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Ground-state entanglement in theXXZ model

Shi-Jian GU} Guang-Shan Tiah? and Hai-Qing Lirt
lDepartment of Physics and the Institute of Theoretical Physics, The Chinese University of Hong Kong, Hong Kong, China
%School of Physics, Peking University, Beijing 100871, China
(Received 16 August 2004; published 17 May 2D05

In this paper, we investigate spin entanglement in X¥Z model defined on al-dimensional bipartite
lattice. The concurrence, a measure of the entanglement between two spins, is analyzed. We prove rigorously
that the ground-state concurrence reaches maximum at the isotropic point. For dimensibaalitythe
concurrence develops a cusp at the isotropic point and we attribute it to the existence of magnetic long-range
order.
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Entanglement, as the exhibition of pure quantum correlamodels, we prove rigorously that, when the antiferromag-
tions between separate systems, has become one of the tradetic XXZ model is defined on d-dimensionalfinite bipar-
marks of the quantum mechanics for its nonlocal connotatite lattice, the concurrence between two spins located on a
tions[1]. Recently, many physicists have made great effortgair of nearest-neighbor sites is an analytical function of the
to understand the quantum entanglement in the ground statg@isotropic parameter and takes on its maximum at the
of some many-body spin model2-10]. One expects that a Hejsenberg isotropic point. Then, in the second part of this
thorough investigation on the entanglement in these SysteMsaper, we study the concurrence as a function of the aniso-

will provide additional insight into the quantum phase tran-yqpic parameter on a finite lattice by the exact diagonaliza-

Siti?jr.] Ic? trr:ese systens.1]. For example% Osterlolbt al.[2] ¢ plon technique. For the infinite system, we use the spin-wave
studied the concurrence, a measure of entanglement of Wo -y \hich is justified by the existence of magnetic long-
qubits[12], between two spins located on a pair of nearest

neighbor sites in the transverse-field Ising moddl They range orde(LRO) in the XXZmodel, to show that a cusplike

found that this quantity shows singularity and obeys the scalpeha\”or of the concurrence develops in the thermodynamic

ing law in the vicinity of the quantum phase transition pointIImIt when_ the_dlmens!ona_hty of the lattiog=2. .

of the system. On the other hand, for other models, such To begin with, we first introduce several ”Ota“g’”.s- Ona
the antiferromagnetiXZ chain, the concurrence behaves in 'Init€ d-dimensional simple cubic latticé with N, =L sites,

a completely different way6]. As shown by Ref[6], the the Hamiltonian of the antiferromagneticXZ model is
concurrence is a continuous function of the anisotropic pa-

rameter and reaches its maximum at the transition point. Hyr= D (SS+ Y + ATS (1)
Therefore, in both cases, one observes that the concurrence o G S+ +AS9)

itself manifests interesting behaviors at the quantum phase

transition points. However, we should emphasize that, Sucu/hereéx sy andSZ are spin-1/2 operators at siteand A
behaviors alone may not always signal a quantum phase trag—JZ/Jx(szJy) is a dimensionless parameter characterizing

Sltllonn’Rae? F[)g]m:[,\e,:ed Sotlljt d?ey dtré?(t:z;?\?: Or:eﬁiié&éﬁ]ﬁei hbor s inthe anisotropy of the model. The sum in the Hamiltonian is
R y 9 PMover all pairs of nearest-neighbor sitesaind j. Obviously,

gntanglement n the antiferromagne&Z chain. By_apply- this Hamiltonian commutes with the total spircomponent
ing results derived from the Bethe ansatz solution of the

model, we showed clearly that the concurrence between twBPerator Sy, =%;S. Thus, each eigenstate of the Hamil-
spins located on a pair of nearest-neighbor sites in the systetanian is also an eigenstate $f,. Consequently, the Hilbert

is a continuous function of the anisotropic coupling param-space of the system can be decomposed into numerous sub-
eter and becomes maximal at the isotropic Heisenberg poingpaces/(M). In each subspace, the spin ”Um%{aFM is

