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We suggest a protocol for perfect quantum communication through spin-chain channels. By combining a
dual-rail encoding with measurements only at the receiving end, we can get conclusively perfect state transfer,
whose probability of success can be made arbitrarily close to unity. As an example of such anamplitude-
delaying channel, we show how two parallel Heisenberg spin chains can be used as quantum wires. Perfect
state transfer with a probability of failure lower thanP in a Heisenberg chain ofN spin-12 particles can be
achieved in a timescale of the order ofs0.33" /JdN1.7uln Pu. We demonstrate that our scheme is more robust to
decoherence and nonoptimal timing than any scheme using single spin chains.
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I. INTRODUCTION

The development of reliable methods to transfer quantum
states is of fundamental importance in quantum information
theory. Usually, flying qubits, such as photons, ballistic elec-
trons, and guided atoms and ions, are considered for this
purpose. However, converting back and forth between sta-
tionary qubitssof say a quantum computer or as held by the
communicating partiesd and mobile carriers of quantum in-
formation and interfacing between different physical imple-
mentations of qubits is very difficult and may not be really
worth it for short communication distances.

An attractive alternative is to use a finite array of inter-
acting but stationary qubits as an information bus. It would,
however, not be very useful if the interactions between vari-
ous pairs of stationary qubits have to be repeatedly switched
on and off to perform the communication because gating
errors will then accumulate. Moreover, the local control re-
quired will be as high as that of a quantum computer. Only if
we can utilize systems with permanently coupled material
qubits ssuch as molecular spin chainsd, or systems without
local control ssuch as Josephson junction arrays or optical
latticesd with minimal global switchings, can we have a com-
munication bus much before a quantum computer. In such
schemes, both the amplitude and the phase dampingsmecha-
nisms of decoherenced can be ensured to be no worse than
that of a single moving qubit, by ensuring that there is, at
most, one excitation in the array during the communication
process. With the above view in mind, recently the use of
spin chainsf1–12g and harmonic chainsf13g as quantum
wires have been proposedssee Fig. 1d.

The initial system-independent proposalf1g was inspired
by the natural setting for spin-chain moleculessand optical
latticesd: regular arrays without local accessibility. Single
spin encoding was assumed to avoid quantum gates. For this
simplicity, its specific realization is already being proposed
f14g. However, it allows only imperfect communication fi-
delity and necessitates the use of entanglement distillation
from a large ensemble, which destroy its simplicity. Later
approaches of perfecting fidelity require either the engineer-
ing of the couplingsf3,4g or an encoding of a qubit to several
spinsf5,6g. Independently, local measurements on each qubit
along the chainf7–9g have been proposed. The above deviate

either from naturalness or from simplicity. We are thus sorely
in need of a scheme that remains natural and simple, yet
achieves perfect quantum communication. This is achieved
in this paper by using a dual-rail encoding.

The outline of the paper is as follows. In Sec. II, we
suggest a scheme for quantum communication using two par-
allel spin chains of the most natural typesnamely, those with
constant couplingsd. We require modest encodingssor gatesd
and measurements only at the ends of the chains. The state
transfer isconclusive, which means that it is possible to tell
by the outcome of a quantum measurement, without destroy-
ing the state, if the transfer took place or not. If it did, then
the transfer wasperfect. The transmission time for conclu-
sive transfer is no longer than for single spin chains. In Sec.
III, we demonstrate that our scheme offers even more: if the
transfer was not successful, then we can wait for some time
and just repeat the measurement, without having to resend
the state. By performing sufficiently many measurements,
the probability for perfect transfer approaches unity. Hence
the transfer isarbitrarily perfect. We will show in Sec. IV
that the time needed to transfer a state with a given probabil-
ity scales in a reasonable way with the length of the chain.
Finally, in Sec. V we show that encoding to parallel chains
and the conclusiveness also makes our protocol more robust
to decoherencesa hitherto unaddressed issue in the field of
quantum communication through spin chainsd.

