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I. INTRODUCTION

The uncontrollable interaction of an open quantum system
with its environment leads to complete loss of the informa-
tion initially stored in its quantum state. This phenomenon is
commonly referred to as “loss of coherence.” The question
of how it is possible to avoid the negative influence of this
process is one of the most interesting issues in modern quan-
tum mechanics and concerns many different fields of phys-
ics, in particular the domains of quantum information and
computation.

In the context of quantum information, the effects of in-
teractions with the environment, known as “quantum errors,”
may render information storage and processing unreliable
f1,2g. Since Shor’s demonstration that error-correcting
schemes exist in quantum computationf3g, a general frame-
work of error correction has been built upon the formalism
of quantum operations. The main contributions concern
quantum codesf4g and, particularly, the class of stabilizer
codesf5,6g; other strategies developed suggest the use of
“noiseless quantum codes” or “decoherence-free subspaces”
f7–9g. All these methods usually demand that errors act in-
dependently on different qubitssthe independent error
modeld and make use of the symmetry properties associated
with these requirements. This implies that the set of errors to
be corrected hence is restricted to a special subgroup, called
the Clifford group. In this paper, we present a protection
method which draws its inspiration from the ideas of stan-
dard error correction and the quantum Zeno effect, and re-
quires no specific symmetry of the errors. Moreover, we sug-
gest its physical implementation in an arbitrary quantum
system and show how it works for the example of a rubidium
isotope.

The phenomenon known as the quantum Zeno effect
sQZEd takes place in a system which is subject to frequent
measurements projecting it onto itssnecessarily knownd ini-
tial state: if the time interval between two projections is
small enough, the evolution of the system is nearly “frozen.”
This effect and its inversesthe anti-Zeno effectd have been

widely investigated theoreticallyf10–13g as well as experi-
mentallyf14,15g. Generalizations have been proposed which
employ incomplete measurementsf16g: in this setting, the
Hilbert space is split into “Zeno subspaces”sdegenerate mul-
tidimensional eigenspaces of the measured observabled, and
the state vector of the system is compelled by frequent mea-
surements of the physical observable to remain in its initial
Zeno subspace. The dynamics of the system in the Zeno
subspaces has also been studied in different specific situa-
tions f17g.

Employing these ideas, enriched by standard techniques
from coding theoryf18g, we have previously proposed an
information protection schemef19g in Zanardi’s spiritf20g,
except that we do not make any symmetry assumption on the
unitary errors we consider. We form a compound systemS
which comprises the information systemI to be protected
and an auxiliary systemA scalled an ancillad. We then apply
a controlled unitary operationĈ sthe coding matrixd which
encodes the information, initially stored inI, in an entangled
state ofI and A. After a short time interval, during which
infinitesimal errors may have occurred, we apply the unitary
transformationĈ−1 sthe inverse to the previous stepd, which
decodes information. Finally, we measure the ancilla to get
rid of the infinitesimal changes that may have been caused
by errors. Whereas in classical error-correction theory, the
ancilla contains information about the errors allowing them
to be corrected, in our QZE-based approach, the quantum
state of the ancilla resulting from an elementaryscoding-
errors-decodingd sequence is close to its initial state, so that
the measurement of the ancilla brings it back to its initial
state with a probability of nearly 1. The key point of our
method is to entangle the initial state of the ancilla with the
state of the system in such a way that the detection of the
ancilla in its initial state implies that the system is also in its
initial state. This is achieved through the coding procedure
which has to ensure that after the exposition of the system to
the action of errors, the initial state of the ancilla remains
entangled only with the initial state of the system, whereas
any other entanglement remains small during the time inter-
val between consecutive measurements.
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The coding procedure involves a rather complex unitary
transformation in the Hilbert space of the compound system:
performing such coding operations is a nontrivial quantum
control problem in itself. However, one can achieve this ob-
jective by adapting the idea of nonholonomic control which
we have previously presentedf21g. Specific algorithms
which allow us to determine and physically implement the

coding matrixĈ have been constructed.
In this paper, we provide a comprehensive presentation of

our theoretical scheme, including algorithmic aspects which
were not dealt with inf19g. Moreover, we propose a “demon-
strative” application of our technique to a physical system:
more precisely, we show how our method can protect one
qubit of information stored in the spin variable of the quan-
tum state of a single rubidium atom, the orbital variable play-
ing the role of the ancilla, against a given set of error induc-
ing Hamiltonians. Here we describe a realistic experimental
setting which achieves the different steps of our scheme
through the application of a sequence of laser pulses and
culminates in a measurement involving spontaneous emis-
sion. When dealing with ensembles of atoms, as usually done
in current cold atom experiments, experimental drawbacks
arise due to dipolar interactions which forbid the actual
implementation of our application. Yet even though not com-
pletely satisfactory from an experimental point of view, the
example we propose here shows the general scope of our
method as well as its physical operationality.

The paper is organized as follows. In Sec. II, we present a
multidimensional generalization of the QZE and its applica-
tion to the protection of information contained in compound
systems. In Sec. III, we present the algorithms which enable
us to calculate the code space and physically implement the
coding matrix through the nonholonomic control technique.
In Sec. IV, we focus on the application of our method to a
rubidium isotope. In the Appendix, we present the explicit
derivation of the code subspace.

II. MULTIDIMENSIONAL ZENO EFFECT AND
COHERENCE PROTECTION

We start this section by the geometric presentation of a
multidimensional QZE which allows us to protect an arbi-
trary subspace of the Hilbert space against the action of a set
of given interaction Hamiltonians. In the second part of this
section, we take advantage of this phenomenon to protect an
information-carrying subsystem of a compound quantum
system from the influence of some uncontrolled error-
inducing external fields.

