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Bayesian predictive density operators for exchangeable quantum-statistical models
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Quantum state estimation has been widely investigated and there are mainly two approaches proposed: One
is based on the point estimation of an unknown parameter and the other is based on the Bayesian method. We
adopt the relative entropy from the true state to a predictive density operator as a loss function. We consider
exchangeable quantum models with an arbitrary chosen measurement and show that Bayesian predictive
density operators are the best predictive density operators when we evaluate them by using the average relative
entropy based on a prior. This result is a quantum version of Aitchison’s result in classical statistics.
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I. INTRODUCTION states with a purification ansatz. Schaatkal. [6] extended

In classical statistics, the problem of predicting an unob-thelr result to a more general framework of exchangeable

served variabley by Using an observed variablehas been states. They .showed that a quantum state after a measure-
investigated. Suppose that a parametric model ment can be interpreted as the state averaged over the poste-
: rior. BuZeket al.[5] recommended using the Bayesian tech-
P={p(y|0):6 € O}, nique, especially when the sample size of the experimental
data is small. They proposed using a posterior state corre-
which is a set of probability densities, is given, whérés a  sponding to a posterior distribution in classical counterparts.
parameter space. Random variabteandy are distributed From the viewpoints of information quantity and the
according to the same true probability dengiy|6) in . Bayes rule, however, Bayesian estimation on quantum states
We predict the unobserved varialylewith a predictive den-  has not been fully discussed. Performances of the Bayesian
sity p(y;x) constructed by using the observed variabl&he  approach compared with other approaches such as the maxi-
closeness of the true densityy| ) and a predicted density mal likelihood method have not been discussed theoretically.
p(y;x) is evaluated by using the Kullback-Leibler divergenceln the present paper, we show that the Bayesian method has
a better performance than the plug-in method when ex-
D(pll p) ==fp(y|0)|og Mdy. changeable states are considered. To our knowledge, our
p(y;x) proof has not been given in the general framework. The main
result can be regarded as the quantum version of the widely

Aitchison [1] showed that a Bayesian predictive densityknown result by Aitchison in classical statistics.

PA(Y|X) = fop(y| 0)m(8]|x)d6, where 7(6|x) is a posterior
distribution, is the best predictive density when we evaluate
a predictive density(y;x) by using the average Kullback- Il. PRELIMINARY

Leibler divergencef(6) [ D(pllp)p(x| 6)dxd¢, where (6) We briefly summarize some notations of quantum mea-
isa prol_)ablllty density. Intuitively speaking, if we haye SOMegyrements. LetH be a separable(possibly infinite-
uncertainty oné, then moderate averaged estimation fromdimensiona)l Hilbert space of a quantum system. A Hermit-

the datax is better than one based on a point estimation. W,y gperatorp on 7 is called astateor density operatoif it
extend this result in classical statistics to the quantum selsyiisfies

ting.
In quantum statistics, problems of statistical inference and Trp=1, p=0.
state estimation have received a lot of attention over the past
several years with recent developments of experimental techVe denote the set of all states dhas S(H).
niques. Historically speaking, the parameter estimation prob- Let {1 be a space of all possible outcomes of an experi-
lem on quantum systems dates back 30 years, when Helent(e.g.,Q2=R") and suppose thataalgebra3:=5({2) of
strom, Holevo, and other researchers vigorously investigategubsets of} is given. An affine mag from S(H) into a set
the topic and gave some extension of mathematical statisticaf probability distributions orf), P={u(dx)} is called anea-
concepts on classical probability. surement There is a one-to-one correspondence between a
The Bayesian approach for quantum statistics has alsmeasurement and a resolution of the iderft&ly A map from
been investigated2,3]. Jones[4] has derived a quantum B into the set of positive Hermitian operators
Bayes rule for pure states with the uniform prior. Later,
BuZeket al. [5] pointed out that it can be applied to mixed E:B— E(B),

whereE satisfies

*Electronic address: ftanaka@stat.t.u-tokyo.ac.jp E(¢)=0, EQ)=I, (1)
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E(UB)=XE®B), BNB=¢ 0OBeB (2 p=2pEx =2 GE,

is called a positive operator valued meas(POVM). Any  WhereE, is a projection operator onto a common eigenspace

physical measurement can be represented by a POVM.  to two elgenvalue_spx and q,. (If _dlm H<e=, the formulas _
The rule describing a post-measurement state is as follon&bove reduce to simultaneous diagonalization of two Hermit-

