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Paralleling our recent computationally intensigeiasi-Monte Carlpwork for the caséN=4 (e-print quant-
ph/0308037, we undertake the task fdd=6 of computing to high numerical accuracy, the formulas of
Sommers and Zyczkowski (e-print quant-ph/0304041 for the (N?-1)-dimensional volume and
(N?-2)-dimensional hyperarea of tiiseparable and nonseparahiex N density matrices, based on the Bures
(minimal monotongmetric—and also their analogous formulasprint quant-ph/0302197or the (nonmono-
tone flat Hilbert-Schmidt metric. With the same sever? W@l-distributed(“low-discrepancy} sample points,
we estimate theinknownvolumes and hyperareas based on five additigmadnotong metrics of interest,
including the Kubo-Mori and Wigner-Yanase. Further, we estimate all of these seven volume and seven
hyperarea(unknowr quantities when restricted to theeparabledensity matrices. The ratios of separable
volumes(hyperareasto separabl@lus nonseparable volumedbyperareasyield estimates of theeparability
probabilities of generically rank-Grank-5 density matrices. Thé&ank-6 separability probabilities obtained
based on the 35-dimensional volumes appear to ibdependentlyof the metric(each of the seven inducing
Haar measuneemployed—twice as large as thosgank-5 onesbased on the 34-dimensional hyperar¢as
additional estimate—33.9982—of the ratio of the rank-6 Hilbert-Schmidt separability probability to the rank-4
one is quite clearly close to integral tod@he doubling relationship also appears to hold forlkhe4 case for
the Hilbert-Schmidt metric, but not the others. We fit simplactformulas to our estimates of the Hilbert-
Schmidtseparablevolumes and hyperareas in both the4 andN=6 cases.

DOI: 10.1103/PhysRevA.71.052319 PACS nuntber03.67—a, 03.65.Ud, 02.60.Jh, 02.40.Ky

I. INTRODUCTION In a recent highly comprehensive analysis] (cf. [17]),

In part | of their papef1,2], Zyczkowskiet al. considered Sommers andyczkowski obtained “a fairly general expres-
the “question of how many entangled or, respectively, Sepasion for the Bures volume of the submanifold of the states of
rable states are there in the set of all quantum states.” The@hk N—n of the set of complex=2) or real (3=1) N
cited philosophical, practical, and physical reasons for doing< N density matrices
so. They gave a qualitative argumetitl], Sec. Ill B—

contrary to their initial supposition—that the measure of 5<N,8,Bure9_2— " A+ Di2
separable states could not be strictly zero. There has since n 7 T((d,+ 1)/2)

been considerable wofl8—14], using various forms of mea- N ) )

sures, to determine or estimate the “volume of separable " T(BIAT[L+(2n+]-1)p2] 0
states,” as well as the volume of separadntel nonseparable = T[(n+ BRI +(n+j - 1)B12]’

states[15,16], and hence probabilities of separability. One
somewhat surprising development has been(ghimcipally ~ where d,=(N-n)[1+(N+n-1)8/2]-1 represents the di-
numerical indication—two independent estimates beingmensionality of the manifold.. for n=0 the last factor sim-
0.137 884[3] and 0.138 119Sec. VIC 2 below that the  ply equals unity andl) gives the Bures volume of the entire
volume of separable states itself can take on a notably ekpace of density matrices, equal to that alyadimensional
egant form, in particulary2-1)/3~0.138 071, for the case hyperhemisphere with radius 1/2. In the casel we obtain
of qubit-qubit pairs endowed with theatistical distinguish-  the volume of the surface of this set, while foeN-1 we
ability metric (4 times the Bures metric (However, there get the volume of the set of pure states which for 8
seems to be a paucity of ideas on howfdamally prove or  =1(2) gives correctly the volume of the realomplex pro-
disprove such a conjectuyeThe research reported below jective space of dimensioé—1" [15]. The Bures metric on
was undertaken initially with the specific purpose of findingvarious spaces of density matriogs has been widely stud-
whether a putative comparably elegant formula for the volied [18—21. In a broader context, it serves as tmnimal
ume of separable qubit-qutrit pairs might exist. We will re- monotone metri¢22].
port below(Sec. VI D the obtaining of certain possible for- In part Il of [1,2], Zyczkowski put forth a certain propo-
mulas that fit our numerical results well, but none of suchsition. It was that “the link between the purity of the mixed
striking simplicity (nor none that extends it, in any natural states and the probability of entanglement is not sensitive to
apparent fashign But we also obtain some new type resultsthe measurgon the space ol x N density matricekused.”
of substantial independent interest. His assertion was based on comparisons between a unitary
product measure and an orthogonal product measure for the
(qubit-qubiy caseN=4 [[2], Fig. 2Ab)]. The participation
*Electronic address: slater@kitp.ucsb.edu ratio—1/Tr(p?)—was used as the measure of purity.
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FIG. 3. A pair of cumulative estimates of the 35-dimensional
FIG. 1. Ratios of the cumulative estimates of the 35-Bures volume ofeparablequbit-qutrit states based on theo dis-

dimensional vquméS‘Gz(’)B”res> to its knownvalue (8). For each ad-  tnct forms of partial transposition.

dtional point shown—as in all the subsequent plots—<1@F° (107) _
values of the particula7 x 10°)-point Tezuka-Faure sequence have tients then reveals th&™e'"c Eq.(2), is also interpretable as
been generated. the ratio

P[metriqrank—N]

Il. SEPARABILITY-PROBABILITY RATIOS (Qmetric — L (5)
Pkmetnc,rank—(N—l)]

In this study, we present(Sec. VIQ numerical
evidence—limited largely to the specifiqubit-qutri) case ©Of the separability probabilityof the totality of (generically
N=6—for a somewhat related propositiémhich appears to rankN) states inCy,
be possibly topological in nature3]). It is that a certain (2, metrio)

“ratio of ratios” 4 N,O
. Pg\lmetrlc‘rank N] — S\lz,(r)netric) ’ (6)
()metric — _seprnonsep (2) - . '
rr;eptrlc to the separability probability
is equal to 2jndependentlyf the measure used—where the ' ﬁ’lmet”c)
possible measureéincluding the just-discussed Bujeare pireviarank N0l = (7)
comprised ofvolume elementsall incorporating theHaar S#\L’l

measure as a facoof certain metrics defined on theN  of the [generically rankN-1)] states that lie on the bound-

X N density matrices. Here by ary of Cy.
S\IZ,{netric)
metric — N1
Rsepf-nonsep= s\lz,metric) (3)
,0 IIl. METRICS OF INTEREST

is indicated the ratio of the hyperarea of the |Letus apply theZyczkowski-Sommers Bures formu(4)
(N?-2)-dimensional boundary of théN?-1)-dimensional to the two cases that will be of specific interest in this study,
convex set(Cy) of NX N density matrices to the total vol- N=6, n=0, 8=2 andN=6, n=1, B=2—that is, the Bures
ume of Cy. Further, 35-dimensional volume and 34-dimensional hyperarea of the
complex6 X 6 density matricesIt would, of course, also be

_ (Nz'f]emc) of interest to study theeal casep=1, though we have not
e = S amera (4)  undertaken any work in that directioniVe then have that
N,0
§62,Bures) — 7718
is the same type of hyperarea-volume ratio, but now re- .0 12221326970165372387328000
stricted to thegclassical and nonquantyraubset ofCy com- _ 17
posed of theseparablestated24] (which we designate using = 7.27075< 10 (8)
>, rather thanS). A simple algebraic rearrangement of quo- and
ratio gB?iBures - !

