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Quantum state estimation has been widely investigated and there are mainly two approaches proposed: One
is based on the point estimation of an unknown parameter and the other is based on the Bayesian method. We
adopt the relative entropy from the true state to a predictive density operator as a loss function. We consider
exchangeable quantum models with an arbitrary chosen measurement and show that Bayesian predictive
density operators are the best predictive density operators when we evaluate them by using the average relative
entropy based on a prior. This result is a quantum version of Aitchison’s result in classical statistics.
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I. INTRODUCTION

In classical statistics, the problem of predicting an unob-
served variabley by using an observed variablex has been
investigated. Suppose that a parametric model

P = hpsyuud:u P Qj,

which is a set of probability densities, is given, whereQ is a
parameter space. Random variablesx and y are distributed
according to the same true probability densityps·uud in P.
We predict the unobserved variabley with a predictive den-
sity p̂sy;xd constructed by using the observed variablex. The
closeness of the true densitypsy uud and a predicted density
p̂sy;xd is evaluated by using the Kullback-Leibler divergence

Dsp i p̂d ªE psyuudlog
psyuud
p̂sy;xd

dy.

Aitchison f1g showed that a Bayesian predictive density
ppsy uxdªeQpsy uudpsu uxddu, where psu uxd is a posterior
distribution, is the best predictive density when we evaluate
a predictive densityp̂sy;xd by using the average Kullback-
Leibler divergenceepsudeDspi p̂dpsxuuddxdu, where psud
is a probability density. Intuitively speaking, if we have some
uncertainty onu, then moderate averaged estimation from
the datax is better than one based on a point estimation. We
extend this result in classical statistics to the quantum set-
ting.

In quantum statistics, problems of statistical inference and
state estimation have received a lot of attention over the past
several years with recent developments of experimental tech-
niques. Historically speaking, the parameter estimation prob-
lem on quantum systems dates back 30 years, when Hel-
strom, Holevo, and other researchers vigorously investigated
the topic and gave some extension of mathematical statistical
concepts on classical probability.

The Bayesian approach for quantum statistics has also
been investigatedf2,3g. Jonesf4g has derived a quantum
Bayes rule for pure states with the uniform prior. Later,
Bužeket al. f5g pointed out that it can be applied to mixed

states with a purification ansatz. Schacket al. f6g extended
their result to a more general framework of exchangeable
states. They showed that a quantum state after a measure-
ment can be interpreted as the state averaged over the poste-
rior. Bužeket al. f5g recommended using the Bayesian tech-
nique, especially when the sample size of the experimental
data is small. They proposed using a posterior state corre-
sponding to a posterior distribution in classical counterparts.

From the viewpoints of information quantity and the
Bayes rule, however, Bayesian estimation on quantum states
has not been fully discussed. Performances of the Bayesian
approach compared with other approaches such as the maxi-
mal likelihood method have not been discussed theoretically.
In the present paper, we show that the Bayesian method has
a better performance than the plug-in method when ex-
changeable states are considered. To our knowledge, our
proof has not been given in the general framework. The main
result can be regarded as the quantum version of the widely
known result by Aitchison in classical statistics.

II. PRELIMINARY

We briefly summarize some notations of quantum mea-
surements. Let H be a separablespossibly infinite-
dimensionald Hilbert space of a quantum system. A Hermit-
ian operatorr on H is called astateor density operatorif it
satisfies

Trr = 1, r ù 0.

We denote the set of all states onH asSsHd.
Let V be a space of all possible outcomes of an experi-

mentse.g.,V=Rnd and suppose that as algebraBªBsVd of
subsets ofV is given. An affine mapm from SsHd into a set
of probability distributions onV, P=hmsdxdj is called amea-
surement. There is a one-to-one correspondence between a
measurement and a resolution of the identityf3g. A map from
B into the set of positive Hermitian operators

E:B ° EsBd,

whereE satisfies

Esfd = O, EsVd = I , s1d*Electronic address: ftanaka@stat.t.u-tokyo.ac.jp
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EsøiBid = o
i

EsBid, Bi ù Bj = f, ∀ Bi P B, s2d

is called a positive operator valued measuresPOVMd. Any
physical measurement can be represented by a POVM.

The rule describing a post-measurement state is as follows
se.g., Nielsen and Chuangf7gd. We consider only discrete
outcome cases, whereV is a countable set. Then, a family of
linear operatorshAxj satisfying

o
xPV

Ax
*Ax = I

describes a measurement when consideringhEx=Ax
*Axj as

POVM. Performing such a measurement for an arbitrarily
fixed r yields an outcomex with probability pxªTrrEx
=TrrAx

*Ax and the quantum stater changes to

AxrAx
*

px

after the outcomex is observed.
Now we describe our setting of state estimation. Assume

that a stateru on H is characterized by an unknown finite-
dimensional parameteruPQ,Rn. If dim H,`, u may
cover the full rangesoften called the full modeld.