FIG. 1. Quantum circuit representation of conclusive and arbi-
trarily perfect state transfer. The first gate at Alice’s qubits repre-
sents a NOT gate applied to the second qubit controlled by the first
qubit being zero. The qubitsucl1

s1d on the left-hand side represents
an arbitrary input state at Alice’s site, and the qubituclN

s1d represents
the same state, successfully transferred to Bob’s site. Theti gate
represents the unitary evolution of the spin chains for a time inter-
val of ti.
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II. SCHEME FOR CONCLUSIVE TRANSFER

We intend to propose our scheme in a system-independent
way with occasional references to systems where conditions
required by our scheme are achieved. We assume that our
system consists of two identical uncoupled spin-1

2-chainss1d
and s2d of lengthN, described by the Hamiltonian

H = Hs1d
^ I s2d + I s1d

^ Hs2d − EgI
s1d

^ I s2d. s1d

The termidenticalstates thatHs1d andHs2d are the same apart
from the label of the Hilbert space on which they act. The
requirement of parallel chains instead of just one is not prob-
lematic because, in many experimental realizations of spin
chains, it is much easier to produce a whole bunch of parallel
uncoupledf15,16g chains than just a single one.

We assume that the ground state of each chain isu0lsid

;u01. . .0Nlsid, i.e., a ferromagnetic ground state, with
Hsidu0lsid=Egu0lsid, and that the subspace consisting of the
single spin excitationsunlsid;sn

+sidu0lsid sn=1, . . . ,Nd is in-
variant underHsid. An arbitrary qubit at the siten of system
sid can be written as

ucln
sid ; au0lsid + bunlsid. s2d

The dynamics restricted to this subspace can be expressed in
terms of the transition amplitudes

f r,sstd ; kr usideiHsidtuslsid. s3d

The aim of our protocol is to transfer quantum information
from the firsts“Alice” d to theNth s“Bob” d qubit of the first
chain,

ucl1
s1d → uclN

s1d. s4d

To achieve this, we needf1,NstdÞ0 swhich is valid for a
Heisenberg chain, for examplef1gd. An advantage of Heisen-
berg ferromagnetic chains over a noninteracting qubit array
is that some XXZ anisotropy can make the statesu0l and unl
stable against excitations at finite temperaturesf17g. Even a
small anisotropy in the couplingJ may sufficesasJ itself can
be as high as 2000 Kf15gd. Alternatively, one can prevent
thermal excitations by applying an uniform magnetic field to
the chain.

The initial state of the system isucl1
s1d

^ u0ls2d. The first
step of the protocol is to encode the input qubit in a “dual
rail” f18g by applying aNOT gate on the first qubit of system
s2d controlled by the first qubit of systems1d being zero,
resulting in a superposition of excitations in both systems,

uss0dl = au0ls1d
^ u1ls2d + bu1ls1d

^ u0ls2d. s5d

This is assumed to take place in a much shorter timescale
than the system dynamics. Even though a two-qubit gate in
solid-state systems is difficult, such a gate for charge qubits
has been reportedf19g. For the same qubits, Josephson ar-
rays have been proposed as single spin chains for quantum
communicationf14g. For this system, both requisites of our
scheme are thus available. In fact, the demand that Alice and
Bob can do measurements and apply gates to their local qu-
bits si.e., the ends of the chainsd will be naturally fulfilled in
practice since we are suggesting a scheme to transfer infor-
mation between quantum computers.

Under the system Hamiltonian, the excitation in Eq.s5d
will travel along the two systems. The state after the timet1
can be written as

ufst1dl = o
n=1

N

fn,1st1dussndl, s6d

where ussndl=au0ls1d ^ unls2d+bunls1d ^ u0ls2d. We can decode
the qubit by applying a controlled-NOT gate at Bob’s site.
The state thereafter will be

o
n=1

N−1

fn,1st1dussndl + fN,1st1duclN
s1d

^ uNls2d. s7d

Bob can now perform a measurement on his qubit of system
s2d If the outcome of this measurement is 1, he can conclude
that the stateucl1

s1d has been successfully transferred to him.
This happens with the probabilityufN,1st1du2. If the outcome
is 0, the system is in the state