. " 138339065763438059520000
100200 300400500600 70010 PEts:

I
999 ~ 2.04457x 10715, (9)
.998
997 Here, we are ablésomewhat paralleling our recent work for
1996 the qubit-qubit cas&l=4[3], but in a rather more systematic
.995 mannerab initio than therg through advanced numerical
994 (quasi—Monte Carlo and quasirandommethods, to repro-

duce both of these valud8) and(9), to a considerable ac-
FIG. 2. Ratios of the cumulative estimates of the 34-curacy. At the same time, we compute numerical values—it
dimensional hyperare&’;"" to its known valug(9). would seem reasonable to presume, at least initially, with

(=l e NN
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ratio IV. TWO FORMS OF PARTIAL TRANSPOSITION
0.975 We will employ the convenient Peres-Horodecki neces-
0.95

sary and sufficient positive partial transposition criterion for
separability[39,40—asserting that a 2 4 or 6X 6 density
matrix is separable if and only if all the eigenvalues of its

7
00 200 300400500600 7000 PtS:

0.875 ; . i .
0.85 partial transpose are non-negativie. the 4x 4 [qubit-qubit
0.825 case, it simply suffices to test the determinant of the partial

transpose for nonnegativifyt1,42.) But in the 6X6 case,
FIG. 4. Ratios of the cumulative estimates of the 35-We have the qualitative difference that partial transposes can
dimensional volume SZ™ to its conjectured value of be determined irat leas} two inequivalent ways, either by
32 76825, ' transposing in place, in the natural blockwise manner, the
’ nine 2X 2 submatrices or théour 3 X 3 submatriceg[40]

roughly the same level of accuracy—of these two quantitiesEq' (20)]. (Obviously, such a nonuniqueness arises in a bi-
but for the replacement of the Bures metric by five otherpartite system only if the dimensions of the two parts are

“unequall. We will throughout this study—as if6]—at the

monotone metrics of interest. These are the Kubo-Mori . .
. . . expense of added computation, analyze results usuoth
[25-28, (arithmetig average[3], Wigner-Yanasd29-32, forms of partial transpose.

[GELE;SSgh‘fjrgteeonr;heilr?(;-:\llagéggao[ns(?t]on(grmgtlri:ifrhr:stwo It is our anticipation—although yet without a formal
“ave}ages” being formed from the minimgBure§ and demonstration—that in the limit of large sample size, the two
maximal (Yuen-Lax [35]) monotone metrics, following the sets of(separable volume and separable hypeparesailts of
suggested procedure [86] [Eq. (20)]. No pro'ven formulas interest here should_converge_ to trumlmonvalues_. Now,
such as Eq(1), are presently évailable for these other véri-the author must z.idmlt.that he initially thought that |t_made no
' difference at all in which of the two ways the partial trans-

ous quantities, alt_hough our research[8] h_ad sug_geste_d pose was taken; that is, ax8 density matrix would either
that the Kubo-Mori volume of thé&l X N density matrices is pass or failboth tests. Also, this seems to be a common

expressible as attitude in the quantum information communitgs judged
by a number of personal reactiorisf. [1], footnote 2.

Suz,’gM): ZN(N_D/ZS\E&?W&'Q, (10) Therefore, we present below a specific example of>a66
density matrix(p;) that remains a density matrix if its four
which for our case oN=6 would give 3% 3 blocks are transposed, but not its nin& 2 blocks,
since the latter result has anegative eigenvalue
%2’(,)KM) - 32765%2’83”63. (11 (-0.001 298 3B
In light of the considerable attention recently devoted to 2 0 0 0 o 0
the (Riemannian, buthonmonotone37]) Hilbert-Schmidt 9
metric[16,17,3§, including the availability of exact volume 1 1
and hypersurface formul446], we include it in supplemen- 0 - 0 0 0 —-——+—
tary analyses too. Further, we estimate for all these seven 7 24 38
(six monotone and one nonmonotdmeetrics thelunknown 1 =1 1 I
35-dimensional volumes and 34-dimensional hyperareas re- | © 0 5 23 41 10 21
stricted to theseparable2X 3 and 3x 2 systems. Then, we
can, obviously, by taking ratios of separable quantities to 0 0 ! 1 0 L
their separabl@lus nonseparable counterparts, obtain “prob- 23 7 13
abilities of separability"—a topic which was first investi- I 1
gated in[1] and studied further, using the Bures metric, in 0 0 n 0 & 0
[3-6].
1 I 1 I 79
0 - ——— -——+— — 0 —
ratio 24 38 10 21 13 630
1.005 (12
107 pts.

1Q0 200 300400500 600 700 Zyczkowski has pointed out that the question of whether a
given statep is entangled or not depends crucially upon the
decomposition of the composite Hilbert spadg® Hg (cf.
[43,44). For instance, for the simplest®2 case, the maxi-
mally entangled Bell state becomes “separable,” he points
out, if one considers entanglement with respect to another
FIG. 5. Ratios of the cumulative estimates of the 35-division of the space—e.gA'={®,,d_}, B'={¥,,¥_}. So
dimensional Hilbert-Schmidi(Euclidean volume §4' to its it should not be surprising, at least in retrospect, that some
knownvalue (23). states are separable with respect to one form of partial trans-
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position and not the other. In the course of examining this TABLE Il. Scaled estimates based on the Tezuka-Faure se-
issue, we found that if one starts with an arbitrarx 6 quence of X 10° points of the 35-dimensional volumes and 34-
matrix (M) and alternates the two forms of partial transpos-dimensional hyperareas of the<@® density matrices, using several
tion on it, after 12(=2x 6) iterations of this process, one Menotone metrics. The scaling factors are #wimatedvalues
arrives back at theoriginal 6X 6 matrix. So, in group- (Ste ®=7.2482¢107 and Ser*9=2.04257 10719 of the
theoretic terms, if we denote the three-by-three operation byolume and hyperarea for the Bures metric.

az; and the two-by-two operation bg,, we have idempo- — — ~ —
tency,a?=a2=| and (a,a3)®=(a;a,)®=1. Further, one can go  Metric Sy gzpre Srere gz e
from the partial transposes(M) to the partial transpose

a,(M) via the matrix corresponding to the permutation KM 32520.3 45.5022
{1,4,2,5,3,6 Arith 623.648 31.3216
Further, we constructed the related density mapiy WY 132121 9.77791
GKS 12.4387 3.56278
2 Geom 2.8088% 10* 1.44152< 1014
- 0 0 0 0 0
9
0 } 0 0 i -1 V. RESEARCH DESIGN
! 23 41 Our main analysis will take the form of a quasi—-Monte
0 0 1 0 1 s 0 Carlo (Tezuka-Faur¢45,46]) numerical integration over the
24 38 35-dimensional hypercubg0,1]*® and a 34-dimensional
1 1 1 - : subhypercube of it. In doing so, we implement a parametri-
0 O 0 = -—— - — zation of the 6x6 density matrices in terms of 30 Euler
7 10 21 13 angles(parametrizing &< 6 unitary matricesandfive hyper-
-1 1 1 1 spherical angles(parametrizing the six eigenvalues—
0 23 "24 38 10 21 6 0 constrained to sum to) 147,48. We hold a single one of the
five hyperspherical angles fixed in the 34-dimensional analy-
0 L 0 i 0 9 sis, so that one of the six eigenvalues is always zero—and

41 13 630 the density matrix is generically of rank 5. The parameters
(13)  are linearly transformed so that they each lie in the unit in-
terval[0,1] and, thus, collectively in the unit hypercube. The

Now, if p, is partially transposed using its nine<2 blocks, ~ computations consumed approximately 5 months using six
it gives the identical matrix as when is partially transposed PowerMacs in parallel, each generating a different segment
using four 3x 3 blocks. But the six eigenvalues pj—that ~ ©Of the Tezuka-Faure sequence.

is, {0.322 635, 0.222 222, 0.1721, 0.149 677, 0.119 158, _

0.014 207 6}—are not the same as the six eigenvalues of A. Silver mean (v2-1) conjectures for N=4

pz—that is, {0.300 489, 0.222222, 0.204 982, 0.168 304, \\e have previously pursued a similar numerical analysis
0.099 _276 3, (_).004 726 44So there can _be no unitary trans- j, investigating the separable and nonseparable volumes and
formation takingp; to p,. [The possibility thatp; and p,
might have the same total meadgeattached to them can-

not formally be ruled out, however. TABLE lll. Scaled estimates based on the Tezuka-Faure se-

quence of X 10° points of the 35-dimensional volumes and 34-

‘ dimensional hyperareas of treeparable6Xx 6 density matrices,
TABLE I. Scaled estimates based on the Tezuka-Faure sequengging several monotone metrics. The scaling factors are the

of 7x10° points of the 35-dimensional volumes and 34- __. S (2,Burey _ 3 (2.Bures _

Porx1om p : _ : estimatedvalues (S5 "*9=1.0739< 1019 and 3 "*9=1.53932
dimensional hyperareas of the<€6 density matrices, using several 10718 —the true values being unknown—of the separable volume
monotone metrics. The scaling factors are kheyvnvalues of the and hyperarea for the Bures metric. To implement the Peres-
volume and hyperarea for the Burei metric, given by ®%.and  y50decki positive partial transposition criterion, we compute the
more specifically for the cas@é=6,n=0, 1, andB=2 by Eqs.(8)  artia transposes of the four®@3 submatricegblocks of the den-

and(9). sity matrix.

