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We present a detailed analysis of the impact on quantum modular exponentiation of architectural features
and possible concurrent gate execution. Various arithmetic algorithms are evaluated for execution time, poten-
tial concurrency, and space trade-offs. We find that to exponentiatebi@mumber, for storage space 1020
times the minimum B), we can execute modular exponentiation 200-700 times faster than optimized versions
of the basic algorithms, depending on architecture,nfel28. Addition on a neighbor-only architecture is
limited to O(n) time, whereas non-neighbor architectures can reagdhgn), demonstrating that physical
characteristics of a computing device have an important impact on both real-world running time and
asymptotic behavior. Our results will help guide experimental implementations of quantum algorithms and
devices.
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I. INTRODUCTION This paper quantitatively explores those trade-offs.

: oo . This paper is intended to help guide the design and ex-
Research in quantum computing is motivated by the pos- _ . . ; . )
sibility of enormous gains in computational tirfe—4]. The perimental implementation of actual quantum computing de

vices as the number of qubits grows over the next several

process of writing programs for quantum COmpUters natlgenerations of devices. Depending on the postquantum error

rally depends on the architecture, but the application of classqrection, application-level effective clock rate for a specific
sical computer architecture pr_lnC|pIes to the architecture o echnology, the choice of exponentiation algorithm may be
quantum computers has only just begun. _ the difference between hours of computation time and weeks
Shor’s algorithm for factoring large numbers in polyno- or between seconds and hours. This difference, in turn, feeds
mial time is perhaps the most famous result to date in thgack into the system requirements for the necessary strength
field [1] Since this algorithm is well defined and important, of error correction and coherence time.
we will use it as an example to examine the relationship The Schénhage-Strassen multiplication algorithm is often
between architecture and program efficiency, especially Palquoted in quantum computing research as being
a}llel execu_tion of quantum algorithms. Shor’s factoring algo-o(n log n log logn) for a single multiplicatior]8]. However,
rithm consists of main two parts, quantum modular exponensimply citing Schénhage-Strassen without further qualifica-
tiation, followed by the quantum Fourier transform. In this tiop js misleading for several reasons. Most importantly, the
paper we will concentrate on the quantum modular exponensgnstant factors mattérquantum modular exponentiation
tiation, both because it is the most computationally intensivg,zsed on Schonhage-Strassen is only faster than 6ast
part of the algorithm and because arithmetic circuits are funalgorithms for more thar-32 kilobits. In this paper, we will
damental building blocks we expect to be useful for many.oncentrate on smaller problem sizes, and exact, rather than

algorithms. o ~O(), performance.
Fundamentally, quantum modular exponentiation i cqneyrrent quantum computation is the execution of

O(n); that is, the number of quantum gates or operationg,,re than one quantum gate on independent qubits at the
scales with the cube of the length in bits of the number to bggme time. Utilizing concurrency, the latency, or circuit
factored [5-7]. It consists of B modular multiplications, genth to execute a number of gates can be smaller than the
each of which consists dd(n) additions, each of which re- \mper itself. Circuit depth is explicitly considered in Cleve
quires O(n) operations. HoweveiO(n®) operationsdo not  and Watrous’ parallel implementation of the quantum Fourier
necessarily requir®(n®) time stepsOn an abstract machine, transform[9], Gossett’s quantum carry-save arithméfie],

it is relatively straightforward to see how to reduce each ofgnd zalka’s Schénhage-Strassen-based implementdtign
those three layers t®(logn) time steps, in exchange for Moore and Nilsson define the computational complexity
more space and motetal gates, giving a total running time class QNC to describe certain parallelizable circuits and
of O(log®n) if O(n% qubits are available and an arbitrary show which gates can be performed concurrently, proving
number of gates can be executed concurrently on separatieat any circuit composed exclusively of controlled NOT
qubits. Such large numbers of qubits are not expected to bgates(CNOTS can be parallelized to be of dep@®(log n)
practical for the foreseeable future, so much interesting enasing O(n?) ancillae on an abstract machifk2].

gineering lies in optimizing for a given set of constraints.

Shor noted this in his original paper, without explicitly specifying
a bound. Note also that this bound is for a Turing machine; a
*Electronic address: rdv@tera.ics.keio.ac.jp random-access machine can re&m log n).
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adders. This is followed by faster adders and additional tech-
_ _ niques for accelerating modulo operations and exponentia-
tion. Section IV shows how to balance these techniques and
AC NTC

apply them to a specific architecture and set of constraints.
We evaluate several complete algorithms for our architec-
tural models. Specific gate latency counts, rather than

FIG. 1. CCNOT constructions for our architectures AC and gsymptotic values, are given for 128 bits and smaller num-
NTC. The box with the bar on the right represents the square root ofja g

X, and the box with the bar on the left its adjoint. Time flows left to
right, each horizontal line represents a qubit, and each vertical line

segment is a quantum gate. Il. BASIC CONCEPTS

A. Modular exponentiation and Shor’s algorithm
We analyze two separate architectures, still abstract but

ith ; ; hat hel d d perf Shor’s algorithm for factoring numbers on a quantum
with some important features that help us understand per Orc'omputer uses the quantum Fourier transform to find the

tmhance.thTr botth arff;ltectulres, we a?surFe ?_ny qlfl_br:t Cf"_’mtk?)‘?derr of a randomly chosen numbgrin the multiplicative
€ control or target for only one gate at a ime. tne frs 'group(modN). This is achieved by exponentiatirgmodulo
abstract concurrenfAC) architecture, is our abstract model. N, for a superposition of all possible exponeatdherefore

