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Paralleling our recent computationally intensivesquasi-Monte Carlod work for the caseN=4 se-print quant-
ph/0308037d, we undertake the task forN=6 of computing to high numerical accuracy, the formulas of
Sommers and Życzkowski se-print quant-ph/0304041d for the sN2−1d-dimensional volume and
sN2−2d-dimensional hyperarea of thesseparable and nonseparabled N3N density matrices, based on the Bures
sminimal monotoned metric—and also their analogous formulasse-print quant-ph/0302197d for the snonmono-
toned flat Hilbert-Schmidt metric. With the same seven 109 well-distributeds“low-discrepancy”d sample points,
we estimate theunknownvolumes and hyperareas based on five additionalsmonotoned metrics of interest,
including the Kubo-Mori and Wigner-Yanase. Further, we estimate all of these seven volume and seven
hyperareasunknownd quantities when restricted to theseparabledensity matrices. The ratios of separable
volumesshyperareasd to separableplus nonseparable volumesshyperareasd yield estimates of theseparability
probabilitiesof generically rank-6srank-5d density matrices. Thesrank-6d separability probabilities obtained
based on the 35-dimensional volumes appear to be—independentlyof the metricseach of the seven inducing
Haar measured employed—twice as large as thosesrank-5 onesd based on the 34-dimensional hyperareas.sAn
additional estimate—33.9982—of the ratio of the rank-6 Hilbert-Schmidt separability probability to the rank-4
one is quite clearly close to integral too.d The doubling relationship also appears to hold for theN=4 case for
the Hilbert-Schmidt metric, but not the others. We fit simpleexactformulas to our estimates of the Hilbert-
Schmidtseparablevolumes and hyperareas in both theN=4 andN=6 cases.
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I. INTRODUCTION

In part I of their paperf1,2g, Życzkowskiet al.considered
the “question of how many entangled or, respectively, sepa-
rable states are there in the set of all quantum states.” They
cited philosophical, practical, and physical reasons for doing
so. They gave a qualitative argumentsf1g, Sec. III Bd—
contrary to their initial supposition—that the measure of
separable states could not be strictly zero. There has since
been considerable workf3–14g, using various forms of mea-
sures, to determine or estimate the “volume of separable
states,” as well as the volume of separableandnonseparable
statesf15,16g, and hence probabilities of separability. One
somewhat surprising development has been thesprincipally
numericald indication—two independent estimates being
0.137 884f3g and 0.138 119sSec. VI C 2 belowd that the
volume of separable states itself can take on a notably el-
egant form, in particular,sÎ2−1d /3<0.138 071, for the case
of qubit-qubit pairs endowed with thestatistical distinguish-
ability metric s4 times the Bures metricd. sHowever, there
seems to be a paucity of ideas on how toformally prove or
disprove such a conjecture.d The research reported below
was undertaken initially with the specific purpose of finding
whether a putative comparably elegant formula for the vol-
ume of separable qubit-qutrit pairs might exist. We will re-
port belowsSec. VI Dd the obtaining of certain possible for-
mulas that fit our numerical results well, but none of such
striking simplicity snor none that extends it, in any natural
apparent fashiond. But we also obtain some new type results
of substantial independent interest.

In a recent highly comprehensive analysisf15g scf. f17gd,
Sommers andŻyczkowski obtained “a fairly general expres-
sion for the Bures volume of the submanifold of the states of
rank N−n of the set of complexsb=2d or real sb=1d N
3N density matrices

SN,n
sb,Buresd = 2−dn

psdn+1d/2

G„sdn + 1d/2…

3 P
j=1

N−n Gs jb/2dGf1 + s2n + j − 1db/2g
Gfsn + jdb/2gGf1 + sn + j − 1db/2g

, s1d

where dn=sN−ndf1+sN+n−1db /2g−1 represents the di-
mensionality of the manifold… for n=0 the last factor sim-
ply equals unity ands1d gives the Bures volume of the entire
space of density matrices, equal to that of ad0-dimensional
hyperhemisphere with radius 1/2. In the casen=1 we obtain
the volume of the surface of this set, while forn=N−1 we
get the volume of the set of pure states… which for b
=1s2d gives correctly the volume of the realscomplexd pro-
jective space of dimensionsN−1” f15g. The Bures metric on
various spaces of density matricessrd has been widely stud-
ied f18–21g. In a broader context, it serves as theminimal
monotone metricf22g.

In part II of f1,2g, Życzkowski put forth a certain propo-
sition. It was that “the link between the purity of the mixed
states and the probability of entanglement is not sensitive to
the measurefon the space ofN3N density matricesg used.”
His assertion was based on comparisons between a unitary
product measure and an orthogonal product measure for the
squbit-qubitd caseN=4 ff2g, Fig. 2sbdg. The participation
ratio—1/Trsr2d—was used as the measure of purity.*Electronic address: slater@kitp.ucsb.edu
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II. SEPARABILITY-PROBABILITY RATIOS

In this study, we presentsSec. VI Cd numerical
evidence—limited largely to the specificsqubit-qutritd case
N=6—for a somewhat related propositionswhich appears to
be possibly topological in naturef23gd. It is that a certain
“ratio of ratios”

Vmetric;
Rsep+nonsep

metric

Rsep
metric s2d

is equal to 2,independentlyof the measure used—where the
possible measuressincluding the just-discussed Buresd are
comprised ofvolume elementssall incorporating theHaar
measure as a factord of certain metrics defined on theN
3N density matrices. Here by

Rsep+nonsep
metric ;

SN,1
s2,metricd

SN,0
s2,metricd s3d

is indicated the ratio of the hyperarea of the
sN2−2d-dimensional boundary of thesN2−1d-dimensional
convex setsCNd of N3N density matrices to the total vol-
ume ofCN. Further,

Rsep
metric;

oN,1

s2,metricd

oN,0

s2,metricd s4d

is the same type of hyperarea-volume ratio, but now re-
stricted to thesclassical and nonquantumd subset ofCN com-
posed of theseparablestatesf24g swhich we designate using
S rather thanSd. A simple algebraic rearrangement of quo-

tients then reveals thatVmetric, Eq.s2d, is also interpretable as
the ratio

Vmetric;
PN

fmetric,rank-Ng

PN
fmetric,rank-sN−1dg s5d

of the separability probabilityof the totality of sgenerically
rank-Nd states inCN,

PN
fmetric,rank-Ng ;

oN,0

s2,metricd

SN,0
s2,metricd , s6d

to the separability probability

PN
fmetric,rank-sN−1dg ;

oN,1

s2,metricd

SN,1
s2,metricd s7d

of the fgenerically rank-sN−1dg states that lie on the bound-
ary of CN.

III. METRICS OF INTEREST

Let us apply theŻyczkowski-Sommers Bures formulas1d
to the two cases that will be of specific interest in this study,
N=6, n=0, b=2 andN=6, n=1, b=2—that is, the Bures
35-dimensional volume and 34-dimensional hyperarea of the
complex636 density matrices.sIt would, of course, also be
of interest to study thereal caseb=1, though we have not
undertaken any work in that direction.d We then have that

S6,0
s2,Buresd =

p18

12221326970165372387328000

< 7.270753 10−17 s8d

and

S6,1
s2,Buresd =

p17

138339065763438059520000

< 2.044573 10−15. s9d

Here, we are ablessomewhat paralleling our recent work for
the qubit-qubit caseN=4 f3g, but in a rather more systematic
mannerab initio than thered, through advanced numerical
squasi–Monte Carlo and quasirandomd methods, to repro-
duce both of these valuess8d and s9d, to a considerable ac-
curacy. At the same time, we compute numerical values—it
would seem reasonable to presume, at least initially, with

FIG. 1. Ratios of the cumulative estimates of the 35-
dimensional volumeS6,0

s2,Buresd to its knownvalue s8d. For each ad-
dtional point shown—as in all the subsequent plots—103106 s107d
values of the particulars73109d-point Tezuka-Faure sequence have
been generated.