Metric S gz e gz pures Bures-scaled separable
Bures 0.996899 0.999022 Metric  Bures-scaled separable volume (rank-5 hyperarea
KM 32419.4 45.4577 KM 8694.79 9.43481
Arith 621.714 31.291 Arith 220.75 10.6415
WY 131.711 9.76835 WY 55.3839 4.13924
GKS 12.4001 3.55929 GKS 7.97798 2.28649

Geom 2.8001k 10% 1.44011x 10 Geom 3.3387x10* 3.61411x 108
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TABLE IV. Scaled estimates based on the Tezuka-Faure se- TABLE VI. Scaled estimates based on the Tezuka-Faure se-
quence of X 10° points of the 35-dimensional volumes and 34- quence of & 10° points of the 35-dimensional volumes and 34-
dimensional hyperareas of tteeparable6x 6 density matrices, dimensional hyperareas of teeparablet X 6 density matrices, us-
using several monotone metrics. The scaling factors are théng several monotone metrics. The scaling factors arestienated
estimated values (SZ8U*9=954508<102° and ISP  values(3.06807< 10! and 3.7899K 10"*)—the true values be-
=1.40208« 10" 18 —the frue values being unknown—of the sepa- ing unknown—for the Bures metric. A density matrix is included
rable volume and hyperarea for the Bures metric. To implement th&ereonly if it passesbothforms of the positive partial transposition
Peres-Horodecki positive partial transposition criterion, we com-est.
pute the partial transposes of thime 2 X 2 submatricegblocks of
the density matrix. Bures-scaled separable
Metric  Bures-scaled separable volume (rank-5 hyperarea

Bures-scaled separable

Metric  Bures-scaled separable volume (rank-5 hyperarea KM 1800.19 3.99932
Arith 92.7744 5.3548
KM 6465.86 9.0409 WY 26.4785 2.55592
Arith 218.602 10.3248 GKS 5.56969 1.77049
Wy 55.5199 4.05201  Geom 3.9677% 1077 1.09937 10
GKS 7.92729 2.26136
Geom 5.429% 10°° 4.35667x 10°

Unfortunately, there appears to be little in the way of in-
dications in the literature, as to how one migbrmally
hyperareas of the % 4 density matrice§3]. Highly accurate  prove or disprove these conjectures—“brute forsgtbolic
results(as gauged in terms &hownBures quantitie§l5])—  integration seeming to be well beyond present technical and
based on two 10 points of a Tezuka-Faure(“low-  conceptual capabilitietcf. [47], Sec. M. [Certainly, Som-
discrepancy) sequence lying in the 15-dimensional mers andZyczkowski[15] did not directly employ symbolic
hypercube—led us to advance several strikingly simple conintegration methodologies in deriving the Bures volume, hy-
jectures. For example, it was indicated that the Kubo-Moriperarea, etc., foN-level (separableand non-separablesys-
volume of separable and nonseparable states was exactyms, but rather, principally, used concepts of random matrix
64=2 times the known Bures volumgThe exponent 6 is theory] One approach we have considered in this reg@td
expressible—in terms of our general conjectir®), relating  is to parametrize the 15-dimensional convex set of bipartite
the Bures and Kubo-Mori volumes—&4N-1)/2, with N qubit states in terms of the weights used in the expansion of
=4.] Most prominently, though, it was conjectured that thethe state in some basis of 16 extreme separabld #lensity
statistical distinguishabilitySD) volume of separable states matrices(cf. [55]). For a certain basis composed of $4
is oag/3 and 1@,g in terms of (4 timeg the Kubo-Mori  generator$56-58, the associated 2615 Bures metric ten-
metric. Here,oag=12-1~0.414 214 is the "silver mean” sor[20] is diagonalin form (having all entries equpht the
[49-57 (cf. [53]). The SD metric is identically 4 times the fully mixed state([7], Sec. I)F). (Also, we have speculated
Bures metric[54]. [Consequently, the SD 15-dimensional that perhaps there is some way of “bypassing” the formi-
volume of the 4x4 complex density matrices is'2times  dable computation of the Bures metric tensor and yet being
that of the Bures volume—given by formu(@) for N=4, able to arrive at the required volume elemgrRerhaps,
n=0, B=2—thus equaling the volume of a 15-dimensionalthough, at least in the Bures anginimal monotone case, a
hyperhemisphere with radius 1, rather t@aas in the Bures proof might be based on the concept of “minimal volume”
case itself15].] [59-61.

TABLE V. Scaled estimates based on the Tezuka-Faure se-
quence of X 10° points of the 35-dimensional volumes and 34- . . . . .
dimensional hyperareas of tseparable5x 6 density matrices, us- 1€ monotone metricéof which we study five, in addi-
ing several monotone metrics. The scaling factors aregtienated ~ tion to the Burepcan all be expressed in the general form
values(1.99772x 10719 and 2.90956 10718—the true values be-
ing unknown—for the Bures metric. A density matrix is included ratio
here if it passesgitherform of the positive partial transposition test.

B. Formulas for monotone metrics

| 7
100 200 300 400 500 600 70010 Pts.

Bures-scaled separable 0.998
Metric  Bures-scaled separable volume  (rank-5 hyperarea 0.996
KM 7735.7 9.30446 0.994
Arith 221.689 10.5467 0.992
wy 55.8928 4.11453
GKS 7.99075 2.28089 FIG. 6. Ratios of the cumulative estimates of the 34-
Geom 2 59618 10%° 2.29051x 10°  dimensional Hilbert-Schmidt hyperar%%iHs) to its knownvalue

(24).
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TABLE VII. Scaled estimates obtained by pooling the results

4
from Tables Ill and IV—based on the two forms of partial Cwhawhp) = ————3, (18
transposition—for the separable volumes and hyperareas. The (\’)\a+V)‘ﬁ)
Bures scaling factorgpooled volume and hyperareareSCP"™  (5) the GKS-quasi-Bures metric(which yields the
=1.0142<10°%° andzgf“fes =1.4707x 10°%8, asymptotic redundancy for universal quantum data compres-
sion[33])
_ Bures-scaled separable N \Aegrg)
Metric  Bures-scaled separable volume (rank-5 hyperarea Za
A
_ g
KM 7645.92 9.24704 CoksNashp) = X e, (19
Arith 219.739 10.4905 A
WY 55.4479 4.09766 and (6) the (geometri¢ average metriqapparently previ-
GKS 7.95413 227537 Ously unanalyzed
Geom 2.5569% 10%° 2.26584% 10° 1
Cgeonf Naw N g) = T——=. (20
\")\a)\ﬁ

[The results obtained below for the geometric average mono-
tone metric seem, in retrospect, to be of little interest, other
than indicating that—like the maximal monotof¥ien-Lax)

(cf. [18,19). HereX,X’ lie in the tangent space of all Her- metric itself[3}—volumes and hyperareas appear to be sim-
mitian N X N density matricep and|a), =1, 2, ... are the  ply infinite in magnitude}

eigenvectors op with eigenvalues. ,. NOW, CyonotonéNas N g)
represents the specifidorozova-Chentsofunction for the

1
gp(X',X) = Z Eﬁ|<a|x|,3>|zcmonotoné)\w)\B) (14)

Spe _ ! ( VI. ANALYSES
monotone metric in questiofB86]. This function takes the
form for (1) the Bures metric A. Volumes and hyperareas based on certain monotone
metrics
Coured NN g) = 2 ' (15) Using_ the first 7x 10° points of a 'I_'ezuka-Faure sequence,
R WS W we obtained the results reported in Tables I-IX and Figs.