::tonstlrjc?llzc:jr-tcszon(t:rglll\le(g-TN(g]; a:Eirt? g;quctgtnc;r?rzcr)]lcl; gaart]((aj, g'Ee efficient arithmetic algorithms to calculate modular exponen-
' y Y, 9 tiation in the quantum domain are critical.

ggﬁraa?r(lj)irzrr];/ %Isaipoﬁesatlﬁr?gswgzozgEﬁg?lgbelztrg':i)oer?snoérfll;p- Quantum modular exponentiation is the evolution of the
CCNOT with two ones as control. The second, tieéghbor- state of a quantum computer to hold
only, two-qubit-gate, concurreiNTC) architecture, is simi- [9]0) — |)|x¥ mod N). (1)
lar but does not support CCNOT, only two-qubit gates, and . » _
assumes the qubits are laid out in a one-dimensi¢t@) ~ hen |y) s the sgperposmon of all input statesup to a
line, and only neighboring qubits can interact. The 1D layoufP@rticular value R,

will have the highest communications costs among possible N2

physical topologies. Most real, scalable architectures will ) = 1_2 ). )
have constraints with this flavor, if different details, so AC N2 20

and NTC can be viewed as bounds within which many real ) . o
architectures will fall. The layout of variables on this struc- 1he resultis the superposition of the modular exponentiation

ture has a large impact on performance; what is presente®f those input states,

here is the best we have discovered to date, but we do not L N2 L oN2
claim it is optimal. a
. . — 0 — dN). 3
The NTC model is a reasonable description of several N\x’2§0|a>| )= NV12§)|a>|x mod N) 3
important experimental approaches, including a one- . .
dimensional chain of quantum doft&3], the original Kane Depending on the algorithm chosen for modular exponen-

proposal[14], and the all-silicon NMR devicgl5]. Super- tiation, x may appear explicitly in a register in the quantum
conducting qubit§16,17 may map to NTC, depending on computer or may appear only implicitly in the choice of
the details of the qubit interconnection. instructions to be executed. In general, quantum modular ex-

The difference between AC and NTC is critical; beyond ponentiation algorithms are created from building blocks that
the important constant factors as nearby qubits shuffle, wéo modular multiplication,
will see in Sec. lll B that AC can achiev®(logn) perfor-
mance where NTC is limited t®(n). |@9]0) — |} modN), )

For NTC, which does not support CCNOT directly, we whereg andN may or may not appear explicitly in quantum
compose CCNOT from a set of five two-qubit gafés], as  registers. This modular multiplication is built from blocks
shown in Fig. 1. The box with the bar on the right representghat perform modular addition,
the square root oKX,

|@)|0) — |a)|a+ B modN), (5)
— 1+i 1-i
VX = }{ I I] which, in turn, are usually built from blocks that perform
2[1-1 1+i addition and comparison.

and the box with the bar on the left its adjoint. We assume Addition of two n-bit numbers require®(n) gates. Mul-
that this gate requires the same execution time as a CNOTtiplication of twon-bit numbers(including modular multipli-
Section Il reviews Shor’s algorithm and the need forcation combines the convolution partial productse one-
modular exponentiation, then summarizes the techniques weit products of each pair of bits from the two arguments.
employ to accelerate modular exponentiation. Section 1l AThis requiresO(n) additions ofn-bit numbers, giving a gate
introduces the best-known existing modular exponentiatiofount ofO(n?). Our exponentiation for Shor’s algorithm re-
algorithms and several different adders. Section IIl begins byjuires 2 multiplications, giving a total cost a(n?).
examining concurrency in the lowest level elements, the Many of these steps can be conducted in parallel; in clas-
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TABLE |. Parameters for our algorithms, chosen for 128 bits.

Algorithm Adder Modulo Indirect Multiplierys) Space Concurrency
Concurrent VBE VBE VBE N/A 1 897 2
Algorithm D CSUM(m=4) p=11,b=1024 w=2 12 11969 12&12=1512
Algorithm E QCLA p=10,b=512  w=2 16 12657 12&16=2048
Algorithm F CDKM p=10,b=512 w=4 20 11077 2 2=40
Algorithm G CDKM Fig. 7 w=4 1 660 2