FIG. 2. Ratios of the cumulative estimates of the 34-
dimensional hyperareaS6,1

s2,Buresd to its known values9d.

FIG. 3. A pair of cumulative estimates of the 35-dimensional
Bures volume ofseparablequbit-qutrit states based on thetwo dis-
tinct forms of partial transposition.
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roughly the same level of accuracy—of these two quantities,
but for the replacement of the Bures metric by five other
monotonemetrics of interest. These are the Kubo-Mori
f25–28g, sarithmeticd averagef3g, Wigner-Yanasef29–32g,
Grosse-Krattenthaler-SlatersGKSd f33g sor “quasi-Bures”
f34gd, and sgeometricd average monotone metrics—the two
“averages” being formed from the minimalsBuresd and
maximal sYuen-Lax f35gd monotone metrics, following the
suggested procedure inf36g fEq. s20dg. No proven formulas,
such as Eq.s1d, are presently available for these other vari-
ous quantities, although our research inf3g had suggested
that the Kubo-Mori volume of theN3N density matrices is
expressible as

SN,0
s2,KMd = 2NsN−1d/2SN,0

s2,Buresd, s10d

which for our case ofN=6 would give

S6,0
s2,KMd = 32768S6,0

s2,Buresd. s11d

In light of the considerable attention recently devoted to
the sRiemannian, butnonmonotonef37gd Hilbert-Schmidt
metric f16,17,38g, including the availability of exact volume
and hypersurface formulasf16g, we include it in supplemen-
tary analyses too. Further, we estimate for all these seven
ssix monotone and one nonmonotoned metrics thesunknownd
35-dimensional volumes and 34-dimensional hyperareas re-
stricted to theseparable233 and 332 systems. Then, we
can, obviously, by taking ratios of separable quantities to
their separableplusnonseparable counterparts, obtain “prob-
abilities of separability”—a topic which was first investi-
gated inf1g and studied further, using the Bures metric, in
f3–6g.

IV. TWO FORMS OF PARTIAL TRANSPOSITION

We will employ the convenient Peres-Horodecki neces-
saryand sufficient positive partial transposition criterion for
separabilityf39,40g—asserting that a 434 or 636 density
matrix is separable if and only if all the eigenvalues of its
partial transpose are non-negative.sIn the 434 fqubit-qubitg
case, it simply suffices to test the determinant of the partial
transpose for nonnegativityf41,42g.d But in the 636 case,
we have the qualitative difference that partial transposes can
be determined insat leastd two inequivalent ways, either by
transposing in place, in the natural blockwise manner, the
nine 232 submatrices or thefour 333 submatricesff40g
Eq. s20dg. sObviously, such a nonuniqueness arises in a bi-
partite system only if the dimensions of the two parts are
unequal.d We will throughout this study—as inf6g—at the
expense of added computation, analyze results usingboth
forms of partial transpose.

It is our anticipation—although yet without a formal
demonstration—that in the limit of large sample size, the two
sets ofsseparable volume and separable hyperaread results of
interest here should converge to truecommonvalues. Now,
the author must admit that he initially thought that it made no
difference at all in which of the two ways the partial trans-
pose was taken; that is, a 636 density matrix would either
pass or failboth tests. Also, this seems to be a common
attitude in the quantum information communitysas judged
by a number of personal reactionsscf. f1g, footnote 2d.
Therefore, we present below a specific example of a 636
density matrixsr1d that remains a density matrix if its four
333 blocks are transposed, but not its nine 232 blocks,
since the latter result has anegative eigenvalue
s−0.001 298 36d:
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s12d

Życzkowski has pointed out that the question of whether a
given stater is entangled or not depends crucially upon the
decomposition of the composite Hilbert spaceHA ^ HB scf.
f43,44gd. For instance, for the simplest 232 case, the maxi-
mally entangled Bell state becomes “separable,” he points
out, if one considers entanglement with respect to another
division of the space—e.g.,A8=hF+,F−j, B8=hC+,C−j. So
it should not be surprising, at least in retrospect, that some
states are separable with respect to one form of partial trans-

FIG. 4. Ratios of the cumulative estimates of the 35-
dimensional volume S6,0

s2,KMd to its conjectured value of
32 768S6,0

s2,Buresd.

FIG. 5. Ratios of the cumulative estimates of the 35-
dimensional Hilbert-SchmidtsEuclideand volume S6,0

s2,HSd to its
knownvalue s23d.
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position and not the other. In the course of examining this
issue, we found that if one starts with an arbitrary 636
matrix sMd and alternates the two forms of partial transpos-
tion on it, after 12s=236d iterations of this process, one
arrives back at theoriginal 636 matrix. So, in group-
theoretic terms, if we denote the three-by-three operation by
a3 and the two-by-two operation bya2, we have idempo-
tency,a2

2=a3
2= I and sa2a3d6=sa3a2d6= I. Further, one can go

from the partial transposea3sMd to the partial transpose
a2sMd via the matrix corresponding to the permutation
h1,4,2,5,3,6j.

Further, we constructed the related density matrixsr2d
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Now, if r2 is partially transposed using its nine 232 blocks,
it gives the identical matrix as whenr1 is partially transposed
using four 333 blocks. But the six eigenvalues ofr1—that
is, h0.322 635, 0.222 222, 0.1721, 0.149 677, 0.119 158,
0.014 207 6j—are not the same as the six eigenvalues of
r2—that is, h0.300 489, 0.222 222, 0.204 982, 0.168 304,
0.099 276 3, 0.004 726 44j. So there can be no unitary trans-
formation takingr1 to r2. fThe possibility thatr1 and r2
might have the same total measuressd attached to them can-
not formally be ruled out, however.g

V. RESEARCH DESIGN

Our main analysis will take the form of a quasi–Monte
Carlo sTezuka-Fauref45,46gd numerical integration over the
35-dimensional hypercubesf0,1g35d and a 34-dimensional
subhypercube of it. In doing so, we implement a parametri-
zation of the 636 density matrices in terms of 30 Euler
anglessparametrizing 636 unitary matricesd andfivehyper-
spherical angles sparametrizing the six eigenvalues—
constrained to sum to 1d f47,48g. We hold a single one of the
five hyperspherical angles fixed in the 34-dimensional analy-
sis, so that one of the six eigenvalues is always zero—and
the density matrix is generically of rank 5. The parameters
are linearly transformed so that they each lie in the unit in-
terval f0,1g and, thus, collectively in the unit hypercube. The
computations consumed approximately 5 months using six
PowerMacs in parallel, each generating a different segment
of the Tezuka-Faure sequence.

A. Silver mean „
Î2−1… conjectures for N=4

We have previously pursued a similar numerical analysis
in investigating the separable and nonseparable volumes and

TABLE I. Scaled estimates based on the Tezuka-Faure sequence
of 73109 points of the 35-dimensional volumes and 34-
dimensional hyperareas of the 636 density matrices, using several
monotone metrics. The scaling factors are theknownvalues of the
volume and hyperarea for the Bures metric, given by Eq.s1d, and
more specifically for the casesN=6, n=0, 1, andb=2 by Eqs.s8d
and s9d.

Metric S̃6,0
s2,metricd /S6,0

s2,Buresd S̃6,1
s2,metricd /S6,1

s2,Buresd

Bures 0.996899 0.999022

KM 32419.4 45.4577

Arith 621.714 31.291

WY 131.711 9.76835

GKS 12.4001 3.55929

Geom 2.8001131044 1.4401131014

TABLE II. Scaled estimates based on the Tezuka-Faure se-
quence of 73109 points of the 35-dimensional volumes and 34-
dimensional hyperareas of the 636 density matrices, using several
monotone metrics. The scaling factors are theestimatedvalues

sS̃6,0
s2,Buresd=7.2482310−17 and S̃6,1

s2,Buresd=2.04257310−15d of the
volume and hyperarea for the Bures metric.

