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We present a detailed analysis of the impact on quantum modular exponentiation of architectural features
and possible concurrent gate execution. Various arithmetic algorithms are evaluated for execution time, poten-
tial concurrency, and space trade-offs. We find that to exponentiate ann-bit number, for storage space 100n s20
times the minimum 5nd, we can execute modular exponentiation 200–700 times faster than optimized versions
of the basic algorithms, depending on architecture, forn=128. Addition on a neighbor-only architecture is
limited to Osnd time, whereas non-neighbor architectures can reachOslog nd, demonstrating that physical
characteristics of a computing device have an important impact on both real-world running time and
asymptotic behavior. Our results will help guide experimental implementations of quantum algorithms and
devices.
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I. INTRODUCTION

Research in quantum computing is motivated by the pos-
sibility of enormous gains in computational timef1–4g. The
process of writing programs for quantum computers natu-
rally depends on the architecture, but the application of clas-
sical computer architecture principles to the architecture of
quantum computers has only just begun.

Shor’s algorithm for factoring large numbers in polyno-
mial time is perhaps the most famous result to date in the
field f1g. Since this algorithm is well defined and important,
we will use it as an example to examine the relationship
between architecture and program efficiency, especially par-
allel execution of quantum algorithms. Shor’s factoring algo-
rithm consists of main two parts, quantum modular exponen-
tiation, followed by the quantum Fourier transform. In this
paper we will concentrate on the quantum modular exponen-
tiation, both because it is the most computationally intensive
part of the algorithm and because arithmetic circuits are fun-
damental building blocks we expect to be useful for many
algorithms.

Fundamentally, quantum modular exponentiation is
Osn3d; that is, the number of quantum gates or operations
scales with the cube of the length in bits of the number to be
factored f5–7g. It consists of 2n modular multiplications,
each of which consists ofOsnd additions, each of which re-
quires Osnd operations. However,Osn3d operationsdo not
necessarily requireOsn3d time steps. On an abstract machine,
it is relatively straightforward to see how to reduce each of
those three layers toOslog nd time steps, in exchange for
more space and moretotal gates, giving a total running time
of Oslog3 nd if Osn3d qubits are available and an arbitrary
number of gates can be executed concurrently on separate
qubits. Such large numbers of qubits are not expected to be
practical for the foreseeable future, so much interesting en-
gineering lies in optimizing for a given set of constraints.

This paper quantitatively explores those trade-offs.
This paper is intended to help guide the design and ex-

perimental implementation of actual quantum computing de-
vices as the number of qubits grows over the next several
generations of devices. Depending on the postquantum error
correction, application-level effective clock rate for a specific
technology, the choice of exponentiation algorithm may be
the difference between hours of computation time and weeks
or between seconds and hours. This difference, in turn, feeds
back into the system requirements for the necessary strength
of error correction and coherence time.

The Schönhage-Strassen multiplication algorithm is often
quoted in quantum computing research as being
Osn log n log lognd for a single multiplicationf8g. However,
simply citing Schönhage-Strassen without further qualifica-
tion is misleading for several reasons. Most importantly, the
constant factors matter:1 quantum modular exponentiation
based on Schönhage-Strassen is only faster than basicOsn3d
algorithms for more than,32 kilobits. In this paper, we will
concentrate on smaller problem sizes, and exact, rather than
Os·d, performance.

Concurrent quantum computation is the execution of
more than one quantum gate on independent qubits at the
same time. Utilizing concurrency, the latency, or circuit
depth, to execute a number of gates can be smaller than the
number itself. Circuit depth is explicitly considered in Cleve
and Watrous’ parallel implementation of the quantum Fourier
transformf9g, Gossett’s quantum carry-save arithmeticf10g,
and Zalka’s Schönhage-Strassen-based implementationf11g.
Moore and Nilsson define the computational complexity
class QNC to describe certain parallelizable circuits and
show which gates can be performed concurrently, proving
that any circuit composed exclusively of controlled NOT
gatessCNOTsd can be parallelized to be of depthOslog nd
usingOsn2d ancillae on an abstract machinef12g.

*Electronic address: rdv@tera.ics.keio.ac.jp

1Shor noted this in his original paper, without explicitly specifying
a bound. Note also that this bound is for a Turing machine; a
random-access machine can reachOsn log nd.
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We analyze two separate architectures, still abstract but
with some important features that help us understand perfor-
mance. For both architectures, we assume any qubit can be
the control or target for only one gate at a time. The first,
abstract concurrentsACd architecture, is our abstract model.
It supports CCNOT sthe three-qubit Toffoli gate, or
controlled-controlled-NOTd, arbitrary concurrency, and gate
operands any distance apart without penalty. It does not sup-
port arbitrary control strings on control operations, only
CCNOT with two ones as control. The second, theneighbor-
only, two-qubit-gate, concurrentsNTCd architecture, is simi-
lar but does not support CCNOT, only two-qubit gates, and
assumes the qubits are laid out in a one-dimensionals1Dd
line, and only neighboring qubits can interact. The 1D layout
will have the highest communications costs among possible
physical topologies. Most real, scalable architectures will
have constraints with this flavor, if different details, so AC
and NTC can be viewed as bounds within which many real
architectures will fall. The layout of variables on this struc-
ture has a large impact on performance; what is presented
here is the best we have discovered to date, but we do not
claim it is optimal.