sical computer system design, thkeencyor circuit depth indirection scheméSec. Il B). sis the number of multiplier
the time from the input of values until the output becomesblocks we can fit into a chosen amount of spégec. 1l C).
available, is as important as the total computational complex- Here we summarize the techniques, which are detailed in
ity. Concurrencyis the execution of more than one gate dur-following sections. Our fast modular exponentiation circuit
ing the same execution time slot. We will refer to the numberis built using the following optimizationdi) Select correct
of gates executing in a time slot as the concurrency or thgubit layout and subsequences to implement gates, then hand
concurrency level. Our goal through the rest of the paper i®ptimize (no penalty [22—-28. (ii) Look for concurrency
to exploit parallelism, or concurrency, to shorten the totalwithin addition and/or multiplication(no space penalty,
wall clock time to execute modular exponentiation and,maybe noise penalty(Secs. Il A. (iii) Select multiplicand
hence, Shor’s algorithm. using table and/or indirectiofexponential classical cost, lin-
The algorithms as described here run on logical qubitsear reduction in quantum gate couKi29], Sec. Il B. (iv)
which will be encoded onto physical qubits using quantumDo multiplications concurrentlylinear speedup for small
error correction(QEC) [19]. Error correction processes are values, linear cost in space, small gate count increase; re-
generally assumed to be applied in parallel across the entiguires quantum-quantum(Q-Q) multiplier, as well as
machine. Executing gates on the encoded qubits, in somgassical-quanturiC-Q) multiplier) (Sec. Il Q. (v) Move to
cases, requires additional ancillae, so multiple concurreng.g., carry-save addefs® space penalty for reduction to log
logical gates will require growth in physical qubit storagetime, increases total gate coMil0], Sec. [IC4
space[20,21]. Thus, both physical and logical concurrency conditional-sum adder¢Sec. Il B 2, or carry—look-ahead
are important; in this paper we consider only logical concur-adders(Sec. Il C 5. (vi) Reduce modulo comparisons, only
rency. do subtractN on overflow(small space penalty, linear reduc-
tion in modulo arithmetic cost(Sec. Il D).

B. Notation and techniques for speeding up modular
exponentation C. Existing algorithms

In this paper, we will usé\ as the number to be factored  In this section we will review various components of the
andn to represent its length in bits. For convenience, we willmodular exponentiation that will be used to construct our
assume than is a power of two and the high bit &f is one.  parallelized version of the algorithm in Sec. Ill. There are
X is the random value, smaller tha&) to be exponentiated, many ways of building adders and multipliers, and choosing
and|a) is our superposition of exponents, wigh<2N?> so  the correct one is a technology-dependent exerf3.
that the length of1 is 2n+1 bits. Only a few classical techniques have been explored for quan-

When discussing circuit cost, the notation(SCNOTs  tum computation. The two most commonly cited modular
CNOTs NOTS or (CNOTS NOTS. The values may be total exponentiation algorithms are those of Vedsdl al. [7],
gates or circuit deptiflatency, depending on context. The which we will refer to as VBE, and Beckmaet al. [5],
notation is sometimes enhanced to show required concuwhich we will refer to as BCDP. Both BCDP and VBE algo-
rency and space(CCNOTs CNOTs NOT9#(concurrency  rithms build multipliers from variants of carry-ripple adders,
space (where # is used as a separatdris time, or latency the simplest but slowest method; Cuccatal. [31] have
to execute an algorithm, arilis space, subscripted with the recently shown the design of a smaller, faster carry-ripple
name of the algorithm or circuit subroutine. Wheor Sis  adder. Zalka proposed a carry-select adder; we present our
superscripted with AC or NTC, the values are for the latencydesign for such an adder in detail in Sec. Il B. Drapeal.
of the construct on that architecture. Equations without suf32] have recently proposed a carry—look-ahead adder and
perscripts are for an abstract machine assuming no concuGossett a carry-save adder. Beaured8®] has proposed a
rency, equivalent to a total gate count for the AC architec<ircuit that operates primarily in the Fourier transform space.
ture. R is the number of calls to a subroutine, subscripted Carry—look-ahead(Sec. IIC5, conditional-sum (Sec.
with the name of the routine. IIB2), and carry-save(Sec. IIC4 adders all reach

m, g, f, p, b, ands are parameters that determine the O(logn) performance for addition. Carry—look-ahead and
behavior of portions of our modular exponentiation algo-conditional-sum adders use more space than carry-ripple
rithm. m, g, and f are part of our carry-select and adders, but much less than carry-save adders. However,
conditional-sum adder&Sec. Il B). p andb are used in our carry-save adders can be combined into fast multipliers more
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easily. We will see in Sec. Ill how to combine carry—look- a full modular exponentiation circuit, only adders, multipli-
ahead and conditional-sum adders into the overall exponerers, and a modular adder based on the important classical
tiation algorithms. technigues otarry-save arithmeti¢10].
Gossett's carry-save adder, the important contribution of
the paper, can run i®©(logn) time on AC architectures. It
The VBE algorithm[7] builds full modular exponentia- will remain impractical for the foreseeable future because of
tion from smaller building blocks. The bulk of the time is the large number of qubits required; Gossett estimates
spent in 20°-5n ADDERs? The full circuit requires @ 8n? qubits for a full multiplier, which would run i©(log? n)
+1 qubits of storage:2+1 for a, n for the other multipli-  time. It bears further analysis because of its high speed and
cand,n for a running sumn for the convolution products)  resemblance to standard fast classical multipliers.
for a copy ofN, andn for carries. Unfortunately, the paper's second contribution, Gossett’s
In this algorithm, the values to be added in, the COﬂVOlU-Carry_ripp|e adder, as drawn in his F|g 7, seems to be incor-

tion partial products ok?, are programed into a temporary rect. Once fixed, his circuit optimizes to be similar to VBE.
register(combined with a superposition ¢@) as necessayy

based on a control line and a data bit via appropriate CCNOT 5. Carry—look-ahead adder
gates. The latency afbDER and the complete algorithm are

