 TrsYrd + TrsZrd

4
,

Trsuc±lkc±urd =
1 ± TrsXrd ± TrsYrd − TrsZrd

4
, s51d

and noting that

Trstrd = p+std − p−std ; Dpstd st = X,Y,Zd, s52d

the inequalities ins50d can be written as

− 1 ø ± DpsX,rsepd 7 DpsY,rsepd + DpsZ,rsepd ø 1,

− 1 ø ± DpsX,rsepd ± DpsY,rsepd − DpsZ,rsepd ø 1.

s53d

This is equivalent to the eight inequalities of the form

− 1 ø ± DpsX,rsepd ± DpsY,rsepd ± DpsZ,rsepd ø 1,

s54d

that is,

uDpsX,rsepdu + uDpsY,rsepdu + uDpsZ,rsepdu ø 1. s55d

Finally, noting that fort=X,Y,Z

uDpstdu = M`std − f1 − M`stdg = 2M`std − 1, s56d

Eq. s55d reduces tos29d, which proves that this separability
condition is equivalent tos38d.

VI. SEPARABILITY CONDITIONS
FOR MORE COMPLEX SYSTEMS

If we consider multipartite and/or higher-dimensional sys-
temssquditsd, the direct maximization procedure used in Sec.
III for two-qubit systems becomes too complicated to be
carried out analytically, due to the increasing number of free
parameters, although it can be faced numerically. However,
the method of Gühne and Lewensteinssee Sec. IIId can also
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be applied in this case, and allows us to derive separability
conditions from the Landau-Pollak uncertainty relation.

A. Bipartite systems of qudits

For states of a two-dimensional Hilbert space, the best
detection of entanglement is achieved by measuring in each
subsystem the three orthogonal components of spin, which
are also a maximal set of complementary observables. We
recall that two observablesA,B in D-dimensional Hilbert
space are said to be complementary ifcsA,Bd=1/ÎD f24g,
and maximal sets ofD+1 pairwise complementary observ-
ables are known to exist whenD is either a primef25g or a
power of a primef19g. However, when the dimension of the
Hilbert space is greater than 2, the orthogonal components of
spin are not complementary observables and both cases must
be treated separately.

ChoosingA1,A2 and/orB1,B2 to be complementary ob-
servables inD-dimensional Hilbert space, we find from Eq.
s18d that

M`sA1 ^ B1,rsepd + M`sA2 ^ B2,rsepd ø 1 +
1

ÎD
. s57d

On the other hand, ifSn and Sn8 denoteD-dimensional
spin observables along the axesn and n8, respectively, we
have thatf26g

c2sSn,Sn8d = SD − 1

n* DScos2
b

2
DD−1−n*Ssin2b

2
Dn*

,

n* = FD sin2b

2
G , s58d

where b is the angle between the axesn and n8, and the
square brackets denote integer part of the expression within.
Therefore, use of Eq.s18d leads to

M`sSn
A

^ Sn
B,rsepd + M`sSn8

A
^ Sn8

B ,rsepd

ø 1 +ÎSD − 1

n* DScos
b

2
DD−1−n*Ssin

b

2
Dn*

, s59d

and choosing the axesn,n8 to be orthogonalsb=p /2d the
previous inequality simplifies to

M`sSx
A

^ Sx
B,rsepd + M`sSz

A
^ Sz

B,rsepd

ø 1 +Î 1

2D−1SD − 1

fD/2g
D . s60d

It is worth noting that whenD is odd the spin observables
have one nondegenerate zero eigenvalue, so that the condi-
tions in Gühne and Lewenstein’s lemma are not fulfilled.
However, as pointed out by these authorsf10g, the require-
ment that the observables have nonzero eigenvalues is more
a technical condition and can always be achieved by altering
the eigenvalues, since the Landau-Pollak uncertainty rela-
tion, like the entropic uncertainty relations considered in
f10g, does not depend on them.