The NTC model is a reasonable description of several
important experimental approaches, including a one-
dimensional chain of quantum dotsf13g, the original Kane
proposalf14g, and the all-silicon NMR devicef15g. Super-
conducting qubitsf16,17g may map to NTC, depending on
the details of the qubit interconnection.

The difference between AC and NTC is critical; beyond
the important constant factors as nearby qubits shuffle, we
will see in Sec. III B that AC can achieveOslog nd perfor-
mance where NTC is limited toOsnd.

For NTC, which does not support CCNOT directly, we
compose CCNOT from a set of five two-qubit gatesf18g, as
shown in Fig. 1. The box with the bar on the right represents
the square root ofX,

ÎX =
1

2
F1 + i 1 − i

1 − i 1 + i
G

and the box with the bar on the left its adjoint. We assume
that this gate requires the same execution time as a CNOT.

Section II reviews Shor’s algorithm and the need for
modular exponentiation, then summarizes the techniques we
employ to accelerate modular exponentiation. Section II A
introduces the best-known existing modular exponentiation
algorithms and several different adders. Section III begins by
examining concurrency in the lowest level elements, the

adders. This is followed by faster adders and additional tech-
niques for accelerating modulo operations and exponentia-
tion. Section IV shows how to balance these techniques and
apply them to a specific architecture and set of constraints.
We evaluate several complete algorithms for our architec-
tural models. Specific gate latency counts, rather than
asymptotic values, are given for 128 bits and smaller num-
bers.

II. BASIC CONCEPTS

A. Modular exponentiation and Shor’s algorithm

Shor’s algorithm for factoring numbers on a quantum
computer uses the quantum Fourier transform to find the
orderr of a randomly chosen numberx in the multiplicative
groupsmodNd. This is achieved by exponentiatingx, modulo
N, for a superposition of all possible exponentsa. Therefore,
efficient arithmetic algorithms to calculate modular exponen-
tiation in the quantum domain are critical.

Quantum modular exponentiation is the evolution of the
state of a quantum computer to hold

uclu0l → ucluxc mod Nl. s1d

When ucl is the superposition of all input statesa up to a
particular value 2N2,

ucl =
1

NÎ2
o
a=0

2N2

ual. s2d

The result is the superposition of the modular exponentiation
of those input states,

1

NÎ2
o
a=0

2N2

ualu0l → 1

NÎ2
o
a=0

2N2

ualuxa mod Nl. s3d

Depending on the algorithm chosen for modular exponen-
tiation, x may appear explicitly in a register in the quantum
computer or may appear only implicitly in the choice of
instructions to be executed. In general, quantum modular ex-
ponentiation algorithms are created from building blocks that
do modular multiplication,

ualu0l → ualuab mod Nl, s4d

whereb andN may or may not appear explicitly in quantum
registers. This modular multiplication is built from blocks
that perform modular addition,

ualu0l → ualua + b mod Nl, s5d

which, in turn, are usually built from blocks that perform
addition and comparison.

Addition of two n-bit numbers requiresOsnd gates. Mul-
tiplication of twon-bit numberssincluding modular multipli-
cationd combines the convolution partial productssthe one-
bit productsd of each pair of bits from the two arguments.
This requiresOsnd additions ofn-bit numbers, giving a gate
count ofOsn2d. Our exponentiation for Shor’s algorithm re-
quires 2n multiplications, giving a total cost ofOsn3d.

Many of these steps can be conducted in parallel; in clas-

FIG. 1. CCNOT constructions for our architectures AC and
NTC. The box with the bar on the right represents the square root of
X, and the box with the bar on the left its adjoint. Time flows left to
right, each horizontal line represents a qubit, and each vertical line
segment is a quantum gate.
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sical computer system design, thelatency or circuit depth,
the time from the input of values until the output becomes
available, is as important as the total computational complex-
ity. Concurrencyis the execution of more than one gate dur-
ing the same execution time slot. We will refer to the number
of gates executing in a time slot as the concurrency or the
concurrency level. Our goal through the rest of the paper is
to exploit parallelism, or concurrency, to shorten the total
wall clock time to execute modular exponentiation and,
hence, Shor’s algorithm.

The algorithms as described here run on logical qubits,
which will be encoded onto physical qubits using quantum
error correctionsQECd f19g. Error correction processes are
generally assumed to be applied in parallel across the entire
machine. Executing gates on the encoded qubits, in some
cases, requires additional ancillae, so multiple concurrent
logical gates will require growth in physical qubit storage
spacef20,21g. Thus, both physical and logical concurrency
are important; in this paper we consider only logical concur-
rency.

B. Notation and techniques for speeding up modular
exponentation

In this paper, we will useN as the number to be factored
andn to represent its length in bits. For convenience, we will
assume thatn is a power of two and the high bit ofN is one.
x is the random value, smaller thanN, to be exponentiated,
and ual is our superposition of exponents, witha,2N2 so
that the length ofa is 2n+1 bits.