1. VBE carry-ripple adder

Draperet al. have recently proposed a carry—look-ahead

taop = (4n—4;4n- 3,0 (6)  adder, which we call QCLA32]. This method allows the
latency of an adder to drop ©(log n) for AC architectures.
ty = (20n? = 5n)tapp = (80n% — 10n? + 20n; 96n° — 84n? The latency and storage of their adder is
+15n;8n° - 2n+1). (7) t8C=(4log, n+3;4;2#(n;4n—logn-1).  (9)

The authors do not present a complete modular exponen-
) . . tiation circuit; we will use their adder in our algorithis,
The BCDP algorithm is also based on a carry-ripple adderyhich we evaluate only for AC. The large distances between

It differs from yBE in that it more aggressively takes advan—gate operands make it appear that QCLA is unattractive for
tage of classical computation. However, for our purposesyTc.

this makes it harder to use some of the optimization tech-
niques presented here. Beckmanal. [5] present several
optimizations and trade-offs of space and time, slightly com- } o )
plicating the analysis. Beayrggarq has designed a circuit for doing modular ex-

The exact sequence of gates to be applied is also depeRonentiation in only 8+3 qubits of spac¢33], based on
dent on the input values df andx, making it less suitable Draper’s clever method for doing addition on Fourier-
for hardware implementation with fixed gatés.g., in an transformed representations of numbig4.

2. BCDP carry-ripple adder

6. Beauregard-Draper QFT-based exponentiation

optical system In the form we analyze, it requiresn5 The depth of Beauregard’s circuit 8(n°), the same as
+3 qubits, inc|uding A+1 for |a> Borrowing from their Eq VBE and BCDP. However, we believe the constant factors
(6.23, on this circuit are very large; every modulo addition consists

of four Fourier transforms and five Fourier additions.

— 3 2 . 3 2 . 3
tg = (54n° — 12"+ 1080 - 29;1(0" + 15n° - 38 + 14;2(n Fowler et al. [35] and Devittet al. [36] have simulated

- 3802+ 22n-4). (8)  Shor’s algorithm using Beauregard’s algorithm, for a class of
machines they callnear nearest neighbofLNN). LNN cor-
3. CDKM carry-ripple adder responds approximately to our NTC. In their implementation

of the algorithm, they found no significant change in the
computational complexity of the algorithm on LNN or an
! . ! . AC-like abstract architecture, suggesting that the perfor-
ancilla_qubit [31]. The latency of their adder ig2n mance of Draper’s adder, like a carry-ripple adder, is essen-

—1;5;0 for the AC architecture. tially architecture independent.
The authors do not present a complete modular exponen-

tiation circuit; we will use their adder in our algorithnis
and G. This adder, we will see in Sec. IV C 1, is the most lll. RESULTS: ALGORITHMIC OPTIMIZATIONS
efficient known for NTC architectures.

Cuccaroet al. have recently introduced a carry-ripple cir-
cuit, which we will call CDKM, which uses only a single

We present our concurrent variant of VBE, then move to
4. Gossett carry-save and carry-ripple adders faster adders. This is followed by methods for performing

Gossett's arithmetic is pure quantum, as opposed to th((g:xponentlatlon concurrently, improving the modulo arith-

mixed classical-quantum of BCDP. Gossett does not provid%?p?it(':;t?gr?s'nd'recuon to reduce the number of quantum mul-

2When we write ADDER in all small capital letters, we mean the
complete VBEnN-bit construction, with the necessary undo; when
we write adder in small letters, we are usually referring to a smaller In Fig. 2, we show a three-bit concurrent version of the
or generic circuit block. VBE ADDER. This figure shows that the delay of the concur-

A. Concurrent VBE
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FIG. 3. Block-level diagram of four-group carry-select adaer.
andb; are addends, arslis the sum. Additional ancillae not shown.

. . MUXes, and adder undo to clean our ancillae, CSLAMU.
FIG. 2. Three-bit concurrent VBEDDER, AC abstract machine. tpe g ag are all executed concurrently, then the output
Gates marked with an x can be deleted when the carry in is known - . .
MUXes are cascaded, as shown in Fig. 3. The first group
to be zero. . . . L
may have a different sizd, thanm, since it will be faster,
] but for the moment we assume they are the same.
rent ADDER is (3n=3)tcenort (2= 3)tenor OF Figure 4 shows a three-bit carry-select adder. This gener-
C = (3n-3:2n-3:0), 10 ates two possible regults, assumlng'that the carry in will be
aop = ( ) (10 zero or one. The portion on the right is a MUX used to select
a mere 25% reduction in latency compared to the unoptiwhich carry to use, based on the carry in. All of the outputs
mized (4n-4;4n-3;0) of Eq. (6). without labels are ancillae to be garbage collected. It is pos-
Adapting Eq.(7), the total circuit latency, minus a few sible that a design optimized for space could reuse some of
small corrections that fall outside th@®DER block proper, is  those qubits; as drawn a full carry-select circuit requires
5m-1 qubits to add twam-bit numbers.

tCC = (20n% - 5“)@&3 = (60n° ~ 75+ 15n;40n° - 70n° The largerm-bit carry-select adder can be constructed so

+15n;0). (11) that its internal delay, as in a normal carry-ripple adder, is

) o ] . one additional CCNOT for each bit, although the total num-
This equation is used to create the first entry in Table Il.  per of gates increases and the distance between gate oper-

ands increases.