Metric S̃6,0
s2,metricd / S̃6,0

s2,Buresd S̃6,1
s2,metricd / S̃6,1

s2,Buresd

KM 32520.3 45.5022

Arith 623.648 31.3216

WY 132.121 9.77791

GKS 12.4387 3.56278

Geom 2.8088231044 1.4415231014

TABLE III. Scaled estimates based on the Tezuka-Faure se-
quence of 73109 points of the 35-dimensional volumes and 34-
dimensional hyperareas of theseparable636 density matrices,
using several monotone metrics. The scaling factors are the

estimatedvaluessS̃6,0
s2,Buresd=1.0739310−19 and S̃6,1

s2,Buresd=1.53932
310−18d—the true values being unknown—of the separable volume
and hyperarea for the Bures metric. To implement the Peres-
Horodecki positive partial transposition criterion, we compute the
partial transposes of the four 333 submatricessblocksd of the den-
sity matrix.

Metric Bures-scaled separable volume
Bures-scaled separable

srank-5d hyperarea

KM 8694.79 9.43481

Arith 220.75 10.6415

WY 55.3839 4.13924

GKS 7.97798 2.28649

Geom 3.3387231032 3.614113108
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hyperareas of the 434 density matricesf3g. Highly accurate
resultssas gauged in terms ofknownBures quantitiesf15gd—
based on two 109 points of a Tezuka-Faures“low-
discrepancy”d sequence lying in the 15-dimensional
hypercube—led us to advance several strikingly simple con-
jectures. For example, it was indicated that the Kubo-Mori
volume of separable and nonseparable states was exactly
64=26 times the known Bures volume.fThe exponent 6 is
expressible—in terms of our general conjectures10d, relating
the Bures and Kubo-Mori volumes—asNsN−1d /2, with N
=4.g Most prominently, though, it was conjectured that the
statistical distinguishabilitysSDd volume of separable states
is sAg/3 and 10sAg in terms of s4 timesd the Kubo-Mori
metric. Here,sAg=Î2−1<0.414 214 is the “silver mean”
f49–52g scf. f53gd. The SD metric is identically 4 times the
Bures metricf54g. fConsequently, the SD 15-dimensional
volume of the 434 complex density matrices is 215 times
that of the Bures volume—given by formulas1d for N=4,
n=0, b=2—thus equaling the volume of a 15-dimensional
hyperhemisphere with radius 1, rather than1

2 as in the Bures
case itselff15g.g

Unfortunately, there appears to be little in the way of in-
dications in the literature, as to how one mightformally
prove or disprove these conjectures—“brute force”symbolic
integration seeming to be well beyond present technical and
conceptual capabilitiesscf. f47g, Sec. Vg. fCertainly, Som-
mers andŻyczkowskif15g did not directly employ symbolic
integration methodologies in deriving the Bures volume, hy-
perarea, etc., forN-level sseparableand non-separabled sys-
tems, but rather, principally, used concepts of random matrix
theory.g One approach we have considered in this regardf7g
is to parametrize the 15-dimensional convex set of bipartite
qubit states in terms of the weights used in the expansion of
the state in some basis of 16 extreme separable 434 density
matricesscf. f55gd. For a certain basis composed of SUs4d
generatorsf56–58g, the associated 15315 Bures metric ten-
sor f20g is diagonal in form shaving all entries equald at the
fully mixed statesf7g, Sec. IIdFd. sAlso, we have speculated
that perhaps there is some way of “bypassing” the formi-
dable computation of the Bures metric tensor and yet being
able to arrive at the required volume element.d Perhaps,
though, at least in the Bures andminimal monotone case, a
proof might be based on the concept of “minimal volume”
f59–61g.

B. Formulas for monotone metrics

The monotone metricssof which we study five, in addi-
tion to the Buresd can all be expressed in the general form

TABLE IV. Scaled estimates based on the Tezuka-Faure se-
quence of 73109 points of the 35-dimensional volumes and 34-
dimensional hyperareas of theseparable636 density matrices,
using several monotone metrics. The scaling factors are the

estimated values sS̃6,0
s2,Buresd=9.54508310−20 and S̃6,1

s2,Buresd

=1.40208310−18d—the true values being unknown—of the sepa-
rable volume and hyperarea for the Bures metric. To implement the
Peres-Horodecki positive partial transposition criterion, we com-
pute the partial transposes of thenine232 submatricessblocksd of
the density matrix.

Metric Bures-scaled separable volume
Bures-scaled separable

srank-5d hyperarea

KM 6465.86 9.0409

Arith 218.602 10.3248

WY 55.5199 4.05201

GKS 7.92729 2.26136

Geom 5.429931035 4.356673109

TABLE V. Scaled estimates based on the Tezuka-Faure se-
quence of 73109 points of the 35-dimensional volumes and 34-
dimensional hyperareas of theseparable636 density matrices, us-
ing several monotone metrics. The scaling factors are theestimated
valuess1.99772310−19 and 2.90956310−18d—the true values be-
ing unknown—for the Bures metric. A density matrix is included
here if it passeseither form of the positive partial transposition test.

Metric Bures-scaled separable volume
Bures-scaled separable

srank-5d hyperarea

KM 7735.7 9.30446

Arith 221.689 10.5467

WY 55.8928 4.11453

GKS 7.99075 2.28089

Geom 2.5961931035 2.290513109

TABLE VI. Scaled estimates based on the Tezuka-Faure se-
quence of 73109 points of the 35-dimensional volumes and 34-
dimensional hyperareas of theseparable636 density matrices, us-
ing several monotone metrics. The scaling factors are theestimated
valuess3.06807310−21 and 3.78991310−32d—the true values be-
ing unknown—for the Bures metric. A density matrix is included
hereonly if it passesboth forms of the positive partial transposition
test.

Metric Bures-scaled separable volume
Bures-scaled separable

srank-5d hyperarea

KM 1800.19 3.99932

Arith 92.7744 5.3548

WY 26.4785 2.55592

GKS 5.56969 1.77049

Geom 3.9677931027 1.099373107

FIG. 6. Ratios of the cumulative estimates of the 34-
dimensional Hilbert-Schmidt hyperareaS6,1

s2,HSd to its known value
s24d.
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grsX8,Xd =
1

4
S
a,b

ukauXublu2cmonotonesla,lbd s14d

scf. f18,19gd. HereX,X8 lie in the tangent space of all Her-
mitian N3N density matricesr and ual, a=1, 2, … are the
eigenvectors ofr with eigenvaluesla. Now, cmonotonesla ,lbd
represents the specificMorozova-Chentsovfunction for the
monotone metric in questionf36g. This function takes the
form for s1d the Bures metric

cBuressla,lbd =
2

la + lb

, s15d

s2d the Kubo-MorisKM d metric swhich, up to a scale factor,
is the unique monotone Riemannian metric with respect to
which theexponentialandmixtureconnections are dualf28gd

cKMsla,lbd =
log la − log lb

la − lb

, s16d

s3d the sarithmeticd average metricsfirst discussed inf3gd

carithsla,lbd =
4sla + lbd

la
2 + 6lalb + lb

2 , s17d

s4d the Wigner-Yanase metricswhich corresponds to a space
of constant curvaturef29gd

cWYsla,lbd =
4

sÎla + Îlbd2
, s18d

s5d the GKS–quasi-Bures metricswhich yields the
asymptotic redundancy for universal quantum data compres-
sion f33gd

cGKSsla,lbd =
Sla

lb
Dla/slb−lad

lb

e, s19d

and s6d the sgeometricd average metricsapparently previ-
ously unanalyzedd

cgeomsla,lbd =
1

Îlalb

. s20d

fThe results obtained below for the geometric average mono-
tone metric seem, in retrospect, to be of little interest, other
than indicating that—like the maximal monotonesYuen-Laxd
metric itselff3g—volumes and hyperareas appear to be sim-
ply infinite in magnitude.g

VI. ANALYSES

A. Volumes and hyperareas based on certain monotone
metrics

Using the first 73109 points of a Tezuka-Faure sequence,
we obtained the results reported in Tables I–IX and Figs.
1–12. We followed the Bures formulas inf15g sSecs. III C
and III Dd, substituting for Eq.s15d the Morozova-Chentsov
functions given above, Eqs.s16d–s20d, to obtain the non-
Bures counterparts.