. _ _ 1-12. We followed the Bures formulas 5] (Secs. Il C
(2) the Kubo-Mori(KM) metric (which, up to a scale factor, and Il D), substituting for Eq(15) the Morozova-Chentsov

is the unique monotone Riemannian metric with respect tdunctions given above, Eq$16)—20), to obtain the non-
which theexponentiaandmixtureconnections are du@®8])  Bures counterparts.

In Fig. 1 we show the ratios of the cumulative estimates

et Ak g) = log A, —loghg (16  Oof the 35-dimensional volum&Zs™" to its known value
KMo T Ne=Ng (8). Each successive point is based ornxim® (10°) more

systematically sampled values in the 35-dimensional hyper-
cube than the previous point in the computational sequence.
In Fig. 2 we show the ratios of the cumulative estimates of

(3) the (arithmetig average metricfirst discussed in3])

G Aok g) = AN+ Np) (17)  the 34-dimensional hyperarﬁ2 Bured 1o jts known value
A\ e BT N2 4 B A+ N5 (9). Each successive point is based onxI® more

sampled values in the 34-dimensional hypercube than the
(4) the Wigner-Yanase metrigvhich corresponds to a space previous point in the computational sequence. The single

of constant curvatur¢29]) Tezuka-Faure sequence we employ for all our purposes,

TABLE VIIl. Sample estimates of the ratidRey 1o . %2 me”'c)/%z metio) of the 34-dimensional hyper-
area to the 35-dimensional volume for the seven metrics under study and the corresponding ratios for a
35-dimensionaEuclideanball having(1) the same volume as for the metric af&l the same hyperarea.

Metric Known ratio Sample ratioRIy <. Isovolumetric ratio Isohyperarea ratio
Bures 28.1205 28.1804 2.34553 2.40508
KM — 0.0394299 1245.79 1536.34
Arith — 1.41531 38.858 43.2743
wy — 2.08556 27.5655 30.39
GKS — 8.07163 7.61987 8.08886

Geom — 1.4462% 10°%° 2.45463< 107 1.79638x 10°°
HS 191.703 192.468 0.543466 0.533806

052319-6



QUBIT-QUTRIT SEPARABILITY-PROBABILITY RATIOS PHYSICAL REVIEW A 71, 052319(2005

TABLE IX. Sample estimates of the rati((R;“eer}”“) of the 34-dimensional hyperarea consisting only of
rank-5 6x 6 separabledensity matrices to the 35-dimensional separable volume for the seven metrics under
study. In the last column there are given the ratios of ratfd%°"9 of the middle(third) column of Table

VIl to these values.

Metric n;eptric QmetricE R?ee‘)t::]conse Rrsneeptric= P%metriqB]/ P%metriqs]
Bures 14.501 1.94334
KM 0.0175377 2.24829
Arith 0.692291 2.04439
WY 1.07164 1.94613
GKS 4.14819 1.94582
Geom 1.2850x 1072 0.000112547

HS 94.9063 2.0279

however, is specifically designed as 2b6-dimensional 7/2=3.5 and for thesecond column that we have 132=12
one—of which we take an essentially arbitrary 34-X11 and 12, as actual values.
dimensionalprojection This is arguably a suboptimal strat-  In Tables Ill and IV, we report our estimatéscaled by
egy for generating well-distributed points in the 34- the values obtained for the Bures mekrd the volumes and
dimensional hypercubgf. [62], Sec. VI, but it is certainly  hyperareas of the 86 separable complex density matrices.
highly computationally convenient for usince we avoid Let us note, however, that to compute the hyperarea of the
having to generate a totally new 34-dimensional sequence-eompleteboundary of the separable states, one must also
which would, we believe, increase our computation timeinclude those & 6 density matrices ofull rank, the partial
roughly 509 and seems to perform rather wdlin fact, as  transposes of which have a zero eigenvalue, with all other
discussed below, theias of our estimates seems to be— eigenvalues being nonnegati\@s]. (We do not compute this
contrary to expectations—markedly less for the knownadditional contribution here—as we undertook to do in our
(Bures and Hilbert-SchmigB4-dimensional hyperareas than lower-dimensional analysi8]—as it would slow quite con-
for the 35-dimensional volumés. siderably the overall process in which we are engaged, since
We also present a joint plaFig. 3) of the two sets of high-degree polynomials would need to be solved at each
cumulative estimates of the Bures volume séparable iteration)
qubit-qutrit states based dsoth forms of partial transposi- In [3], we had been led to conjecture that that part of the
tion. The estimates obtained using the four blocks af38  14-dimensional boundary of separabl& 4 density matrices
submatrices, in general, dominate those using nine blocks aonsisting generically of rank-4 density matrices had SD hy-
2X 2 submatrices. perarea 56,4/39 and that part composed of rank-3 density
In Table I, we scale the estimat@shich we denote using matrices, 43,4/39, for a total 14-dimensional boundary SD
S of the volumes and hyperareas by theownvalues(8) ~ Nyperarea of 98,,/39. We then sought to apply the “Levy-
and (9) of gﬁszures and S2BUe9 \while in Table Il we scale Gromov isoperimetric |n§quallty’[64] to the relation be-
these estimates by thestimatedzalues(7.229 04< 10717 and tween the known and estimated SD volumes and hyperareas
2.039 91x 10°19) of these two quantitiesWe useboth ap- of the separable and separable plus nonseparable §tates
proaches because we are uncertain as to which may be morEC: V”_C)_- o
revealing as to possible exact formulas—an approach sug- Restricting ourselves now to considering only the sepa-
gested by our work if3].) The results for the geometric rable density matrices, for T_able 1l we computed the' par_tlal
average monotone metric in Table | appear to be divergenfransposes of the $6 density matrices by transposing in
We might speculate that the middle four scaled hyperareas jRlace thefour 3 3 submatrices, while in Table IV we trans-

the last column of Table | correspond to the actual value®0S€d in place the ninex22 submatrices. o _
7x13/2=455, 3x52/3~31.333, 3<13/4=9.75, and In Table V, we only require the density matrix in question

Reep™ -1
sep.vol. 0.3F
2.2-107%8 0.2 ”
2.1-107%° o1} 147,
107 pts. R XY . 7
-25 0700 £100 200 30 0 600 70010 Pts
1.9-10 L]
s -0.1
1.8-10 ¢
-0.2}
FIG. 7. Cumulative estimates of the 35-dimensional Hilbert-
Schmidt volume ofseparablequbit-qutrit stategfor the two pos- FIG. 8. Deviations of the cumulative estimates Ry from

sible forms of partial transposition 1.
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FIG. 9. Deviations from the conjectured value of 2 of the cu-  FIG. 11. Deviations from the conjectured value of 2 of the cu-
mulative estimates dRgkg the ratio of hyperarea-to-volume ratios mulative estimates oRyg, the ratio of hyperarea-to-volume ratios
for the Grosse-Krattenthaler-SlatgBKS or “quasi-Buresf mono-  for the Hilbert-Schmidt metric. This plot is particularly flat in
tone metric. character.

