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Conclusive and arbitrarily perfect quantum-state transfer using parallel spin-chain channels

Daniel Burgarth and Sougato Bose
Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
(Received 28 June 2004; published 13 May 2005

We suggest a protocol for perfect quantum communication through spin-chain channels. By combining a
dual-rail encoding with measurements only at the receiving end, we can get conclusively perfect state transfer,
whose probability of success can be made arbitrarily close to unity. As an example of sachphiude-
delaying channelwe show how two parallel Heisenberg spin chains can be used as quantum wires. Perfect
state transfer with a probability of failure lower th&in a Heisenberg chain dfl spin-:—zL particles can be
achieved in a timescale of the order(6t33:/J)N*|In P|. We demonstrate that our scheme is more robust to
decoherence and nonoptimal timing than any scheme using single spin chains.
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I. INTRODUCTION either from naturalness or from simplicity. We are thus sorely

The development of reliable methods to transfer quantunff? Need of a scheme that remains natural and simple, yet
states is of fundamental importance in quantum informatiofRchieves perfect quantum communication. This is achieved
theory. Usually, flying qubits, such as photons, ballistic eleci this paper by using a dual-rail encoding.
trons, and guided atoms and ions, are considered for this The outline of the paper is as follows. In Sec. II, we
purpose. However, converting back and forth between stasuggest a scheme for quantum communication using two par-
tionary qubits(of say a quantum computer or as held by theallel spin chains of the most natural tyfreamely, those with
communicating partigsand mobile carriers of quantum in- constant couplings We require modest encodingsr gate$
formation and interfacing between different physical imple-and measurements only at the ends of the chains. The state
mentations of qubits is very difficult and may not be really transfer isconclusive which means that it is possible to tell
worth it for short communication distances. by the outcome of a quantum measurement, without destroy-

An attractive alternative is to use a finite array of inter-ing the state, if the transfer took place or not. If it did, then
acting but stationary qubits as an information bus. It wouldthe transfer waperfect The transmission time for conclu-
however, not be very useful if the interactions between varisive transfer is no longer than for single spin chains. In Sec.
ous pairs of stationary qubits have to be repeatedly switchelll, we demonstrate that our scheme offers even more: if the
on and off to perform the communication because gatingransfer was not successful, then we can wait for some time
errors will then accumulate. Moreover, the local control re-and just repeat the measurement, without having to resend
quired will be as high as that of a quantum computer. Only ifthe state. By performing sufficiently many measurements,
we can utilize systems with permanently coupled materiathe probability for perfect transfer approaches unity. Hence
qubits (such as molecular spin chajn®r systems without the transfer isarbitrarily perfect We will show in Sec. IV
local control(such as Josephson junction arrays or opticathat the time needed to transfer a state with a given probabil-
latticeg with minimal global switchings, can we have a com- ity scales in a reasonable way with the length of the chain.
munication bus much before a quantum computer. In suckinally, in Sec. V we show that encoding to parallel chains
schemes, both the amplitude and the phase danfpiegha- and the conclusiveness also makes our protocol more robust
nisms of decoherenge&an be ensured to be no worse thanto decoherencéa hitherto unaddressed issue in the field of
that of a single moving qubit, by ensuring that there is, atquantum communication through spin chains
most, one excitation in the array during the communication
process. With the above view in mind, recently the use of ...
spin chains[1-12] and harmonic chain§l3] as quantum (1 ] 1)
wFi)res have been proposésee Fig. 1 | 4 spin chain (1) ¥)n