In this paper, we continue our discussions on this issue. OWpecified. It is well known that, on a finite simple cubic
main purpose is to show that some fundamental properties g4ttice A, the ground state of th&XZ model is nondegener-

the XXZmodel, such as nondegeneracy and concavity of thgte in any admissible subspawéM) [14,15. In particular,
ground-state energy of the system at the phase transitigg global ground statéy(A,A), which coincides with the
point, have strong effects on the behavior of the CONCUITENCeyround state of the model in the subspak®l=0) [15], is
Therefore, we expect that the same scenario will appear in g5, ondegenerate. Therefore, all the physical quantities,

wide class of localized spin models, such as the spin Iaddesr h as th d stat A A) and th ; )
model and, in particular. thiXZ model in higher dimen- - c| &S the ground state enefgyA, &) and the spin corre

sions [13]. It is well known that, as far as the above- lation function(§'S) are a}nalytic.al' functions of the param-

mentioned properties are concerned, the ground states 8f€r4, as long as the lattice is finite.

these models are akin to the antiferromagn&icZ chain. The conservation of,, implies also that, with respect to
This paper contains two parts. In the first part, based otthe standard basis vectols!), |T1), |[/1), and|]]), the re-

some well-known facts about the antiferromagnetic spirduced density matrix of two spins on a pair of nearest-

1050-2947/2005/7%5)/0523225)/$23.00 052322-1 ©2005 The American Physical Society



GU, TIAN, AND LIN PHYSICAL REVIEW A 71, 052322(2009

neighbor lattice site$ andj can be put into the following aC; oGE* (926?(A,A)

block-diagonal form: &—AL =2(A- 1)_L(9A =2(A- 1)—1—(9A2 : (8)
w0 0 0 Immediately, one sees that=1 is an extreme point of the
. O w z O concurrence.
Pij = 0 72 w, 0] 2 Next, we show thah=1 is actually a maximal point of
00 0 u C;; and the concurrence does not have another extreme point.

In fact, both the statements are the corollaries of concavity of
Following Ref.[12], the concurrence of this two-qubit sys- the ground-state energgo(A,A) of the HamiltonianHyy;,
tem is defined by with respect to the anisotropic parameter By the varia-
3 — o~ = tional principle[18], we know that, for any two parameters
Cjj = max0,VA1 = VA2 = YAg~ VA4), ®) A, andA,, the inequality

whereN;=\,=N3=)\,=0 are the eigenvalues of the semi- _ _
positive definite matrix Eol AN+ (1 =M)Az] = NEg(A, A + (1 )\)Eo(AyAz)ég)

where O<\A=<1, holds true for the ground-state energy
An important observation is that there exists a one-to-on€y(A,A). In particular, wherEqy(A,A) is differentiable with
correspondence betwe€)) and the entanglement formation respect taA, the inequality(9) is equivalent to

of these spins. Consequent(y; can be used as a measure-

pipy = pij(of ® olpjof © o). (4)

ment of their entanglemeft2]. Furthermore, in terms of the PE(A,A) <0 (10)
correlation functions5{“=(§'S"), @=x,y,z, C; can be ex- A
plicitly written as[16,17) Consequently, we have alsBel (A,A)/A?<0. Now, let us
1 take the derivative of Eq(8) again with respect ta\. It
Cj=2 ma><|G§}x+ Gyl - Gj*- 4_1’0> ) (5) yields
0
We notice that the function@ﬁ““ in Eq. (5) represent ac- &Z—CZ'L = ZM =0. (11
tually the total correlation between the spins at sitead]. IA® | p=1 JA A=1

On the other hand, the constant 1/4 is the maximal absolutgnerefore A=1 is indeed a maximal point of the concur-
value of their longitudinalor classical correlation. There- ance.