B. Carry-select and conditional- dd .
arty-select and condifional-stim adders The latency for the CSLA block is

Carry-select adders concurrently calculate possible results
without knowing the value of the carry in. Once the carry in té‘s: =(m:;2:0). (12
becomes available, the correct output value is selected using
a multiplexer(MUX). The type of MUX determines whether Note that this is not a “clean” adder; we still have ancillae to

the behavior i€O(vn) or O(log n). return to the initial state.
— The problem for implementation will be creating an effi-
1. O(vn) carry-select adder cient MUX, especially on NTC. Figure 3 makes it clear that

The bits are divided intg groups ofm bits eachh=gm.  the total carry-select adder is only faster if the latency of
The adder block we will call CSLA, and the combined adder,MUX is substantially less than the latency of the full carry-

TABLE II. Latency to factor a 128-bit number for various architectures and choices of algorithm: AC,
abstract concurrent architecture, NTC, neighbor-only, two-qubit gate, concurrent architecture; and Perf, per-
formance relative to VBE algorithm for that architecture, based on CCNOTSs for AC and CNOTs for NTC.

AC NTC
Algorithm Gates Perf. Gates Perf.
Concurrent VBE (1.25% 108:8.27x 107;0.00x 10°) 1.0  (8.32x10%;0.00x 10°) 1.0
Algorithm D (2.19x10°;2.57x 10*;1.67x10°)  569.8 N/A N/A
Algorithm E (1.71X10°;1.96x 10*;2.93x 104  727.2 N/A N/A
Algorithm F (7.84x10°;1.30x 10*;4.10x 10% 158.9  (4.11x10%;4.10x10% 2025
Algorithm G (1.50%x 107;2.48X 10°; 7.93x 10°) 8.3  (7.87x107;7.93x 10°) 10.6
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FIG. 4. Three-bit carry-select addé€SLA) with multiplexer es, D 87
(MUX). & and b; are addends. The control-SWAP gates in the e @ Vo o
MUX select either the qubits markes,=1 or ¢;,=0, depending on > S
the state of the carry-in qub&,. s, qubits are the output sum, and “6.0 N : ~
k; are internal carries. Co1 PV
€70
ripple. It will be difficult for this to be more efficient that the ¢
single-CCNOT delay of the basic VBE carry-ripple adder on o
NTC. On AC, it is certainly easy to see how the MUX can S
use a fanout tree consisting of more ancillae and CNOT gates A A .
to distribute the carry in signal, as suggested by Mo&gs, ~ ~
allowing all MUX Fredkin gates to be executed concurrently. O—D
A full fanout requires an extren qubits in each adder. €5 & &
In order to unwind the ancillae to reuse them, the simplest e DD

approach is the use of CNOT gates to copy our result to
anothem-bit register, then a reversal of the circuitry. Count- |G, 5. O(logn) MUX for conditional-sum adder, fog=9 (the
ing the copy out for ancilla management, we can simplify theirst group is not shown Only thec; carry out lines from each
MUX to two CCNOTSs and a pair of NOTs. m-qubit block are shown, wheiieis the block number anflis the

The latency of the carry ripple from MUX to MUXnot  carry in value. At each stage, the span of correct effective swap
qubit to qubi} can be arranged to give a MUX cost @fg control linese ; doubles. After using the swap control lines, all but
+2m-6;0;29-2). This cost can be accelerated somewhathe last must be cleaned by reversing the circuit. Unlabeled lines are
by using a few extra qubits and “fanning out” the carry. Forancillae to be cleaned.
intermediate values ah, we will use a fanout of 4 on AC,
reducing the MUX latency tg4g+m/2-6;2;-2) in ex-
change for three extra qubits in each group.

Our space used for the full, clean adder(&n-1)(g
-1)+3f+4g when using a fanout of 4. The total latency o
the CSLA, MUX, and the CSLA undo is

2. O(logn) conditional-sum adder

As described above, the carry-select add@(isi+g), for
n=mg, which minimizes to b&(yn). To reachO(log n) per-

n formance, we must add a multilevel MUX to our carry-select
adder. This structure is called a conditional-sum adder, which
we will label CSUM. Rather than repeatedly choosing bits at

AC AC . AC . each level of the MUX, we will create a multilevel distribu-

tsem= 2tcs +tuox = (49+5mM2-6;6;:9-2). (13)  tjon of MUX select signals, then apply them once at the end.
Figure 5 shows only the carry signals for eight CSLA groups.