A quantum state forN systems,rsNd, is described on the
N-fold tensor product Hilbert spaceH^N. Suppose that a
system composed ofN+M subsystems is given and that a
measurement is performed only for selectedN subsystems
with the otherM subsystems left. Then, the measurement is
described byhAx ^ Ij, wherehAxj is a family of linear opera-
tors onH^N such thathExªAx

*Axj is a POVM andI is the
identity operator onH^M. Note that in contrast to classical
cases, the measurement could affect the remainingM sub-
systems.

Our aim is to estimate the true statesuªru
^M of the re-

mainingM subsystems by using a measurementhExj on the
selectedN subsystemsru

^N. We fix an arbitrarily chosen mea-
surement. Note thatE is given as a POVM onH^N. It is not
necessarily in the form of a tensor productEx

^N, which rep-
resents a repetition of the same measurementEx for each
system. Thus, all possible measurements onN subsystems,
which may use entanglement, are considered.

The performance of a predictive density operatorŝsxd is
evaluated by the relative entropyDssu i ŝsxdd, a quantum
analogue of the Kullback-Leibler divergence in classical sta-
tistics. The quantum relative entropy fromr to s is defined
by

Dsr i sd ª Trfrslog r − log sdg. s3d

It satisfies the positivity conditionDsr isdù0 andDsr isd
=0⇔r=s. For other properties and useful inequalities, see,
e.g.,f7g. Thus, it can be used as a measure for the goodness
of state estimation.

We can regard a stater as a quantum analogue of a prob-
ability distribution in classical statistics. Indeed, when
fr ,sg=0, both density operators are simultaneously decom-
posed as

r = o
x

pxEx, s = o
x

qxEx,

whereEx is a projection operator onto a common eigenspace
to two eigenvaluespx and qx. sIf dim H,`, the formulas
above reduce to simultaneous diagonalization of two Hermit-
ian matrices.d Then,

Dsr i sd = Trfrslog r − log sdg

= o
x

fpxslog px − log qxdg

= Dsp i qd.

Thus, the quantum relative entropys3d is equal to the
Kullback-Leibler divergence in classical statistics. Even if
fr ,sgÞ0, it is known that the quantum relative entropy as-
ymptotically si.e., N→`d reduces to the Kullback-Leibler
divergencef8g.

There are mainly two approaches on inference of statesu

for the parametric model above. One approach is to usesûsxd,

where ûsxd is an estimator ofu, depending on the observa-
tion x. The other approach corresponds to the Bayesian pre-
dictive density approach in classical statisticsf4,5g. We shall
briefly review the idea. First, we assume a probability den-
sity psud on the parameter space. In mathematical statistics,
psud is usually called aprior density. When there is no
knowledge about parameteru, which is often callednonin-
formative, several people have discussed what kind of prior
should be usedf9,10g. From the datax obtained from a mea-
surement, a posterior distributionpsu uxd is constructed as

psuuxd ª
psxuudpsud

E dupsxuudpsud
,

where psxuud=TrsuEx. Next, taking an average ofsu with
psu uxd, one can obtain the Bayesian estimator

usux =E dusupsuuxd.

We call this state estimator, as in classical statistics, aBaye-
sian predictive density operator. In order to distinguish two

estimators, we callsû, an estimator based onû, a plug-in
predictive density operator. In the next section, we show that
Bayesian predictive density operators are better than plug-in
predictive density operators.

If we assume a prior probability densitypsud on the pa-
rameter spaceQ, the mixture state is given by

rsNd
ªE dupsudru

^N. s4d

A state of the forms4d is called anexchangeable statef6g,
and arises, e.g., if each subsystem is prepared in the same
unknown way, as in quantum state tomography.

In a quantum exchangeable models4d, as Schacket al. f6g
showed, a posterior distributionpsu uxd naturally arises. As
described above, a post-measurement state with outcomex
obtained is given by
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rx
sN+Md =

1

px
FsAx ^ IdSE dupsudru

^sN+MdDsAx
*

^ IdG .

After the measurement of the selectedN subsystems, we re-
strict our attention only to the remainingM subsystems. Tak-
ing a partial trace, we obtain the resulting staterx

M on H^M

sfor partial trace, see, e.g.,f7gd.
The final staterx

M can be rewritten using a posterior
psu uxd in the form of an exchangeable modelf6g,

rx
M = TrNfrx

N+Mg

=
1

px
TrNFsAx ^ Id E dupsudru

^sN+MdsAx
*

^ IdG
=

1

px
TrNFE dupsudru

^sN+MdEx ^ IG
=

1

px
E dupsudhTrNfru

^sN+MdEx ^ Igj.