Consider a quantum systemS, whoseN-dimensional Hil-
bert space is denoted byH and whose time-dependent
Hamiltonian has the form

Ĥstd = o
m=1

M

fmstdÊm, s1d

wherehÊmjm=1,. . .,M areM given independent Hermitian ma-
trices onH andhfmstdjm=1,. . .,M areM unknown functions of

time. The HamiltonianĤstd accounts for the errors we want

to get rid of. Note that the unperturbed part of the Hamil-
tonians1d is assumed to be zerosor proportional to the iden-
tity so that one can set it to zerod. The standard QZEf10–13g
implies that we can nearly “freeze” the evolution of the sys-
tem by measuring it frequently enough in itssknownd initial
state; in other words, this effect allows us to protect the
one-dimensional subspace spanned by the initial state of the
system from the influence of the error-inducing Hamiltonian
s1d. In what follows, we generalize this effect so as to protect

an arbitrary multidimensional subspaceC from Ĥstd.
Any vector ucl of C evolves according to the operator

Ûst,t0d = THexpF− iE
t0

t

ĤstddtGJ ,

whereT denotes time ordering and where we set"=1. For
the QZE to hold, we shall only consider evolution in short
time periods, whose durationT is so short that the corre-
sponding action of theM components of the Hamiltonians1d
is small—i.e.,uÊmet

t+Tfmstddtu!1. We can thus expand

Ûst + T,td = Ûinf . Î − i o
m=1

M SE
t

t+T

fmstddtDÊm. s2d

This implies that after a Zeno intervalT, the initial stateucl
is transformed into ucel= ucl+ udcel where udcel
.−iom=1

M «mÊmucl with «m=sefmstddtd. Note that, strictly

speaking, the operatorÛinf introduced in Eq.s2d is not uni-
tary: nevertheless, the nonunitary part, due to the truncation
of the time development of the evolution operator, is of sec-
ond order in time and is thus negligible in the Zeno limit
sT→0d. Moreover, as we exclusively consider finite-
dimensional systems interacting with classical external
fields, the approximation, Eq.s2d, holds, without raising any
mathematical problem. But it is worth emphasizing that this
is no longer the case when dealing with systems of infinitely
large Hilbert spacesfor example, seef22gd.

Let us assume that we are physically able to perform a
measurement-induced projection ontoC in the systemS ssee
below the discussion of such projections for compound sys-
tems comprising an information subsystem and an ancillad.
Now if we just follow the standard QZE procedure and
merely project the state vectorucel, resulting from the infini-
tesimal evolution of the initial stateucl, ontoC, we obtain a
vector ucpl, which sa priorid differs from ucl fsee Fig. 1sadg.
This is due to the fact that usually the operatorshÊmjm=1,. . .,M

do not act orthogonally onC, which means that the vectors

Êmucl and thus the increment vectorudcel itself are not or-
thogonal toC. It is a well-known manifestation of the stan-
dard Zeno effect: the system is compelled to remain in a
“Zeno subspace”swhich corresponds here toCd in which it
presents a remaining dynamics called “Zeno dynamics”f17g;
in our case, this dynamics is unknown and thus threatens the
information stored inC. Therefore, we see that the standard
Zeno strategy does not suffice to protect a multidimensional
subspace: we have to adapt it using some ideas of coding
theory.
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To this end, we assume a unitary matrixĈ acting onH,
which we call the coding matrix, such that the Hermitian

operatorshÊmjm=1,. . .,M act orthogonally on the subspaceC̃
=ĈC, which we call the code space. Let us denote byI ù1
the dimension ofC and byhugilji=1,. . .,I one of its orthonormal

bases;hug̃il=Ĉugilji=1,. . .,I will denote one of the orthonormal

bases ofC̃, the state vectorsug̃il being called the codewords.

For any pairsug̃sl , ug̃tld of codewords and any operatorÊm

P hÊmjm=1,. . .,M we have, by the definitions ofĈ and C̃,

kg̃tug̃sl = dst sorthonormality conditiond, s3d

kg̃tuÊmug̃sl = 0 sorthogonality of the errorsd. s4d

Equivalently, for any pairsucl , uxld of vectors ofC and for

any operatorÊmP hÊmjm=1,. . .,M,

kxuĈ†ÊmĈucl = 0. s5d

In particular, for any pairsugsl , ugtld of basis vectors ofC and

for any operatorÊmP hÊmjm=1,. . .,M,

kgtuĈ†ÊmĈugsl = 0. s6d

If we apply the coding matrixĈ to the initial state vectorucl,
before exposing it to the action of the Hamiltonians1d, we

obtain the new vectoruc̃l=ĈuclP C̃ fFigs. 1sb1d and 1sb2dg
which is transformed after a Zeno intervalT into uc̃el

=Ûinfuc̃l= uc̃l+ udc̃el, where udc̃el.−iom=1
M «mÊmuc̃l

=−iom=1
M «mÊmĈucl fFig. 1sb3dg. Decoding uc̃el yields the

vector uce8l=Ĉ−1uc̃el= ucl+ udce8l where udce8l.−iom=1
M

3«mĈ†ÊmĈucl. From Eq. s5d it can be seen that for any

vector uxlPC, kx udce8l=−iom=1
M «mkxuĈ†ÊmĈucl=0 which

means that udce8l is orthogonal to C fFig. 1sb4dg. A
measurement-induced projection ontoC finally recovers the
initial vector ucl with a probability very close to 1sthe error
probability is proportional toT2d. If the scoding-decoding-
projectiond sequence is frequently repeated, any vectorucl of
the subspaceC can thus be protected from the Hamiltonian
s1d for as long as needed. We stress that the role of projective
measurements consists both in confining the system inC sas
in the standard quantum Zeno effectd and in clearing out the
erroneous component which has been made orthogonal toC
through coding and decoding.