(e.g., Nielsen and Chuan@]). We consider only discrete ian matrices. Then,

outcome cases, whefgis a countable set. Then, a family of D(pll o) = Trp(log p - log o]

- X X X

> AA=I
e =D(pliq).

describes a megsurement when conside(iBg-AAl as Thus, the quantum relative entrop$8) is equal to the
EO\éM' Relrgormmg such a mea;]surergetr)l_tl_for an arbitrarilyy, ipack-Leibler divergence in classical statistics. Even if
_')fl? p*Aer g’ ﬁn outcomex wit rp])ro ability py:=TrpEy [p,a]#0, it is known that the quantum relative entropy as-
=TrpAAc and the quantum stagechanges to ymptotically (i.e., N—o) reduces to the Kullback-Leibler

A A" divergencd8].
PPy There are mainly two approaches on inference of sigte
Px for the parametric model above. One approach is tootjgg
after the outcomex is observed. where @(x) is an estimator of), depending on the observa-

Now we describe our setting of state estimation. Assumédion x. The other approach corresponds to the Bayesian pre-
that a statep, on H is characterized by an unknown finite- dictive density approach in classical statisfids|. We shall
dimensional parametefe ® CR". If dimH<«, § may briefly review the idea. First, we assume a probability den-
cover the full rangdoften called the full mode! sity 7(#) on the parameter space. In mathematical statistics,

A quantum state foN systemsp™), is described on the (6) is usually called aprior density When there is no
N-fold tensor product Hilbert spack&®N. Suppose that a knowledge about paramet@r which is often callechonin-
system composed dfi+M subsystems is given and that a formative several people have discussed what kind of prior
measurement is performed only for selectédsubsystems should be usef,10]. From the datx obtained from a mea-
with the otherM subsystems left. Then, the measurement issurement, a posterior distributian(#|x) is constructed as
described by{A,® 1}, where{A} is a family of linear opera-
tors onH®N such that{E,:=A A} is a POVM andl is the m(6]x) = __ PO
identity operator ori{®™. Note that in contrast to classical d
cases, the measurement could affect the remaiMngub- op(x|6)(6)
systems. _ .

Our aim is to estimate the true statg:= p?M of the re- Where p(x| 0)=TragEX._ Next, takmg an average af, with
mainingM subsystems by using a measuremiggt on the ~ 7(6|X), one can obtain the Bayesian estimator
selectedN subsystem;a?”. We fix an arbitrarily chosen mea-
surement. Note thdE is given as a POVM ofit®N. It is not oly= f dboym(6]X).
necessarily in the form of a tensor prodLIEftN, which rep-
resents a repetition of the same measurentgntor each  We call this state estimator, as in classical statistid3aype-
system. Thus, all possible measurements\osubsystems, sian predictive density operaton order to distinguish two

which may use entanglement, are considered. _ estimators, we calb, an estimator based of4 a plug-in
The performance of a predictive density operatx) is  preqictive density operatotn the next section, we show that

evaluated by the relative entrof(v,llo(x), a quantum  payesian predictive density operators are better than plug-in
analogue of the Kullback-Leibler divergence in classical stapredictive density operators.

tistics. The quantum relative entropy fropto o is defined If we assume a prior probability density(6) on the pa-
by rameter spac®, the mixture state is given by
D := Trp(l =1 . 3
(pll @) := Trlp(log p—log 0)] €) N o f dom(0)peN. @)

It satisfies the positivity conditio®(pllc)=0 andD(pllo)
=0+ p=o0. For other properties and useful inequalities, seeA state of the form(4) is called anexchangeable statj],
e.g.,[7]. Thus, it can be used as a measure for the goodnessd arises, e.g., if each subsystem is prepared in the same
of state estimation. unknown way, as in quantum state tomography.

We can regard a stageas a quantum analogue of a prob-  In a quantum exchangeable mo@#), as Schaclet al.[6]
ability distribution in classical statistics. Indeed, whenshowed, a posterior distribution(#|x) naturally arises. As
[p,o]=0, both density operators are simultaneously decomdescribed above, a post-measurement state with outeome
posed as obtained is given by
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; [(AX® |)<f dew(e)p§<N+M>>(A; ® |)]

N+M) _
p = =
X

After the measurement of the selecfddubsystems, we re-
strict our attention only to the remaining subsystems. Tak-
ing a partial trace, we obtain the resulting stﬁi’éon HEM
(for partial trace, see, e.d.7]).