In Fig. 1 we show the ratios of the cumulative estimates
of the 35-dimensional volumeS6,0

s2,Buresd to its known value
s8d. Each successive point is based on 103106 s107d more
systematically sampled values in the 35-dimensional hyper-
cube than the previous point in the computational sequence.
In Fig. 2 we show the ratios of the cumulative estimates of
the 34-dimensional hyperareaS6,1

s2,Buresd to its known value
s9d. Each successive point is based on 103106 more
sampled values in the 34-dimensional hypercube than the
previous point in the computational sequence. The single
Tezuka-Faure sequence we employ for all our purposes,

TABLE VII. Scaled estimates obtained by pooling the results
from Tables III and IV—based on the two forms of partial
transposition—for the separable volumes and hyperareas. The

Bures scaling factorsspooled volume and hyperaread are S̃6,0
s2,Buresd

=1.0142310−19 and S̃6,1
s2,Buresd=1.4707310−18.

Metric Bures-scaled separable volume
Bures-scaled separable

srank-5d hyperarea

KM 7645.92 9.24704

Arith 219.739 10.4905

WY 55.4479 4.09766

GKS 7.95413 2.27537

Geom 2.5569231035 2.265843109

TABLE VIII. Sample estimates of the ratiosRsep+nonsep
metric =S6,1

s2,metricd /S6,0
s2,metricdd of the 34-dimensional hyper-

area to the 35-dimensional volume for the seven metrics under study and the corresponding ratios for a
35-dimensionalEuclideanball havings1d the same volume as for the metric ands2d the same hyperarea.

Metric Known ratio Sample ratiosRsep+nonsep
metric d Isovolumetric ratio Isohyperarea ratio

Bures 28.1205 28.1804 2.34553 2.40508

KM — 0.0394299 1245.79 1536.34

Arith — 1.41531 38.858 43.2743

WY — 2.08556 27.5655 30.39

GKS — 8.07163 7.61987 8.08886

Geom — 1.44625310−29 2.4546331029 1.7963831030

HS 191.703 192.468 0.543466 0.533806
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however, is specifically designed as a35-dimensional
one—of which we take an essentially arbitrary 34-
dimensionalprojection. This is arguably a suboptimal strat-
egy for generating well-distributed points in the 34-
dimensional hypercubescf. f62g, Sec. VIId, but it is certainly
highly computationally convenient for usssince we avoid
having to generate a totally new 34-dimensional sequence—
which would, we believe, increase our computation time
roughly 50%d and seems to perform rather well.fIn fact, as
discussed below, thebias of our estimates seems to be—
contrary to expectations—markedly less for the known
sBures and Hilbert-Schmidtd 34-dimensional hyperareas than
for the 35-dimensional volumes.g

We also present a joint plotsFig. 3d of the two sets of
cumulative estimates of the Bures volume ofseparable
qubit-qutrit states based onboth forms of partial transposi-
tion. The estimates obtained using the four blocks of 333
submatrices, in general, dominate those using nine blocks of
232 submatrices.

In Table I, we scale the estimatesswhich we denote using

S̃d of the volumes and hyperareas by theknownvaluess8d
and s9d of S6,0

s2,Buresd and S6,1
s2,Buresd, while in Table II we scale

these estimates by theestimatedvaluess7.229 04310−17 and
2.039 91310−15d of these two quantities.sWe useboth ap-
proaches because we are uncertain as to which may be more
revealing as to possible exact formulas—an approach sug-
gested by our work inf3g.d The results for the geometric
average monotone metric in Table I appear to be divergent.
We might speculate that the middle four scaled hyperareas in
the last column of Table I correspond to the actual values
7313/2=45.5, 22352/3<31.333, 3313/4=9.75, and

7/2=3.5 and for thesecond column that we have 132=12
311 and 12, as actual values.

In Tables III and IV, we report our estimatessscaled by
the values obtained for the Bures metricd of the volumes and
hyperareas of the 636 separable complex density matrices.
Let us note, however, that to compute the hyperarea of the
completeboundary of the separable states, one must also
include those 636 density matrices offull rank, the partial
transposes of which have a zero eigenvalue, with all other
eigenvalues being nonnegativef63g. sWe do not compute this
additional contribution here—as we undertook to do in our
lower-dimensional analysisf3g—as it would slow quite con-
siderably the overall process in which we are engaged, since
high-degree polynomials would need to be solved at each
iteration.d

In f3g, we had been led to conjecture that that part of the
14-dimensional boundary of separable 434 density matrices
consisting generically of rank-4 density matrices had SD hy-
perarea 55sAg/39 and that part composed of rank-3 density
matrices, 43sAg/39, for a total 14-dimensional boundary SD
hyperarea of 98sAg/39. We then sought to apply the “Levy-
Gromov isoperimetric inequality”f64g to the relation be-
tween the known and estimated SD volumes and hyperareas
of the separable and separable plus nonseparable statessf3g,
Sec. VII Cd.

Restricting ourselves now to considering only the sepa-
rable density matrices, for Table III we computed the partial
transposes of the 636 density matrices by transposing in
place thefour 333 submatrices, while in Table IV we trans-
posed in place the nine 232 submatrices.

In Table V, we only require the density matrix in question

TABLE IX. Sample estimates of the ratiosRsep
metricd of the 34-dimensional hyperarea consisting only of

rank-5 636 separabledensity matrices to the 35-dimensional separable volume for the seven metrics under
study. In the last column there are given the ratios of ratiossVmetricd of the middlesthirdd column of Table
VIII to these values.

Metric Rsep
metric Vmetric;Rsep+nonsep

metric /Rsep
metric=P6

fmetric,6g /P6
fmetric,5g

Bures 14.501 1.94334

KM 0.0175377 2.24829

Arith 0.692291 2.04439

WY 1.07164 1.94613

GKS 4.14819 1.94582

Geom 1.28502310−25 0.000112547

HS 94.9063 2.0279

FIG. 7. Cumulative estimates of the 35-dimensional Hilbert-
Schmidt volume ofseparablequbit-qutrit statessfor the two pos-
sible forms of partial transpositiond.

FIG. 8. Deviations of the cumulative estimates ofRWY
sep from

1.
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to passeither of the two tests, while in Table VI, we require
it to passboth tests for separability.sOf the 73109 points of
the Tezuka-Faure 35-dimensional sequence so far generated,
approximately 2.91% yielded density matrices passing the
test for Table I, 2.84% for Table II, 4% for Table III, and
1.75% for Table IV.Życzkowski commented that “it is not
reasonable to ask about the probability thatbothpartial trans-
positions are simultaneously positive, since one should not
mix two different physical problems together”.d

In Table VII, we “pool” saveraged the results for the sepa-
rable volumes and hyperareas reported in Tables III and IV,
based on the two distinct forms of partial transposition, to
obtain possibly superior estimates of these quantities, which
presumably are actually one and the sameindependentof the
particular form of partial transposition.

In Fig. 4 we show the ratios ofS̃6,0
s2,KMd to its conjectured

value s11d of 32 768S6,0
s2,Buresd.