Let us note that a more general version of conditionss4d
can be considered. Indeed, if for any pair of codewords

sug̃sl , ug̃tld of C̃ and any error HamiltonianÊmP hÊmj,

kg̃tuÊmug̃sl = dtsjm,

where dts is the Kronecker symbol andjm a real number
depending only on the numberm of the error Hamiltonian

Êm, the projection ontoC=Spanhugil , i =1, . . . ,Ij of the state

vector uce8l= ucl− iom=1
M «mÊmucl, obtained after ascoding-

decodingd sequence, yields

P̂Cuce8l = ucl − i o
m=1

M

«mP̂CÊmucl,

whereP̂C=fot=1
I ugtlkgtug; if we denote byucl=os=1

I asugsl the
decomposition of the initial information state vector,

P̂CÊmucl has the form

P̂CÊmucl = o
s,t=1

I

asugtlkgtuĈ†ÊmĈugsl

= jmo
s,t=1

I

asdtsugtl = jmucl,

which finally leads toP̂Cuce8l=s1−iom=1
M «mjmducl. In other

words, the errorsÊm just introduce a global phase factor in
front of the initial information state vector, but leaves its
coherence intact. Obviously, the correction conditionss4d are
obtained as a particular case of the above conditions, setting
jm=0 for all m. Yet, though less general, they will be em-
ployed in the rest of the paper for the sake of simplicity.

The multidimensional generalization of the QZE we have
just described allows us to protect any subspaceC of a Hil-
bert spaceH against Hamiltonians of the forms1d provided
the projection ontoC is physically achievable and the coding

matrix Ĉ exists. This result is very useful in the context of
information protection as we will show in the following
paragraphs.

FIG. 1. Multidimensional QZE:sad a simple projection fails to
recover the initial vector,sbd the sequence coding-decoding-
projection protects the initial vector.
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Consider an information systemI of Hilbert spaceHI and
dimensionalityI. This system is subjected to a set ofM error-
inducing HamiltonianshÊmjm=1,. . .,M which, for instance, rep-
resent interactions of the system withM uncontrolled exter-
nal fields fmstd: we want to get rid of this external influence
which is likely to result in the loss of the information stored
in the initial-state vectorucIl=oi=1

I ciunil, where hunilji=1,. . .,I

denotes an orthonormal basis ofHI. To this end, we will use
the multidimensional Zeno effect. As the multidimensional
QZE can only protect a subspace of the whole Hilbert space,
we first have to add anA-dimensional auxiliary systemA
scalled ancillad to our systemI, so that the information is
transferred fromHI into an I-dimensional subspaceC of the
sN= I 3Ad-dimensional Hilbert spaceH=HI ^ HA of the
compound systemS=I ^ A slet us note that this ancilla add-
ing procedure is quite standard in quantum error correction
f1g and corresponds to the redundancy used in classical cod-
ing methodsd. Furthermore, we shall suppose that all the state
vectors of the different Hilbert spacesHI, HA, and henceH
are degenerate in energy so that the unperturbed partĤ0 of
the Hamiltonian can be set to zero as in the first part of this
section: the subspaceC and the information it carries can
thus be protected through the multidimensional QZEsin Sec.
IV, in the example of Rb, we shall see that the multidimen-

sional QZE may also be used even thoughĤ0 is not zero,

provided Ĥ0 and the errors have some convenient proper-
tiesd. Note thatA and I need not be “physically separate”
systems, but only have to possess independent Hilbert spaces
HA and HI. For example, in Sec. IV, we shall consider the
rubidium atom as the compound of two independent sub-
systems: namely, its spinswhich plays the role ofId and
orbital swhich plays the role ofAd parts. Doing so, we shall
use the terms “factorized” and “entangled” in a generalized
manner to designate states obtained as a direct product of the
spin and orbital parts, and linear combinations of such states,
respectively.

Let us now return to our problem and first consider the
simple case in which the ancilla is initially in the pure state
ual. The information previously carried byucIlPHI is then
transferred into the factorized stateucl= ucIl ^ ual
=oi=1

I ciunil ^ ual=oi=1
I ciugil which belongs to the tensor

product subspace C=HI ^ Spanfualg=Spanfhugil= unil
^ ualji=1,. . .,Ig. In other words, the initial density matrix of the
compound systemS is r̂=sucIlkcIud ^ sualkaud. After coding

sthrough the matrixĈd it reads r̂̃=Ĉ†r̂Ĉ; at the end of the

action of the errors it is transformed intor̂̃e=Ûinf
† Ĉ†r̂ĈÛinf;

finally it takes the formr̂e=ĈÛinf
† Ĉ†r̂ĈÛinfĈ

† after decoding.
In this setting, the projection ontoC can be simply achieved
by measuring the ancilla in its initial stateual. As T is very
short, the state of the ancilla evolves just a little within a
Zeno interval, such that the probability of detecting it in its
initial state ual and thus of projecting the state of the com-
pound system ontoC is very close to 1. After projection, we
trace out the ancilla to obtain the final reduced density matrix

r̂I8=kauĈÛinf
† Ĉ†r̂ĈÛinfĈ

†ual for the information systemI; in
the same way, one can calculate the initial reduced density
matrix is r̂I = ucIlkcIu. The variation dr̂I = r̂I8− r̂I of the

information-space density matrix during the whole process
can be expressed as the commutator

dr̂I = − iFo
m=1

M E fmstddtkauĈ†ÊmĈual,r̂IG ,

from which we infer thatr̂I satisfies the equation

i
dr̂I

dt
= fĥe,r̂Ig,

ĥe = o
m=1

M

fmkauĈ†ÊmĈual,

whereĥe is an effective Hamiltonian which is determined by
the error-inducing Hamiltonians transformed by the coding
and decoding and projected onto the initial state of the an-

cilla. From Eq. s5d one can infer thatĥe=0 and hencer̂I
remains constant in time: as long as we repeat the coding-
decoding-ancilla resetting sequence, the information initially
stored inI is protected.