fore, being the difference of these quantiti€, can be Finally, we prove that =1 is the unique extreme point of

thought of as the remaining “quantum correlatlon".betweenme concurrenceS;. For that purpose, we notice that the

them. Naturally, one would like to study the behaviorGf  nequality (10) is actually strict. In other words, the equal

near the quantum phase transition pdirt1. It deepens our  gjgn in it can be ignored. This can be easily understood by

umlj:?rrssttavr\]/glr;%c?vc tShU;[h ;Lagil)tll?gsiﬁédimensional bipartite observing the following fact: Ad increases from s to o,

’ ) H L2\ — 5,0

lattice, C;; takes on its maximum at poidt=1. By the varia- quant!ty <S12$Z>_‘?€ii (A,8)/9A becomes more and more

tional principle, it is easy to see that all the spin correlationd!€92tive. Consequently, the product on the right-hand side of

functionsGﬁ‘“ in Eqg. (5) are negative. Thus, we have Eq. (8) cann_ot be ZEr0 at any point exceﬁbt_l. That com-
pletes our discussion on the general behavior of the concur-

E—GZZ) renceC; for the antiferromagneti&XZ model on a finite

4 d-dimensional simple cubic lattice. In addition, we point out

1 that the above proof can be easily extended to other cases,

—{_.0 _+ _ 2z such as the spin ladder modelJxt=0.

( i (A4 4 +Aa-1G; ) © In the following, we shall discuss the analyticity of the
concurrence in the vicinity of phase transition. In Réf, by
using the Bethe ansatz solution of the one-dimensidi&l
‘chain, we obtained the explicit expression of the concurrence
near the isotropic point

Cj = (" Gj"- G’ -

whereefj’(A,A):Eo(A,A)/NB (Ng is the number of bonds in
the lattice is the ground-state energy density per bond. Fur
thermore, since all quantities i@; are analytical functions
of the parametef, we are allowed to take derivatives of it
with respect toA. In particular, after taking the first-order Cii+1=Co—Cy(A - 1)?, (12

derivative ofC;, we obtain whereC, andC, are two real constants. Therefore, the con-
IC:: aeQ(A,A) oG?? currence of the one-dimensionAIXZ chain is a differen-
(TAIL = 2(‘ _u(m_ +Gi+ (A= 1)_1‘(%' . (M tiable function ofA in the thermodynamic limit. However,

things are quite different in higher dimensions. For ¥X¥¢Z
Again, due to the nondegeneracy of the global ground statmodel in higher dimensions, there exists no exact solution.
Wo(A,A) of theXXZmodel on a finite lattice, we can use the One either uses approximate analytical approach such as the
Hellmann-Feynman theorem to calculate the derivativespin-wave theory or numerical approach such as exact diago-
aeﬁ?(A,A)/aA, which equale{Bﬁz. Therefore, we finally obtain nalization studies of finite lattidel 9]. To obtain results in the
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thermodynamic limit, finite-size scaling analysis must be A z -

performed. By using the stochastic series expansion quantum HxxAdA =~ ENSZ +2S> Hk), (15
Monte Carlo method for lattices up to X616, Sandvik 20] K

did an extensive study on the two-dimensioBal1/2 anti-  wherez is the coordination number of the lattice and
ferromagnetic Heisenberg model. The finite-size results for «

various ground-state quantities were extrapolated to the ther- Ny = ata 4 2ka A at gt

modynamic limit using fits to polynomials in L/ con- Hik) =88+ 2 (G + a5 (16
strained by scaling forms previously obtained from
renormalization-group calculations for the nonlineanodel
and chiral perturbation theory. He demonstrated that the r

with yk:(Z/Z)EEnzlcoskm. By applying the Bogoliubov
dransformation

sults were fully consistent with the predicted leading finite- A = UGy — vy &
. ) ; ) : kCk ~ UkCk
size corrections. With the same scaling forms, Lin, Flynn,
and Bettq 21] studied theXXZ model on square lattices and él bt Ukéfi, 17)

obtained various quantities as functions of the anisotropic
para_meterA for the infinite system. Two conclusions f_rom we diagonalizd:|(k) and obtain

previous work[20-23 are relevant to the present studi).