When discussing circuit cost, the notation issCCNOTs;
CNOTs; NOTsd or sCNOTS; NOTsd. The values may be total
gates or circuit depthslatencyd, depending on context. The
notation is sometimes enhanced to show required concur-
rency and space,sCCNOTs; CNOTs; NOTsd#sconcurrency;
spaced swhere # is used as a separatord. t is time, or latency
to execute an algorithm, andS is space, subscripted with the
name of the algorithm or circuit subroutine. Whent or S is
superscripted with AC or NTC, the values are for the latency
of the construct on that architecture. Equations without su-
perscripts are for an abstract machine assuming no concur-
rency, equivalent to a total gate count for the AC architec-
ture. R is the number of calls to a subroutine, subscripted
with the name of the routine.

m, g, f, p, b, and s are parameters that determine the
behavior of portions of our modular exponentiation algo-
rithm. m, g, and f are part of our carry-select and
conditional-sum adderssSec. III Bd. p andb are used in our

indirection schemesSec. III Ed. s is the number of multiplier
blocks we can fit into a chosen amount of spacesSec. III Cd.

Here we summarize the techniques, which are detailed in
following sections. Our fast modular exponentiation circuit
is built using the following optimizations:sid Select correct
qubit layout and subsequences to implement gates, then hand
optimize sno penaltyd f22–28g. sii d Look for concurrency
within addition and/or multiplicationsno space penalty,
maybe noise penaltyd sSecs. III Ad. siii d Select multiplicand
using table and/or indirectionsexponential classical cost, lin-
ear reduction in quantum gate countd sf29g, Sec. III Ed. sivd
Do multiplications concurrentlyslinear speedup for small
values, linear cost in space, small gate count increase; re-
quires quantum-quantumsQ-Qd multiplier, as well as
classical-quantumsC-Qd multiplierd sSec. III Cd. svd Move to
e.g., carry-save adderssn2 space penalty for reduction to log
time, increases total gate countdsf10g, Sec. II C 4d
conditional-sum adderssSec. III B 2d, or carry–look-ahead
adderssSec. II C 5d. svid Reduce modulo comparisons, only
do subtractN on overflowssmall space penalty, linear reduc-
tion in modulo arithmetic costd sSec. III Dd.

C. Existing algorithms

In this section we will review various components of the
modular exponentiation that will be used to construct our
parallelized version of the algorithm in Sec. III. There are
many ways of building adders and multipliers, and choosing
the correct one is a technology-dependent exercisef30g.
Only a few classical techniques have been explored for quan-
tum computation. The two most commonly cited modular
exponentiation algorithms are those of Vedralet al. f7g,
which we will refer to as VBE, and Beckmanet al. f5g,
which we will refer to as BCDP. Both BCDP and VBE algo-
rithms build multipliers from variants of carry-ripple adders,
the simplest but slowest method; Cuccaroet al. f31g have
recently shown the design of a smaller, faster carry-ripple
adder. Zalka proposed a carry-select adder; we present our
design for such an adder in detail in Sec. III B. Draperet al.
f32g have recently proposed a carry–look-ahead adder and
Gossett a carry-save adder. Beauregardf33g has proposed a
circuit that operates primarily in the Fourier transform space.

Carry–look-aheadsSec. II C 5d, conditional-sum sSec.
III B 2 d, and carry-savesSec. II C 4d adders all reach
Oslog nd performance for addition. Carry–look-ahead and
conditional-sum adders use more space than carry-ripple
adders, but much less than carry-save adders. However,
carry-save adders can be combined into fast multipliers more

TABLE I. Parameters for our algorithms, chosen for 128 bits.

Algorithm Adder Modulo Indirect Multipliersssd Space Concurrency

Concurrent VBE VBE VBE N/A 1 897 2

Algorithm D CSUMsm=4d p=11, b=1024 w=2 12 11969 126312=1512

Algorithm E QCLA p=10, b=512 w=2 16 12657 128316=2048

Algorithm F CDKM p=10, b=512 w=4 20 11077 2032=40

Algorithm G CDKM Fig. 7 w=4 1 660 2
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easily. We will see in Sec. III how to combine carry–look-
ahead and conditional-sum adders into the overall exponen-
tiation algorithms.

1. VBE carry-ripple adder

The VBE algorithmf7g builds full modular exponentia-
tion from smaller building blocks. The bulk of the time is
spent in 20n2−5n ADDERs.2 The full circuit requires 7n
+1 qubits of storage: 2n+1 for a, n for the other multipli-
cand,n for a running sum,n for the convolution products,n
for a copy ofN, andn for carries.

In this algorithm, the values to be added in, the convolu-
tion partial products ofxa, are programed into a temporary
registerscombined with a superposition ofu0l as necessaryd
based on a control line and a data bit via appropriate CCNOT
gates. The latency ofADDER and the complete algorithm are

tADD = s4n − 4;4n − 3;0d s6d

tV = s20n2 − 5ndtADD = s80n3 − 100n2 + 20n;96n3 − 84n2

+ 15n;8n2 − 2n + 1d. s7d

2. BCDP carry-ripple adder

The BCDP algorithm is also based on a carry-ripple adder.
It differs from VBE in that it more aggressively takes advan-
tage of classical computation. However, for our purposes,
this makes it harder to use some of the optimization tech-
niques presented here. Beckmanet al. f5g present several
optimizations and trade-offs of space and time, slightly com-
plicating the analysis.