The initial system-independent propo$a] was inspired
by the natural setting for spin-chain moleculesd optical
lattices: regular arrays without local accessibility. Single
spin encoding was assumed to avoid quantum gates. For this

simplicity, its specific realization is already being proposed F|G. 1. Quantum circuit representation of conclusive and arbi-
[14]. However, it allows only imperfect communication fi- trarily perfect state transfer. The first gate at Alice’s qubits repre-
delity and necessitates the use of entanglement distillatiosents a NOT gate applied to the second qubit controlled by the first
from a large ensemble, which destroy its simplicity. Laterqubit being zero. The qubitss)\” on the left-hand side represents
approaches of perfecting fidelity require either the engineeran arbitrary input state at Alice’s site, and the quisitl’ represents

ing of the coupling$3,4] or an encoding of a qubit to several the same state, successfully transferred to Bob’s site. 7 lnate
spins[5,6]. Independently, local measurements on each qubitepresents the unitary evolution of the spin chains for a time inter-
along the chaifi7—9] have been proposed. The above deviateval of 7,

success

|0)(2) spin chain (2) if 1

wait again if O
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II. SCHEME FOR CONCLUSIVE TRANSFER Under the system Hamiltonian, the excitation in ES).

We intend to propose our scheme in a system-independeM\fiII travel glong the two systems. The state after the time
way with occasional references to systems where condition€@" be written as
required by our scheme are achieved. We assume that our N
system consists of two identical uncoupled sén'nhains(l) |p(71)) = >, fra(r)[s(n)), (6)
n=1

and(2) of lengthN, described by the Hamiltonian

H=HY @12+ 10V g H?-EJIVeI?. (1) where|s(n))=a|0)P®|n)?+gn)Y ®|0)?. We can decode
the qubit by applying a controlledoT gate at Bob’s site.

i i (1) 2
The termidentical states thaH'" andH' are the same apart The state thereafter will be

from the label of the Hilbert space on which they act. The

requirement of parallel chains instead of just one is not prob- N1 .

lematic because, in many experimental realizations of spin > faa(m)|sin) + fya(m)| P @ [N, (7)
chains, it is much easier to produce a whole bunch of parallel n=1

uncoupled 15,16 chains than just a single one. Bob can now perform a measurement on his qubit of system

_ We assume that the ground state of each chail®)l8 (2) |f the outcome of this measurement is 1, he can conclude
=[0,...09", ie., a ferromagnetic ground state, with v, e statéy).” has been successfully transferred to him.

H_(i)|o>(i):'_59|0>(i)( and that theﬂgubspace consisting of therpis happens with the probabiliffiy ,(7)[2. If the outcome
single spin excitationgn)=¢7"|0)" (n=1,... N) is in- i g the system is in the state
variant undeH". An arbitrary qubit at the site of system

(i) can be written as 1 V1
- : : —=2 fra(m)sn)), (8
W) = |0+ gin)". 2) Po
The dynamics restricted to this subspace can be expressedviere
terms of the transition amplitudes 5
P(1) =1 —[fy1(7)] 9

= (r|0aH "t gy
frs® = ([P ® is the probability of failure for the first measurement. If the
The aim of our protocol is to transfer quantum information protocol stopped here, and Bob would just assume his state
from the first(“Alice” ) to the Nth (“Bob”) qubit of the first  as the transferred one, then the channel could be described as
chain, an amplitude-damping channel, with exactly the same fidel-
WY — [P 4) ity as the single-chain scheme discusseflih But success
1 N probability is more valuable than fidelity: Bob has gained
To achieve this, we neef \(t) #0 (which is valid for a knowledge about his state and may reject it and ask Alice to
Heisenberg chain, for examgl&]). An advantage of Heisen- retransmit. However, as we will show in Sec. Ill, this is not
berg ferromagnetic chains over a noninteracting qubit arrayecessary.
is that some XXZ anisotropy can make the sta@sand|n)
stable against excitations at finite temperatyted. Even a IIl. ARBITRARILY PERFECT STATE TRANSFER
small anisotropy in the couplingmay suffice(asJ itself can ,
be as high as 2000 K15]). Alternatively, one can prevent _Because Bob's measurement has not revealed anything
thermal excitations by applying an uniform magnetic field to@Pout the input state, the information is still residing in the
the chain. chain. By letting the staté) evolve for another time;, and
The initial state of the system igh\"®|0)@. The first ~aPPIying the controlledioT gate again, Bob has another
step of the protocol is to encode the input qubit in a .;dua|_chance of receiving the input state. T_he state before perform-
rail” [18] by applying aNoT gate on the first qubit of system N9 the second measurement is easily seen to be

