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In this paper, we investigate spin entanglement in theXXZ model defined on ad-dimensional bipartite
lattice. The concurrence, a measure of the entanglement between two spins, is analyzed. We prove rigorously
that the ground-state concurrence reaches maximum at the isotropic point. For dimensionalitydù2, the
concurrence develops a cusp at the isotropic point and we attribute it to the existence of magnetic long-range
order.
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Entanglement, as the exhibition of pure quantum correla-
tions between separate systems, has become one of the trade-
marks of the quantum mechanics for its nonlocal connota-
tions f1g. Recently, many physicists have made great efforts
to understand the quantum entanglement in the ground states
of some many-body spin modelsf2–10g. One expects that a
thorough investigation on the entanglement in these systems
will provide additional insight into the quantum phase tran-
sition in these systemsf11g. For example, Osterlohet al. f2g
studied the concurrence, a measure of entanglement of two
qubits f12g, between two spins located on a pair of nearest-
neighbor sites in the transverse-field Ising modelf3g. They
found that this quantity shows singularity and obeys the scal-
ing law in the vicinity of the quantum phase transition point
of the system. On the other hand, for other models, such as
the antiferromagneticXXZchain, the concurrence behaves in
a completely different wayf6g. As shown by Ref.f6g, the
concurrence is a continuous function of the anisotropic pa-
rameter and reaches its maximum at the transition point.
Therefore, in both cases, one observes that the concurrence
itself manifests interesting behaviors at the quantum phase
transition points. However, we should emphasize that, such
behaviors alone may not always signal a quantum phase tran-
sition, as pointed out by the authors of Refs.f8,9g.

In Ref. f6g, we studied extensively nearest-neighbor spin
entanglement in the antiferromagneticXXZ chain. By apply-
ing results derived from the Bethe ansatz solution of the
model, we showed clearly that the concurrence between two
spins located on a pair of nearest-neighbor sites in the system
is a continuous function of the anisotropic coupling param-
eter and becomes maximal at the isotropic Heisenberg point.
In this paper, we continue our discussions on this issue. Our
main purpose is to show that some fundamental properties of
theXXZ model, such as nondegeneracy and concavity of the
ground-state energy of the system at the phase transition
point, have strong effects on the behavior of the concurrence.
Therefore, we expect that the same scenario will appear in a
wide class of localized spin models, such as the spin ladder
model and, in particular, theXXZ model in higher dimen-
sions f13g. It is well known that, as far as the above-
mentioned properties are concerned, the ground states of
these models are akin to the antiferromagneticXXZ chain.

This paper contains two parts. In the first part, based on
some well-known facts about the antiferromagnetic spin

models, we prove rigorously that, when the antiferromag-
netic XXZ model is defined on ad-dimensionalfinite bipar-
tite lattice, the concurrence between two spins located on a
pair of nearest-neighbor sites is an analytical function of the
anisotropic parameter and takes on its maximum at the
Heisenberg isotropic point. Then, in the second part of this
paper, we study the concurrence as a function of the aniso-
tropic parameter on a finite lattice by the exact diagonaliza-
tion technique. For the infinite system, we use the spin-wave
theory, which is justified by the existence of magnetic long-
range ordersLROd in theXXZmodel, to show that a cusplike
behavior of the concurrence develops in the thermodynamic
limit when the dimensionality of the latticedù2.

To begin with, we first introduce several notations. On a
finite d-dimensional simple cubic latticeL with NL=Ld sites,
the Hamiltonian of the antiferromagneticXXZ model is