The exact sequence of gates to be applied is also depen-
dent on the input values ofN andx, making it less suitable
for hardware implementation with fixed gatesse.g., in an
optical systemd. In the form we analyze, it requires 5n
+3 qubits, including 2n+1 for ual. Borrowing from their Eq.
s6.23d,

tB = s54n3 − 127n2 + 108n − 29;10n3 + 15n2 − 38n + 14;20n3

− 38n2 + 22n − 4d. s8d

3. CDKM carry-ripple adder

Cuccaroet al. have recently introduced a carry-ripple cir-
cuit, which we will call CDKM, which uses only a single
ancilla qubit f31g. The latency of their adder iss2n
−1;5;0d for the AC architecture.

The authors do not present a complete modular exponen-
tiation circuit; we will use their adder in our algorithmsF
and G. This adder, we will see in Sec. IV C 1, is the most
efficient known for NTC architectures.

4. Gossett carry-save and carry-ripple adders

Gossett’s arithmetic is pure quantum, as opposed to the
mixed classical-quantum of BCDP. Gossett does not provide

a full modular exponentiation circuit, only adders, multipli-
ers, and a modular adder based on the important classical
techniques ofcarry-save arithmeticf10g.

Gossett’s carry-save adder, the important contribution of
the paper, can run inOslog nd time on AC architectures. It
will remain impractical for the foreseeable future because of
the large number of qubits required; Gossett estimates
8n2 qubits for a full multiplier, which would run inOslog2 nd
time. It bears further analysis because of its high speed and
resemblance to standard fast classical multipliers.

Unfortunately, the paper’s second contribution, Gossett’s
carry-ripple adder, as drawn in his Fig. 7, seems to be incor-
rect. Once fixed, his circuit optimizes to be similar to VBE.

5. Carry–look-ahead adder

Draperet al. have recently proposed a carry–look-ahead
adder, which we call QCLAf32g. This method allows the
latency of an adder to drop toOslog nd for AC architectures.
The latency and storage of their adder is

tLA
AC = s4 log2 n + 3;4;2d#sn;4n − log n − 1d. s9d

The authors do not present a complete modular exponen-
tiation circuit; we will use their adder in our algorithmE,
which we evaluate only for AC. The large distances between
gate operands make it appear that QCLA is unattractive for
NTC.

6. Beauregard-Draper QFT-based exponentiation

Beauregard has designed a circuit for doing modular ex-
ponentiation in only 2n+3 qubits of spacef33g, based on
Draper’s clever method for doing addition on Fourier-
transformed representations of numbersf34g.

The depth of Beauregard’s circuit isOsn3d, the same as
VBE and BCDP. However, we believe the constant factors
on this circuit are very large; every modulo addition consists
of four Fourier transforms and five Fourier additions.

Fowler et al. f35g and Devittet al. f36g have simulated
Shor’s algorithm using Beauregard’s algorithm, for a class of
machines they calllinear nearest neighborsLNNd. LNN cor-
responds approximately to our NTC. In their implementation
of the algorithm, they found no significant change in the
computational complexity of the algorithm on LNN or an
AC-like abstract architecture, suggesting that the perfor-
mance of Draper’s adder, like a carry-ripple adder, is essen-
tially architecture independent.

III. RESULTS: ALGORITHMIC OPTIMIZATIONS

We present our concurrent variant of VBE, then move to
faster adders. This is followed by methods for performing
exponentiation concurrently, improving the modulo arith-
metic and indirection to reduce the number of quantum mul-
tiplications.

A. Concurrent VBE

In Fig. 2, we show a three-bit concurrent version of the
VBE ADDER. This figure shows that the delay of the concur-

2When we write ADDER in all small capital letters, we mean the
complete VBEn-bit construction, with the necessary undo; when
we write adder in small letters, we are usually referring to a smaller
or generic circuit block.
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rent ADDER is s3n−3dtCCNOT+s2n−3dtCNOT, or

tADD
AC = s3n − 3;2n − 3;0d, s10d

a mere 25% reduction in latency compared to the unopti-
mized s4n−4;4n−3;0d of Eq. s6d.

Adapting Eq.s7d, the total circuit latency, minus a few
small corrections that fall outside theADDER block proper, is

tV
AC = s20n2 − 5ndtADD

AC = s60n3 − 75n2 + 15n;40n3 − 70n2

+ 15n;0d. s11d

This equation is used to create the first entry in Table II.

B. Carry-select and conditional-sum adders

Carry-select adders concurrently calculate possible results
without knowing the value of the carry in. Once the carry in
becomes available, the correct output value is selected using
a multiplexersMUX d. The type of MUX determines whether
the behavior isOsÎnd or Oslog nd.

1. O„În… carry-select adder

The bits are divided intog groups ofm bits each,n=gm.
The adder block we will call CSLA, and the combined adder,

MUXes, and adder undo to clean our ancillae, CSLAMU.
The CSLAs are all executed concurrently, then the output
MUXes are cascaded, as shown in Fig. 3. The first group
may have a different size,f, thanm, since it will be faster,
but for the moment we assume they are the same.