1
ÎPs1d

o
n=1

N−1

fn,1st1dussndl, s8d

where

Ps1d = 1 − ufN,1st1du2 s9d

is the probability of failure for the first measurement. If the
protocol stopped here, and Bob would just assume his state
as the transferred one, then the channel could be described as
an amplitude-damping channel, with exactly the same fidel-
ity as the single-chain scheme discussed inf1g. But success
probability is more valuable than fidelity: Bob has gained
knowledge about his state and may reject it and ask Alice to
retransmit. However, as we will show in Sec. III, this is not
necessary.

III. ARBITRARILY PERFECT STATE TRANSFER

Because Bob’s measurement has not revealed anything
about the input state, the information is still residing in the
chain. By letting the states8d evolve for another timet2 and
applying the controlled-NOT gate again, Bob has another
chance of receiving the input state. The state before perform-
ing the second measurement is easily seen to be

1
ÎPs1d

o
n=1

N

hfn,1st2 + t1d − fn,Nst2dfN,1st1djussndl. s10d

Hence the probability to receive the qubit at Bob’s site at the
second measurement is

1

Ps1d
ufN,1st2 + t1d − fN,Nst2dfN,1st1du2. s11d

If the transfer was still unsuccessful, then this strategy can be
repeated over and over. Each time Bob has a probability of
failed state transfer that can be obtained from the generali-
zation of Eq.s10d to an arbitrary number of iterations. The
joint probability that Bob fails to receive the state all the time
is just the product of these probabilities. We denote the joint
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probability of failure for having donel unsuccessful mea-
surements asPsld. This probability depends on the time in-
tervalsti between thesi −1dth andith measurement, and we
are interested in the case where theti are chosen such that
the transfer is fast. It is possible to write a simple algorithm
that computesPsld for any transition amplitudef r,sstd. Figure
2 shows some results for a Heisenberg spin-1

2-chain with
equal nearest-neighbor couplings,

Hsid = − Jo sW n
sid · sW n+1

sid . s12d

This model is exactly solvable, and the transition amplitude
is given explicitly inf1g. However, the results are valid for a
wide class of anisotropies and in the presence of a uniform
magnetic field, too.

An interesting question is whether the joint probability of
failure can be made arbitrary small with a large number of
measurements. SincePsld is a bounded, monotonic decreas-
ing series, it must have a limit. In fact, the timesti can be
chosen such that the transfer becomes arbitrarily perfect.
This has been proven inf20g, where a generalization of the
above scheme and a much wider class of Hamiltonians is
considered. In the limit of a large number of measurements,
the spin channel will not damp the initial amplitude, but only
delay it.

IV. ESTIMATION OF THE TIME SCALE OF THE
TRANSFER

The achievable fidelity is an important but not the only
criteria of a state transfer protocol. In this section, we give an
heuristic approach to estimate the time that it needs to
achieve a certain fidelity in a Heisenberg spin chain. The
comparison to numeric examples is confirming this ap-
proach.

Let us first describe the dynamic of the chain in a very
qualitative way. Once Alice has initialized the system, an
excitation wave packet will travel along the chain. As shown
in f1g, it will reach Bob at a time of the order of

tmax<
"N

2J
, s13d

with an amplitude of

ufN,1stmaxdu2 < 1.35N−2/3. s14d

It is then reflected and travels back and forth along the chain.
Since the wave packet is also dispersing, it starts interfering
with its tail, and after a couple of reflections the dynamic is
becoming quite random. This effect becomes even stronger
because of Bob’s measurements, which change the dynamics
by projecting away parts of the wave packet. However, 2tmax
sthe time it takes for a wave packet to travel twice along the
chaind remains a good estimate of the time scale in which
significant probability amplitude peaks at Bob’s site occur,
and Eq.s14d remains a good estimate of the amplitude of
these peaks. Therefore, the joint probability of failure is ex-
pected to scale as