to passeither of the two tests, while in Table VI, we require there. This was done to avoid(somewhat inadvertenpro-

it to passbothtests for separabilitfOf the 7x 10° points of ~ gramming limitation(which seemed of minor importance at
the Tezuka-Faure 35-dimensional sequence so far generatéle time—a consequence essentially only of our, in time,
approximately 2.91% yielded density matrices passing théaving understood how to greatly speed up the
test for Table |, 2.84% for Table I, 4% for Table Ill, and computations—of not being able to sampigore than 2
1.75% for Table 1V.Zyczkowski commented that “it is not X 10° Tezuka-Faure points. This fresh beginniitgcorporat-
reasonable to ask about the probability thath partial trans-  ing a much larger limitation, of which we here take advan-
positions are simultaneously positive, since one should natge allowed us then, as well, to additionally fully include
mix two different physical problems together”. the Hilbert-Schmidt(HS) metric. [It is somewhat unfortu-

In Table VII, we “pool” (average the results for the sepa- nate, however, at this point, that we had not conducted analy-
rable volumes and hyperareas reported in Tables Il and IVses based on the HS metric for the=4 qubit-qubit case,
based on the two distinct forms of partial transposition, tohaving restricted our earlier attention to monotone metrics
obtain possibly superior estimates of these quantities, whicbnly [3] (cf. Sec. VI C 2.]

presumably are actually one and the sanuzpendentf the Prior to Sommers andyczkowski reporting their exact

particular form of partial transposition. formula (1) for the Bures volume of the submanifold of the
In Fig. 4 we show the ratios & ™ to its conjectured ~States of rankN-n of the set of complex3=2) or real (8

value (11) of 32 7655((32&)Bure9_ ’ =1) NXN density matrices, they had obtained fully analo-

gous formulas for the Hilbert-Schmidt metric, which for the

B. Volumes and hyperareas based on the Hilbert-Schmidt specific volume(n=0) case give¢16], Eq. (4.5]

metric
I'(1)---T'(N)

I'(N?) 21

Along with the computations based on six distinct mono- S = N(2m)NN-D72
tone metrics, reported above in Sec. VI A, we have at the
same time carried out fully parallel analyses of ifiie-
mannian, but nonmonotoheHilbert-Schmidt metric[37].  and the hyperarea=1) case[16], Eq. (5.2)] gives
These have only been conductedter an earlier less-
extensive form of this analysi8], reporting initial numeri- JE— D - T(N+1
cal estimates for the same six monotone metrics based on §H9 =N~ 1(2W)N(N_1)/ZW- (22)
600x 10° points of a Tezuka-Faure sequence, was posted. At
that stage of our research, we had—with certainly some For the(qubit-qutriy caseN=6 under study in this paper,
regrets—decided tdully redo the computations reported these give us, for the 35-dimensional HS volume,

ometric_o ometric_o

0.8 0.8 -
0. 0.
0. 0.
0. 0.
P

7 7
J’Wwo 500 0070010 Pts- 0 100 204 300 490 500 600 70010 PES:
-0.

-0.
-0.

N IS O
DN IS oY

-0.
-0.
-0.
-0.

0 o Wb N
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FIG. 10. Deviations from the conjectured value of 2 of the cu-  FIG. 12. Deviations from the conjectured value of 2 of the cu-
mulative estimates dRges the ratio of hyperarea-to-volume ratios mulative estimates oRyy, the ratio of hyperarea-to-volume ratios
for the Bures monotone metric. for the KM (Kubo-Mori) monotone metric.
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2HS) — i _
o 1520749664069126407256340000060

~ 7.69334x 107 (23
and for the 34-dimensional HS hyperarea
15
g4 = T — ~ 1.47483
' 8689998080395008041464800QG0
X 1072, (24)
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5(62 Bures 234

= ’l =
YBuresé = S%%bsures 3 X 5% 11X 19X 23X 29X 317
17179869184
=——————=28.1205 (27)
194467185
and in the Hilbert-Schmidt cadequivalently Hfmnonse ,
2,HS
Yuse= @ = 35/30~ 191.703. (29)

(The Bures ratio grows proportionally with the dimensional-
ity (D=N?-1) of the NX N density matrices ab (for large
N) ([15], Sec. IV Q and asD%? for the Hilbert-Schmidt ratio

So, as above, using the Bures metric, We'can_further'gau.q?lﬁ], Sec. V).) Our sample estimates for these two quanti-
the accuracy of the Tezuka-Faure numerical integration iRjes are 28.1804 and 192.468, respectively. In Table VIII, we
terms of thes&nownvolumes and hyperarealthis some-  report these estimates, as well as the sample estimates for the
what alleviates the shortcoming of the Tezuka-Faure procesiher five metrics under study here. We also list the two
dure in not lending itself to statistical testing in any straight-xnown values and also give the corresponding ratios of hy-
forward manney. N o perarea to volume for a 35-dimensioriclideanball hav-

The e_stlmated probability of separabllltyggeaterfor the ing (1) the same volume as for the metric in question &d
HS metric than for any monotone on@he minimal mono-  the same hyperare@nly for the (flat) HS metric are these

tone or Bures metric appears to give the greatest probabilityyst two ratiosessthan unity(cf. [16], Sec. V).
in the nondenumerable class of monotone metrics. Also, the

maximal monotone metric seems to givezaro probability
[3].) Therefore, one might surmise that the much-discussed
estimates of the sizes of the separable neighborhoods
[9-11—which usually appear to be based on the HS or . : .
Frobenius metric—surrounding the fully mixed state are on_ !N Table IX'we list for the seven metrics the estimated

the rather generous sidef. [12]), relatively speaking. ratios, which we denot&, ", of the hyperaredconsisting
In Fig. 5 we show—paralleling Fig. 1—the ratios of our of only the rank-5 but not the rank-6>66 density matrices

et s B 1 o v - (N by o Vmparelenhy s
Fig. 6 we show—paralleling Fig. 2—the ratios of the cumu- o - peen i o ite close to 1(Pl'he Wigner-Yanase metric
lative estimates 081 to its known value(24). wy 1S d g

A plot (Fig. 7) of the cumulative estimates of the Hilbert- :jse\?ir;(taio%fsctg‘rli?r&r%é ?it\tle:[e;?t.i)mlgtelzs%ﬁgfr\g?n slhc:\év t::ee
Schmidt volume of separable qubit-qutrit statés the two Y :

forms of partial transpositidris also presentedThe ratio of last column of Table IX there are given the ratios of ratios

metric— pmetric metric . . )
the two cumulative estimates at the fin@x 10°) mark is Q=R epnonsed Reep - [The exceptionalgeometric av

; o : erage case might possibly simply be dismissed for serious
1.032 36, while the c_omparable ratio is 1.12508 in theconsideration on the basis of numerical instabilities, with the
analogous Bures pldFig. 3).]

In their two studie15,16, deriving exact formulas for associated volumes for this metric appearing to be actually

: : ipfinite in nature. Also, as we will see belo®XM is subject
the Bures and Hilbert-Schmidt volumes and hyperareas A : - . -
the N N density matrices, Sommers adigczkowski also % particular severe jumps, perhaps decreasing the reliability

explicitly derived expressions for theratios of of the estimates._ The o_therfive are rather closg to 2—but it is
(N2—2)-dimensional hyperareas {2~ 1)-dimensional vol- also somelwhat. intriguing _that three of the estimated mono-
tone metric ratios are quite close to one anotte.949
umes. These werg15], Eq.(4.20] and therefore perhaps a common vaiueequalto 2.] This
ratio of ratios can easily be rewritten—as explicated in the
S&Bureé 2  T(N%2) Introduction—to take the form of a ratio of separability prob-
YBuresN g\ibBures) V”;F(NZ/Z _ 1/2)N

C. Separability-probability ratios
1. N=6 qubit-qutrit case

(25 apilities. That is2™etc is equivalently the ratio of the prob-

ability of separability(PL ™"} for all qubit-qutrit states to
the conditional probability of separabilitK(P%me”'QS]) for
those states on thdgrank-five boundary of the 35-
dimensional convex set.