Figure 4 shows a three-bit carry-select adder. This gener-
ates two possible results, assuming that the carry in will be
zero or one. The portion on the right is a MUX used to select
which carry to use, based on the carry in. All of the outputs
without labels are ancillae to be garbage collected. It is pos-
sible that a design optimized for space could reuse some of
those qubits; as drawn a full carry-select circuit requires
5m−1 qubits to add twom-bit numbers.

The largerm-bit carry-select adder can be constructed so
that its internal delay, as in a normal carry-ripple adder, is
one additional CCNOT for each bit, although the total num-
ber of gates increases and the distance between gate oper-
ands increases.

The latency for the CSLA block is

tCS
AC = sm;2;0d. s12d

Note that this is not a “clean” adder; we still have ancillae to
return to the initial state.

The problem for implementation will be creating an effi-
cient MUX, especially on NTC. Figure 3 makes it clear that
the total carry-select adder is only faster if the latency of
MUX is substantially less than the latency of the full carry-

FIG. 2. Three-bit concurrent VBEADDER, AC abstract machine.
Gates marked with an x can be deleted when the carry in is known
to be zero.

TABLE II. Latency to factor a 128-bit number for various architectures and choices of algorithm: AC,
abstract concurrent architecture, NTC, neighbor-only, two-qubit gate, concurrent architecture; and Perf, per-
formance relative to VBE algorithm for that architecture, based on CCNOTs for AC and CNOTs for NTC.

Algorithm

AC NTC

Gates Perf. Gates Perf.

Concurrent VBE s1.253108;8.273107;0.003100d 1.0 s8.323108;0.003100d 1.0

Algorithm D s2.193105;2.573104;1.673105d 569.8 N/A N/A

Algorithm E s1.713105;1.963104;2.933104d 727.2 N/A N/A

Algorithm F s7.843105;1.303104;4.103104d 158.9 s4.113106;4.103104d 202.5

Algorithm G s1.503107;2.483105;7.933105d 8.3 s7.873107;7.933105d 10.6

FIG. 3. Block-level diagram of four-group carry-select adder.ai

andbi are addends, andsi is the sum. Additional ancillae not shown.
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ripple. It will be difficult for this to be more efficient that the
single-CCNOT delay of the basic VBE carry-ripple adder on
NTC. On AC, it is certainly easy to see how the MUX can
use a fanout tree consisting of more ancillae and CNOT gates
to distribute the carry in signal, as suggested by Mooref12g,
allowing all MUX Fredkin gates to be executed concurrently.
A full fanout requires an extram qubits in each adder.

In order to unwind the ancillae to reuse them, the simplest
approach is the use of CNOT gates to copy our result to
anothern-bit register, then a reversal of the circuitry. Count-
ing the copy out for ancilla management, we can simplify the
MUX to two CCNOTs and a pair of NOTs.

The latency of the carry ripple from MUX to MUXsnot
qubit to qubitd can be arranged to give a MUX cost ofs4g
+2m−6;0;2g−2d. This cost can be accelerated somewhat
by using a few extra qubits and “fanning out” the carry. For
intermediate values ofm, we will use a fanout of 4 on AC,
reducing the MUX latency tos4g+m/2−6;2;2g−2d in ex-
change for three extra qubits in each group.

Our space used for the full, clean adder iss6m−1dsg
−1d+3f +4g when using a fanout of 4. The total latency of
the CSLA, MUX, and the CSLA undo is

tSEM
AC = 2tCS

AC + tMUX
AC = s4g + 5m/2 − 6;6;2g − 2d. s13d

Optimizing for AC, based on Eq.s13d, the delay will be the
minimum whenm,Î8n/5.

Zalka was the first to propose use of a carry-select adder,
though he did not refer to it by namef11g. His analysis does
not include an exact circuit, and his results differ slightly
from ours.

2. O„log n… conditional-sum adder

As described above, the carry-select adder isOsm+gd, for
n=mg, which minimizes to beOsÎnd. To reachOslog nd per-
formance, we must add a multilevel MUX to our carry-select
adder. This structure is called a conditional-sum adder, which
we will label CSUM. Rather than repeatedly choosing bits at
each level of the MUX, we will create a multilevel distribu-
tion of MUX select signals, then apply them once at the end.
Figure 5 shows only the carry signals for eight CSLA groups.
The e signals in the figure are our effective swap control
signals. They are combined with a carry in signal to control
the actual swap of variables. In a full circuit, a ninth group,
the first group, will be a carry-ripple adder and will create the
carry in; that carry in will be distributed concurrently in a
separate tree.

FIG. 4. Three-bit carry-select addersCSLAd with multiplexer
sMUX d. ai and bi are addends. The control-SWAP gates in the
MUX select either the qubits markedcin=1 or cin=0, depending on
the state of the carry-in qubitcin. si qubits are the output sum, and
ki are internal carries.

