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We obtain a collection of necessafgufficien) conditions for a bipartite system of qubits to be separable
(entanglegl which are based on the Landau-Pollak formulation of the uncertainty principle. These conditions
are tested and compared with previously stated criteria by applying them to states whose separability limits are
already known. Our results are also extended to multipartite and higher-dimensional systems.
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[. INTRODUCTION be simultaneous eigenstates for the set of nonlocal operators.
Using this idea, there have been achieved variance-based
separability criterid7] inspired by the Heisenberg-Robertson
formulation of the uncertainty principl¢8], as well as
entropy-based separability criterj8,10] derived from en-
tropic uncertainty relationsl1-13. The necessary separabil-
[) = | YA ® |@)g. (1) ity conditions obtained in this way have the advantage of
] being more easily implemented in experiments, since they
Separable states are mixtures of product states. In othgfe pased on expectation values and probabilities for the out-
words, the density operatgracting onH that characterizes comes of measurements. On the contrary, the partial trans-
the quantum state o andB is called separable if it can be pose criterion demands complete knowledge of the density
written as a convex combination of product vectors—that ismatrix, whose experimental determination requires consider-

Consider the vectdu), pertaining to a finite-dimensional
Hilbert spaceH=H,® Hg, which describes a pure state of
two quantum systemA andB. |¢) is said to be a product
state if there existép), € Hy and|¢)g € Hg such that

_ _ A_ B able effort.
p=2 plduednal= 2 pel © ot ) In this paper we derive new separability criteria based on
' ' a different mathematical formulation of the uncertainty prin-
where Osp; <1, Zip;=1, and|;, ¢;)=|d)a® | ¢i)- ciple, the so-called Landau-Pollak uncertainty relation, and

If p cannot be written as in ER2), then the state is said to we show that these conditions are better than those obtained
be entangled. Entanglement is one of the most fascinatingsing entropies in the examples proposed so far. The article
issues in quantum mechanics, not only from a theoreticails organized as follows. The Landau-Pollak uncertainty rela-
point of view[1], but also because of its applications in thetion is briefly reviewed in Sec. Il, where we state some prop-
context of quantum information theory, such as cryptographyerties that will be useful later on. In Sec. Ill, we derive new
and teleportatioh2]. Therefore, it is a very interesting ques- separability conditions for two-qubit systems. In Sec. IV, we
tion to ask whether a given state is entangled or not. Alinvestigate the accuracy of the resulting criteria using some
though no general answer is known, there exist a great variwell-known examples. In Sec. V, the relationship between
ety of separability criteria, like the partial transpose criterionone of our separability conditions and a set of optimal EW’s
[3], Bell's inequalities violatior[4], and the construction of is pointed out. Section VI deals with the extension of our
entanglement witness¢gW's) [5]. The first of these criteria approach to more complex cases—i.e., bipartite systems of
gives necessary and sufficient conditions when the dimengudits and multipartite systems.
sion of H is either 2< 2 or 2X 3, while otherwise it is just a
necessary condition. The second criterion provides only a
necessary condition. Finally, the third criterion is necessary  Il. LANDAU-POLLAK UNCERTAINTY RELATION
and sufficient in the sense that, given an entangled state, . _
there always exists an EW that detects it; however, it is not | -6t X denote a Hermitian operator representing some
known how to construct all possible EW’s, and this criterion physical observable in a finite-dimensional Hilbert space of

turns out to be a necessary separability condition once a pafimensionD, with a complete set of orthonormal eigenvec-

ticular set of EW's has been chosen. tors {|x)} (i=1,2,...,D) and N distinct eigenvaluesN
The relationship between entanglement and the uncer=DP)- Forn=1,2....,N, the probabilityp,(X) of finding the

tainty principle has been investigated in several recent work§tatep in the nth eigenspace oK (i.e., the probability of

(see, e.g.[6]). The key fact is that, when measuring a col- Obtaining thenth possible outcome in a measuremenkpfs

lection of nonlocal observables on a given state, the lowegiven by

bound on the uncertainty of the outcomes is higher for sepa- _

rable states than for entangled states, because of the correla- Pa(X) = T PA(X)p], ®

tions inherent in the latter. Nonlocal operators possess, iwhere P, (X) denotes the projection operator on théh

general, entangled eigenstates, while separable states cane@enspace oX.
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The uncertainty principle states that, for general pairs of I1l. SEPARABILITY CONDITIONS
observables< and Y, the outcomes of a simultaneous mea- FOR TWO-QUBIT SYSTEMS

surement cannot both be fixed with arbitrary precision. One ) ) ) ) )
way to express this fact mathematically is through the Consider the following observables acting on a bipartite