B. Volumes and hyperareas based on the Hilbert-Schmidt
metric

Along with the computations based on six distinct mono-
tone metrics, reported above in Sec. VI A, we have at the
same time carried out fully parallel analyses of thesRie-
mannian, but nonmonotoned Hilbert-Schmidt metricf37g.
These have only been conductedafter an earlier less-
extensive form of this analysisf8g, reporting initial numeri-
cal estimates for the same six monotone metrics based on
6003106 points of a Tezuka-Faure sequence, was posted. At
that stage of our research, we had—with certainly some
regrets—decided tofully redo the computations reported

there. This was done to avoid assomewhat inadvertentd pro-
gramming limitationswhich seemed of minor importance at
the timed—a consequence essentially only of our, in time,
having understood how to greatly speed up the
computations—of not being able to samplemore than 2
3109 Tezuka-Faure points. This fresh beginningsincorporat-
ing a much larger limitation, of which we here take advan-
taged allowed us then, as well, to additionally fully include
the Hilbert-SchmidtsHSd metric. fIt is somewhat unfortu-
nate, however, at this point, that we had not conducted analy-
ses based on the HS metric for theN=4 qubit-qubit case,
having restricted our earlier attention to monotone metrics
only f3g scf. Sec. VI C 2d.g

Prior to Sommers andŻyczkowski reporting their exact
formula s1d for the Bures volume of the submanifold of the
states of rankN-n of the set of complexsb=2d or real sb
=1d N3N density matrices, they had obtained fully analo-
gous formulas for the Hilbert-Schmidt metric, which for the
specific volumesn=0d case givesf16g, Eq. s4.5dg

SN,0
s2,HSd = ÎNs2pdNsN−1d/2Gs1d ¯ GsNd

GsN2d
s21d

and the hyperareasn=1d casef16g, Eq. s5.2dg gives

S6,1
s2,HSd = ÎN − 1s2pdNsN−1d/2Gs1d ¯ GsN + 1d

GsNdGsN2 − 1d
. s22d

For thesqubit-qutritd caseN=6 under study in this paper,
these give us, for the 35-dimensional HS volume,

FIG. 9. Deviations from the conjectured value of 2 of the cu-
mulative estimates ofRGKS, the ratio of hyperarea-to-volume ratios
for the Grosse-Krattenthaler-SlatersGKS or “quasi-Bures”d mono-
tone metric.

FIG. 10. Deviations from the conjectured value of 2 of the cu-
mulative estimates ofRBures, the ratio of hyperarea-to-volume ratios
for the Bures monotone metric.

FIG. 11. Deviations from the conjectured value of 2 of the cu-
mulative estimates ofRHS, the ratio of hyperarea-to-volume ratios
for the Hilbert-Schmidt metric. This plot is particularly flat in
character.

FIG. 12. Deviations from the conjectured value of 2 of the cu-
mulative estimates ofRKM, the ratio of hyperarea-to-volume ratios
for the KM sKubo-Morid monotone metric.
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S6,0
s2,HSd =

p15

1520749664069126407256340000000Î6

< 7.693343 10−24 s23d

and for the 34-dimensional HS hyperarea

S6,1
s2,HSd =

p15

8689998080395008041464800000Î5
< 1.47483

3 10−21. s24d

So, as above, using the Bures metric, we can further gauge
the accuracy of the Tezuka-Faure numerical integration in
terms of theseknownvolumes and hyperareas.sThis some-
what alleviates the shortcoming of the Tezuka-Faure proce-
dure in not lending itself to statistical testing in any straight-
forward manner.d

The estimated probability of separability isgreaterfor the
HS metric than for any monotone one.sThe minimal mono-
tone or Bures metric appears to give the greatest probability
in the nondenumerable class of monotone metrics. Also, the
maximalmonotone metric seems to give azero probability
f3g.d Therefore, one might surmise that the much-discussed
estimates of the sizes of the separable neighborhoods
f9–11g—which usually appear to be based on the HS or
Frobenius metric—surrounding the fully mixed state are on
the rather generous sidescf. f12gd, relatively speaking.

In Fig. 5 we show—paralleling Fig. 1—the ratios of our
cumulative estimates ofS6,0

s2,HSd to its known values23d. In
Fig. 6 we show—paralleling Fig. 2—the ratios of the cumu-
lative estimates ofS6,1

s2,HSd to its known values24d.
A plot sFig. 7d of the cumulative estimates of the Hilbert-

Schmidt volume of separable qubit-qutrit statessfor the two
forms of partial transpositiond is also presented.fThe ratio of
the two cumulative estimates at the finals73109d mark is
1.032 36, while the comparable ratio is 1.125 08 in the
analogous Bures plotsFig. 3d.g

In their two studiesf15,16g, deriving exact formulas for
the Bures and Hilbert-Schmidt volumes and hyperareas of
the N3N density matrices, Sommers andŻyczkowski also
explicitly derived expressions for the ratios of
sN2−2d-dimensional hyperareas tosN2−1d-dimensional vol-
umes. These wereff15g, Eq. s4.20dg

gBures,N =
SN,1

s2,Buresd

SN,0
s2,Buresd =

2
Îp

GsN2/2d
GsN2/2 − 1/2d

N s25d

and f16g, Eq. s6.5dg

gHS,N =
SN,1

s2,HSd

SN,0
s2,HSd = ÎNsN − 1dsN2 − 1d. s26d

In theN=6 Bures case, this ratiosequivalently what we have
earlier denotedRsep+nonsep

Bures d is

gBures,6 ;
S6,1

s2,Buresd

S6,0
s2,Buresd =

234

32 3 5 3 113 193 233 293 31p

=
17179869184

194467185p
< 28.1205 s27d

and in the Hilbert-Schmidt casesequivalentlyRsep+nonsep
HS d,

gHS,6 ;
S6,1

s2,HSd

S6,0
s2,HSd = 35Î30< 191.703. s28d

(The Bures ratio grows proportionally with the dimensional-
ity sD=N2−1d of the N3N density matrices asD sfor large
Nd sf15g, Sec. IV Cd and asD3/2 for the Hilbert-Schmidt ratio
sf16g, Sec. VId.) Our sample estimates for these two quanti-
ties are 28.1804 and 192.468, respectively. In Table VIII, we
report these estimates, as well as the sample estimates for the
other five metrics under study here. We also list the two
known values and also give the corresponding ratios of hy-
perarea to volume for a 35-dimensionalEuclideanball hav-
ing s1d the same volume as for the metric in question ands2d
the same hyperarea.Only for the sflatd HS metric are these
last two ratioslessthan unityscf. f16g, Sec. VId.

C. Separability-probability ratios

1. N=6 qubit-qutrit case

In Table IX we list for the seven metrics the estimated
ratios, which we denoteRsep

metric, of the hyperareasconsisting
of only the rank-5 but not the rank-6 636 density matrices
constituting the boundary of theseparabledensity matrices
f63gd to the volume of all the separable states themselves. We
see thatRWY

sep is quite close to 1.sThe Wigner-Yanase metric
is one of constant curvaturef29g.d In Fig. 8 we show the
deviations of the cumulative estimates ofRWY

sep from 1. In the
last column of Table IX there are given the ratios of ratios
Vmetric;Rsep+nonsep

metric /Rsep
metric. fThe exceptionalsgeometric av-

eraged case might possibly simply be dismissed for serious
consideration on the basis of numerical instabilities, with the
associated volumes for this metric appearing to be actually
infinite in nature. Also, as we will see below,VKM is subject
to particular severe jumps, perhaps decreasing the reliability
of the estimates. The other five are rather close to 2—but it is
also somewhat intriguing that three of the estimated mono-
tone metric ratios are quite close to one anothers<1.945d
and therefore perhaps a common valueunequalto 2.g This
ratio of ratios can easily be rewritten—as explicated in the
Introduction—to take the form of a ratio of separability prob-
abilities. That is,Vmetric is equivalently the ratio of the prob-
ability of separabilitysP6

fsmetric,6gd for all qubit-qutrit states to
the conditional probability of separabilitysP6

fmetric,5gd for
those states on thesrank-fived boundary of the 35-
dimensional convex set.