(2) controlled by the first qubit of systertl) being zero, 1 N
resulting in a superposition of excitations in both systems, =E {fo1(m+ m) = fun(m) i a(m)}s(n).  (10)
S0)= a0 9@+ HDV (0. (5 VP

This is assumed to take place in a much shorter timescaIHence the probability to receive the qubit at Bob’s site at the

than the system dynamics. Even though a two-qubit gate i§econd measurement is

solid-state systems is difficult, such a gate for charge qubits 1 )

has been reported9]. For the same qubits, Josephson ar- %“N,l(Tz*' 1) = fun(m2) o). (12)

rays have been proposed as single spin chains for quantum

communicatior{ 14]. For this system, both requisites of our If the transfer was still unsuccessful, then this strategy can be
scheme are thus available. In fact, the demand that Alice angpeated over and over. Each time Bob has a probability of
Bob can do measurements and apply gates to their local qdiailed state transfer that can be obtained from the generali-
bits (i.e., the ends of the chainwill be naturally fulfilled in ~ zation of Eq.(10) to an arbitrary number of iterations. The
practice since we are suggesting a scheme to transfer infojeint probability that Bob fails to receive the state all the time
mation between quantum computers. is just the product of these probabilities. We denote the joint
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2 0.001 NS5 : - T 1 It is then reflected and travels back and forth along the chain.
§ N=100 x o . “ag Since the wave packet is also dispersing, it starts interfering
© 1e-04 - |N= 50 x ° . with its tail, and after a couple of reflections the dynamic is
; Ne ?8 . °6 .. becoming quite random. This effect becomes even stronger
5 1e05} = 5o Ty because of Bob’s measurements, which change the dynamics
‘ oo, by projecting away parts of the wave packet. However,,2
1e-060 5 10 T 20 o5 (the time it takes for a wave packet to travel twice along the

chain remains a good estimate of the time scale in which

significant probability amplitude peaks at Bob’s site occur,
FIG. 2. Semilogarithmic plot of the joint probability of failure and Eqg.(14) remains a good estimate of the amplitude of

P(l) as a function of the number of measurementShown are these peaks. Therefore, the joint probability of failure is ex-

Heisenberg spir%—chains with different length®l. The times be- pected to scale as

tween measurements have been optimized numerically. P() ~ (1- 1.35“_2/3)| (15)

Number of measurements |

probability of failure for having doné unsuccessful mea- in a time of the order of

surements a®(l). This probability depends on the time in- NG|

tervals 7, between thei-1)th andith measurement, and we t(l) = 27mad = ——. (16)
are interested in the case where thare chosen such that J

the transfer is fast. It is possible to write a simple algorithms \we combine Egs(15) and(16) and solve for the timé(P)
that compute®(1) for any transition amplitudé, «(t). Figure [ aeded to reach a certain probability of faillRewe get
2 shows some results for a Heisenberg #m:hain with o3

equal nearest-neighbor couplings, {(P) ~ 0.51N In Pl 17

HO=-33 61 - ol (12 _ _ _ _
We compare this rough estimate with exact numerical results
This model is exactly solvable, and the transition amplitudein Fig. 3. The best fit is given by
is given explicitly in[1]. However, the results are valid for a 53
wide class of anisotropies and in the presence of a uniform {(P) = 0.3%N Inp|. (18)
magnetic field, too.