Psld < s1 − 1.35N−2/3dl s15d

in a time of the order of

tsld < 2tmaxl =
N"l

J
. s16d

If we combine Eqs.s15d ands16d and solve for the timetsPd
needed to reach a certain probability of failureP, we get

tsPd <
0.51"N5/3

J
uln Pu. s17d

We compare this rough estimate with exact numerical results
in Fig. 3. The best fit is given by

tsPd =
0.33"N5/3

J
uln Pu. s18d

We can conclude that the transmission time for arbitrarily
perfect transfer is scaling not much worse with the lengthN
of the chains than the single spin-chain schemes. Despite the
logarithmic dependence onP, the time it takes to achieve
high fidelity is still reasonable. For example, a system with
N=100 andJ=20 K3kB will take ,1.3 ns to achieve a fi-
delity of 99%. In many systems, decoherence is completely
negligible within this time scale. For example, some Joseph-
son junction systemsf21g have a decoherence time ofTf

<500 ns, while trapped ions have even larger decoherence
times.

V. DECOHERENCE AND IMPERFECTIONS

If the coupling between the spinsJ is very small or the
chains are very long, the transmission time may no longer be
negligible with respect to the decoherence timessee Sec. IVd.
It is interesting to note that the dual-rail encoding then offers
some significant general advantages over single-chain
schemes. Since we are suggesting a system-independent
scheme, we will not study the effects of specific environ-
ments on our protocol, but just qualitatively point out its
general advantages.

FIG. 2. Semilogarithmic plot of the joint probability of failure
Psld as a function of the number of measurementsl. Shown are
Heisenberg spin-12-chains with different lengthsN. The times be-
tween measurementsti have been optimized numerically.
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At least theoretically, it is always possible to cool the
system down or to apply a strong magnetic field such that the
environment is not causing further excitations. Then, there
are two remaining types of quantum noise that will occur:
phase noise and amplitude damping. Phase noise is a serious
problem and arises hereonly when an environment can dis-
tinguish between spin flips on the first chain and spin flips on
the second chain. It is therefore important that the environ-
ment cannot resolve their difference. In this case, the envi-
ronment will only couple with the totalz component

Sz,n = sz,n
s1d + sz,n

s2d s19d

of the spins of both chains at each positionn. This has been
discussed for spin-boson models inf22,23g but should also
hold for spin environments as long as the chains are close
enough. The qubit is encoded in a decoherence-free subspace
f24g, and the scheme is fully robust to phase noise. Even
though this may not be true for all implementations of dual-
rail encoding, it is worthwhile noting it because such an op-
portunity does not existat all for single-chain schemes,
where the coherence between two states with different totalz
component of the spin has to be preserved. Having shown
one way of avoiding phase noise, at least in some systems,
we now proceed to amplitude damping.

The evolution of the system in presence of amplitude
damping of a rateG can be easily derived using a quantum-
jump approachf25g. Like for phase noise, it is necessary that
the environment acts symmetrically on the chains. The dy-
namics is then given by an effective nonunitary Hamiltonian

Heff = H + iGo
n

sSz,n + 2d/2 s20d

if no jump occurs, and the effect of a jump is given by the
operator

o
n

Sn
−, s21d

which will put the system in the ground state. As this can be
solved analytically, we do not go into numerics. The state of
the system before the first measurement conditioned on no
jump is given by

e−Gto
n=1

N

fn,1stdussndl, s22d

and this happens with the probability ofe−2Gt sthe norm of
the above stated. If a jump occurs, the system will be in the
ground state

Î1 − e−2Gtu0ls1d
^ u0ls2d. s23d

The density matrix at the timet is given by a mixture ofs22d
and s23d. In case ofs23d, the quantum information is com-
pletely lost and Bob’s error check qubit will never show
success. If Bob, however, measures a success, it is clear that
no jump has occurred and he has the perfectly transferred
state. Therefore the protocolremains conclusive, but the suc-
cess probability is lowered bye−2Gt. This result is still valid
for multiple measurements, which leave the states23d unal-
tered. The probability of a successful transfer at each particu-
lar measurementl will decrease bye−2Gtsld, wheretsld is the
time of the measurement. After a certain number of measure-
ments, thejoint probability of failure will no longer decrease.
Thus the transfer will no longer bearbitrarily perfect, but
can still reach a very high fidelity. Some numerical examples
of the minimal joint probability of failure that can be
achieved,