An interesting conjecture now would be that this ratio
sVmetricd is equal to the integral value 2,independentlyof the
smonotone or HSd metric used to measure the volumes and
hyperareas. If, in fact, valid, then there is presumably ato-
pological explanationf23g for this. sWe were able to quite
readily reject the speculation that this phenomenon might be
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in some way anartifact of our particular experimental de-
sign, in that we employ, as previously discussed, only for
simple computational convenience, a 34-dimensional subse-
quence of the 35-dimensional Tezuka-Faure sequence—
rather than anab initio independent 34-dimensional Tezuka-
Faure sequence for the calculation of the hyperareas.d

We must observe, however, that all the seven metrics spe-
cifically studied here induce thesamesHaard measure over
30 of the 35 variables—that is, the 30 Euler angles param-
etrizing the unitary matricesf47,48g—but not over the five
independent eigenvalues of the 636 density matrix. There-
fore, it is certainly valid to point out that we have not con-
sideredall types of possible metrics over the 35-dimensional
space, but have restricted attention only to certain of those
that arenot inconsistent with quantum mechanical principles.
(Stolz has pointed out, in a personal communication that, in
general, one could modify a metric in the interior away from
the boundaryandoutside the separable states, without affect-
ing the metric on the separable states, thus changing
Rsep+nonsep

metric without changingRsep
metric, but obviously then also

altering the ratio of ratiossproportio proportionumf65gd
Vmetric. But presumably such a modification would lead, in
our context, to the volume element of the so-modified metric
not respecting Haar measurescf. f66g, Appendix Ad.)

The topology of the sN2−1d-dimensional convex set of
N3N density matrices has been laid out byŻyczkowski and
Słomczynski sf67g, Sec. 2.1d. The topological structure is
expressible as

fUsNd/TNg 3 GN, s29d

where the group of unitary matrices of sizeN is denoted by
UsNd and the unit circlefone-dimensional torus<Us1dg by
T, while GN represents ansN−1d-dimensionalasymmetric
simplex. It would appear, however, that the set of separable
states lacks such a product topological structuresthus, ren-
dering integrations over the set—and hence the computation
of corresponding volumes—quite problematicald.

In Fig. 9 is plotted the deviations from the conjectured
integral value of 2 of the cumulative estimates of the ratio
sVGKSd—given in Table IX—of the two hyperarea-to-volume
ratios for the GKS monotone metric, the numerator
sRGKS

sep+nonsepd of VGKS being based on the entirety of qubit-
qutrit states and the denominatorsRGKS

sep d being based on the
boundary qubit-qutrit states only.sAll the succeeding plots of
deviations from the conjectured integral value of 2 will be
drawn to thesamescale.d In Figs. 10–12, we show the cor-
responding plots based on the Bures, Hilbert-Schmidt, and
Kubo-Mori metrics, respectively. We note that the cumula-
tive estimates in this last plot were relatively close to 2,
before a sudden spike in the curve drove it upward. The
values for thesquite unrelatedd Bures and HS metrics are
rather close to 2, which is the main factor in our advancing
the conjecture in question.

It would, of course, be of interest to study comparable
ratios involving 636 density matrices of generic rank less
than 5. We did not originally incorporate these into our
Mathematica Tezuka-Faure calculationssin particular, since
we did not anticipate the apparent metric-independent phe-

nomenon, we have observed hered. In Sec. VI C 4 below, we
have, however, subsequently pursued such analyses.

2. The N=4 qubit-qubit case

We adapted our Mathematica routine used so far for the
scenarioN=6, so that it would yield analogous results for
N=4. Based on 4003106 points of a new independent 15-
dimensional Tezuka-Faure sequence, we obtained the results
reported in Table X.sWe now use the lowercase counterparts
of the symbolsR andV to differentiate theN=4 case from
the N=6 one.d Here, once more, the ratios of ratiossvmetricd
tend to show rather similar values, with the two exceptional
cases again being the geometric average metricfwhich we
suspect—like the maximalsYuen-Laxd monotone metric,
from which it is partially formed—simply gives infinite vol-
umes and hyperareasg and the somewhat unstable KM mono-
tone metricswhich now gives an atypicallylow valued. We
were somewhat surprised that the Hilbert-Schmidt metric
again gives, as forN=6, a value quite close to 2. In Fig. 13
we showson a comparatively very fine scaled the deviations
from 2 of the cumulative estimates of the ratio of the Hilbert-
Schmidt separability probability for the rank-4 states to that
for the rank-3 states.

However, it now seems fairly certain that if there is a true
common value forvmetric across the metrics, then it is not an
integral onesand thus possibly not atopological explana-
tiond. The theoretical values predicted by Eqs.s25d ands26d
for rsep+nonsep

Bures andrsep+nonsep
HS are 16384/s429pd<12.1566 and

30Î3<51.9615, respectively. Also, consulting Table 6 of our
earlier studyf3g, we find that using the conjectured and
known values for the qubit-qubit casesN=4d presented there

TABLE X. Counterparts for the qubit-qubit caseN=4 of the
ratios of separability probabilities, based on 4003106 points of a
Tezuka-Faure sequence

Metric rsep+nonsep
metric rsep

metric vmetric

Bures 12.1563 6.58246 1.84676

KM 0.506688 0.348945 1.45206

Arith 2.19634 1.2269 1.79015

WY 2.93791 1.73028 1.69794

GKS 6.03321 3.3661 1.79234

Geom 4.02853310−16 7.1263310−16 0.565304

HS 51.9626 25.9596 2.00167

FIG. 13. Deviations from the possible true value of 2 of the
cumulative estimates of the ratio of the rank-4 Hilbert-Schmidt
separability probability to the rank-3 separability probability in the
N=4 qubit-qubit case. Note the greatly reduced scale of they axis.
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gives usvBures=8192/s1419pd<1.837 63 and a somewhat
similar numerical valuevarith=408 260 608/7 315 3125p
<1.776 46.

Let us also indicate in passing that this new independent
Tezuka-Faure sequence yields estimates that are quite close
to previously known and conjectured values. For example,
the ratios of the estimates ofS4,0

s2,Buresd and S4,1
s2,Buresd to their

respective known values are 1.0001 and 0.9999. Further, the
ratios of the estimates ofS4,0

s2,Buresd andS4,1
s2,Buresd sour estimate

being 0.138 119d to their respective conjectured values are
1.0001 and 0.999 99.

Let us take this opportunity to note that our analyses here
indicate that the conjectures given in Table 6 off3g for the
14-dimensional hyperareas—denotedBs and Bs+n there—
pertaining to the arithmetic average monotone metric, appear
to have been too large by a factor of 8.

3. N=9 rank-9 and-8 cases

Życzkowski has indicated to us that he has an argument, if
not yet fully rigorous, to the effect that the ratio of the prob-
ability of rank-N states having positive partial transposes to
the probability of such rank-sN−1d states should be 2inde-
pendentlyof N. Some early analyses of our—based on a
so-far relatively short Tezuka-Faure sequence of 1263106

points in the extraordinarily high s80d-dimensional
hypercube—gave us a Hilbert-Schmidt rank-9/rank-8 prob-
ability ratio of 1.89125.fThe analogous ratios for the mono-
tone metrics were largely on the order of 0.15. In these same
analyses we also—for our first time—implemented, as well,
the computable cross-norm criterion for separabilityf68g and
found thatmany more density matrices could not be ruled
out as possibly separable than with thesapparently much
more discriminatingd positive partial transposition criterion.
The Hilbert-Schmidt probability ratio based on the cross-
norm criterion was 0.223 149.g In Fig. 14 we show the de-
viations from 2 of the cumulative estimates of the Hilbert-
Schmidt rank-9/rank-8 ratio based on the positivity of the
partial transpose. However, this plot seems so far very un-
stable, so we must be quite cautiousspending a much more
extended analysisd in its interpretation.sIn fact, at some
points, the value also seems close to 0.2, as well, similar to
the other measures. So we remain very uncertain as to
whether there is evidence indicating a true ratio of 2 or pos-
sibly some lower common value.d

4. N=6 rank-4 and rank-3 cases

The principal analyses above have been concerned with
the full rank srank-6d and rank-5 636 density matrices. We

adapted our Mathematica procedure so that it would analyze
the rank-4 and rank-3 cases, in a similar fashion. Now, we
are dealing with 31-dimensional and 26-dimensional sce-
narios, in relation to the original 35- and 34-dimensional
ones.