An interesting conjecture now would be that this ratio
(Qmetic) js equal to the integral value ldependentlyf the
(monotone or HEmetric used to measure the volumes and
hyperareas. If, in fact, valid, then there is presumabtp-a
pological explanation[23] for this. (We were able to quite
readily reject the speculation that this phenomenon might be

and[16], Eq.(6.5)]

2HS

YHsn = %}ﬁ) =VN(N - 1)(N* - 1). (26)

In the N=6 Bures case, this rati@quivalently what we have
earlier denotedRCymonse) IS
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in some way arartifact of our particular experimental de- TABLE X. Counterparts for the qubiubit caseN=4 of the
sign, in that we employ, as previously discussed, only forratios of separability probabilities, based on 4000P points of a
simple computational convenience, a 34-dimensional subsdezuka-Faure sequence

quence of the 35-dimensional Tezuka-Faure sequence= : : :
rather than arb initio independent 34-dimensional Tezuka- Metric I Cepnonsep Fap el
Faure sequence for the calculation of the hyperareas.

. Bures 12.1563 6.58246 1.84676
We must observe, however, that all the seven metrics spe-

cifically studied here induce theame(Haa) measure over 0.506688 0.348945 1.45206
30 of the 35 variables—that is, the 30 Euler angles param- Arith 2.19634 1.2269 1.79015
etrizing the unitary matricep47,48—but not over the five Wy 293791 1.73028 1.69794
independent eigenvalues of thex® density matrix. There- GKS 6.03321 3.3661 1.79234
fore, it is certainly valid to point out that we have not con- Geom 4.0285% 10716 7.1263%x 10716 0.565304
sideredall types of possible metrics over the 35-dimensional g 51.9626 25 9596 2 00167

space, but have restricted attention only to certain of those
that arenotinconsistent with quantum mechanical principles.

(Stolz has pointed out, in a personal communication that, ilomenon, we have observed Hete Sec. VI C 4 below, we

general, one could modify a metric in the interior away frompaye  however, subsequently pursued such analyses.
the boundarandoutside the separable states, without affect-
ing the metric on the separable states, thus changing
CepnonsepWithout changingREe"™, but obviously then also _ .
altering the ratio of ratioSproportio proportionum[65]) We adapted our Mathematica routine used so far for the
Qmetic Byt presumably such a modification would lead, in ScenarioN=6, so that it would yield analogous results for

our context, to the volume element of the so-modified metrid\=4. Based on 408 10° points of a new independent 15-
not respecting Haar measutef. [66], Appendix A).) dimensional Tezuka-Faure sequence, we obtained the results

The topology of the (N?-1)-dimensional convex set of reported in Table X(We now use the lowercase counterparts

N N density matrices has been laid out byczkowski and ~ ©f the symbolsk and(} to differentiate theN=4 case from

Stomczynski([67], Sec. 2.1 The topological structure is the N=6 one) Here, once more, the ratios of fati(lﬁme”ic)
expressible as tend to show rather similar values, with the two exceptional

cases again being the geometric average mgiviich we
[UN)/TN] X Gy, (29) suspect—like the maxima(Yuen-Lay monotone metric,
from which it is partially formed—simply gives infinite vol-
where the group of unitary matrices of sikeis denoted by umes and hyperarepand the somewhat unstable KM mono-
U(N) and the unit circl§one-dimensional torus-U(1)] by ~ tone metric(which now gives an atypicalljow valug. We
T, while Gy represents ariN-1)-dimensionalasymmetric were somewhat surprised that the Hilbert-Schmidt metric
simplex. It would appear, however, that the set of separabl@gain gives, as foN=6, a value quite close to 2. In Fig. 13
states lacks such a product topological strucitiness, ren- ~We show(on a comparatively very fine scalthe deviations
dering integrations over the set—and hence the computatioiﬁom 2 of the cumulative estimates of the ratio of the Hilbert-
of corresponding volumes—quite problematjcal Schmidt separability probability for the rank-4 states to that
In Fig. 9 is plotted the deviations from the conjecturedfor the rank-3 states.
integral value of 2 of the cumulative estimates of the ratio However, it now seems fairly certain that if there is a true
(QK9—given in Table IX—of the two hyperarea-to-volume common value fow™e"C across the metrics, then it is not an
ratios for the GKS monotone metric, the numeratorintegral one(and thus possibly not #opological explana-

(REPMONSe) of ()GKS being based on the entirety of qubit- tion). The theoretical values predicted by E(&5) and(26)

qutrit states and the denominai@Rzyy being based on the for rjgr;f:onsepandrgeswnonsepare 16384(429m) ~12.1566 and

boundary qubit-qutrit states onkAll the succeeding plots of 30v3~51.9615, respectively. Also, consulting Table 6 of our
deviations from the conjectured integral value of 2 will be €arlier study[3], we find that using the conjectured and
drawn to thesamescale) In Figs. 1012, we show the cor- known values for the qubiubit case(N=4) presented there

responding plots based on the Bures, Hilbert-Schmidt, and

2. The N=4 qubit-qubit case

Kubo-Mori metrics, respectively. We note that the cumula- Qretric_p
tive estimates in this last plot were relatively close to 2, 0.006
before a sudden spike in the curve drove it upward. The
. . 0.004
values for the(quite unrelated Bures and HS metrics are
rather close to 2, which is the main factor in our advancing 0.002 /./\'/\
the conjecture in question. | 10 15 2p20 ¥ 1076 pts.

It would, of course, be of interest to study comparable
ratios involving 6< 6 density matrices of generic rank less  F|G. 13. Deviations from the possible true value of 2 of the
than 5. We did not originally incorporate these into ourcumulative estimates of the ratio of the rank-4 Hilbert-Schmidt
Mathematica Tezuka-Faure calculatidits particular, since separability probability to the rank-3 separability probability in the
we did not anticipate the apparent metric-independent pheN=4 qubit-qubit case. Note the greatly reduced scale of/thgis.
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Quetric_p TABLE XI. Estimated ratios of both rank-6 and rank-5 qubit-
60 qutrit separability probabilities to rank-4 separability probabilities.
50
40 Metric Rank-6/rank-4 ratio Rank-5/rank-4 ratio
30
20 Bures 20.9605 10.7858
10
s co—5 2 % 1076 pts. KM 12.2764 5.4603
arith 17.4245 8.52308
FIG. 14. Deviations from the value of 2 of the cumulative esti- WY 15.5015 7.96527
mates of the ratio of the Hilbert- Schmidt probability of having a GKS 18.3778 9.44474
positive partial transpose for thex® density matrices of rank 9 to Geom 1.3024% 1077 0.00115724
the probability in the rank-8 case. HS 33.9982 16.7652

gives usw®'"®=8192/14197)~1.837 63 and a somewhat

similar numerical value w®™=408 260 608/7 315 3125 . .
~1.776 46. adapted our Mathematica procedure so that it would analyze

Let us also indicate in passing that this new independerff’® rank-4 and rank-3 cases, in a similar fashion. Now, we
Tezuka-Faure sequence yields estimates that are quite clo3®, dealing with 31-dimensional and 26-dimensional sce-
to previously known and cog’ectured values. For exampleharios, in relation to the original 35- and 34-dimensional
the ratios of the estimates &£ and §*P"* to their ~ ONes. . '
respective known values are 1.0001 and 0.9999. Further, the In @ preliminary run, based on 3510° points of corre-
ratios of the estimates ﬁfﬁufeﬁ andgffums (our estimate sponding Tezuka-Faure_sequences, not a single rank-3 sepa-
being 0.138 11pto their respective conjectured values arefable 6x6 density matrix was generatefdhe general re-
1.0001 and 0.999 99. sults of Lockhart{69]—based on Sard’s theorem—tells us

Let us take this opportunity to note that our analyses heréhat the measures of rank-2 and rank-% 6 separable den-
indicate that the conjectures given in Table 6[8f for the  sity matrices must be zero, but not rank-3, as it appears we

14-dimensional hyperareas—denotB8 and BS™" there—  have observedor near to ii.] At that stage, we decided to
pertaining to the arithmetic average monotone metric, appeaoncentrate further in our calculations on the rank-4 case
to have been too large by a factor of 8. alone.