Since TrNfsA^ BdsC^ Ddg=TrfACgBD holds for A,C on
H^N andB,D onH^M, the partial trace above is rewritten as

TrNfru
^sN+MdsEx ^ Idg = TrNfru

^NExgru
^M = psxuudru

^M .

The two probability densitiespx andpsxuud are related by

px = TrfrsN+MdsEx ^ Idg

= TrFE dupsudru
^sN+MdEx ^ IG

=E dupsudTrNfru
^NExgTrMfru

^MIg

=E dupsudpsxuud.

Finally, we obtain

rx
M =

1

px
E dupsudhpsxuudru

^Mj

=E du
psxuudpsud

px
ru

^M

=E dupsuuxdru
^M .

Thus, one can interpretpsu uxd as a quantum analogue of the
posterior distribution in classical statistics.

Now we consider comparing two methods for estimating
the true statesuPSsH^Md. Let ŝsxd and s̃sxd be two pre-
dictive density operators. When the difference between two
estimatesŝsxd and s̃sxdPSsH^Md,

D„su i ŝsxd… − D„su i s̃sxd… = Trhsuflog s̃sxd − log ŝsxdgj,

s5d

is positive,ŝsxd is better thans̃sxd as an estimate of the true
statesu. Sinceŝsxd ands̃sxd depend on observed datax for
an arbitrarily chosen measurementhExj on H^N, the differ-
ences5d depends on the true parameter valueu characteriz-

ing the true state and on the datax obtained from the mea-
surement. Thus, we take an average of Eq.s5d over psxuud
ªTrsuEx andpsud, and evaluate

EuExhD„su i ŝsxd… − D„su i s̃sxd…j

in the following in order to compare plug-in predictive den-
sity operators with Bayesian predictive density operators.

III. MAIN THEOREM

In classical statistics, Aitchisonf1g showed that the Baye-
sian predictive densityppsy uxd has better performance under
the Kullback-Leibler divergence than any plug-in predictive

densitypsy u ûd when a proper priorpsud is given. We derive
the corresponding result for quantum predictive density op-
erators.

Theorem. Suppose that we perform a measurement for
selectedN subsystemsru

^N of a systemru
^sN+Md composed of

N+M subsystems in order to estimate the remainingM sub-
systemssu=ru

^M. The true parameter valueu is unknown
and a prior probability densitypsud is assumed. Letŝsxd be
any predictive density operator, wherex is an outcome of a
measurementhExj for the N subsystems. Performance of a
predictive density operatorŝsxd is measured with the aver-
age relative entropy

EuExhD„su i ŝsxd…j =E dupsud E dxpsxuudD„su i ŝsxd…

from the true statesu. Then, the Bayesian predictive density
operator usux based on the observationx and the priorpsud
is the best predictive density operator.

Proof. First, for arbitraryŝsxd and s̃sxd, we rewrite the
difference of two averaged Kullback-Leibler divergences as

EuExhD„su i ŝsxd… − D„su i s̃sxd…j

=E dupsud E dxpsxuudTrhsuflog s̃sxd − log ŝsxdgj

=E duE dxpx

psxuudpsud
px

Trhsuflog s̃sxd − log ŝsxdgj

=E dxpxE dupsuuxdTrhsuflog s̃sxd − log ŝsxdgj

=E dxpxTrFHE dupsuuxdsuJflog s̃sxd − log ŝsxdgG
=E dxpxTrhusuxflog s̃sxd − log ŝsxdgj.

The positivity of the above form indicates thats̃sxd is better
than ŝsxd. We set

s̃sxd = usux,

and then we obtain
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EuExhD„su i ŝsxd… − Dssu i usuxdj

=E dxpxTrhusuxflogusux − log ŝsxdgj

=E dxpxD„usux i ŝsxd… ù 0.

The last inequality holds due to the positivity of the relative
entropy Dss is8dù0 and pxù0. Since ŝsxd is arbitrarily
chosen, it is shown thatusux is better than any otherŝsxd.

IV. REMARKS

Our argument is valid even when dimH=` if we impose
some regularity conditions. For example, there are some con-

ditions such as the exchangeability of the order of Tr and
e du psud, “measurability” of ru, and integrability of urux
=e du psu uxdru. Such rigorous arguments may require some
mathematics, say, the theory of the Bochner integral.

Note that our argument also holds when a prepared state
is described asru ^ su, where ruPSsHs1dd and su

PSsHs2dd, andHs1d andHs2d are distinct Hilbert spaces. This
setting is a generalization of that introduced in Sec. II.
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