Optimizing for AC, based on Ed13), the delay will be the  The e signals in the figure are our effective swap control
minimum whenm~ \8n/5. signals. They are combined with a carry in signal to control
Zalka was the first to propose use of a carry-select addethe actual swap of variables. In a full circuit, a ninth group,
though he did not refer to it by nani&1]. His analysis does the first group, will be a carry-ripple adder and will create the

not include an exact circuit, and his results differ slightly carry in; that carry in will be distributed concurrently in a

from ours. separate tree.
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The total adder latency will be Ry=2r+1+[log,[[(s—2n—1 +rs)/4]+ 2n+ 1 —rs]]

(15

tAS = 2tAS + [log,(g - 1)]- 1] X (2;0;2) + (4;0;4
CSUM cs * [Allogy(g = D= 11 ( )+ ) times the latency of our multiplier. For smail this is O(n);
=(2m+ 4log,(g - 1)+ 2;4,4logx(g - D1+ 2), for largers,

(14) lim O(n/s + log ) = O(log n). (16)

S—n
where[x] indicates the smallest integer not smaller than
For largen, this generally reaches a minimum for smia|
which gives asymptotic behavior4 log, n, the same as
QCLA. CSUM is noticeably faster for smatfi, but requires The VBE algorithm does a trial subtraction Wfin each
more space. modulo addition block; if that underflows| is added back in

The MUX uses[3(g-1)/2]-2 qubits in addition to the to the total. This accounts for two of the fiw®DER blocks
internal carries and the tree for dispersing the carry in. Ouand much of the extra logic to compose a modulo adder. The
space used for the full, clean adder (Bm-1)(g—1)+3f last two of the five blocks are required to undo the overflow
+[3(g—-1)/2-2+(n-1)/2]. bit.

Figure 7 shows a more efficient modulo adder than VBE,
based partly on ideas from BCDP and Gossett. It requires
only three adder blocks, compared to five for VBE, to do one
Modular exponentiation is often drawn as a string of Modulo addition. The first adder adgsto our running sum.

modular multiplications, but Cleve and Watrous pointed outThe second conditionally add$'-2<~N or 2'-x!, depend-
that these can easily be parallelized, at linear cost in spad89 on the value of the overflow bitvithout affecting the

[9] (see Fig. 6. We always have to executer Inultiplica-  0verflow bit, arranging it so that the third addition sfwill
tions; the goal is to do them in as few time delays as posPverflow and clear the overflow bit if necessary. The blocks
sible. pointed to by arrows are the addend register, whose value is
To go (almos} twice as fast, use two multipliers; for four St depending on the control lines. Figure 7 usefewer
times, use four. Naturally, this can be built uprtenultipliers quplts than VBE's modulo arithmetic, as it does not require a
to multiply the necessaryr21 numbers, in which case a register to hold\. _ _
tree recombining the partial results requires,logiuantum- In a slightly different fashion, we can improve the perfor-
quantum (Q-Q) multiplier latency times. The first unit in Mance of VBE by adding a number of qubfigo our result
each chain just sets the register to the appropriate value if tH&dister and postponing the modulo operation until later. This
control line is 1, otherwise, it leaves it as 1.
For s multipliers, s<n, each multiplier must combine x> —¢
=[(2n+1)/s| or r+1 numbers, using—1 orr multiplications [o> +|%|»

D. Reducing the cost of modulo operations

C. Concurrent exponentiation

adder

(the first number being simply set into the running product , i T
: . . [sum> & &
registey, where|x| indicates the largest integer not larger loverflows
than x. The intermediate results from the multipliers are
combined usindlog, s| Q-Q multiplication steps. FIG. 7. More efficient modulo adder. The blocks with arrows set
For a parallel version of VBE, the exact latency, includingthe register contents based on the value of the control line. The
cases wheres# 2n+1, is position of the black block indicates the running sum in our output.
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w=3 |tmp ,=0>— S
FIG. 8. Implicit indirection. The arrows pointing to blocks indi- lenable> —————
cate the setting of the addend register based on the control lines w=4
This sets the addend from a table stored in classical memory, re- ) S )
ducing the number of quantum multiplications by a factomoin FIG. 9. Argument setting for indirection for different values of
exchange for ¥ argument setting operations. w, for the AC architecture. For th@=4 case, the two CCNOTSs on

the left can be executed concurrently, as can the two on the right,

. for a total latency of 3.
works as long as we do not allow the result register to over-

flow; we have a redundant representation of moduleal- "
ues, but that is not a problem at this stage of the computa- ac _)2"10;D=(40:4 w=2 (18
tion. ARG 2Y(3;0;1) w=3,4