It is not always feasible to directly measure the ancilla
independently from the information system; in other words,
it is sometimes impossible to perform a projection onto dis-
entangled subspaces ofH of the form HI ^ Spanfualg: in
some cases, as for the Rb atomsSec. IVd, one can only
project onto entangled subspaces of the total Hilbert space
H. In such a case the information initially stored in the vec-
tor ucIl=oi=1

I ciunilPHI is transferred into an entangled state
of I and A of the form ucl=oi=1

I ciugil where theI vectors
ugil si =1, . . . ,Id, which form an orthonormal basis of the
information-carrying subspaceC, are not factorized as earlier
but are in general entangled states. Nevertheless, the same
method as before can be used in that case to protect infor-
mation, albeit in a different subspaceC.

To conclude this section, let us make a few remarks about
our method. We first emphasize that our technique, though
inspired by quantum error-correcting codesf1g, is very dif-
ferent from them: indeed, in those schemes, the information
is encoded in such a way that it can be corrected from the
action of a set of errors through a syndrome measurement,
followed by a sconditionedd recovery operation, depending
on the result of the measurement; on the other hand, in our
technique, information is continuously protected by the fre-
quent repetition of a three-step cyclescoding-decoding-
projective measurementd, in which the projective measure-
ment does not give any indication about which error
occurred, but simply clears out the erroneous component of
the state vector, which has been made orthogonal to the ini-
tial information-carrying subspace through coding and de-
coding. Let us now return to conditionss3d ands4d imposed
on the codewordshug̃il , i =1, . . . ,Ij and make two points
about them.

sAd We can establish a useful relation between the dimen-
sion of the ancilla and the number of correctable error
Hamiltonians. The set of theI codewords can be seen as a
collection of 2I 3N=2I2A real numbers on which 2I2

+2MI2=2I2s1+Md constraints, directly derived from Eqs.
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s3d and s4d, are imposed. The number of free parameters
must be larger than the number of constraints; hence, we
necessarily have 2I2Aù2I2s1+Md, which satisfies

A − 1 ù M . s7d

This condition gives an upper bound on the number of inde-
pendent error-inducing Hamiltonians that our method can
correct simultaneously and is called the “Hamming bound.”

sBd We may compare our correctability conditionss4d
with the more general conditionssseef1g, p. 436d of standard
quantum error correction:

∀sug̃sl,ug̃tld P C̃2, ∀ sÊk,Êld P hÊ jshÊmjdj,

kg̃tuÊk
†Êlug̃sl = aklkg̃tug̃sl, s8d

which ensure the existence of a code space that is completely

protected against the error-inducing HamiltoniansÊm. Here

akl are complex numbers, and the sethÊmj of Hermitian op-

eratorsÊm generates a groupGshÊmjd of all possible error-

induced evolutionss2d. By hÊ jshÊmjdj we denote a complete
basis set of operators which spans the space of evolution

operatorsÛ and allows one to represent anyÛ as a linear

combination of the basis operatorsÊ j. The variety of all

linear combinations ofÊ j includes not only allÊm but also
many other operators given by commutators of all orders in

Êm entering the expansion ofÛ for long times. The condition
s8d is therefore much more restrictive than Eq.s4d. More-

over, even for just two generic matricesÊm, the basishÊ jj
spans the entire Hilbert spaceH, yielding C̃=x. Only if the

set hÊmj belongs to an extraspecial algebra restricting the

error evolution operatorsÛ to a subgroupGshÊmjd,GUsHd
of the full unitary group inH may a nontrivial code spaceC̃
exist. The Zeno effect is the only way to suppress loss of
coherence if it is not the case.

III. CODE SPACE AND THE CODING MATRIX

It is sometimes possible to build the code spaceC̃ explic-
itly from physical considerations: The Appendix gives an
example of a situation in which the code basis can be found
directly. In general, however, we need an algorithm to calcu-
late the code basishug̃ilji=1,. . .,I or, equivalently, the coding

matrix Ĉ. We start this section by describing this algorithm.
Then, in a second part, we show that the nonholonomic con-
trol techniquef21g can be employed to implement the coding
matrix physically. We also provide an algorithm which
achieves the appropriate control.

Let us first make a remark which will be useful in what
follows. Consider a vectoruCl of some Hilbert space and a

matrix Ê on this space. From the vectoruCl we want to

calculate a vectoruC̃l such thatkC̃uÊuC̃l=0. If kCuÊuCl=0,

then uCl= uC̃l and the function

f C̃sld = iuC̃l + lÊuC̃li2,

depending on thec numberl, is minimal for l=0: indeed,

iuC̃l + lÊuC̃li2 = kC̃uC̃l + lkC̃uÊuC̃l + l*kC̃uÊ†uC̃l

+ ulu2kC̃uÊ†ÊuC̃l = 1 + ulu2kC̃uÊ†ÊuC̃l,

and askC̃uÊ†ÊuC̃lù0, f C̃sld is minimal for ulu=0—that is,

l=0. But if kCuÊuClÞ0, we can apply the following itera-
tive method: we minimizefCsld with respect tol, and then

we setuC8l= uCl+sl /2dÊuCl and takeuC8l /ÎkC8 uC8l as our
new uCl; we repeat this sequence as long as needed:uCl
finally tends touC̃l, such thatkC̃uÊuC̃l=0.