An interesting question is whether the joint probability of
failure can be made arbitrary small with a large number o
measurements. Sind&(l) is a bounded, monotonic decreas-
ing series, it must have a limit. In fact, the timgscan be

fWe can conclude that the transmission time for arbitrarily
perfect transfer is scaling not much worse with the lergth
of the chains than the single spin-chain schemes. Despite the

chosen such that the transfer becomes arbitrarily perfech?g"’mt.hm.'C erte_ndence oR, the time it takes to ach|evg
igh fidelity is still reasonable. For example, a system with

This has been proven {i20], where a generalization of the N=100 andJ=20 Kx kg will take ~1.3 ns to achieve a fi-

e wade clss of Hanilonane ety o 88%. I many systems,decoference s compltly
the spin channel will not damp the initial amplitude, but only hegligible within this time scale. For example, some Joseph-

delayit son junction system§21] have a decoherence time ®f,
' ~500 ns, while trapped ions have even larger decoherence
times.
IV. ESTIMATION OF THE TIME SCALE OF THE
TRANSFER

. ST . V. DECOHERENCE AND IMPERFECTIONS
The achievable fidelity is an important but not the only

criteria of a state transfer protocol. In this section, we give an If the coupling between the spirkis very small or the
heuristic approach to estimate the time that it needs tehains are very long, the transmission time may no longer be
achieve a certain fidelity in a Heisenberg spin chain. Thenegligible with respect to the decoherence timee Sec. IV.
comparison to numeric examples is confirming this ap-tis interesting to note that the dual-rail encoding then offers
proach. some significant general advantages over single-chain
Let us first describe the dynamic of the chain in a veryschemes. Since we are suggesting a system-independent
gualitative way. Once Alice has initialized the system, anscheme, we will not study the effects of specific environ-
excitation wave packet will travel along the chain. As shownments on our protocol, but just qualitatively point out its
in [1], it will reach Bob at a time of the order of general advantages.
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At least theoretically, it is always possible to cool theif no jump occurs, and the effect of a jump is given by the
system down or to apply a strong magnetic field such that theperator
environment is not causing further excitations. Then, there
are two remaining types of quantum noise that will occur: 2 S, (21
phase noise and amplitude damping. Phase noise is a serious n
problem and arises heanly when an environment can dis-
tinguish between spin flips on the first chain and spin flips orvhich will put the system in the ground state. As this can be
the second chain. It is therefore important that the environsolved analytically, we do not go into numerics. The state of
ment cannot resolve their difference. In this case, the envithe system before the first measurement conditioned on no
ronment will only couple with the totat component jump is given by

N
Snz o+ o2 19 €2 fra(0Is), (22)

_ _ N _ and this happens with the probability ef?t (the norm of
of the spins of both chains at each positioriThis has been  the above stajelf a jump occurs, the system will be in the
discussed for spin-boson models[22,23 but should also ground state

hold for spin environments as long as the chains are close
enough. The qubit is encoded in a decoherence-free subspace V1-e20)D g |0)@. (23)
[24], and the scheme is fully robust to phase noise. Even
though this may not be true for all implementations of dual-The density matrix at the timeis given by a mixture of22)
rail encoding, it is worthwhile noting it because such an op-zng (23). In case of(23), the quantum information is com-
portunity does not existt all for single-chain schemes, pletely lost and Bob's error check qubit will never show
where the coherence between two states with differentzotal gy ccess. If Bob, however, measures a success, it is clear that
component of the spin has to be preserved. Having showRg jump has occurred and he has the perfectly transferred
one way of avoiding phase noise, at least in some systemstate. Therefore the protocaimains conclusivebut the suc-
we now proceed to amplitude damping. cess probability is lowered by 2. This result is still valid
The evolution of the system in presence of amplitudefor multiple measurements, which leave the st&@® unal-
damping of a ratd” can be easily derived using a quantum- tered. The probability of a successful transfer at each particu-
jump appl’oaCfﬁ25]. Like for phase noise, it is necessary that lar measuremedtwill decrease b)e_zrt(l), Wheret(|) is the
the environment acts symmetrically on the chains. The dytime of the measurement. After a certain number of measure-
namics is then given by an effective nonunitary Hamiltonianments, thégoint probability of failure will no longer decrease.
Thus the transfer will no longer barbitrarily perfect, but
can still reach a very high fidelity. Some numerical examples
Heﬁ:H+iF2 (S;n+ 212 (20) of the minimal joint probability of failure that can be
n achieved,
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P, = lim P(l) (24

| —o0

o)