ĤXXZ= o
kij l

sŜi
xŜj

x + Ŝi
ySj

y + DŜi
zŜj

zd, s1d

where Ŝi
x, Ŝi

y, and Ŝi
z are spin-1/2 operators at sitei and D

=Jz/JxsJx=Jyd is a dimensionless parameter characterizing
the anisotropy of the model. The sum in the Hamiltonian is
over all pairs of nearest-neighbor sitesi and j . Obviously,
this Hamiltonian commutes with the total spinz-component

operator Ŝtotal
z =oiŜi

z. Thus, each eigenstate of the Hamil-

tonian is also an eigenstate ofŜtotal
z . Consequently, the Hilbert

space of the system can be decomposed into numerous sub-

spacesVsMd. In each subspace, the spin numberŜtotal
z =M is

specified. It is well known that, on a finite simple cubic
lattice L, the ground state of theXXZ model is nondegener-
ate in any admissible subspaceVsMd f14,15g. In particular,
its global ground stateC0sL ,Dd, which coincides with the
ground state of the model in the subspaceVsM =0d f15g, is
also nondegenerate. Therefore, all the physical quantities,
such as the ground state energyE0sL ,Dd and the spin corre-

lation functionkŜi
zŜi

zl are analytical functions of the param-
eterD, as long as the lattice is finite.

The conservation ofŜtotal
z implies also that, with respect to

the standard basis vectorsu↑↑l, u↑↓l, u↓↑l, and u↓↓l, the re-
duced density matrix of two spins on a pair of nearest-
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neighbor lattice sitesi and j can be put into the following
block-diagonal form:

r̂ij =1
u+ 0 0 0

0 w1 z 0

0 z* w2 0

0 0 0 u−
2 . s2d

Following Ref. f12g, the concurrence of this two-qubit sys-
tem is defined by

Cij = maxs0,Îl1 − Îl2 − Îl3 − Îl4d, s3d

wherel1ùl2ùl3ùl4ù0 are the eigenvalues of the semi-
positive definite matrix

rij r̃ij ; rij ssi
y

^ sj
yrij

* si
y

^ sj
yd. s4d

An important observation is that there exists a one-to-one
correspondence betweenCij and the entanglement formation
of these spins. Consequently,Cij can be used as a measure-
ment of their entanglementf12g. Furthermore, in terms of the

correlation functionsGij
aa=kŜi

aŜj
al, a=x,y,z, Cij can be ex-

plicitly written as f16,17g

Cij = 2 maxSuGij
xx + Gij

yyu − Gij
zz−

1

4
,0D . s5d

We notice that the functionsGij
aa in Eq. s5d represent ac-

tually the total correlation between the spins at sitesi and j .
On the other hand, the constant 1/4 is the maximal absolute
value of their longitudinalsor classicald correlation. There-
fore, being the difference of these quantities,Cij can be
thought of as the remaining “quantum correlation” between
them. Naturally, one would like to study the behavior ofCij
near the quantum phase transition pointD=1. It deepens our
understanding on such transitions.

First, we show that, on any finited-dimensional bipartite
lattice,Cij takes on its maximum at pointD=1. By the varia-
tional principle, it is easy to see that all the spin correlations
functionsGij

aa in Eq. s5d are negative. Thus, we have

Cij = S− Gij
xx − Gij

yy −
1

4
− Gij

zzD
= S− eij

0sL,Dd −
1

4
+ sD − 1dGij

zzD , s6d

whereeij
0sL ,Dd=E0sL ,Dd /NB sNB is the number of bonds in

the latticed is the ground-state energy density per bond. Fur-
thermore, since all quantities inCij are analytical functions
of the parameterD, we are allowed to take derivatives of it
with respect toD. In particular, after taking the first-order
derivative ofCij , we obtain

]Cij

]D
= 2S−

]eij
0sL,Dd
]D

+ Gij
zz+ sD − 1d]Gij

zz

]D
D . s7d

Again, due to the nondegeneracy of the global ground state
C0sL ,Dd of theXXZmodel on a finite lattice, we can use the
Hellmann-Feynman theorem to calculate the derivative
]eij

0sL ,Dd /]D, which equalsGij
zz. Therefore, we finally obtain

]Cij

]D
= 2sD − 1d

]Gij
zz

]D
= 2sD − 1d

]2eij
0sL,Dd
]D2 . s8d

Immediately, one sees thatD=1 is an extreme point of the
concurrence.