Let us now return to our problem and show how the pre-
vious remark can help us. What we want is to findI vectors
ug̃il which meet the conditionss3d and s4d; equivalently, we
can say that we look for an orthonormal basis in which all

the matricesÊk have theirI 3 I upper left blocks equal to
zero. To solve this problem, one can first be tempted to use
standard techniques of linear algebra, in particular matrix
diagonalization: however, it appears that these methods do

not work, except in the trivial case when all the matricesÊk
have a common kernel, which is much more than what con-
ditions s3d and s4d require. So we propose to transform our
initial problem in such a way that it can be dealt with by the
iterative algorithm presented in the previous paragraph. Let
us combine theI vectorsug̃il into a sN3 Id “supervector”

uC̃l = 1ug̃1l
]

ug̃Il
2 .

Then let us build

E = S IsI − 1d
2

+ M
IsI + 1d

2
D

different fsN3 Id3 sN3 Idg-dimensional supermatricesÊk in
the following way: we consider them as made ofI2 blocks of
dimension N3N and we successively fill each of these

blocks with the different HamiltoniansÊm or the identity

matrix Î or 0. To be more explicit, the firstIsI −1d /2 matrices
are built by simply placing theN3N identity matrix in each
of the IsI −1d /2 blocks situated above the diagonal. In the

last MIsI +1d /2 ones, theM operatorsÊm are successively
placed in each of theIsI +1d /2 blocks on and above the
diagonal. One can thus reformulate the conditionss3d as fol-
lows: for 1økø IsI −1d /2,

kC̃uÊkuC̃l = 0.

Note that this form does not take the normalization condition
into account, which will be imposed differently. Similarly,
the conditionss4d are translated into the following form: for
IsI −1d /2+1økø IsI −1d /2+MIsI +1d /2,
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kC̃uÊkuC̃l = 0.

Our initial multivectorial problem given by Eqs.s3d and s4d
has thus been transformed into a simpler one which can be
handled by the same kind of iterative algorithm as in our
preliminary remark: we just have to find a

sN3 Id-dimensional supervectoruC̃l such that for 1øk
ø IsI −1d /2+MIsI +1d /2,

kC̃uÊkuC̃l = 0.

Let us now review our iterative algorithm in more detail.
First we randomly pick a supervectoruC0l which will be the
starting point of the first step: we normalize this vector by
imposing to each of itsI components to have norm=1/I. If
one of the components ofuC0l is non-normalizable—that is,
equals zero—we pick up a new random supervectoruC0l as a
starting point.

Then, as in our preliminary remark, we minimize the
function

FC0
sl1

s0d,l2
s0d, . . . ,lE

s0dd = o
k=1

E

iuC0l + lk
s0dÊkuC0li2,

with respect to theE c numberslk
s0d: actually, we separate

the real and imaginary parts oflk
s0d=ak

s0d+ ibk
s0d and calculate

the appropriateak
s0d’s and bk

s0d’s by solving the set of 2E
equations

]FC0

]ak
s0d = 0,

]FC0

]bk
s0d = 0,

which can be translated into the linear system

K̂suC0ld · LW s0d = DW suC0ld,

where K̂suC0ld is a s2E32Ed-dimensional real matrix de-
fined by

K̂ijsuC0ld =5
ReskC0uÊi

†Ê juC0ld for 1 ø i ø E and 1ø j ø E,

− ImskC0uÊi
†Ê j−EuC0ld for 1 ø i ø E and 1 +E ø j ø 2E,

ImskC0uÊi−E
† Ê juC0ld for 1 + E ø i ø 2E and 1ø j ø E,

ReskC0uÊi−E
† Ê j−EuC0ld for 1 + E ø i ø 2E and 1 +E ø j ø 2E,

6
DW suC0ld is a 2E-dimensional real vector defined by

DW suC0ld =H − ReskC0uÊiuC0ld for 1 ø i ø E,

ImskC0uÊi−EuC0ld for E + 1 ø i ø 2E,
J

and LW s0d is a 2E-dimensional real vector containing the pa-
rametersak

s0d’s andbk
s0d’s:

LW s0d =1
a1

s0d

]

aE
s0d

b1
s0d

]

bE
s0d
2 .

Once thec numberslk
s0d=sak

s0d+ ibk
s0dd’s have been found, we

calculate uDC0l=oklk
s0dÊkuC0l and uC08l= uC0l+ 1

2uDC0l. We
normalizeuC08l by requiring each of itsI components to have
the norm=1/I and take the result of this operation as our
new starting pointuC1l. If one of the components ofuC08l is
non-normalizable—that is, equals zero—we pick up a new
random supervectoruC0l as a starting point.

We repeat this sequence of operations as long as needed.
Thus, at themth step, we minimize the function

FCm−1
sl1

sm−1d,l2
sm−1d, . . . ,lE

sm−1dd

= o
k=1

E

iuCm−1l + lk
sm−1dÊkuCm−1li2

by solving the real linear system

K̂suCm−1ld . LW sm−1d = DW suCm−1ld.

This yields thelk
sm−1d’s anduDCm−1l from which we calculate

uCm−18 l= uCm−1l+ 1
2uDCm−1l. If possible, we normalizeuCm−18 l

and take the resulting vector as the starting pointuCml of the
sm+1dth step; otherwise, we pick up a new vectoruC0l as a

starting point. Finally uCml tends to uC̃l such that ∀k

P f1,IsI −1d /2g ,kC̃uÊkuC̃l=0.
This algorithm was numerically implemented and allowed

us to exhibit new codes: we protected 2 qubits among 7
against the action of 31 errorss21 individual errors+10 col-
lective errorsd and 4 qubits among 9 against the action of 27
individual errorsf19g.
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The coding matrixĈ which allows us to transfer the in-

formation from the spaceC to the code spaceC̃ is a rather
complex unitary operator on the Hilbert space of the com-
pound systemS=I ^ A. We have just shown how to calcu-
late the codewords, which actually form the firstI columns

of Ĉ, but one can wonder how to implement it physically.
The question of the physical feasibility of the coding matrix