Landau-Pollak uncertainty relation two-dimensional Hilbert space:
arccos /maxp,(X) + arccos /maxp,(Y) = arccosc, (4) Z=0,® 05, X=dh® ok, (13
n n
where whereg{ (i=x,y,z, j=A,B) are the standard Pauli operators
acting on thg qubit. SinceZ andX commute, for this pair of
c=c(X,Y) = max[(xly;). (5  observables we have that1, and the right-hand side of
1)

(1) vanishes, imposing no restriction on the possible out-
The relevance of this inequality in quantum mechanics wa§omes of measurements. The trivial lower bound Q1) is
first pointed out by Uffink 14], who translated to the quan- attained, for instance, if the measured state is one of the four
tum language the original work of Landau and Pollak onmaximally entangled elements of the Bell basis,
uncertainty in signal theorf15].

The expressions w1
%) = '_E(|00> +[11)),
\J

N 1
M, (P) = (E (pn)l+r) , r>-1, (6)
n=1
W 1
measure the concentration of the probability distributfn |y = E(ml)i 10), (14)
=(p1,P2,--.,Pn)- They are closely related to the Rényi entro-

pies[16], where we considej0) and|1) to be eigenvectors af, cor-

1 N responding to the eigenvalues +1 and -1, respectively.

H;R)(p) = —|n(2 (pn)Q)' q>0, (7) However, if Z and X act on a separable state, the lower
1-g \p21 bound 0 is not attainable, which enables the possibility of

obtaining a separability condition. This can be done by using

and the Tsallis entropi€s. 7], lemma 1 of[10], which we quote here.

1 N Let p=pa® pg be a product state on a bipartite Hilbert
HgT)(P) = _(E (p)? - 1>’ q>0, (8)  spaceH=H,®Hg, and letA (B) be observables with non-
1-g\n zero eigenvalues oH, (Hg). Then,

both of which include the usudShannoh entropy as the
particular case=1. The quantitied,(P) were first used as
measures of uncertainty in quantum mechanics in Refs.
12,14, where a summary of their properties is given; a

Enoreégdetailed analysis ca)r/1 be foundp[iIBFi. Here WS will P(A®B.p) < P(B.pe) (15
just mention that,(P) is a continuous nondecreasing func-
tion of r, with the limiting value

P(A® B,p) <P(App),

hold. The notatioriP> Q (“P majorizesQ”) means that, if

P=(p1,P2,-.-,pn) @and Q=(q;,qy, ...,dy) denote two prob-

M_.(P) = maxp,, (9) ability distributions written in decreasing ordér.e., p;
n =p,=---=pyandq;=g,=---=qy), then

andM,(P) is convex inP—i.e., for 0=\ <1,

k k
M AP, + (1= N)Py] < MM, (Py) + (1= NM,(P,). 2= (16)
i=1 i=1
(10)
Taking into account Eq(9), the Landau-Pollak uncer- forallke[1,...,N].
tainty relation(4) can be written as It follows from the previous definition that E¢15) im-

plies the inequalities

arccos/M..(X) + arccos M..(Y) = arccosc. (11)

Maximizing the sumM..(X)+M.(Y) under the constraint M.(A® B,p) < Mw(A,pn),

(11), we obtain the uncertainty inequality

M..(X) + M..(Y) < 1 +c, (12) M=(A® B,p) < M(B,pp). (7

which is weaker thafil1) but has a simpler and more natural Therefore, if ps, denotes an arbitrarymixed separable
form. state—i.e. pse= 2iPip] ® pf—and Ay, Ay, B, , B, are observ-
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ables with nonzero eigenvalues, we have that
M.(A ® lePsep) + M. (A2 ® BZrPser)
< 2 pi(M(AL ® By, pf* ® p) + Mo(A; @ Bo " @ i)
|
< 2 pi(M(Ag ) + Mo(Ag, )
|
< E Pi(1+Cc(Ag,A0) = 1 +C(AL,Ay), (18)
|

where we have used Egdl0) and(12) in addition to(17).