FIG. 3. Timet needed to trans-
fer a state with a given joint prob-
ability of failure P across a chain
of lengthN. The points denote ex-
act numerical data, and the fit is
given by Eq.s18d.
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P` ; lim
l→`

Psld s24d

<p
l=1

`

s1 − 1.35N−2/3e−s2GN"/Jdld s25d

are given in Fig. 4. ForJ/G=50 K ns nearly perfect transfer
is still possible for chains up to a length ofN<40. In a single
Heisenberg chain using the scheme described inf1g, this sys-
tem could only achieve a fidelity of 0.23 when transferring
an exitation.

Even if the amplitude damping is not symmetric, its effect
is weaker than in single-spin schemes. This is because it can
be split into a symmetric and asymmetric part. The symmet-
ric part can be overcome with the above strategies. For ex-
ample, if the amplitude damping on the chains isG1 andG2
with G1.G2, the states22d will be

o
n=1

N

fn,1stdhae−G2tu0nl + be−G1tun0lj s26d

=e−G2to
n=1

N

fn,1stdhau0nl + be−sG1−G2dtun0lj s27d

<e−G2to
n=1

N

fn,1stdussndl s28d

provided thatt! sG1−G2d−1. Using a chain of lengthN=20
with J=20 K3kB andG1

−1=4 ns,G2
−1=4.2 ns we would have

to fulfill t!164 ns. We could perform<10 measurements
fcf. Eq. s16dg without deviating too much from the states28d.
In this time, we can use our protocol in the normal way. The
resulting success probability given by the finite version of
Eq. s25d would be 75%. A similar reasoning is valid for

phase noise, where the environment can be split into com-
mon and seperate parts. If the chains are close, the common
part will dominate and the seperate parts can be neglected for
short times.

Finally, let us mention another advantage of our scheme.
In single-chain schemes, Bob has to extract the state pre-
cisely at an optimal time to obtain it with high fidelity. Our
scheme is robust to the errors in this. Even if Bob measures
to extract his state at an incorrectsnonoptimald time, he will
receive the perfect state conditional on his measurement out-
come. If he is unsuccessful, then he simply tries again, with-
out having Alice to resend. Also, because of the conclusive
nature of the protocol, once Bob has received the state, the
rest of the channel is automatically in the ground state and
does not need to be reset for the next transfersas opposed to
many of the existing schemesf1,2,7,8gd.

VI. CONCLUSIONS

In conclusion, we have presented a simple and efficient
scheme for conclusive and arbitrarily perfect quantum-state
transfer. To achieve this, two parallel spin chainssindividu-
ally amplitude-damping channelsd have been used as one
amplitude-delaying channel. We have shown that our scheme
is more robust to decoherence and imperfect timing than the
single-chain schemes. Even though the encoding is simple, it
has made spin-chain-based communicationsboth realistic
and perfect at the same time.

Our strategy can be generalized to graphs interconnecting
many different users and to many other systems. As an ex-
ample, we will now briefly mention how our scheme can be
adapted to asingle chain of qutrits. The correct generaliza-
tion of the exchange interaction for a chain of three-level
quantum system is a SUs3d chainf26g. For example, a chain
of atoms with three internal levels,u−1l, u0l, and u1l in an

FIG. 4. The minimal joint
probability of failure Psld for
chains with lengthN in the pres-
ence of amplitude damping. The
parameterJ/G of the curves is the
coupling of the chainsin kelvinsd
divided by the decay ratesns−1d.
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optical lattice, where the atoms can hop from site to site but
more than one atom cannot occupy a single site, will form a
SUs3d chain. If we relabel our parallel spin chain states
u0ls1du0ls2d by u01, . . . ,0n, . . . ,0Nl, unls1du0ls2d by
u01, . . . ,1n, . . . ,0Nl and u0ls1dunls2d by u01, . . . ,−1n, . . . ,0Nl,
then our protocol can be mapped to a single chain of
qutritsinteracting via SUs3d exchange. Though the state is no
longer encoded in a decoherence free-subspace as before, in
an optical lattice implementation, one can use three hyperfine

ground states of atoms asu−1l, u0l, and u1l to completely
avoid amplitude damping.