Next, we show thatD=1 is actually a maximal point of
Cij and the concurrence does not have another extreme point.
In fact, both the statements are the corollaries of concavity of

the ground-state energyE0sL ,Dd of the HamiltonianĤXXZ

with respect to the anisotropic parameterD. By the varia-
tional principlef18g, we know that, for any two parameters
D1 andD2, the inequality

E0fL,lD1 + s1 − ldD2g ù lE0sL,D1d + s1 − ldE0sL,D2d,

s9d

where 0ølø1, holds true for the ground-state energy
E0sL ,Dd. In particular, whenE0sL ,Dd is differentiable with
respect toD, the inequalitys9d is equivalent to

]2E0sL,Dd
]D2 ø 0. s10d

Consequently, we have also]2eij
0sL ,Dd /]D2ø0. Now, let us

take the derivative of Eq.s8d again with respect toD. It
yields

U ]2Cij

]D2 U
D=1

= U2
]2eij

0sL,Dd
]D2 U

D=1
ø 0. s11d

Therefore,D=1 is indeed a maximal point of the concur-
rence.

Finally, we prove thatD=1 is the unique extreme point of
the concurrenceCij . For that purpose, we notice that the
inequality s10d is actually strict. In other words, the equal
sign in it can be ignored. This can be easily understood by
observing the following fact: AsD increases from −̀ to `,

quantity kŜi
zŜi

zl=]eij
0sL ,Dd /]D becomes more and more

negative. Consequently, the product on the right-hand side of
Eq. s8d cannot be zero at any point exceptD=1. That com-
pletes our discussion on the general behavior of the concur-
renceCij for the antiferromagneticXXZ model on a finite
d-dimensional simple cubic lattice. In addition, we point out
that the above proof can be easily extended to other cases,
such as the spin ladder model atJ'=0.

In the following, we shall discuss the analyticity of the
concurrence in the vicinity of phase transition. In Ref.f6g, by
using the Bethe ansatz solution of the one-dimensionalXXZ
chain, we obtained the explicit expression of the concurrence
near the isotropic point

Ci,i+1 = C0 − C1sD − 1d2, s12d

whereC0 andC1 are two real constants. Therefore, the con-
currence of the one-dimensionalXXZ chain is a differen-
tiable function ofD in the thermodynamic limit. However,
things are quite different in higher dimensions. For theXXZ
model in higher dimensions, there exists no exact solution.
One either uses approximate analytical approach such as the
spin-wave theory or numerical approach such as exact diago-
nalization studies of finite latticef19g. To obtain results in the

GU, TIAN, AND LIN PHYSICAL REVIEW A 71, 052322s2005d

052322-2



thermodynamic limit, finite-size scaling analysis must be
performed. By using the stochastic series expansion quantum
Monte Carlo method for lattices up to 16316, Sandvikf20g
did an extensive study on the two-dimensionalS=1/2 anti-
ferromagnetic Heisenberg model. The finite-size results for
various ground-state quantities were extrapolated to the ther-
modynamic limit using fits to polynomials in 1/L, con-
strained by scaling forms previously obtained from
renormalization-group calculations for the nonlinears model
and chiral perturbation theory. He demonstrated that the re-
sults were fully consistent with the predicted leading finite-
size corrections. With the same scaling forms, Lin, Flynn,
and Bettsf21g studied theXXZ model on square lattices and
obtained various quantities as functions of the anisotropic
parameterD for the infinite system. Two conclusions from
previous workf20–23g are relevant to the present study:sid
results obtained from the spin-wave theory are qualitatively
correct and quite accurate, usually within 3% as compared
with exact solution on finite lattices;sii d derivatives of the
ground-state energy with respect to the anisotropic parameter
D are not continuous at the Heisenberg pointD=1; for ex-
ample, see Fig. 3 in Ref.f21g. This conclusion is consistent
with the belief that there exists antiferromagnetic long-range
order in thed-dimensionalXXZ model for dù2. In other

words, the correlation functionkŜi
aŜi+r

a l does not vanish as
r →`. Theoretically, the existence of the LRO indù3 di-
mensions has been rigorously provenf24g, while for d=2
most numerical studies support it. Based on these conclu-
sions, we apply the spin-wave theory to calculate the concur-
renceCij of the XXZ model. We also use exact diagonaliza-
tion results as complementary. As shown in the following,
the symmetry breaking in the thermodynamic limit, which is
absent in the one-dimensional case, causes the singular be-
havior of the concurrence at the quantum phase transition
point.