Ĉ can be solved by the nonholonomic control technique.
The nonholonomic control technique has been suggested

by our team as a means of controlling the evolution of quan-
tum systemsf21g. Basically, it consists in alternately apply-

ing two “well-chosen” perturbationsV̂a andV̂b to the system
S we want to control during pulses with timingsti. The total

Hamiltonian Ĥ=Ĥ0+V̂ thus has a pulsed shape and alter-

nately takes the two valuesĤa; Ĥ0+V̂a sduring odd-

numbered pulsesd and Ĥb; Ĥ0+V̂b seven-numbered pulsesd.
The timings ti play the role of free parameters one has to
adjust in order to perform the desired control operation. To

be more explicit, the perturbationsV̂a andV̂b must be chosen

so that the commutators of all orders ofĤa; Ĥ0+V̂a and

Ĥb; Ĥ0+V̂b span the whole space of Hermitian matrices act-
ing on the system we want to control: this is called the
bracket generation conditionsBGCd. From the Campbell-
Baker-Hausdorf formula, it follows that this is a necessary
condition of controllability. It also proves to be sufficient in
all the practical cases we dealt with. For that reason, we
consider that we have “good controllability conditions” as
soon as the BGC is checked. The numbernC of control tim-
ings depends on the problem to be solved. For instance, if we

want to impose the arbitrary evolutionÛarb on an
N-dimensional system, we need at leastnC=N2 timings ti,
sinceN2 is the total number of free real parameters charac-
terizing aN3N unitary matrix. We dealt with this problem
of complete control in previous papersf21g and developed a
general algorithm to find the appropriate timingsti which
realize

Ûst1,t2, . . . ,tN2d = exps− iĤatN2d

3exps− iĤbtN2−1d ¯ exps− iĤbt1d = Ûarb.

We can directly apply this result to our coding problem in
the following way: first, we find the codewordshug̃il , i
=1, . . . ,Ij by the iterative algorithm we have presented in the
first part of this section; then, we complete the set ofI vec-
tors hug̃il , i =1, . . . ,Ij with sN− Id vectors hug̃ jl , j = I
+1, . . . ,Nj to form an orthonormal basis ofH. We build the
coding matrix by taking the vectorshug̃il , i =1, . . . ,Nj as col-

umns ofĈ, and finally we calculate thenC=N2 appropriate
timings htij such that

Ûst1,t2, . . . ,tN2d = exps− iĤatN2d

3exps− iĤbtN2−1d ¯ exps− iĤbt1d = Ĉ

through the complete control algorithm presented inf21g.

Note that we assumeĤ0=0 sSec. IId; hence,Ĥa=V̂a and

Ĥb=V̂b
Actually, this procedure provides a lot of useless work:

indeed, most of the information contained in the coding ma-

trix is irrelevant and theN2 real parameters ofĈ do not all
have to be controlled exactly: the numbernC of necessary
control parametershtij is much less thanN2. Let us examine
this point in more detail.

The coding matrix is characterized by the relationss6d.
The problem of control thus reduces to findingnC timings ti,
which we will formally gather in a time vector

tW = 1 t1
]

tnC

2 ,

such that the nonholonomic evolution matrix

ÛstWd = exps− iĤatnC
dexps− iĤbtnC−1d ¯ exps− iĤat1d

meets conditionss6d: for any pair sugsl , ugtld1øs,tøI of basis

vectors ofC and any operatorÊmP hÊmjm=1,. . .,M

kgtuÛ†stWdÊmÛstWdugsl = 0. s9d

The numbernC of control parameters must exceed the num-
ber of independent constraints which is clearly,MI2—that
is, nC*MI2. The number of really necessary control param-
eters appears to be much smaller thanN2. We have to design
a new algorithm which achieves a partial and less expensive
control of the evolution operator of the system.

The algorithm we shall use to calculate the appropriate
control timingsti mixes the iterative algorithm presented at
the beginning of this section and the nonholonomic control
technique. If we introduce thefsN3 Id3 sN3 Idg-dimen-
sional block-diagonal matrix

ÛstWd =1
ÛstWd 0 ¯ 0

0 ÛstWd ¯ 0

] ] ] ]

0 0 ¯ ÛstWd
2

and thesN3 Id-dimensional supervector

uCl = 1ug1l
]

ugIl
2

composed of the coordinates of theI basis vectors ofC, we
can set the problem of control, Eq.s9d, in the following
equivalent form: we look for a time vectortW such that

∀k, kCuÛ†stWdÊkÛstWduCl = 0, s10d

where the matriceshÊkjk=1,. . .,E denoteE different matrices of
dimensionsN3 Id3 sN3 Id which have been introduced in
the beginning of this section. In other words, we look for the
time vector tW which sets to zero the test functionGstWd
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;ok=1
E ukCuÛ†stWdÊkÛstWduClu2. The idea of our algorithm is to

take the supervectoruC0l=ÛstW0duCl, where tW0 is a random
time vector, as the starting point for an elementary step of the

iterative algorithm and look for the small time incrementdtW 0

such thatÛstW0+dtW 0duCl follows the direction provided by the
result uC0l+ uDC0l of the iterative algorithm. The repetition

of this sequence finally yieldstW= tW0+dtW 0+dtW 1+¯ which
meets Eq.s10d.