The largest number that does not overflow forextra )
qubits is 2*P—1; the largest number that does not result in FOrw=2 andw=3, we calculate that setting the argument
subtraction is 2P"1-1. We want to guarantee that we al- 2ddS(4:0;4#(4,5 and (24;0;8#(8,9), respectively, to the la-
ways clear that high-order bit, so if we subtrad{, the most tency, concurrency and storage of each _adder. We create
iterations we can go before the next subtractiorbisthe ~ Separate enable signals for each of tHep@ssible arguments
largest multiple ofN we can subtract i$2™P-1/N]. Since and plpelme flowm_g them across the reglster to .set_ the. ad-
21< N< 2" the largesb we can allow is, in general P2L. dgnd bits. We con3|d¢r this cost only when using indirection.
For example, adding three qubigs=3, allowsb=4, re-  Figure 9 shows circuits fon=2,3,4.
ducing the 20aDDER calls VBE uses for four additions to . Adapting Eq.(15) to both indirection and concurrent mul-
nine ADDER calls, a 55% performance improvement. As t|p||cat|on, we have a total latency for our circuit, in multi-
grows larger, the cost of the adjustment at the end of th&lier calls, of
calculation also grows and the additional gains are small. We
must use P adder calls at the end of the calculation to per- R, =2r + 1 +[log,[[(s—2n— 1 +rs)/4]+ 2n+ 1 —rs]],
form our final modulo operation. Calculations suggest that (19)
of up to 10 or 11 is still faster.
Equation (17) shows the number of calls to our adder
block necessary to make ambit modulo multiplier. wherer=[[(2n+1)/w]/s].

Ru = n(2b+ 1)/b. (17)
IV. EXAMPLE: EXPONENTIATING A 128-BIT NUMBER

E. Indirection In this section, we combine these techniques into com-
We have shown elsewhere that it is possible to build glete algorithms and examine the performance of modular
table containing small powers &f from which an argument exponentiation of a 128-bit number. We assume the primary
to a multiplier is selecte@29]. In exchange for adding stor- engineering constraint is the available number of qubits. In
age space for'2n-bit entries in a table, we can reduce the Sec. Ill C we showed that using twice as much space can
number of multiplications necessary by a factorvofThis  almost double our speed, essentially linearly until the log
appears to be attractive for small valuesagfsuch as 2 or 3. term begins to kick in. Thus, in managing space trade-offs,
In our prior work, we proposed using a large quantumthis will be our standard; any technique that raises perfor-
memory, or a quantum-addressable classical memorgnance by more than a factor ofin exchange foc times as
(QACM) [37]. Here we show that the quantum storage spacenuch space will be used preferentially to parallel multiplica-
need not grow; we can implicitly perform the lookup by tion. Carry-select addensSec. Il B) easily meet this crite-
choosing which gates to apply while setting the argument. Iion, being perhaps six times faster for less than twice the
Fig. 8, we show the setting and resetting of the argument fospace.
w=2, where the arrows indicate CCNOTSs to set the appro- Algorithm D uses 106 space and our conditional-sum
priate bits of the O register to 1. The actual implementatioradder CSUM. AlgorithmE uses 100 space and the carry-
can use a calculated enable bit to reduce the CCNOTs tlmokahead adder QCLA. AlgorithnisandG use the CDKM
CNOTs. Only one of the values’, x!, x?, or x® will be  carry-ripple adder and 1@0and minimal space, respectively.
enabled, based on the value|afay). Parameters for these algorithms are shown in Table I. We
The setting of this input register may require propagatinghave included detailed equations for concurrent VBE Bnd
|a) or the enable bit across the entire register. Use of a fevand numeric results in Table Il. The performance ratios are
extra qubits(2¥~1) will allow the several setting operations based only on the CCNOT gate count for AC, and only on
to propagate in a tree the CNOT gate count for NTC.
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FIG. 10. Optimized, concurrent three bit VB¥DER for the N

A. Concurrent VBE

On AC, the concurrent VBEDDER is (3n—3;2n-3;0)
=(381;253;0 for 128 bits. This is the value we use in the
concurrent VBE line in Table Il. This will serve as our best

baseline time for comparing the effectiveness of more drastic

algorithmic surgery.

Figure 10 shows a fully optimized, concurrent, but other-
wise unmodified version of the VBEDDER for three bits on
a neighbor-only machineNTC architecturg with the gates
marked x in Fig. 2 eliminated. The latency is

NTC _

tADD -

(20n-15;0#(2;3n+1) (20

or 45 gate times for the three-bit adder. A 128-bit adder will
have a latency 0f2545;0. The diagram shows a concur-

rency level of three, but simple adjustment of execution time

slots can limit that to two for any, with no latency penalty.

The unmodified full VBE modular exponentiation algo-
rithm, consisting of 26%-5n=327 040ADDER calls plus mi-
nor additional logic, is

NTC _

7= (20° - S)tZ = (40® - 40007 + 75n;0).

(21)

B. Algorithm D
The overall structure of algorithr® is similar to VBE,

2324252627282930313233343536373839404142434445

TC architecture. Numbers across the bottom are time steps.

S=8(Scsum+ 2V +1+p+n)+2n+1=g7n-3m-g+2*
+p+[3(g-1)/2-2+(n-m)/2]]+2n+1. (24)

C. Algorithm E

Algorithm E uses the carry-lookahead adder QCLA in
place of the conditional-sum adder CSUM. Although CSUM
is slightly faster than QCLA, its significantly larger space
consumption means that in our I0fixed-space analysis, we
can fit in 16 multipliers using QCLA, compared to only 12
using CSUM. This allows the overall algorithinto be 28%
faster tharD for 128 bits.

1. Algorithms F and G

The Cuccaro carry-rippler adder has a latency(Din
+5;0) for NTC. This is twice as fast as the VBE adder. We
use this in our algorithm& andG. Algorithm F uses 100
space, whileG is our attempt to produce the fastest algo-
rithm in the minimum space.