Since botho, and o, have the eigenvalues +1 and -1, they
satisfy the conditions of the above lemma, and use of Eq.

(18) with the well-known value:(oz,ax):l/\E gives

1
M.(Z psep + MolXopsep <1+ =~ 171. (19
\‘J
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fu(@f)=p.)+ 5L +sinasin2g), (29

which occurs wherv= % 3. Thus we find our first necessary
separability condition

lw

Moc(Z,Psea + Moc(xrpser) = (24)

>

If for a certain stateM.(Z) + M..(X) >3/2, then Eq(24) im-

plies that the state is entangled.

As shown in[9], the introduction of a third observable,
Y= 049 ® 0‘5, (25)

enables the possibility of obtaining a more accurate separa-

bility condition, due to the fact that we are then using the
maximal number of complementary observables available

We have seen that the method developed by Giihne arfdr each subsysteifl9]. Unfortunately, no generalization of
Lewenstein in[10] to derive separability conditions from the Landau-Pollak uncertainty relation is known for sets of
entropic uncertainty relations can also be applied to thénore than two observabld$eaving aside the one that is
Landau-Pollak uncertainty relation. However, as we shallrivially obtained from Eq.(12)], which prevents us from
prove in the following, inequality19) can be improved by using Glhne and Lewenstein’s method in this case. There-

performing a direct maximization of the sum bf..(2) and

fore, we will follow the direct maximization procedure in

M..(X) in product states; the bound attained in this way will order to set an upper bound for the sumM£(X), M..(Y),
be valid for any separable state because of the convexity ¢fndM..(Z) in separable states.

M...
An arbitrary product state is of the for(d) with

|p)a = cOSal0) + €%inall),,

| @) = cOSp|0)g + €7sin Bl 1)g,
wherea,Be[0,7/2] and 8,y [0, 27). BothZ andX have

(20)

the eigenvalues +1 and -1, and the corresponding eigen-

space projectors are

P.(2) =|00)00| + |11)(11],
P_(2) =101)(01] +|10X10],

P.(X) = [¢" X" + [Ny
Therefore, according to E@3), the probabilities of finding

(21)

the pure separable stat® and(20) in these eigenspaces are,

respectively,

p.(Z) = (cosa cosP)? + (sina sin B)?,

p_(Z) = 1 - (cosa cosB)? - (sina sin B)?,

1
p.(X) = 5(1 + €0SS5 cosy sin 2a sin 26). (22)

Sincep.(Z) do not depend o and y and sin 2vsin 28 is
always non-negative, the maximum value of.(2)
+M,(X) equals the maximum of the functions

The observablér has the same eigenvalues zasand X,
with eigenspace projectors
P.(Y) =" X" | + |}y, (26)
and the corresponding probabilities for the pure separable
state(1) and (20) are

p:(Y) :%(1isin53in v 'sin 2« sin 26). (27)

Since sin 2 sin 28 is hon-negative and the maximum ower
and vy of the four functions of the form
t(sindsinytcosscosy)=+cogS+ y) equals 1, we only
have to find the maximum of the functions

sin2asin 28

O:(a,B)=ps(2)+1+ -, - fo(a,B)+ %

(28)

Recalling the derivation of E¢24), we obtain our second
necessary separability condition
Moo(xvpse;) + Moc(Yapse;) + Moo(zypser) <2. (29
Taking into account thal..(Y, psey =1/2, we see that con-
dition (24) can be derived fron(29), so that the latter is
stronger than the former.
Attending to[7,9], the best separability conditions are ob-

tained by choosing as observables the three orthogonal com-
ponents of the total spin of the system,

052325-3



JULIO I. de VICENTE AND JORGE SANCHEZ-RUIZ

S=cleolg+l,oo® (i=xy,2), (30)

wherel denotes the identity operator. These observables all

have the eigenvalues tghondegenerajeand O (two-time
degenerate with eigenspace projectors

PL(S) = 56 £ (@] £ W,
Po(S) =176+ ),

P.(S) = 5672 WD = .