Following the standard procedure, theXXZ Hamiltonian
is mapped into a boson model via the Holstein-Primarkoff
transformation

Ŝi
+ = Î2Ss1 − n̂i/2Sd1/2âi . Î2Ss1 − n̂i/4Sdâi ,

Ŝi
− = Î2Sâi

†s1 − n̂i/2Sd1/2 . Î2Sâi
†s1 − n̂i/4Sd,

Ŝi
z = S− âi

†âi , s13d

whereâi andâi
† are boson creation and annihilation operators

at sitei for the spin deviation. In the regionD.1, the anti-
ferromagnetic ordering is in the spinz direction. Conse-
quently, we have

ĤXXZ/D . o
kij l

f− S2 + Ssâi
†âi + âj

†âjd + xSsâiâj + âi
†âj

†dg,

s14d

where x=1/D. Using Fourier transform, we rewrite the
Hamiltonian as

ĤXXZ/D = −
z

2
NS2 + zSo

k
Ĥskd, s15d

wherez is the coordination number of the lattice and

Ĥskd = âk
†âk +

xgk

2
sâkâ−k + â−k

† âk
†d s16d

with gk =s2/zdom=1
d coskm. By applying the Bogoliubov

transformation

âk = ukĉk − vkĉ−k
† ,

âk
† = − vkĉ−k + ukĉk

†, s17d

we diagonalizeĤskd and obtain

Ĥskd = vk
2 − xgkukvk + suk

2 + vk
2 − 2xukvkgkdĉk

†ĉk , s18d

where theuk and vk satisfy the following constraint condi-
tions:

uk
2 − vk

2 = 1,

xgk

2
suk

2 + vk
2d − ukvk = 0. s19d

Finally, the ground-state energy of the model in the region of
D.1 can be written as

E0sD . 1d = −
z

2
NS2 +

zS

2 o
k

sÎ1 − x2gk
2 − 1d. s20d

By a similar approach, we can also obtain the ground-
state energy of theXXZ model in the parameter region of 0
,D,1. In this case, the system has antiferromagnetic order
in the XY plane in the thermodynamic limit. As a result, the
diagonalized Hamiltonian has the form

Ĥskd = s1 + ygkdvk
2 − xgkukvk + fs1 + ygkdsuk

2 + vk
2d

− 2xukvkgkgĉk
†ĉk , s21d

wherex=s1+Dd /2 andy=s1−Dd /2, and the corresponding
ground-state energy is

E0 = −
z

2
NS2 +

zS

2 o
k

s1 + ygkd

3sÎ1 − x2gk
2/s1 + ygkd2 − 1d. s22d

Within the spin-wave theory framework, we calculate the
spin correlation functionGij

zz and hence the concurrenceCij
of the model in two and three dimensions. Our results are
shown in Figs. 1 and 2, respectively. We also show results
obtained from the exact diagonalization of theXXZmodel on
finite square lattices. The trend as a function of lattice size is
clear. It is interesting to see that, in both cases, the concur-
rencesCij of the XXZ model not only have their maximal
value at the critical pointD=1, but also show discontinuities
in their first derivative with respect toD at the transition
point. This behavior is quite different from the one-
dimensional casefEq. s12dg, as we expected. We attribute
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this difference to the existence of the magnetic long-range
order in the system withdù2.