results obtained from the spin-wave theory are qualitatively H(K) = v = Xy Ugvk + (U2 + 02 = 2XUo v Eee, (18)
correct and quite accurate, usually within 3% as compared ) ) _ )
with exact solution on finite latticeji) derivatives of the ~Where theu, andv, satisfy the following constraint condi-
ground-state energy with respect to the anisotropic paramet&Pns:

A are not continuous at the Heisenberg padint1; for ex- B-v2=1

ample, see Fig. 3 in Ref21]. This conclusion is consistent ke Tkm

with the belief that there exists antiferromagnetic long-range

order in thed-dimensionalXXZ model ford=2. In other m(uﬁ + Uﬁ) - U =0. (19)
words, the correlation functiofS'S?,) does not vanish as 2

r — . Theoretically, the existence of the LRO @=3 di-  Finally, the ground-state energy of the model in the region of

mensions has been rigorously provigd], while for d=2 A>1 can be written as

most numerical studies support it. Based on these conclu-

sions, we apply the spin-wave theory to calculate the concur- Ef(A>1)=— NS+ Z_SE W1-X72-1. (20
renceC; of the XXZ model. We also use exact diagonaliza- 2 K

tion results as complementary. As shown in the following, e .

the symmetry breaking in the thermodynamic limit, which is  BY @ similar approach, we can also obtain the ground-

absent in the one-dimensional case, causes the singular bate energy of th&XZ model in the parameter region of 0

havior of the concurrence at the quantum phase transitioﬁA<1' In this case, the system has antiferromagnetic order

point. in the XY plane in the thermodynamic limit. As a result, the

Following the standard procedure, tXe&XZ Hamiltonian ~ diagonalized Hamiltonian has the form
is mapped into a boson model via the Holstein-Primarkoff

transformation k) = (L +ymdof - xndhoy + [ +yno + o)
- XU & B, (21
~ [y ~ ~ [he A a
S =291 -/29"%; = \2S(1 - /494, wherex=(1+A)/2 andy=(1-A)/2, and the corresponding

ground-state energy is

§ =254 (1 - /292 = V253 (1 - A/49),

z z
Eo:__N§+_SE(1+Y7’k)
2 2«

§=s-4a, (19 X (V1 =31 +yp)? - 1). (22

wherej, andé\,-T are boson creation and annihilation operators Within the spin-wave theory framework, we calculate the

. . g
at sitei for the spin deviation. In the regiah> 1, the anti- 5PN correlation functiorj” and hence the concurrends
ferromagnetic ordering is in the spin direction. Conse- of the model in two and three dimensions. Our results are

shown in Figs. 1 and 2, respectively. We also show results
quently, we have obtained from the exact diagonalization of &¥Z model on
- e R finite square lattices. The trend as a function of lattice size is
HxxAA = E [-+9&a +3a8) +x943 +47a)], clear. It is interesting to see that, in both cases, the concur-
(@ rencesC; of the XXZ model not only have their maximal
(14)  value at the critical poinA=1, but also show discontinuities
in their first derivative with respect td at the transition
where x=1/A. Using Fourier transform, we rewrite the point. This behavior is quite different from the one-
Hamiltonian as dimensional cas¢Eq. (12)], as we expected. We attribute
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FIG. 1. The concurrencg; of the two-dimensionakKXZ model
as a function ofA (=J,/J,). In the figure, the dotted lines are ob-
tained from the exact diagonalization foix4 (square and 6X 6
(circle) square lattices respectively; the solid line is from spin-wave
theory.

FIG. 3. The first derivative of the correlation function of the
two-dimensionalXXZ model as a function oA (=J3,/J,) for a 4
X 4 square lattice.