Po(S) = [6")(¢h"] + [ )w ],
P.(S) =[00)00, P(S) =|11)11],

Po(S,) =101)(01] +[10)10, (31

and the corresponding probabilities for the generic pure sta

(1) and(20) are

P+(S) = %(1 + €0sd sin 2a)(1 + cosy sin 26),
Po(S) = %(1 — C0SS coSy sin 2« sin 26),

P(S) = %(1 £ sinésin 2a)(1 = siny sin 28),
Po(§) = %(1 - singsin y sin 2a sin 28),

p.(S) = (cosacosP)?,  p_(S)=(sinasinp)?,

Po(S,) = (cosa sin B)? + (sin a cosPB)?. (32
We therefrom see that the maximum valueXhM..(S) for
product states is the maximum of
sin 2« sin 28

W(a,B)=p(S) +1+ 5 ; (33

PHYSICAL REVIEW A1, 052325(2005
py:(B) = 5[(Cosasin B+ (sin a CoS) + &lar L5, )],
(36)

where g(a,ﬁ):%sin 2 sin 28 and £.(8,y)=cog 5+ y). The
non-negativity ofé&(«,B) implies thatM,(B) is the maxi-
mum overa and B of the functions

hy(a, B) = %[(cos(x cospB)? + (sina sin B)?+ & a, B)],

e, ) = 5[(cosa sin 7+ (sina oS8+ &(e )]

(37
and, therefore,

M..(B) <

N

(38)

L?his last necessary separability condition is not new, since it

was previously derived by Giihne and Lewens{did using
a different method. As pointed out by these authors, condi-
tion (38) is equivalent to the set of four optimal EW’s:

1 1
Wge = S1= (¢, Wye=ST= [0 (39)

IV. ACCURACY OF THE SEPARABILITY
CONDITIONS

Next we will test the power as entanglement detectors of
the separability conditions derived in the previous section, by
applying them to states whose separability limits are already
known. We will also compare our separability conditions
with previous criteria. All the probabilities below are calcu-
lated using Eq(3) and the projectors found in Sec. lII.

A. Werner states

Werner state$20] are mixtures of a completely random
state and a maximally entangled pure state. In the case of two
qubits and choosing the maximally entangled state to be the

which is easily found to be equal to 2. Thus we get our thirdsing|et state, they read

necessary separability condition

Moo(S(aPseQ + Moo(Sy,PseQ + Mco(Szapse;) <2. (34

Another interesting possibility is that of measuring a non-

degenerate Bell diagonal observable,
B = N[ "N @"| + Mol N[ + Nglf W[ + Mol W]
(39
with \; # \; wheni#j. The probability distribution for the

outcomes 0B acting on the pure separable stétgand(20)
is

1
ps+(B) = Z[(cosa cosp)? + (sina sin B)? £ &(a, B L+(8,7)],

"2

l —
pw= " Ia @ T+ P, (40)

wherep € [0, 1]. These states are known to be separable iff

p=<1/3 (see[21] and references therginThe probabilities
of finding pyy in each eigenspace when measuring the observ-
ables of Sec. Ill are

17
p.(X) = p(Y) = pu(2) = Tp
_1+p
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4

P+(S) = py(B) = py+(B) =

1+3p
(B) = .
py-(B) 2

(41)

Thus we have

2 MW(T,PW) = 1 + p!
=X,Z

3(1+p)
>

E MOC(TIPW) =

=X,Y,Z

3(1+p)
>

> M.(S,pw) =

i=xy,z

1+3
Moc(vaW) = —p

2 (42)

We see from these results that the separability condition

(24) detects entanglement wher>1/2, while (29), (34),
and(38) detect entanglement whea>1/3. It is worth not-

ing that in this case the three latter separability conditions,

like variance-based criter{@], are optimal in the sense that

PHYSICAL REVIEW A 71, 052325(2005
p.(2)=1-p, p-(2)=p,
1
P+(S) = pt(sy) = Ep+(x),
Po(S) = Po(S) = p(X),

1 —_
P+(S) = py(B) = Tp Po(S) =P,

(1 % sin 2o cosp)

> (45)

py(B) = P

which leads to

1 +psin 2a|cosp|

> M..(r,pg) =maxp,1-p}+ 5
=X,z

> M..(r,pg) =maxp,1-p}+1+psin 2« |cosA,
=XY,Z

they are able to detect all the entangled states. All four con-

ditions improve the bound obtained [®] using Shannon
entropies(p>0.59, as well as those derived ifL0] by
means of Tsallis entropie@>1/y3) and Bell's inequality

criterion (p>1/y2). Even more, when measuring the same

observablesi.e., when using the same experimental sejting

our conditions always improve on the bounds given by the

Shannon and Tsallis entropic conditions, respectively:
>0.78 andp> 1/42 when measuringl andZ; p>0.65 and
p>1/y3 when measuring,Y, andZ; p>0.55 when mea-
suringS,, S, andS,; andp>0.74 when measuring (in the

last two cases only Shannon entropic conditions are avail-

able.