ACKNOWLEDGMENT

This work was supported by the UK Engineering and
Physical Sciences Research Council Grant No. GR/
S62796/01 and the QIPIRC.

f1g Sougato Bose, Phys. Rev. Lett.91, 207901s2003d.
f2g V. Subrahmanyam, Phys. Rev. A69, 034304s2004d.
f3g M. Christandl, N. Datta, A. Ekert, and A. J. Landahl, Phys.

Rev. Lett. 92, 187902s2004d.
f4g C. Albanese, M. Christandl, N. Datta, and A. Ekert, Phys. Rev.

Lett. 93, 230502s2004d.
f5g T. J. Osborne and N. Linden, Phys. Rev. A69, 052315s2004d.
f6g H. L. Haselgrove, e-print quant-ph/0404152.
f7g F. Verstraete, M. A. Martin-Delgado, and J. I. Cirac, Phys.

Rev. Lett. 92, 087201s2004d.
f8g F. Verstraete, M. Popp, and J. I. Cirac, Phys. Rev. Lett.92,

027901s2004d.
f9g B.-Q. Jin and V. E. Korepin, Phys. Rev. A69, 062314s2004d.

f10g M. H. Yung, D. W. Leung, and S. Bose, Quantum Inf. Comput.
4, 174 s2004d.

f11g L. Amico, A. Osterloh, F. Plastina, R. Fazio, and G. M. Palma,
Phys. Rev. A69, 022304s2004d.

f12g V. Giovannetti and R. Fazio, Phys. Rev. A71, 032314s2005d.
f13g M. B. Plenio, J. Hartley, and J. Eisert, New J. Phys.6, 36

s2004d.
f14g A. Romito, R. Fazio, and C. Bruder, Phys. Rev. B71, 100501

s2005d.

f15g N. Motoyama, H. Eisaki, and S. Uchida, Phys. Rev. Lett.76,
3212 s1996d.

f16g P. Gambardella, A. Dallmeyer, K. Maiti, M. C. Malagoli, W.
Eberdardt, K. Kern, and C. Carbone, NaturesLondond 416,
301 s2002d.

f17g J. B. Torrance and M. Tinkham, Phys. Rev.187, 587 s1969d.
f18g I. L. Chuang and Y. Yamamoto, Phys. Rev. Lett.76, 4281

s1996d.
f19g T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura, and J.

S. Tsai, NaturesLondond 425, 941 s2003d.
f20g D. Burgarth, S. Bose, and V. Giovannetti, e-print quant-ph/

0410175.
f21g D. Vion, A. Aassime, A. Cottet, P. Joyez, H. Pothier, C. Ur-

bina, D. Esteve, and M. H. Devoret, Science296, 886 s2002d.
f22g G. M. Palma, K. A. Suominen, and A. K. Ekert, Proc. R. Soc.

London, Ser. A452, 567 s1996d.
f23g W. Y. Hwang, H. Lee, D. D. Ahn, and S. W. Hwang, Phys.

Rev. A 62, 062305s2000d.
f24g A. Beige, D. Braun, and P. L. Knight, New J. Phys.2, 22

s2000d.
f25g M. Plenio and P. Knight, Rev. Mod. Phys.70, 101 s1998d.
f26g B. Sutherland, Phys. Rev. B12, 3795s1975d.

D. BURGARTH AND S. BOSE PHYSICAL REVIEW A71, 052315s2005d

052315-6