FIG. 5. Oslog nd MUX for conditional-sum adder, forg=9 sthe
first group is not shownd. Only the ci,j carry out lines from each
m-qubit block are shown, wherei is the block number andj is the
carry in value. At each stage, the span of correct effective swap
control linesei,j doubles. After using the swap control lines, all but
the last must be cleaned by reversing the circuit. Unlabeled lines are
ancillae to be cleaned.
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The total adder latency will be

tCSUM
AC = 2tCS

AC + f2dlog2sg − 1de − 1g 3 s2;0;2d + s4;0;4d

= s2m+ 4dlog2sg − 1de + 2;4;4dlog2sg − 1de + 2d,

s14d

where dxe indicates the smallest integer not smaller thanx.
For largen, this generally reaches a minimum for smallm,
which gives asymptotic behavior,4 log2 n, the same as
QCLA. CSUM is noticeably faster for smalln, but requires
more space.

The MUX usesd3sg−1d /2e−2 qubits in addition to the
internal carries and the tree for dispersing the carry in. Our
space used for the full, clean adder iss6m−1dsg−1d+3f
+ d3sg−1d /2−2+sn− fd /2e.

C. Concurrent exponentiation

Modular exponentiation is often drawn as a string of
modular multiplications, but Cleve and Watrous pointed out
that these can easily be parallelized, at linear cost in space
f9g ssee Fig. 6d. We always have to execute 2n multiplica-
tions; the goal is to do them in as few time delays as pos-
sible.

To go salmostd twice as fast, use two multipliers; for four
times, use four. Naturally, this can be built up ton multipliers
to multiply the necessary 2n+1 numbers, in which case a
tree recombining the partial results requires log2 n quantum-
quantum sQ-Qd multiplier latency times. The first unit in
each chain just sets the register to the appropriate value if the
control line is 1, otherwise, it leaves it as 1.

For s multipliers, søn, each multiplier must combiner
= bs2n+1d /sc or r +1 numbers, usingr −1 or r multiplications
sthe first number being simply set into the running product
registerd, where bxc indicates the largest integer not larger
than x. The intermediate results from the multipliers are
combined usingdlog2 se Q-Q multiplication steps.

For a parallel version of VBE, the exact latency, including
cases wherersÞ2n+1, is

RV = 2r + 1 + dlog2fdss− 2n − 1 + rsd/4e + 2n + 1 − rsge
s15d

times the latency of our multiplier. For smalls, this isOsnd;
for largers,

lim
s→n

Osn/s+ log sd = Oslog nd. s16d

D. Reducing the cost of modulo operations

The VBE algorithm does a trial subtraction ofN in each
modulo addition block; if that underflows,N is added back in
to the total. This accounts for two of the fiveADDER blocks
and much of the extra logic to compose a modulo adder. The
last two of the five blocks are required to undo the overflow
bit.

Figure 7 shows a more efficient modulo adder than VBE,
based partly on ideas from BCDP and Gossett. It requires
only three adder blocks, compared to five for VBE, to do one
modulo addition. The first adder addsxj to our running sum.
The second conditionally adds 2n−xj −N or 2n−xj, depend-
ing on the value of the overflow bit,without affecting the
overflow bit, arranging it so that the third addition ofxj will
overflow and clear the overflow bit if necessary. The blocks
pointed to by arrows are the addend register, whose value is
set depending on the control lines. Figure 7 usesn fewer
qubits than VBE’s modulo arithmetic, as it does not require a
register to holdN.

In a slightly different fashion, we can improve the perfor-
mance of VBE by adding a number of qubitsp to our result
register and postponing the modulo operation until later. This

FIG. 6. Concurrent modular multiplication in
modular exponentiation fors=2. QSET simply
sets the sum register to the appropriate value.

FIG. 7. More efficient modulo adder. The blocks with arrows set
the register contents based on the value of the control line. The
position of the black block indicates the running sum in our output.
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works as long as we do not allow the result register to over-
flow; we have a redundant representation of moduloN val-
ues, but that is not a problem at this stage of the computa-
tion.

The largest number that does not overflow forp extra
qubits is 2n+p−1; the largest number that does not result in
subtraction is 2n+p−1−1. We want to guarantee that we al-
ways clear that high-order bit, so if we subtractbN, the most
iterations we can go before the next subtraction isb. The
largest multiple ofN we can subtract isb2n+p−1/Nc. Since
2n−1,N,2n, the largestb we can allow is, in general, 2p−1.

For example, adding three qubits,p=3, allowsb=4, re-
ducing the 20ADDER calls VBE uses for four additions to
nine ADDER calls, a 55% performance improvement. Asp
grows larger, the cost of the adjustment at the end of the
calculation also grows and the additional gains are small. We
must use 3p adder calls at the end of the calculation to per-
form our final modulo operation. Calculations suggest thatp
of up to 10 or 11 is still faster.

Equation s17d shows the number of calls to our adder
block necessary to make ann-bit modulo multiplier.

RM = ns2b + 1d/b. s17d

E. Indirection

We have shown elsewhere that it is possible to build a
table containing small powers ofx, from which an argument
to a multiplier is selectedf29g. In exchange for adding stor-
age space for 2w n-bit entries in a table, we can reduce the
number of multiplications necessary by a factor ofw. This
appears to be attractive for small values ofw, such as 2 or 3.