B. Multipartite systems

In the case of tripartite systems we must distinguish be-
tween fully separable states, which are statessor mixtures of
statesd of the form

uclABC= uflA ^ uwlB ^ uxlC, s61d

and biseparable states, which are product states with respect
to one particular bipartite splitting of the system, e.g.,

uclABC= uflA ^ uwlBC, s62d

or mixtures of states of this form. Fully separable and bisepa-
rable states, as well as other kinds of partially separable
states, can be defined likewise for general multipartite sys-
tems.

A straightforward generalization of Eq.s18d enables us to
derive biseparability conditions for multipartite qubit and qu-
dit systems. Thus, for instance, on the analogy ofs19d we
find the following biseparability condition for systems of
three qubits:

M`ssx
A

^ sx
B

^ sx
Cd + M`ssz

A
^ sz

B
^ sz

Cd ø 1 +
1
Î2

< 1.71.

s63d

Likewise, the multipartite analogs of Eqs.s57d ands60d are,
respectively, the following biseparability conditions for sys-
tems with an arbitrary number of subsystems in
D-dimensional Hilbert space:

M`sC1
A1 ^ ¯ ^ C1

AD,rsepd + M`sC2
A1 ^ ¯ ^ C2

AD,rsepd

ø 1 +
1

ÎD
, s64d

whereC1 andC2 are complementary observables, and

M`sSx
A1 ^ ¯ ^ Sx

AD,rsepd + M`sSz
A1 ^ ¯ ^ Sz

AD,rsepd

ø 1 +Î 1

2D−1SD − 1

fD/2g
D . s65d

We emphasize that, as already noted in Sec. III in relation
to the two-qubit case, the separability and biseparability con-
ditions obtained in this section cannot be improved by con-
sidering measurements of additional observables, due to the
fact that no nontrivial generalization of the Landau-Pollak
uncertainty relation is known for sets of more than two ob-
servablesf27g.

VII. CONCLUSIONS

We have derived several necessary separability conditions
for two-qubit systems—namely, Eqs.s24d, s29d, s34d, and
s38d—on the basis of the so-called Landau-Pollak uncer-
tainty relation. Like entropy-based separability criteria, our
conditions are expressed in terms of the probability distribu-
tions for the outcomes of measurements, so that they can be
applied in many experimental settings. On the other hand,
the measure of uncertainty used here,M`, is mathematically
easier to handle than entropies.
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In order to test the power of these conditions as entangle-
ment detectors, we have applied them to three well-known
families of two-qubit states: namely Werner states, Gisin
states, and mixtures of a singlet and a maximally polarized
pair. In most cases, the results obtained are better than those
provided by other separability criteria, such as Bell’s in-
equalities violation and entropy-based criteria. Conditions
s29d, s34d, and s38d are even able to detect all entangled
two-qubit Werner states, thus improving on entropy-based
criteria f9,10g and reproducing the results of variance-based
criteria f7g. However, the other two families show that in
general our conditions are not optimal; i.e., they are neces-
sary but not sufficient. It would be interesting to know
whether a refined choice of operators can give optimal re-
sults for these states and, more generally, whether given an
entangled state it is always possible to construct a set of
observables such that the sum of theirM` measures is
greater in that state than in a generic product state.

We have proved that conditionss29d ands38d are equiva-
lent. Sinces38d is known to be equivalent to the set of four
optimal EW’s s39d, the same happens fors29d. As a conse-
quence,s29d is able to detect all entangled states lying out-
side the octahedron of separable states in the three-

dimensional representation of density matricesf28g.
Conditions24d is weaker thans29d, since it does not include
the correlations in the third observable; however, we have
considered it explicitly because it only needs two measure-
ments and, therefore, it is experimentally less demanding.

Finally, we have extended our results to more complicated
cases than two-qubit systems—i.e., to multipartite and
higher-dimensional systems—for which no necessary and
sufficient condition for entanglement is known to date. The
separability conditions obtained in these cases, however, are
limited due to the lack of a nontrivial uncertainty relation of
Landau-Pollak type for sets of more than two observables.
Therefore, further research in this field might help to im-
prove the results presented here.
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