In Table XI we report results based onx1.0° points of a

. , o (new and independent31-dimensional Tezuka-Faure se-
zyczkowski has indicated to us that he has an argument, éuence, coupled with our estimates obtained on the basis of

not yet fully rigorous, to the_ effect Fhat the ratio of the prob- 5, principal analysis, using the before-mentioned I0°

ability of rank-N states having positive partial transposes t0,ints e note that for the Hilbert-Schmidt metric, 33.9982

the probability of such rankN-1) states should be ide- (2 16.9991 is quite close to integral. In Fig. 15 we show
pendentlyof N. Some early analyses of our—based on a

so-far relatively short Tezuka-Faure sequence of X4126° the cumglative e;timates of the ratio from th(_a.value[:@r.“
points in the extraordinarily high (80)-dimensional course, if the ratio of the rank-6 HS separability probability

hypercube—gave us a Hilbert-Schmidt rank-9/rank-8 prob-to the rank-5 HS separability probability is 'e.xactly, in t'heory,
ability ratio of 1.89125[The analogous ratios for the mono- €dual to 2, and the rank-6/rank-4 separability probability ex-
tone metrics were largely on the order of 0.15. In these sam@Ctly 34, then the rank-5/rank-4 ratio should be 17. Since it is
analyses we also—for our first ime—implemented, as wellPased on greater numbers of sampled separable density ma-
the Computab|e Ccross-norm criterion for Separab[ﬁ&] and trices, we suspect the Sample estimate of the rank-6/rank-4
found thatmany more density matrices could not be ruled HS separability probability may perhaps be superior to the
out as possibly separable than with ttepparently much (less closely integral in value—that is, 16.765&nk-5/
more discriminating positive partial transposition criterion. rank-4 estimatg.

The Hilbert-Schmidt probability ratio based on the cross- Though the convergence to the predicted Hilbert-Schmidt
norm criterion was 0.223 14PIn Fig. 14 we show the de- Volume was quite good99.9654% of that given by the
viations from 2 of the cumulative estimates of the Hilbert- Zyczkowski-Sommers formulg16], Eq. (5.3)], for N=6, n
Schmidt rank-9/rank-8 ratio based on the positivity of the

3. N=9 rank-9 and-8 cases

partial transpose. However, this plot seems so far very un- ra§§°‘34

stable, so we must be quite cautidpending a much more 10

extended analysisin its interpretation.(In fact, at some 5

: F P O ethatmnnt P

points, the value also seems close to 0.2, as well, similar to TS0 5505 ¥ 10° pts.
the other measures. So we remain very uncertain as to Ig

whether there is evidence indicating a true ratio of 2 or pos- :15

sibly some lower common value. -20

4. N=6 rank-4 and rank-3 cases FIG. 15. Deviations from 34 of the cumulative estimates of the

The principal analyses above have been concerned wittatio of the rank-6 separability probability for the HS metric to the
the full rank(rank-6 and rank-5 6< 6 density matrices. We rank-4 separability probability.
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=2), we were rather disappointed and surprised that the prerpe pooledsampleestimate§gsz”re9 andiéZ’lBUfei?, as indi-
dicted value of the Bures volume was inaccurate by som@ated in the caption to Table VII, are 1.01420°° and
25%. This indicated to us that either the numerics were much 4707x 10°18,

more difficult for the Bures computation or there was a pos-  Then, we would have the Bures probability of separability

sible error in our programmingwhich we were unable 10  of the (generically rank-Bqubit-qutrit states as
locate or even the possibility that something was incorrect

with the specific SommersZyczkowski formula[[17], Eq.
(4.19] we were using,

3" X 53X 72X 11X 13X 17Cqres
2277718

P%Buresrank—6] -

o ad2 (N+p-1 ~ 0.00142278 35
S\%nBureg — 2 dn— . (30) . y ( )

r'((d,+1)/2) n . . .

and the Bures probability of separability of the generically
This last possibility, in fact, proved to be the case, as weaank-5 qubit-qutrit states, exact{ipy our integral conjectuje
found that their formuld4.19 did not agredfor cases other one-half of this.(However, there appears to be no obvious
thann=0, 1, N-1) with the more general formulés.195—  way in which the formulas immediately above extend the
reproduced above as E)—and that using the correct for- analogous ones in the qubit-qubit separable ¢agewhich
mulation (5.15 (which we found also agrees wit#.18 of  were hypothesized to involve the “silver meamz,=v2-1.
[17]) with =2, n=2, N=6, our numerical deviation was Thus, it does not seem readily possible to use the results here
reduced from 25% to a more acceptable and less surprising, in any way, support our earlier conjectujes.

0.1%. A rectified version of their formulgt.19), We have also devised another set of exact Bures formulas
A that fit our data roughly as well as Eq82) and(33). These
S\IZ,BureS i ldnt1)/2 Ny I (J + 2n)! (31) are gnly C( ) (33
n

T((dy+D/2) 770 [(j+m)!
(2Bures _ 32X 11X 19X 23X 29X 317

has since been posted by Sommers diydzkowski[72] > = e ~ 1.03497
after this matter was brought to their attention. 6.0 2'°X5
19
D. Well-fitting formulas for the Bures and Hilbert-Schmidt x 100 (36)
separable volumes and hyperareas and for theseparable(rank-5 34-dimensional hyperarea
1. Bures case (2,Bures B B
! =(2¥x 5)1~1.45519x 1078, (37
Proceeding under the assumption of the validity of our 26»1 ( ) 37
conjecture above(regarding the integral value of 2 for
QMer9 - computational experimentation indicates that the 2 Hilbert-Schmidt case
Tezuka—Faure quasi-Monte Carlo separable Bures results can . ) i ]
be quite well fitted by taking for theeparableBures 35- Ad(_dltlona!ly, we can achlevexcellentflts to our Hilbert-
dimensional volume S_chmld_t estimates by taking for tteeparable(rank-6 35-
3 dimensional volume
(2,Bures _ 9Cgures 19
= =W < 1.03447X 107 32 —
20 277 (32) 29 = (2% x 3 x 513 7130 1 = 2.02423% 102
and for theseparable(rank-five) 34-dimensional hyperarea (39
(2,Burey _
26’1 " = (29X 3 X BCgyed L = 1.45449% 10718, (the sample estimate being 2.0532802% and for the
(33) separable(rank-5 34-dimensional hyperarea
where by3 we denote volumes and hyperareaseparable 2;2'1“5) = (2% x 3x 51971~ 1.94026x 10 (39)
states and '
] T (the sample estimate being 1.948690723). This gives us a
Caures™ V86429867 =\ X 2 X 11X 19X 23X 29X 31 pynert-Schmidt probability of separability of the generically
~5210.83. (34 rank-6 states of

30 74X 113X 12 X 172 X 19X 23X 29X 31,5

P[HS,rank-G] -
6 237 X 577715

~ 0.0263115, (40)

approximately 18.5 times the predicted Bures probability(35). (As we have noted, the Bures separability probability
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appears to be thgreatestamong the monotone metrigg\n improve the accuracy of the estimates of the 24 unknown

upperbound of 0.166 083 (0.95% on PESHS“"‘”"@] isgivenin  quantities by scaling them in accordance with the magnitude

Appendix G of[12]. of known underestimation. Also, we have in our several
Our simple excellent Hilbert-Schmidt fits here led us totables only reported the results at tfex 10° point) end of

investigate whether the same could be achieved in the qubifl® Tezuka-Faure procedure. We might also report results at
qubit (N=4) case, using the san{é00x 10°)-point Tezuka- intermediate stages at which the estimates of the 4 known
Faure sequence, employed in Sec. VIC2. This, in fac:tquantities are closest to their true values, since estimates of

seemed definitely doable, by taking ErLera%;l ;tn;no()svgns?augznsmles might arguably also be most ac-