In our prior work, we proposed using a large quantum
memory, or a quantum-addressable classical memory
sQACMd f37g. Here we show that the quantum storage space
need not grow; we can implicitly perform the lookup by
choosing which gates to apply while setting the argument. In
Fig. 8, we show the setting and resetting of the argument for
w=2, where the arrows indicate CCNOTs to set the appro-
priate bits of the 0 register to 1. The actual implementation
can use a calculated enable bit to reduce the CCNOTs to
CNOTs. Only one of the valuesx0, x1, x2, or x3 will be
enabled, based on the value ofua1a0l.

The setting of this input register may require propagating
ual or the enable bit across the entire register. Use of a few
extra qubitss2w−1d will allow the several setting operations
to propagate in a tree

tARG
AC = H2ws1;0;1d = s4;0;4d w = 2

2ws3;0;1d w = 3,4
J . s18d

For w=2 andw=3, we calculate that setting the argument
addss4;0;4d#s4,5d ands24;0;8d#s8,9d, respectively, to the la-
tency, concurrency and storage of each adder. We create
separate enable signals for each of the 2w possible arguments
and pipeline flowing them across the register to set the ad-
dend bits. We consider this cost only when using indirection.
Figure 9 shows circuits forw=2,3,4.

Adapting Eq.s15d to both indirection and concurrent mul-
tiplication, we have a total latency for our circuit, in multi-
plier calls, of

RI = 2r + 1 + dlog2fdss− 2n − 1 + rsd/4e + 2n + 1 − rsge,
s19d

wherer = bds2n+1d /we /sc.

IV. EXAMPLE: EXPONENTIATING A 128-BIT NUMBER

In this section, we combine these techniques into com-
plete algorithms and examine the performance of modular
exponentiation of a 128-bit number. We assume the primary
engineering constraint is the available number of qubits. In
Sec. III C we showed that using twice as much space can
almost double our speed, essentially linearly until the log
term begins to kick in. Thus, in managing space trade-offs,
this will be our standard; any technique that raises perfor-
mance by more than a factor ofc in exchange forc times as
much space will be used preferentially to parallel multiplica-
tion. Carry-select adderssSec. III Bd easily meet this crite-
rion, being perhaps six times faster for less than twice the
space.

Algorithm D uses 100n space and our conditional-sum
adder CSUM. AlgorithmE uses 100n space and the carry-
lookahead adder QCLA. AlgorithmsF andG use the CDKM
carry-ripple adder and 100n and minimal space, respectively.
Parameters for these algorithms are shown in Table I. We
have included detailed equations for concurrent VBE andD
and numeric results in Table II. The performance ratios are
based only on the CCNOT gate count for AC, and only on
the CNOT gate count for NTC.

FIG. 8. Implicit indirection. The arrows pointing to blocks indi-
cate the setting of the addend register based on the control lines.
This sets the addend from a table stored in classical memory, re-
ducing the number of quantum multiplications by a factor ofw in
exchange for 2w argument setting operations.

FIG. 9. Argument setting for indirection for different values of
w, for the AC architecture. For thew=4 case, the two CCNOTs on
the left can be executed concurrently, as can the two on the right,
for a total latency of 3.
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A. Concurrent VBE

On AC, the concurrent VBEADDER is s3n−3;2n−3;0d
=s381;253;0d for 128 bits. This is the value we use in the
concurrent VBE line in Table II. This will serve as our best
baseline time for comparing the effectiveness of more drastic
algorithmic surgery.

Figure 10 shows a fully optimized, concurrent, but other-
wise unmodified version of the VBEADDER for three bits on
a neighbor-only machinesNTC architectured, with the gates
marked x in Fig. 2 eliminated. The latency is

tADD
NTC = s20n − 15;0d#s2;3n + 1d s20d

or 45 gate times for the three-bit adder. A 128-bit adder will
have a latency ofs2545;0d. The diagram shows a concur-
rency level of three, but simple adjustment of execution time
slots can limit that to two for anyn, with no latency penalty.

The unmodified full VBE modular exponentiation algo-
rithm, consisting of 20n2−5n=327 040ADDER calls plus mi-
nor additional logic, is

tV
NTC = s20n2 − 5ndtADD

NTC = s400n3 − 400n2 + 75n;0d.

s21d

B. Algorithm D

The overall structure of algorithmD is similar to VBE,
with our conditional-sum adders instead of the VBE carry-
ripple, and our improvements in indirection and modulo. As
we do not consider CSUM to be a good candidate for an
algorithm for NTC, we evaluate only for AC. AlgorithmD is
the fastest algorithm forn=8 andn=16.

tD = RIRM 3 stCSUM + tARGd + 3ptCSUM. s22d

Letting r = bds2n+1d /we /sc, the latency and space require-
ments for algorithmD are

tD
AC = 2r + 1 + dlog2fdss− 2n − 1 + rsd/4e + s2n + 1 − rsgens2b

+ 1d/b 3 fs2m+ 4dlog2sg − 1ded + 2;4;4dlog2sg − 1de
+ 2d + s4;0;4dg + 3ps2m+ 4dlog2sg − 1de
+ 2;4;4dlog2sg − 1de + 2d s23d

and

SD = ssSCSUM + 2w + 1 + p + nd + 2n + 1 =sf7n − 3m− g + 2w

+ p + d3sg − 1d/2 − 2 +sn − md/2eg + 2n + 1. s24d

C. Algorithm E

Algorithm E uses the carry-lookahead adder QCLA in
place of the conditional-sum adder CSUM. Although CSUM
is slightly faster than QCLA, its significantly larger space
consumption means that in our 100n fixed-space analysis, we
can fit in 16 multipliers using QCLA, compared to only 12
using CSUM. This allows the overall algorithmE to be 28%
faster thanD for 128 bits.