~ H (1 _ 1_33\|—2/3e—(2FNﬁ/J)I) (25)
1=1

are given in Fig. 4. Fod/I"'=50 K ns nearly perfect transfer
is still possible for chains up to a length = 40. In a single
Heisenberg chain using the scheme describéd]irthis sys-

phase noise, where the environment can be split into com-
mon and seperate parts. If the chains are close, the common
part will dominate and the seperate parts can be neglected for
short times.

Finally, let us mention another advantage of our scheme.
In single-chain schemes, Bob has to extract the state pre-
cisely at an optimal time to obtain it with high fidelity. Our
scheme is robust to the errors in this. Even if Bob measures
to extract his state at an incorrgctonoptima) time, he will

tem could only achieve a fidelity of 0.23 when transferringreceive the perfect state conditional on his measurement out-

an exitation.

come. If he is unsuccessful, then he simply tries again, with-

Even if the amplitude damping is not symmetric, its effectout having Alice to resend. Also, because of the conclusive
is weaker than in single-spin schemes. This is because it carature of the protocol, once Bob has received the state, the
be split into a symmetric and asymmetric part. The symmetrest of the channel is automatically in the ground state and
ric part can be overcome with the above strategies. For exdoes not need to be reset for the next tran&dsropposed to

ample, if the amplitude damping on the chaind’isandT’,
with T’y >T5, the statg22) will be

N

> faa({ae2on) + ge 1 n0)} (26)
n=1

N
=Y foaOfalon) + g0} (27)

n=1

N
~e T2 f,4(0)[s(n)) (28)
n=1

provided thatt<(I';-T',)™. Using a chain of lengtiN=20
with J=20 KX kg andI';*=4 ns,I';'=4.2 ns we would have
to fulfill t<164 ns. We could perform=10 measurements
[cf. Eq.(16)] without deviating too much from the sta{28).

many of the existing schem¢s,2,7,9).

VI. CONCLUSIONS

In conclusion, we have presented a simple and efficient
scheme for conclusive and arbitrarily perfect quantum-state
transfer. To achieve this, two parallel spin chafimslividu-
ally amplitude-damping channglfave been used as one
amplitude-delaying channélVe have shown that our scheme
is more robust to decoherence and imperfect timing than the
single-chain schemes. Even though the encoding is simple, it
has made spin-chain-based communicatibagh realistic
and perfect at the same time.

Our strategy can be generalized to graphs interconnecting
many different users and to many other systems. As an ex-
ample, we will now briefly mention how our scheme can be
adapted to a&ingle chain of qutrits. The correct generaliza-

In this time, we can use our protocol in the normal way. Thetion of the exchange interaction for a chain of three-level
resulting success probability given by the finite version ofquantum system is a $8) chain[26]. For example, a chain

Eq. (25 would be 75%. A similar reasoning is valid for

of atoms with three internal level$;-1), |0), and|1) in an
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optical lattice, where the atoms can hop from site to site buground states of atoms ds1), |0), and |1) to completely
more than one atom cannot occupy a single site, will form aavoid amplitude damping.

SU(3) chain. If we reIabeI our parallel spin chain states

00y by |0y, Q. [MmP0@ by

01, ..., 4, ..., Q) and |0>(l|n>(2) by [01,...,=L;,...,Qu, ACKNOWLEDGMENT

then our protocol can be mapped to a smgle chain of

qutritsinteracting via S(B) exchange. Though the state isno  This work was supported by the UK Engineering and
longer encoded in a decoherence free-subspace as before,Rhysical Sciences Research Council Grant No. GR/
an optical lattice implementation, one can use three hyperfin€62796/01 and the QIPIRC.
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