B. Gisin states

> M.(S,po)

i=xy,z

1_
e

1-psin 2w cospB 1+psin2acos,8}
2 L 4 7

+2 ma

2
These results imply that conditior{24), (29), (34), and

Mx(B):max{lgp,p(l+Sin 2a|COS,3|)}- (46)

1. -1
Gisin stateg22] are mixtures of the same fraction of the (38) detect entanglement wheu> (1+3sin 2a|cosp|) ™, p

pure stateg00) and|11) and any pure superposition of the
states|01) and|10). That is,

pe=p0 + (00400 + 111, @)

where |y)=cosa|0l)+€Psinal10), ac[0,7/2], B
e[0,27), andp [0, 1]. The statepg is known to be sepa-
rable iff [3]

1

= —. (44)
1+ sin 2

p

In this case,

1 +psin 2« cosp
5 )

P+(X) = p.(Y) =

> (1+sin 22/cosg|)™, p>(1-sin v cosp)™t, and p>(1

+sin 2a]cos|) %, respectivelynotice that the restriction im-
posed by(34) is meaningful only whend e (7/2,3w/2)].
Thus we find that in this case the best separability conditions
are (29) and (38), though in general they are not optimal.
When 8=0,7 all entangled states are detected(B9) and
(38), but asB departs from these values the separability con-
ditions fail to detect an increasing amount of entangled
states, until for3=/2,3m/2 no entanglement is detected.
For values ofg such thatcos| > \2 -1, conditiong29) and

(38) improve the bound given by Bell’s inequality criterion,
p>[1+(V2-1sin 22]71 [22]. It is worth noting that, due to
the dependence of the probabilities on two parameters, to
establish which states are detected by the entropic separabil-
ity criteria is mathematically cumbersome and has to be car-
ried out by numerical analysis.

052325-5



JULIO I. de VICENTE AND JORGE SANCHEZ-RUIZ

C. Mixtures of a singlet and a maximally polarized pair

The states

po =Pl Xy |+ (1-p)[00X00,

with pe[0,1], are known by the positive partial transpose
criterion to be separable only =0 [3]. The probabilities

for the observables of Sec. Ill are now
1+p

P+(X) = pu(Y) = T,

1+

©

Po(S) = Po(S) =

1_

©

P+(S) = p«(S) =
P+(2) =p(S)=1-p,
P-(2) = po(S) = py~(B) =p,

p_(S) =p,+(B) =0,

1-p
«(B)=———
Py=(B) 5
and, therefore,
1+
S M.(rip0) = maxp, 1 =p}+ =",
=X,z

> M.(7,p0) =maxp,1-p}+1+p,

=X,Y,Z

E MW(SIPO) = ma){pal _p}+ 1 +pl

i=x,y,z
1-
M..(B) = max{p,Tp}.

We thus find that conditiofi24) detects entanglement for

PHYSICAL REVIEW A1, 052325(2005

dimensional space representation of density matrices with
coordinates TiXp), Tr(Yp), and T(Zp) (see Refs[10,23),

this equivalence means that conditi(88) is able to recog-
(47) nize the octahedron containing all separable states, which
lies inside the tetrahedron whose vertices are the Bell states
and contains all possible states.

For the three families of states considered in the previous
section, the separability conditioi29) and (38) detect the
same entangled states, which suggests that they are equiva-
lent. In the following we will prove that this is indeed the
case, so that conditiofR9) is also equivalent to the set of
optimal EW’s(39) and has the same success at detecting the
octahedron that contains the separable states.