(@2HS) _ 1037 [2y-1 o ~7 Of course, as we have done, taking th&os of estimates
40 (3543) 273707 10 (49 of the volumes and hyperareas of separable states to the es-
(the sample estimate being 2.739280°7) and timates of the volumes {ind hyperare_as of separable plus non-
separable states, one, in turn, obtains estimates of the prob-
(2HS) _ por6y-1 -6 abilities of separabilityf1] for the various monotone metrics
=(35°)" = 7.11111% 10 42 ; ! -
4.1 (359 (42) studied. (Scalingthe estimated volumes and hyperareas by

(the sample estimate being 7.111090°%). The exact the correspon(_jing estimates for the Bures metricz as we have
Hilbert-Schmidt probability of separability of the generically d°n€ in certain of the tables above for numerical conve-
rank-4 qubit-qubit states would then be nience and possible |nS|ghtfuIness, would _be inappropriate in
such a process Among the metrics studied, the Hilbert-
22% 3X 72X 11X 13\;’5 Schmidt metric gives théargest qubit-qutrit probability of
55,6 ~ 0.242379. separability (=0.026 828 3, while the Bures metric—the
i minimal monotone one—gives théconsiderably smaller
(43)  largest separability probability=0.001 399 25 among the

[A lower bound for S@HS ¢ 55617199 805 593 211 675 monotone metrics studig@nd presumably among all mono-
~2.658 34X 108—that4’i95 the volume of a 15-dimensional tone metric;}s The(Yuen-La _rrjaximalmqr}otone metric ap-
ball of radius;—appears obtainable from the result{df], pe?rzs[é(]) %Zeh: dn:gesrﬁgta;gzlgrﬁmﬁg'gﬁ ilar quasi—Monte
ﬂt::tug]z:g'ZSS;;:”{OC:E;C;%%; Lzas‘i?;]v:\’g?ti?;ggetﬁégu'Carlo qubit-qutrit analysigbut restricted simply to the Bures
exponenim/2—1 appeard.Of course, one wouI(;I now like to metric to that reported above, but based on many fewer

; . points(70x 10° vs the 7x 10° so far used hejeof a (Halton)
try to extend these Hilbert-Schmidt results to cabes6. sequence. At this stage, having made use of considerably
Also, let us propose the formula

increased computer powdand streamlined Mathematica
7-11 programming—in particular employing the Compile com-

PEHSrank—zl] —

EZZV’ZHS) = = ~ 1.02084x 107 (44)  mand, which enables the program to proceed under the con-
2557 Wom dition that certain variables will enter a calculation only as
[the sample estimatéSec. VI C 4 being 1.0405& 1072 machine numbers and not as lists, algebraic objects, or any
other kind of expressionwe must regard this earlier study
VII. DISCUSSION as entirely superseded by the one hé¢@ur pooled estimate

of the Bures volume of the separable qubit-qutrit systems

In the main numerical analysis of this stu@§ecs. VIA  here (Table VII) is 1.0142< 1071, while in [6], following
and VIB), we have directly estimated 28 quantities of our earlier work forN=4 [13], we formulated a conjecture
interest—seven total volumes of the 35-dimensional space ¢{6], Eq. (5)]—in which we can now have but very little
qubit-qutrit states, seven 34-dimensional hyperareas of theonfidence—that would give&onverting from the SD metric
boundary of those states, and the same quantities when rg the Bures a value of 235X (2.190 53x 1079 ~6.375 28
stricted to the separable qubit-qutrit states. Of these 28 quanc 1072%) We also anticipate revisiting—as in Sec. VI C 2—
tities, 4 (that is, S22, 525U 5219 and §21'9) were  the N=4 (qubit-qubid case[3] with our newly accelerated
precisely known from previous analyses of Sommers angrogramming methods, in a similarly systematic manner.
Zyczkowski [15,16]. It is interesting to observe that the  Perhaps, in the future, subject to research priorities, we
Tezuka-Faure quasi-Monte Carlo numerical integration prowill add to the 7x 10° points of the Tezuka-Faure sequence
cedure has, in all four of these cases, as shown in the corremployed above and hope to report considerably more accu-
sponding table and figuré3able | and Figs. 1, 2, 5, and,6 rate results in the futurébased on which, possibly, we can
slightly but consistentlyunderestimatedhe known values— further appraise the hypotheses offered above as to the val-
more so, it seems, with the 35-dimensional volumes, as opies of the various volumes and hyperajedéso, we may
posed to the 34-dimensional hyperareéSo, in statistical seek to estimate the hyperarea of that part of the boundary of
terminology, we appear to hawasedestimators. The very the separable qubit-qutrit states consisting of generically
same form of bias—in terms of the Bures metric—was ob+ank-6 6x 6 density matrice$3,63], though this involves a
served in the precursor analy$B] to this one, based on an much greater amount of computation per pofithis would
independent, shorter Tezuka-Faure sequeRamdomizing entail first finding the values, if any, of the undetermined
deterministic algorithms—such as the Tezuka-Faure—can rg35th) parameter that would set the determinants of the two
move such bia§70].) This suggests that we might possibly forms of partial transpose equal to zero and then—using
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these values—ascertaining whether or not all the six eigerhas been a dominant consideration in the selection of nu-
values of the resultant partial transposes were non-neggtivemerical integration methodologies to employ.

In this study, we have utilized additional computer power “|t is easier to estimate the error of Monte Carlo methods
recently available to us, together with an advanced quasibecause one can perform a number of replications and com-
Monte Carlo proceduréscrambled Faure-Tezuka sequencespute the variance. Clever randomizations of quasi-Monte
[45,46—the use of which was recommended to us by G.Carlo methods combine higher accuracy with practical error
Okten, who provided a corresponding Mathematica gode estimates’([70], p. 99. G. Okten is presently developing a
Faure and Tezuka were guided “by the constructi  new Mathematica version of scrambled Faure-Tezuka se-
=AVP(D and by some possible extensions of the generatoguences in which there will be a random generating matrix
formal series in the frame-work of NeiderreitefA”) is an  for each dimension—rather than one for all the dimensions
arbitrary nonsingular lower triangul@NLT) matrix, P is the  together—which will then be susceptibledtatisticaltesting
Pascal matriX71], and C" is a generator matrix of a se- [70].
quenceX.] Their idea was to multiply from the right by At the strong urging of K. Zyczkowski, we disaggregated
nonsingular upper trianguldNUT) random matrices and get the pooled result in the last column of Table IX into the part
the new generator matric€'=P"YU® for (0, s sequences based on partial transposition of four three-by-three blocks
[45,46. “Faure-Tezuka scrambling scrambles the digits of and obtained{1.966, 2.53505, 2.04826, 1.94679, 1.96481,
before multiplying by the generator matricesThe effect of  9.32089x 1077, 1.99954 and into the part based on nine
the Faure-Tezuka-scrambling can be thought of as reorderingvo-by-two blocks and obtainell.91846, 1.91976, 2.04,
the original sequence, rather than permuting its digits like the 94539, 1.92476, 0.0001227, 2.05808/ bring the atten-

Owen scrambling... Scrambled sequences often havetion of the reader to the particular closeness to 2 of the first
smaller discrepancies than their nonscrambled counterpart@ilbert-Schmidj ratio.

Moreover, random scramblings facilitate error estimation”
([70], p. 107%.

It would be interesting to conduct analogous investiga-
tions to those reported hef®&=6) and in[3] for the case | wish to express gratitude to the Kavli Institute for The-
N=4, using quasirandom sequenaotiserthan Tezuka-Faure oretical PhysicgKITP) for computational support in this re-
ones[45,46], particularly those for which it is possible to do search and to Giray Okten for supplying the Mathematica
statistical testing on the resultésuch as constructing confi- code for the Tezuka-Faure quasi—Monte Carlo procedure
dence intervals[70]. It is, of course, possible to conduct and for numerous communications. Chris Herzog of the
statistical testing using simple Monte Carlo methods, buKITP kindly provided certain computer assistance, as well as
their convergence is much weaker than that of the quasicomments on the course of the research. S. Stolz remarked
Monte Carlo procedures. Since we have been dealing witlen our conjecture regarding the integral value of 2. Also, K.
extraordinarily high-dimensional spaces, good convergencgyczkowski supplied many useful comments and insights.
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