In a preliminary run, based on 353106 points of corre-
sponding Tezuka-Faure sequences, not a single rank-3 sepa-
rable 636 density matrix was generated.fThe general re-
sults of Lockhartf69g—based on Sard’s theorem—tells us
that the measures of rank-2 and rank-1 636 separable den-
sity matrices must be zero, but not rank-3, as it appears we
have observedsor near to itd.g At that stage, we decided to
concentrate further in our calculations on the rank-4 case
alone.

In Table XI we report results based on 13109 points of a
snew and independentd 31-dimensional Tezuka-Faure se-
quence, coupled with our estimates obtained on the basis of
our principal analysis, using the before-mentioned 73109

points. We note that for the Hilbert-Schmidt metric, 33.9982
s2316.9991d is quite close to integral. In Fig. 15 we show
the cumulative estimates of the ratio from the value 34.fOf
course, if the ratio of the rank-6 HS separability probability
to the rank-5 HS separability probability is exactly, in theory,
equal to 2, and the rank-6/rank-4 separability probability ex-
actly 34, then the rank-5/rank-4 ratio should be 17. Since it is
based on greater numbers of sampled separable density ma-
trices, we suspect the sample estimate of the rank-6/rank-4
HS separability probability may perhaps be superior to the
sless closely integral in value—that is, 16.7652d rank-5/
rank-4 estimate.g

Though the convergence to the predicted Hilbert-Schmidt
volume was quite good(99.9654% of that given by the
Życzkowski-Sommers formulaff16g, Eq. s5.3dg, for N=6, n

TABLE XI. Estimated ratios of both rank-6 and rank-5 qubit-
qutrit separability probabilities to rank-4 separability probabilities.

Metric Rank-6/rank-4 ratio Rank-5/rank-4 ratio

Bures 20.9605 10.7858

KM 12.2764 5.4603

arith 17.4245 8.52308

WY 15.5015 7.96527

GKS 18.3778 9.44474

Geom 1.30244310−7 0.00115724

HS 33.9982 16.7652

FIG. 14. Deviations from the value of 2 of the cumulative esti-
mates of the ratio of the Hilbert- Schmidt probability of having a
positive partial transpose for the 939 density matrices of rank 9 to
the probability in the rank-8 case.

FIG. 15. Deviations from 34 of the cumulative estimates of the
ratio of the rank-6 separability probability for the HS metric to the
rank-4 separability probability.
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=2), we were rather disappointed and surprised that the pre-
dicted value of the Bures volume was inaccurate by some
25%. This indicated to us that either the numerics were much
more difficult for the Bures computation or there was a pos-
sible error in our programmingswhich we were unable to
located or even the possibility that something was incorrect
with the specificSommers-Życzkowski formulaff17g, Eq.
s4.19dg we were using,

SN,n
s2,Buresd = 2−dn

psdn+1d/2

Gssdn + 1d/2d
SN + n − 1

n
D . s30d

This last possibility, in fact, proved to be the case, as we
found that their formulas4.19d did not agreesfor cases other
thann=0, 1, N−1d with the more general formulas5.15d—
reproduced above as Eq.s1d—and that using the correct for-
mulation s5.15d swhich we found also agrees withs4.18d of
f17gd with b=2, n=2, N=6, our numerical deviation was
reduced from 25% to a more acceptable and less surprising
0.1%. A rectified version of their formulas4.19d,

SN,n
s2,Buresd = 2−dn

psdn+1d/2

G„sdn + 1d/2…
P j=0

N−n−1 j ! s j + 2nd!
fs j + nd ! g2 , s31d

has since been posted by Sommers andŻyczkowski f72g
after this matter was brought to their attention.

D. Well-fitting formulas for the Bures and Hilbert-Schmidt
separable volumes and hyperareas

1. Bures case

Proceeding under the assumption of the validity of our
conjecture abovesregarding the integral value of 2 for
Vmetricd, computational experimentation indicates that the
Tezuka–Faure quasi-Monte Carlo separable Bures results can
be quite well fitted by taking for theseparableBures 35-
dimensional volume

o6,0

s2,Buresd
=

3cBures

277 < 1.034473 10−19 s32d

and for theseparablesrank-fived 34-dimensional hyperarea

o6,1

s2,Buresd
= s243 3 3 3 5cBuresd−1 < 1.454493 10−18,

s33d

where byS we denote volumes and hyperareas ofseparable
states and

cBures= Î8642986p = Îp 3 2 3 113 193 233 293 31

< 5210.83. s34d

The pooledsampleestimatesS̃6,0
s2,Buresd and S̃6,1

s2,Buresd, as indi-
cated in the caption to Table VII, are 1.0142310−19 and
1.4707310−18.

Then, we would have the Bures probability of separability
of the sgenerically rank-6d qubit-qutrit states as

P6
fBures,rank-6g =

37 3 53 3 72 3 113 133 17cBures

227p18

< 0.00142278, s35d

and the Bures probability of separability of the generically
rank-5 qubit-qutrit states, exactlysby our integral conjectured
one-half of this.sHowever, there appears to be no obvious
way in which the formulas immediately above extend the
analogous ones in the qubit-qubit separable casef3g, which
were hypothesized to involve the “silver mean”sAg=Î2−1.
Thus, it does not seem readily possible to use the results here
to, in any way, support our earlier conjectures.d

We have also devised another set of exact Bures formulas
that fit our data roughly as well as Eqs.s32d ands33d. These
are

o6,0

s2,Buresd
=

32 3 113 193 233 293 31p

276 3 56 < 1.03497

3 10−19 s36d

and for theseparablesrank-5d 34-dimensional hyperarea

o6,1

s2,Buresd
= s243 3 57d−1 < 1.455193 10−18. s37d

2. Hilbert-Schmidt case

Additionally, we can achieveexcellentfits to our Hilbert-
Schmidt estimates by taking for theseparablesrank-6d 35-
dimensional volume

o6,0

s2,HSd
= s245 3 3 3 513 3 7Î30d−1 < 2.024233 10−25

s38d

sthe sample estimate being 2.053 28310−25d and for the
separablesrank-5d 34-dimensional hyperarea

o6,1

s2,HSd
= s246 3 3 3 512d−1 < 1.940263 10−23 s39d

sthe sample estimate being 1.948 69310−23d. This gives us a
Hilbert-Schmidt probability of separability of the generically
rank-6 states of

P6
fHS,rank-6g =

310 3 74 3 113 3 132 3 172 3 193 233 293 31Î5

237 3 57p15 < 0.0263115, s40d

approximately 18.5 times the predicted Bures probabilitys35d. sAs we have noted, the Bures separability probability
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appears to be thegreatestamong the monotone metrics.d An
upperbound of 0.166 083<s0.95d35 on P6

fHS,rank-6g is given in
Appendix G off12g.

Our simple excellent Hilbert-Schmidt fits here led us to
investigate whether the same could be achieved in the qubit-
qubit sN=4d case, using the sames4003106d-point Tezuka-
Faure sequence employed in Sec. VI C 2. This, in fact,
seemed definitely doable, by taking

o4,0

s2,HSd
= s3357Î3d−1 < 2.737073 10−7 s41d

sthe sample estimate being 2.739 28310−7d and

o4,1

s2,HSd
= s3256d−1 < 7.111113 10−6 s42d

sthe sample estimate being 7.111 09310−6d. The exact
Hilbert-Schmidt probability of separability of the generically
rank-4 qubit-qubit states would then be

P4
fHS,rank-4g =

22 3 3 3 72 3 113 13Î3

53p6 < 0.242379.

s43d

fA lower bound for S4,0
s2,HSd of 256p7/29 805 593 211 675

<2.658 34310−8—that is, the volume of a 15-dimensional
ball of radius1

3—appears obtainable from the results off11g,
although it is not fully clear to this reader whether the argu-
ment there applies to thetwo-qubit casesm=2d, since the
exponentm/2−1 appears.g Of course, one would now like to
try to extend these Hilbert-Schmidt results to casesN.6.
Also, let us propose the formula

o6,2

s2,HSd
=

7 · 11

241511Î5p
< 1.020843 10−19 s44d

fthe sample estimatesSec. VI C 4d being 1.04058310−19g.