Condition (38) can be stated as

1
0= Tr(BS)BS|peep <5 (50

where|BS) is any element of the Bell basi&4). Taking into
account the identitiegl0]

1+Tr(Xp) ¥ Tr(Yp) + Tr(Zp)

Tr([¢*X¢*lp) = 2

1+Tr(Xp) £ Tr(Yp) — Tr(Zp)
2 ,

Tr(| " y*lp) = (51)

(48) and noting that
Tr(7p) =pu(7) = p(71) =Ap(7) (7=X)Y,Z), (52
the inequalities i50) can be written as
—1< 2 Ap(X,psep F AP(Y,psep + AP(Z,psep < 1,
-1z Ap(xvpse;) B Ap(YvPser) - Ap(zvpse[) =1.
(53
This is equivalent to the eight inequalities of the form
-1ls+ Ap(xlpser) t Ap(Yypse[) t Ap(zvpsep) =<1,
(54)
(49 that is,

|AD(X,pse;)| + |Ap(Y1PseQ| + |Ap(z1pser)| <1. (59

p>2/3, while it suffices to hav@>1/2 in order to detect Finaly, noting that forr=X,Y,Z
entangled states using conditiof®9), (34), and(38). These

bounds are not optimal, but they improve on that derived
from the violation of Bell's inequalityp>0.8[3]. Further-
more, as in the case of Werner states, in each measuremen(
setting the bounds provided by our conditions are better than

|Ap(7D] =M.(7) = [1 =M (D] =2M.(7) -1,  (56)

E(i]. (55) reduces td29), which proves that this separability
ndition is equivalent t¢38).

those obtained using Shannon entropes:0.85 when mea-

suring X and Z; p>0.73 when measurini, Y, andZ; p
>0.55 when measuring,, S, andS,; and p>0.78 when

measuringB.

V. EQUIVALENCE OF CONDITION (29)
AND THE SET OF OPTIMAL EW'’S (39)

The necessary separability conditi®8) is equivalent to

VI. SEPARABILITY CONDITIONS
FOR MORE COMPLEX SYSTEMS

If we consider multipartite and/or higher-dimensional sys-
tems(qudits, the direct maximization procedure used in Sec.
Il for two-qubit systems becomes too complicated to be
carried out analytically, due to the increasing number of free
parameters, although it can be faced numerically. However,

the set of optimal EW’'s(39) [10]. Using the three- the method of Guhne and Lewenstégee Sec. Il can also
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be applied in this case, and allows us to derive separability B. Multipartite systems

conditions from the Landau-Pollak uncertainty relation. In the case of tripartite systems we must distinguish be-

tween fully separable states, which are stétesmixtures of
A. Bipartite systems of qudits state$ of the form

For states of a two-dimensional Hilbert space, the best | asc=|Ha® |0)s ® [X)c, (61)
detection of entanglement is achieved by measuring in each ) )
subsystem the three orthogonal components of spin, whicnd biseparable states, which are product states with respect
are also a maximal set of complementary observables. W& one particular bipartite splitting of the system, e.g.,
recall that two observabled,B in D-dimensional Hilbert [Wasc=|B)a ® @) (62)
space are said to be complementarg(#,B)=1/\D [24], ABCT |#7A % |#/BC)
and maximal sets ob+1 pairwise complementary observ- or mixtures of states of this form. Fully separable and bisepa-
ables are known to exist whe is either a primg25] or a  rable states, as well as other kinds of partially separable
power of a primg19]. However, when the dimension of the states, can be defined likewise for general multipartite sys-
Hilbert space is greater than 2, the orthogonal components ¢éms.
spin are not complementary observables and both cases mustA straightforward generalization of E¢L8) enables us to
be treated separately. derive biseparability conditions for multipartite qubit and qu-

ChoosingA,,A, and/orB,,B, to be complementary ob- dit systems. Thus, for instance, on the analogy(k#) we
servables irD-dimensional Hilbert space, we find from Eq. find the following biseparability condition for systems of
(18) that three qubits:

1 1
M..(Ay ® By, psep) + Moo(Ap @ By, psep) < 1+ D (57) Mo (0} ® 0} ® o) + Me(0} ® 07 © 07) < 1 +E ~1.71.
\\" J

On the other hand, if5, and S,, denoteD-dimensional (63
spin observables along the axesandn’, respectively, we Likewise, the multipartite analogs of Eq&7) and(60) are,

have tha26] respectively, the following biseparability conditions for sys-
D-1 Detort - tems with an arbitrary number of subsystems in
(S, Sy) = ( . )<c0§§> (sin2§> , D-dimensional Hilbert space:
Mw(cfl QR  ® C?D,pser) + Mx(cél R ® CéDvaea
* . ﬁ i
=|D n2_ =1+ =, (64)

where g is the angle between the axesandn’, and the ~WhereC; andC, are complementary observables, and

square brackets denote integer part of the expression within. Lo 5 Lo 5
Therefore, use of E18) leads to M.(Se e ©S; Psep) + M. @ © S Psep