This phenomenon can be understood by the picture of the
first excited energy levels crossing &t 1, required by the
this difference to the existence of the magnetic long-rangexistence of magnetic long-range ord@5]. Furthermore,
order in the system wit=2. due to the existence of long-range correlations, one expects
As we have seen, the concurrer@gis closely related to  that the properties, such as entanglement, of the localized
the ground-state energy of the model. As a result, any singuspin pairs are greatly affected by the collective modes of the
larity in the ground-state energy may be inherited by theyhole system. In particular, it is well known that, in general,
concurrenc¢8]. On the other hand, on a finitedimensional  the long-range order makes the change of these quantities at
simple cubic lattice, the ground state of the antiferromagneti¢ne transition point more abrupt1]. Therefore, the singular
XXZmodel is nondegenerate fdre (-1,) [15]. Therefore,  pehavior of the concurrence at the transition point should be
the ground-state enerdg(A,A) as well as the concurrence expected. Our calculation confirms this speculation.
Cj are analytical functions of, regardless of the dimension- A further remark is in order. Conventionally, one identi-
ality of the lattice. However, it is no longer true in the ther- fies the phase boundary of a many-body system by studying
modynamic limit. For the one-dimensiondXZ model, itis  divergence of the corresponding correlation functions in the
well known that its ground state in both the<1 andA  thermodynamic limit. On the other hand, as far as numerical
> 1 regions does not have magnetic long-range order. Thergalculations are concerned, investigations on large-size
fore, the local properties of the system, such as energy, spigamples are limited by the current computation facilities. As
spin correlations of the nearest neighbors, etc., are not ak result, one needs to do rather sophisticated calculations to
fected by those spins far away. So we do not expect @etermine the exact transition point by numerics. For in-
dramatic change in the ground-state enefgytaking place stance, in Fig. 3, we draw the calculated curves of the first
atA=1. Consequently, the concurrence will behave more oterivative of correlation function§;(A) and Gi{A) with
less like itself on a finite lattice. However, in two and three respect taA for the XXZ model on a 4 4 lattice. It is clear
dimensions, the ground-state energy of the system developsfat both the extreme points do not coincide witk 1, al-
cusp at the transition point in the thermodynamic lif21].  though they do approach to it as the size of sample increases.
On the other hand, as expressed in Ej), the concur-

0.12 ' . - . ' . - . rence C; is a function of these correlation functions. As
3D XXZ model 1 proven above, on any finite bipartite lattice, this quantity
0.1 7 reaches its maximum at poit=1. That makes identifica-

tion of the phase transition point much easier. By studying
several concrete examples, we found that this observation
holds true for other interesting systems, such as the spin
ladder model, too. That strongly suggests that one can deter-
mine the quantum phase transition points of a specific many-
body system by finding out the singular points of particle
entanglement in its ground state. Moreover, it also provides
us with further information on the quantum correlations
, , , , among particles in the system.
0 2 4 6 8 In summary, we have studied the ground-state two-spin
entanglement, as measured by the concurrence, in the
FIG. 2. The concurrenc&€; of the three-dimensionakXxZ  d-dimensionaXXZmodel. We gave a rigorous proof that the
model as a function oA (=J,/J,). ground-state concurrence in tX&Z model reaches a maxi-

0.08 — Spin wave theory
U 0.06

0.04

0.02
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mum at the isotropic point. We extended our previous studiepoint, and its first derivative is not continuous in the vicinity
in one dimension6] to two and three dimensions by using of the critical point. _
the spin-wave theory and exact diagonalization technique. Note addedRecently, we received work from Dr. M. F.

The use of the spin-wave theory is justified by the existenc&’@ng prior to publicatiorf9]. Some of our results were also
of magnetic long-range order in théXZ model for dimen-  Obtained by him.

sionality d=2. We found that the concurrence in two- and  Thjs work was supported by a grant from the Research
three-dimensionaKXZ models also reaches a maximum atGrants Council of the HKSAR, Chin@roject No. 401708

the isotropic pointA=1. Unlike the one-dimensional case, G.S.T. acknowledges financial support from the C. N. Yang
the concurrence shows cusplike behavior around the criticdfoundation.
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