1. AlgorithmsF and G

The Cuccaro carry-rippler adder has a latency ofs10n
+5;0d for NTC. This is twice as fast as the VBE adder. We
use this in our algorithmsF andG. Algorithm F uses 100n
space, whileG is our attempt to produce the fastest algo-
rithm in the minimum space.

D. Smaller n and different space

Figure 11 shows the execution times of our three fastest
algorithms forn from eight to 128 bits. AlgorithmD, using
CSUM, is the fastest for eight and 16 bits, whileE, using
QCLA, is fastest for larger values. The latency of 1072 for
n=8 bits is 32 times faster than concurrent VBE, achieved
with 60n=480 qubits of space.

Figure 12 shows the execution times forn=128 bits for
various amounts of available space. All of our algorithms
have reached a minimum by 240n spacesroughly 1.9n2d.

E. Asymptotic behavior

The focus of this paper is the constant factors in modular
exponentiation for important problem sizes and architectural
characteristics. However, let us look briefly at the asymptotic
behavior of our circuit depth.

In Sec. III C, we showed that the latency of our complete
algorithm is

Osn/s+ log sd 3 latency of multiplication s25d

as we parallelize the multiplication usings multiplier blocks.
Our multiplication algorithm is still

FIG. 10. Optimized, concurrent three bit VBEADDER for the NTC architecture. Numbers across the bottom are time steps.
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Osnd 3 latency of addition. s26d

AlgorithmsD andE both use anOslog nd adder. Combin-
ing Eqs. s25d and s26d with the adder cost, we have
asymptotic circuit depth of

tD
AC = tE

AC = O„sn log ndsn/s+ log sd… s27d

for algorithmsD andE. As s→n, these approachOsn log2 nd
and space consumed approachesOsn2d.

Algorithm F uses anOsnd adder, whose asymptotic be-
havior is the same on both AC and NTC, giving

tF
AC = tF

NTC = O„sn2dsn/s+ log sd… s28d

approachingOsn2 log nd as space consumed approaches
Osn2d.

This compares to asymptotic behavior ofOsn3d for VBE,
BCDP, and algorithmG, usingOsnd space. The limit of per-
formance, using a carry-save multiplier and larges, will be
Oslog3 nd in Osn3d space.

V. DISCUSSION AND FUTURE WORK

We have shown that it is possible to significantly acceler-
ate quantum modular exponentiation using a stable of tech-

FIG. 11. Execution time for
our algorithms for space 100n on
the AC architecture, for varying
value ofn.

FIG. 12. Execution time for
our algorithms for 128 bits on the
AC architecture, for varying mul-
tiples of n space available.
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niques. We have provided exact gate counts, rather than
asymptotic behavior, for then=128 case, showing algo-
rithms that are faster by a factor of 200–700, depending on
architectural features, when 100n qubits of storage are avail-
able. Forn=1024, this advantage grows to more than a fac-
tor of 5000 for non-neighbor machinessACd. Neighbor-only
sNTCd machines can run algorithms such as addition inOsnd
time at best, when non-neighbor machinessACd can achieve
Oslog nd performance.

In this work, our contribution has focused on parallelizing
execution of the arithmetic through improved adders, concur-
rent gate execution, and overall algorithmic structure. We
have also made improvements that resulted in the reduction
of modulo operations, and traded some classical for quantum
computation to reduce the number of quantum operations. It
seems likely that further improvements can be found in the
overall structure and by more closely examining the con-
struction of multipliers from addersf30g. We also intend to
pursue multipliers built from hybrid carry-save adders.

The three factors that most heavily influence performance
of modular exponentiation are, in order, concurrency, the
availability of large numbers of application-level qubits, and
the topology of the interconnection between qubits. Without
concurrency, it is, of course, impossible to parallelize the
execution of any algorithm. Our algorithms can use up to
,2n2 application-level qubits to execute the multiplications
in parallel, executingOsnd multiplications inOslog nd time
steps. Finally, if any two qubits can be operands to a quan-
tum gate, regardless of location, the propagation of informa-

tion about the carry allows an addition to be completed in
Oslog nd time steps instead ofOsnd. We expect that these
three factors will influence the performance of other algo-
rithms in similar fashion.

Not all physically realizable architectures map cleanly to
one of our models. A full two-dimensional mesh, such as
neutral atoms in an optical latticef38g, and a loose-trellis
topology f39g probably fall between AC and NTC. The be-
havior of the scalable ion trapf40g is not immediately clear.
We have begun work on expanding our model definitions, as
well as additional ways to characterize quantum computer
architectures.

The process of designing a large-scale quantum computer
has only just begun. Over the coming years, we expect ad-
vances in the fundamental technology, the system architec-
ture, algorithms, and tools, such as compilers, to all contrib-
ute to the creation of viable quantum computing machines.
Our hope is that the algorithms and techniques in this paper
will contribute to that engineering process in both the short
and long term.
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