/1 (D-1
MW(S? ® ﬁipse[) + Mm(ﬁ, ® i/ipse;) <1+ 2D_—1<[D/2] ) (65)

<1+ /(Dn_* 1><COSE>D_H (sing)n . (59 We emphasize that, as already noted in Sec. Il in relation

2 2 to the two-qubit case, the separability and biseparability con-
_ ) ditions obtained in this section cannot be improved by con-
and choosing the axas,n’ to be orthogonal3=/2) the  sjdering measurements of additional observables, due to the

previous inequality simplifies to fact that no nontrivial generalization of the Landau-Pollak
uncertainty relation is known for sets of more than two ob-
M.(S ® Spsep + Mo(S) © S, psep) servableg27].

1 (D-1
<1+1/— .
1+ 2D—1<[D/2]) (60) VII. CONCLUSIONS

It is worth noting that whe is odd the spin observables ~ We have derived several necessary separability conditions
have one nondegenerate zero eigenvalue, so that the conflir two-qubit systems—namely, Eq§24), (29), (34), and
tions in Gihne and Lewenstein’s lemma are not fulfilled.(38—on the basis of the so-called Landau-Pollak uncer-
However, as pointed out by these authft6], the require- tainty relation. Like entropy-based separability criteria, our
ment that the observables have nonzero eigenvalues is mocenditions are expressed in terms of the probability distribu-
a technical condition and can always be achieved by alteringjons for the outcomes of measurements, so that they can be
the eigenvalues, since the Landau-Pollak uncertainty relaapplied in many experimental settings. On the other hand,
tion, like the entropic uncertainty relations considered inthe measure of uncertainty used hevk,, is mathematically
[10], does not depend on them. easier to handle than entropies.
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In order to test the power of these conditions as entangledimensional representation of density matric¢28].
ment detectors, we have applied them to three well-knowrCondition(24) is weaker thar{29), since it does not include
families of two-qubit states: namely Werner states, Gisinthe correlations in the third observable; however, we have
states, and mixtures of a singlet and a maximally polarize@&onsidered it explicitly because it only needs two measure-
pair. In most cases, the results obtained are better than thoggents and, therefore, it is experimentally less demanding.
provided by other separability criteria, such as Bell's in-  Finally, we have extended our results to more complicated
equalities violation and entropy-based criteria. Conditiong:zses than two-qubit systems—i.e., to multipartite and
(29), (34), and (38) are even able to detect all entangled pigher-dimensional systems—for which no necessary and
two-qubit Werner states, thus improving on entropy-based, ricient condition for entanglement is known to date. The
cr!ter!a[9,10] and reproducing the results_ .Of vanance-bage eparability conditions obtained in these cases, however, are
Cgfenr?il[z]urF(L?)Vr\:gi\:i%rﬁsthaereoahoetrom{ﬁnzh}Iléestﬁgovgrtehﬁte(l:g limited due to the lack of a nontrivial uncertainty relation of
9 P P y Yandau-Pollak type for sets of more than two observables.

iva;]rgthbetitan?éﬁﬁgg'%ﬁgféelto}”gugjra?;s'T::]esﬂllgOtotmlig?vrve]'herefore, further research in this field might help to im-
P 9 P rove the results presented here.

sults for these states and, more generally, whether given an
entangled state it is always possible to construct a set of
observables such that the sum of théi,, measures is
greater in that state than in a generic product state.

We have proved that conditiori29) and(38) are equiva- The work of the second auth@d.S.R) has been partially
lent. Since(38) is known to be equivalent to the set of four supported by Direccién General de Investigadibtinisterio
optimal EW’s (39), the same happens f¢29). As a conse- de Ciencia y Tecnologfaof Spain under Grant Nos.
guence,(29) is able to detect all entangled states lying out-BFM2001-3878-C02-01 and BFM 2003-06335-C03-02, and
side the octahedron of separable states in the thredhe Junta de Andalucia research group No. FQM-0207.
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