D. Smaller n and different space

Figure 11 shows the execution times of our three fastest
algorithms forn from eight to 128 bits. AlgorithnD, using
CSUM, is the fastest for eight and 16 bits, whie using
QCLA, is fastest for larger values. The latency of 1072 for

with our conditional-sum adders instead of the VBE carry-N=8 bits is 32 times faster than concurrent VBE, achieved
ripple, and our improvements in indirection and modulo. AsWith 60n=480 qubits of space. _
we do not consider CSUM to be a good candidate for an Figure 12 shows the execution times for 128 bits for

algorithm for NTC, we evaluate only for AC. Algorithm is
the fastest algorithm fon=8 andn=16.

tp = RRu X (tcsum* tara) + 3Ptcsum: (22

Letting r=[[(2n+1)/w]/s|, the latency and space require-
ments for algorithnD are

thC=2r + 1 +[log,[[(s— 2n— 1 +rs)/4]+ 2n+ 1 -rs]n(2b
+1)/b X [(2m+ 4logx(g - D] +2;4;4l0g,(g - 1)]
+2) +(4;0;4]+ 3p(2m+ 4logy(g - 1)]
+2;4;4logy(g- DI+ 2) (23)

and

05232

various amounts of available space. All of our algorithms
have reached a minimum by 248pace(roughly 1.9?).

E. Asymptotic behavior

The focus of this paper is the constant factors in modular
exponentiation for important problem sizes and architectural
characteristics. However, let us look briefly at the asymptotic
behavior of our circuit depth.

In Sec. lll C, we showed that the latency of our complete
algorithm is

(25

as we parallelize the multiplication usisgnultiplier blocks.
Our multiplication algorithm is still

O(n/s+logs) X latency of multiplication

0-9
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FIG. 11. Execution time for
our algorithms for space 160on
the AC architecture, for varying
value ofn.

32
Length (bits)

O(n) X latency of addition.

Algorithms D andE both use arD(log n) adder.
ing Egs. (25 and (26) with the adder cost,
asymptotic circuit depth of

th¢ = t2% = O((n log n)(n/s+ log s))

for algorithmsD andE. As s— n, these approac®(n log? n)

and space consumed approach¥e?).

Algorithm F uses anO(n) adder, whose asymptotic be-

havior is the same on both AC and NTC, giving

agoD + 7]
algoE  x
, algo F *
64 128
(26) t2¢ =7 ¢ = O((M)(n/s + log s)) (28
Combin- approachingO(n?logn) as space consumed approaches

we have O(n?).

This compares to asymptotic behavior@fn®) for VBE,
BCDP, and algorithnG, usingO(n) space. The limit of per-
formance, using a carry-save multiplier and lagyavill be

(27) O(log® n) in O(n°) space.

V. DISCUSSION AND FUTURE WORK

We have shown that it is possible to significantly acceler-
ate quantum modular exponentiation using a stable of tech-

10

Latency (CCNOT Gate Count)
)
»

10

' I algoD + '
algoE X
algoF %

FIG. 12. Execution time for
our algorithms for 128 bits on the
AC architecture, for varying mul-
tiples of n space available.

Space (multiple of n)
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nigues. We have provided exact gate counts, rather thation about the carry allows an addition to be completed in
asymptotic behavior, for the=128 case, showing algo- O(logn) time steps instead oD(n). We expect that these
rithms that are faster by a factor of 200—700, depending otthree factors will influence the performance of other algo-
architectural features, when 10@Qubits of storage are avail- rithms in similar fashion.

able. Forn=1024, this advantage grows to more than a fac- Not all physically realizable architectures map cleanly to
tor of 5000 for non-neighbor machin€AC). Neighbor-only  one of our models. A full two-dimensional mesh, such as
(NTC) machines can run algorithms such as additio@(n) neutral atoms in an optical lattid8], and a loose-trellis
time at best, when non-neighbor machif&€) can achieve topology[39] probably fall between AC and NTC. The be-
O(log n) performance. havior of the scalable ion trg@0] is not immediately clear.

In this work, our contribution has focused on parallelizing We have begun work on expanding our model definitions, as
execution of the arithmetic through improved adders, concurwell as additional ways to characterize quantum computer
rent gate execution, and overall algorithmic structure. Wearchitectures.
have also made improvements that resulted in the reduction The process of designing a large-scale quantum computer
of modulo operations, and traded some classical for quanturnas only just begun. Over the coming years, we expect ad-
computation to reduce the number of quantum operations. Mances in the fundamental technology, the system architec-
seems likely that further improvements can be found in thdure, algorithms, and tools, such as compilers, to all contrib-
overall structure and by more closely examining the conte to the creation of viable quantum computing machines.
struction of multipliers from adder$80]. We also intend to  Our hope is that the algorithms and techniques in this paper
pursue multipliers built from hybrid carry-save adders. will contribute to that engineering process in both the short

The three factors that most heavily influence performancend long term.
of modular exponentiation are, in order, concurrency, the
availability of large numbers of e_lpplication—level qubits! and ACKNOWLEDGMENTS
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