As we have seen, the concurrenceCij is closely related to
the ground-state energy of the model. As a result, any singu-
larity in the ground-state energy may be inherited by the
concurrencef8g. On the other hand, on a finited-dimensional
simple cubic lattice, the ground state of the antiferromagnetic
XXZmodel is nondegenerate forDP s−1,`d f15g. Therefore,
the ground-state energyE0sL ,Dd as well as the concurrence
Cij are analytical functions ofD, regardless of the dimension-
ality of the lattice. However, it is no longer true in the ther-
modynamic limit. For the one-dimensionalXXZ model, it is
well known that its ground state in both theD,1 and D
.1 regions does not have magnetic long-range order. There-
fore, the local properties of the system, such as energy, spin-
spin correlations of the nearest neighbors, etc., are not af-
fected by those spins far away. So we do not expect a
dramatic change in the ground-state energyE0 taking place
at D=1. Consequently, the concurrence will behave more or
less like itself on a finite lattice. However, in two and three
dimensions, the ground-state energy of the system develops a
cusp at the transition point in the thermodynamic limitf21g.

This phenomenon can be understood by the picture of the
first excited energy levels crossing atD=1, required by the
existence of magnetic long-range orderf25g. Furthermore,
due to the existence of long-range correlations, one expects
that the properties, such as entanglement, of the localized
spin pairs are greatly affected by the collective modes of the
whole system. In particular, it is well known that, in general,
the long-range order makes the change of these quantities at
the transition point more abruptf11g. Therefore, the singular
behavior of the concurrence at the transition point should be
expected. Our calculation confirms this speculation.

A further remark is in order. Conventionally, one identi-
fies the phase boundary of a many-body system by studying
divergence of the corresponding correlation functions in the
thermodynamic limit. On the other hand, as far as numerical
calculations are concerned, investigations on large-size
samples are limited by the current computation facilities. As
a result, one needs to do rather sophisticated calculations to
determine the exact transition point by numerics. For in-
stance, in Fig. 3, we draw the calculated curves of the first
derivative of correlation functionsGij

xxsDd and Gij
zzsDd with

respect toD for the XXZ model on a 434 lattice. It is clear
that both the extreme points do not coincide withD=1, al-
though they do approach to it as the size of sample increases.

On the other hand, as expressed in Eq.s6d, the concur-
rence Cij is a function of these correlation functions. As
proven above, on any finite bipartite lattice, this quantity
reaches its maximum at pointD=1. That makes identifica-
tion of the phase transition point much easier. By studying
several concrete examples, we found that this observation
holds true for other interesting systems, such as the spin
ladder model, too. That strongly suggests that one can deter-
mine the quantum phase transition points of a specific many-
body system by finding out the singular points of particle
entanglement in its ground state. Moreover, it also provides
us with further information on the quantum correlations
among particles in the system.

In summary, we have studied the ground-state two-spin
entanglement, as measured by the concurrence, in the
d-dimensionalXXZmodel. We gave a rigorous proof that the
ground-state concurrence in theXXZ model reaches a maxi-

FIG. 1. The concurrenceCij of the two-dimensionalXXZmodel
as a function ofD s=Jz/Jxd. In the figure, the dotted lines are ob-
tained from the exact diagonalization for 434 ssquared and 636
scircled square lattices respectively; the solid line is from spin-wave
theory.

FIG. 2. The concurrenceCij of the three-dimensionalXXZ
model as a function ofD s=Jz/Jxd.

FIG. 3. The first derivative of the correlation function of the
two-dimensionalXXZ model as a function ofD s=Jz/Jxd for a 4
34 square lattice.
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mum at the isotropic point. We extended our previous studies
in one dimensionf6g to two and three dimensions by using
the spin-wave theory and exact diagonalization technique.
The use of the spin-wave theory is justified by the existence
of magnetic long-range order in theXXZ model for dimen-
sionality dù2. We found that the concurrence in two- and
three-dimensionalXXZ models also reaches a maximum at
the isotropic pointD=1. Unlike the one-dimensional case,
the concurrence shows cusplike behavior around the critical

point, and its first derivative is not continuous in the vicinity
of the critical point.

Note added:Recently, we received work from Dr. M. F.
Yang prior to publicationf9g. Some of our results were also
obtained by him.
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