Let us now describe the algorithm in more detail. First,
we randomly pick a set of timingst0,i in a “realistic range,”
dictated by the system under consideration: in particular,
control-pulse timings have to be much shorter than the typi-
cal lifetime of the system and be much longer than the typi-
cal response delay required by the experiment. Then we
minimize the function

FC0
sl1

s0d,l2
s0d, . . . ,lE

s0dd = o
k=1

E

iuC0l + lk
s0dÊkuC0li2

as we did in the algorithm presented at the beginning of this

section: we obtain thelk
s0d’s and uDC0l=oklkÊkuC0l. At that

point, we look for the small incrementdtW 0 of the time vector
tW0 such that

∀k, KCUS ]Û†

]tW
stW0d ·dtW 0DÊkÛstW0d

+ Û†stW0dÊkS ]Û

]tW
stW0d ·dtW 0DUCL

=
KC0 +

1

2
DC0uÊkuC0 +

1

2
DC0L − kC0uÊkuC0l

KC0 +
1

2
DC0uC0 +

1

2
DC0L . s11d

It should be noticed that we do not consider the error

supermatricesÊk corresponding to orthonormality condi-
tions: in other words, we just take matrices

hÊkjkPfIsI−1d/2+1,IsI−1d/2+MIsI+1d/2g into account. Thus we deal
with MIsI +1d /2 complex equations. This set of equations
can be reduced to the real linear system

ŜstW0d ·dtW 0 = WW suDC0ld, s12d

whereŜstW0d andWW suDC0ld are, respectively, anMI23nC real
matrix and aMI2-dimensional real vector. We obtained Eq.
s12d by splitting the set ofMIsI +1d /2 complex equations
s11d into two sets ofMIsI +1d /2 real equations and rejecting
those which are trivials0=0d or redundant. Even though this
procedure is straightforward, the explicit expressions of the

different elements ofŜ andWW involve many indices and are
so unpleasant that we prefer not to reproduce them here.

The linear system we have just found is a priori rectangu-
lar sMI23nCd, but actually we have not fixed the numbernC

yet. Previously, we stated thatnCùMI2: we could be
tempted to setnC=MI2 so as to obtain a square system, eas-

ily solvable by standard techniques of linear algebra. Yet we
will proceed in a slightly different way. We set
nC.MI2—say,nC=MI2+dn wheredn is an integer of order
1. Then we randomly pickMI2 timings ti among thenC

which will be considered as free parameters, whereas the
otherdn ones will be regarded as frozen. In other words, we
randomly choose a permutations0PSnC

ssymmetric group
of order nCd and take the timingshti8= ts0sidji=1,. . .,MI2 as free
parameters whereas the timingshti8= ts0sidji=1+MI2,nC

are fro-
zen. This leads to new versions of Eqs.s11d and s12d:

∀k, KCUS ]Û†

]t8W
stW0d ·dt8W

0DÊkÛstW0d

+ Û†stW0dÊkS ]Û

]t8W
stW0d ·dt8W

0DUCL
=
KC0 +

1

2
DC0uÊkuC0 +

1

2
DC0L − kC0uÊkuC0l

KC0 +
1

2
DC0uC0 +

1

2
DC0L , s13d

ŜstW0d ·dt8W
0 = WW suDC0ld. s14d

Equations14d is now clearly a square system. Solving Eq.

s14d yields the MI2-dimensional incrementdt8W
0 which we

complete withdn zeros into anC-dimensional vector; by re-
ordering timings, we obtain the total time-vector increment

dtW 0. Thus we have fori P f1,MI2g, dt0,s0sidÞ0 sfree param-
etersd, whereas fori P f1+MI2,nCg, dt0,s0sid=0 sfrozen tim-

ingsd. Then we settW1
a= tW0+adtW 0 where a is a convergence

coefficient and calculate the test functionGstWd
=okukCuÛ†stWdÊkÛstWduClu2 in tW= tW1

a for different values ofa
P f0,1g. If we find an a1 such thatGstW1

ad,GstW0d, we take
tW1; tW1

a1 as our new time vector and keep the same free-
varying timings: in other words, the permutations1 govern-
ing the timings that play the role of control parameters in the
second step of the algorithm remains the same—that is,s1

=s0. If we cannot find an appropriatea1, this means we are
situated in a local minimum ofG; then, we settW1; tW0 and
pick a new set of free-varying parameters by simply choos-
ing a new permutations1Þs0 randomly. This rotation pro-
cedure among control parameters allows us to avoid possible
local minima of the test functionG we want to cancel.

We repeat this sequence of operations as long as needed.
At the mth step, we take the supervectoruCm−1l
=ÛstWm−1duCl as the starting point of an elementary step of the

iterative algorithm. We calculateuDCm−1l=olk
sm−1dÊkuCm−1l

and findMI2-dimensional variations vectordt8W
m−1 of theMI2

free parametersscharacterized by permutationsm−1d such
that
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∀k, KCUS ]Û†

]t8W
stWm−1d ·dt8W

m−1DÊkÛstWm−1d + Û†stWm−1dÊkS ]Û

]t8W
stWm−1d ·dt8W

m−1DUCL
=
KCm−1 +

1

2
DCm−1uÊkuCm−1 +

1

2
DCm−1L − kCm−1uÊkuCm−1l

KCm−1 +
1

2
DCm−1uCm−1 +

1

2
DCm−1L

by solving the associated square linear system

ŜstWm−1d ·dtWm−1 = WW suDCm−1ld.

We completedt8W
m−1 with dn zeros and reorder the timings so

as to obtaindtW m−1. Then we taketWm
a = tWm−1+adtW m−1. If there

exists anam such thatFstWm
amd,FstWm−1d, we settWm= tWm

am as our
new time vector and keep the same free parameters for the
sm+1dth step: the permutation characterizing free-varying
timings in thesm+1dth step will be the same as in themth
step—that is,sm=sm−1. Otherwise we taketWm̂= tWm−1as our
time vector and randomly pick upMI2 new free parameters
among thenC timings, by choosing a new permutationsm for
the sm+1dth step.