VII. DISCUSSION

In the main numerical analysis of this studysSecs. VI A
and VI Bd, we have directly estimated 28 quantities of
interest—seven total volumes of the 35-dimensional space of
qubit-qutrit states, seven 34-dimensional hyperareas of the
boundary of those states, and the same quantities when re-
stricted to the separable qubit-qutrit states. Of these 28 quan-
tities, 4 sthat is, S6,0

s2,Buresd ,S6,1
s2,Buresd ,S6,0

s2,HSd, and S6,1
s2,HSdd were

precisely known from previous analyses of Sommers and
Życzkowski f15,16g. It is interesting to observe that the
Tezuka-Faure quasi–Monte Carlo numerical integration pro-
cedure has, in all four of these cases, as shown in the corre-
sponding table and figuressTable I and Figs. 1, 2, 5, and 6d,
slightly but consistentlyunderestimatedthe known values—
more so, it seems, with the 35-dimensional volumes, as op-
posed to the 34-dimensional hyperareas.sSo, in statistical
terminology, we appear to havebiasedestimators. The very
same form of bias—in terms of the Bures metric—was ob-
served in the precursor analysisf8g to this one, based on an
independent, shorter Tezuka-Faure sequence.Randomizing
deterministic algorithms—such as the Tezuka-Faure—can re-
move such biasf70g.d This suggests that we might possibly

improve the accuracy of the estimates of the 24 unknown
quantities by scaling them in accordance with the magnitude
of known underestimation. Also, we have in our several
tables only reported the results at thes73109 pointd end of
the Tezuka-Faure procedure. We might also report results at
intermediate stages at which the estimates of the 4 known
quantities are closest to their true values, since estimates of
the 24 unknown quantities might arguably also be most ac-
curate at those stages.

Of course, as we have done, taking theratios of estimates
of the volumes and hyperareas of separable states to the es-
timates of the volumes and hyperareas of separable plus non-
separable states, one, in turn, obtains estimates of the prob-
abilities of separabilityf1g for the various monotone metrics
studied.sScaling the estimated volumes and hyperareas by
the corresponding estimates for the Bures metric, as we have
done in certain of the tables above for numerical conve-
nience and possible insightfulness, would be inappropriate in
such a process.d Among the metrics studied, the Hilbert-
Schmidt metric gives thelargest qubit-qutrit probability of
separability s<0.026 828 3d, while the Bures metric—the
minimal monotone one—gives thesconsiderably smallerd
largest separability probabilitys<0.001 399 25d among the
monotone metrics studiedsand presumably among all mono-
tone metricsd. ThesYuen-Laxd maximalmonotone metric ap-
pears to give a null separability probability.

In f6g, we had attempted a somewhat similar quasi–Monte
Carlo qubit-qutrit analysissbut restricted simply to the Bures
metricd to that reported above, but based on many fewer
pointss703106 vs the 73109 so far used hered of a sHaltond
sequence. At this stage, having made use of considerably
increased computer powersand streamlined Mathematica
programming—in particular employing the Compile com-
mand, which enables the program to proceed under the con-
dition that certain variables will enter a calculation only as
machine numbers and not as lists, algebraic objects, or any
other kind of expressiond, we must regard this earlier study
as entirely superseded by the one here.(Our pooled estimate
of the Bures volume of the separable qubit-qutrit systems
here sTable VIId is 1.0142310−19, while in f6g, following
our earlier work forN=4 f13g, we formulated a conjecture
ff6g, Eq. s5dg—in which we can now have but very little
confidence—that would givesconverting from the SD metric
to the Buresd a value of 2−353 s2.190 53310−9d<6.375 28
310−20.) We also anticipate revisiting—as in Sec. VI C 2—
the N=4 squbit-qubitd casef3g with our newly accelerated
programming methods, in a similarly systematic manner.

Perhaps, in the future, subject to research priorities, we
will add to the 73109 points of the Tezuka-Faure sequence
employed above and hope to report considerably more accu-
rate results in the futuresbased on which, possibly, we can
further appraise the hypotheses offered above as to the val-
ues of the various volumes and hyperareasd. Also, we may
seek to estimate the hyperarea of that part of the boundary of
the separable qubit-qutrit states consisting of generically
rank-6 636 density matricesf3,63g, though this involves a
much greater amount of computation per point.fThis would
entail first finding the values, if any, of the undetermined
s35thd parameter that would set the determinants of the two
forms of partial transpose equal to zero and then—using
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these values—ascertaining whether or not all the six eigen-
values of the resultant partial transposes were non-negative.g

In this study, we have utilized additional computer power
recently available to us, together with an advanced quasi–
Monte Carlo proceduresscrambled Faure-Tezuka sequences
f45,46g—the use of which was recommended to us by G.
Ökten, who provided a corresponding Mathematica coded.
Faure and Tezuka were guided “by the constructionCsid

=AsidPsi−1d and by some possible extensions of the generator
formal series in the frame-work of Neiderreiter.”fAsid is an
arbitrary nonsingular lower triangularsNLTd matrix, P is the
Pascal matrixf71g, and Csid is a generator matrix of a se-
quenceX.g Their idea was to multiply from the right by
nonsingular upper triangularsNUTd random matrices and get
the new generator matricesCsid=Psi−1dUsid for s0, s sequences
f45,46g. “Faure-Tezuka scrambling scrambles the digits ofi
before multiplying by the generator matrices… The effect of
the Faure-Tezuka-scrambling can be thought of as reordering
the original sequence, rather than permuting its digits like the
Owen scrambling … Scrambled sequences often have
smaller discrepancies than their nonscrambled counterparts.
Moreover, random scramblings facilitate error estimation”
sf70g, p. 107d.

It would be interesting to conduct analogous investiga-
tions to those reported heresN=6d and in f3g for the case
N=4, using quasirandom sequencesother than Tezuka-Faure
onesf45,46g, particularly those for which it is possible to do
statistical testing on the resultsssuch as constructing confi-
dence intervalsd f70g. It is, of course, possible to conduct
statistical testing using simple Monte Carlo methods, but
their convergence is much weaker than that of the quasi–
Monte Carlo procedures. Since we have been dealing with
extraordinarily high-dimensional spaces, good convergence

has been a dominant consideration in the selection of nu-
merical integration methodologies to employ.

“It is easier to estimate the error of Monte Carlo methods
because one can perform a number of replications and com-
pute the variance. Clever randomizations of quasi-Monte
Carlo methods combine higher accuracy with practical error
estimates”sf70g, p. 95d. G. Ökten is presently developing a
new Mathematica version of scrambled Faure-Tezuka se-
quences in which there will be a random generating matrix
for each dimension—rather than one for all the dimensions
together—which will then be susceptible tostatisticaltesting
f70g.

At the strong urging of K. Zyczkowski, we disaggregated
the pooled result in the last column of Table IX into the part
based on partial transposition of four three-by-three blocks
and obtainedh1.966, 2.53505, 2.04826, 1.94679, 1.96481,
9.320893 10−7, 1.99954j and into the part based on nine
two-by-two blocks and obtainedh1.91846, 1.91976, 2.04,
1.94539, 1.92476, 0.0001227, 2.05803j. We bring the atten-
tion of the reader to the particular closeness to 2 of the first
sHilbert-Schmidtd ratio.
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