The final statep)"(" can be rewritten using a posterior
m(0|x) in the form of an exchangeable modél,

PQA = T"N[P!:HM]

= piTrN[(AX ®1) f dom(0)ps MM (A, ® |)}

X

1
p—TrN[ f dom(0)ps ME, © |]

X

1
o J dom(0){Trylpi VME, @ 17}.

Since Tg[(A®B)(C®D)]=Tr{ACIBD holds for A,C on
H®N andB,D onH®M, the partial trace above is rewritten as

Trlpg MM (Ex ® D= Trlpy “Edpi™ = p(x 6)p™.
The two probability densitiep, and p(x| #) are related by
Pe= TN (E @ 1]

= Tr{J dﬂw(ﬂ)p?(NJ'M)EX@ |

:fdaﬂ(ﬁ)TrN[PgNEx]TrM[P?M|]

= J dom(6)p(x6).

Finally, we obtain

1
pﬂ":p—Jd%(ﬂ){p(Xlﬁ)p?M}

Y

= f d07T(0|X)p?M.

Px

Thus, one can interpret(#|x) as a quantum analogue of the
posterior distribution in classical statistics.

Now we consider comparing two methods for estimating

the true stater, e S(H®M). Let 6(x) and &(x) be two pre-

dictive density operators. When the difference between two

estimatesr(x) and o(x) e S(H®M),
D(oyll (x)) = D(all o(x)) = Tr{o[log o(x) — log 6:(x) ]},
(5

is positive,da(x) is better thari(x) as an estimate of the true
stated,. Sinceda(x) ando(x) depend on observed datdor
an arbitrarily chosen measuremdig} on H®N, the differ-
ence(5) depends on the true parameter valueharacteriz-
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ing the true state and on the databtained from the mea-
surement. Thus, we take an average of &j.over p(x| 6)
:=Tro,E, and 7(6), and evaluate

E/EAD(oyll (X)) = D(o7yll 5(X))}

in the following in order to compare plug-in predictive den-
sity operators with Bayesian predictive density operators.

Ill. MAIN THEOREM

In classical statistics, Aitchisdi] showed that the Baye-
sian predictive densitp_(y|x) has better performance under
the Kullback-Leibler divergence than any plug-in predictive
densityp(y| 6) when a proper priorr(6) is given. We derive
the corresponding result for quantum predictive density op-
erators.

Theorem Suppose that we perform a measurement for
selected\ subsystem$‘§”\' of a systerrp?(m'v') composed of
N+M subsystems in order to estimate the remairvhgub-
systemsU(,:p?"". The true parameter value is unknown
and a prior probability densityr(6) is assumed. Led(x) be
any predictive density operator, whexds an outcome of a
measuremen{E,} for the N subsystems. Performance of a
predictive density operata¥(x) is measured with the aver-
age relative entropy

EELD(oyll &(X))}=fd0w(0)fdxp(x|0)D(ogll a(x))

from the true stater,. Then, the Bayesian predictive density
operator o], based on the observationand the priora(6)
is the best predictive density operator.

Proof. First, for arbitraryo(x) and o(x), we rewrite the
difference of two averaged Kullback-Leibler divergences as

E/EdD(oyll 6(x)) = D(oyll o(x))}

= f dom(6) J dxp(x|0) Tr{o[log &(x) - log o(x) I}

:fdafdxprTr{ag[log"&(x)—log o(X) 1}

:f dxpr dom(6x)Tr{o[log a(x) — log o(x)]}
:fdxprerdaw(0|x)crﬁ}[log?r(x)—log o(x)]

:f dxp, Tr{ ol,[log 7(x) — log o(x)]}.

The positivity of the above form indicates thax) is better
thano(x). We set

a(x) = oy,

and then we obtain
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E,ELD (0,1l 5(x)) = D(o7gll oy} ditions such as the e_x_changeability Qf the or(_jer of Tr and
J d6 =(6), “measurability” of p,, and integrability of pl,
= f dxp,Tr{ ol [log oy — log 5(x) ]} =/ dé# m(6|x)py. Such rigorous arguments may require some

mathematics, say, the theory of the Bochner integral.
Note that our argument also holds when a prepared state
= f dxpD( iyl a(x)) = 0. is described asp,®0, where p,e S(HY) and o,
e S(H®?), andHY andH?@ are distinct Hilbert spaces. This
The last inequality holds due to the positivity of the relative setting is a generalization of that introduced in Sec. II.
entropy D(ollo’)=0 and p,=0. Since o(x) is arbitrarily
chosen, it is shown thato], is better than any othe¥(x).
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