We have not said anything about the decoding so far. If

the two HamiltoniansĤa=V̂a and Ĥb=V̂b can be reversed

snote that we assumeĤ0=0d—i.e., the sign ofV̂a andV̂b can
be reversed by altering of the control field parameters—the
implementation of the decoding matrix is quite easy: it

amounts to reversingV̂a and V̂b and applying the same con-
trol timing sequence backwards. To be more explicit, one

starts by applying −V̂b during timing tnC
, then −V̂a during

tnC−1,. . ., and finally −V̂a during t1. On the contrary, ifV̂a and

V̂b cannot be reversed, one cannot apply this technique. We
must use the general nonholonomic control technique, in-
volving N2 control parameters, to find timings which realize

Ĉ−1.
The algorithm we have just described was numerically

implemented and has already given satisfying numerical re-
sults on a realistic 7-qubit system subject to the action of 21
errors f19g. In the next section, we deal with another real
physical system which lends itself particularly well to a dem-
onstration of our method.

To conclude this section, let us emphasize that, to our
knowledge, there is only a formal link between our method
and the so-called “bang-bang” control schemesf23g. Actu-
ally, in this kind of techniques, fast and strong pulses are
applied which average the interaction Hamiltonian between
the system and its environment to zero. By contrast, our
method employs pulses which are designed to code
information—that is, to transfer it into a proper subspace, in
which errors act orthogonally: decoding and measurement
then allow us to recover initial information.

IV. COHERENCE PROTECTION APPLIED TO THE
RUBIDIUM ATOM

The goal of this section is to apply our method to a real
physical system. As we shall see below, the chosen system, a
rubidium isotope, due to its structure, lends itself particularly
well to a straightforward implementation of our technique
and allows us to illustrate its different steps quite simply: to
be more specific, following the scheme we presented in the
previous sections, we show that it is possible to protect one
qubit of information encoded on the two spin states of the
ground level 5s of the radioactive isotope78Rb against the

action ofM =6 error-inducing HamiltoniansÊm. For numeri-
cal calculations we considered three magnetic Hamiltonians

hÊk
b ~ L̂k + 2Ŝk,k = x,y,zj

and three electric Hamiltonians of second order:

hÊk,l
« ~ r̂k

2 − r̂ l
2,k,l = x,y,z,k , lj.

In the following, we propose a detailed physical setting
which achieves the desired protection operation: in particu-
lar, we provide characteristic values of control fields and
pulse timings. These different calculated parameters relate to
a single isolated atom. As we shall see at the end of this
section, when dealing with an ensemble of atoms, serious
experimental drawbacks emerge which prevent us from ac-
tually implementing our application. Nevertheless, the ex-
ample considered shows the operationality of our method
which is able, in a given physical situation, to provide a
precise frame for its implementation.

Before presenting the details of the proposed implemen-
tation, let us motivate the choice of the rubidium atom.
Alkali-metal atoms like Rb are very interesting for our pur-
pose because of their hydrogenlike behavior. Such an atom is
the compound of an information subsystem—i.e., the spin
part of the wave function, and an ancilla—i.e., the orbital
part of the quantum state. As we shall see, it is easy to in-
crease the dimensionality of the ancilla by simply pumping
the atom towards a shell of higher orbital angular momentum
L.

We chose78Rb among all alkali-metal systems because of
its spectroscopic charactericssFig. 2d f24,25g. In particular,
78Rb has no hyperfine structuresits nuclear spin is 0d which
ensures that the ground level 5s is degenerate: this is neces-
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sary for the projection scheme as we shall see below. More-
over, it has a long enough lifetimest.17.66 mind for the
proposed experiment.

Let us now review each step of our method in detail. As
mentioned above, the information we want to protect is ini-
tially encoded on the two spin statesun1l= u5s, j = 1

2 ,mj =−1
2l

andun2l= u5s, j = 1
2 ,mj =

1
2l of the ground level 5s of the atom:

these two states span the information spaceHI
=Spanfun1l , un2lg whose dimension is in that caseI =2. The
first step of our scheme consists in adding an ancillaA to the
information system. The role ofA is played by the orbital
part of the wave function. In the ground statesL=0d, its
dimension isA=2L+1=1 sroughly speaking, there is no an-
cillad. If we want to protect one qubit of information against
M =6 error-inducing Hamiltonians, we have to increase the
dimensionality of the ancilla up toA=M +1=7 fEq. s7dg: this
can be achieved by pumping the atom up to a shellnf sL
=3d. We choose the highly excited Rydberg state 60f so as to
make the fine structure as weak as possiblesthe splitting for
60f is approximately 10−5 cm−1 f24gd. We shall first consider
the fine structure is negligible so that theN= I 3A=237
=14 basis vectors of the total Hilbert spaceH=HI ^ HA are
almost perfectly degenerate; the validity of this approxima-
tion will be discussed at the end of this section. To be more
specific, the pumping is done in such a way that

un1l → ug1l = U60f, j =
5

2
,mj = −

3

2
L ,

un2l → ug2l = U60f, j =
5

2
,mj = −

1

2
L .

In other words, using the terminology of the previous sec-
tions, the information initially stored inHI is transferred into

C = SpanFug1l = U60f, j =
5

2
,mj = −

3

2
L ,

Fug2l = U60f, j =
5

2
,mj = −

1

2
L G .

The choice of the subspaceC may appear arbitrary at this
stage, but it will be justified later by the practical feasibility
of the projection process ontoC. Let us note thatC is an
“entangled” subspace whose basis vectorshugilji=1,2 are gen-
eral entangled states of the spin and orbital parts: this means
sSec. IId that the projection step will not consist in a simple
measurement of the ancilla but will involve a more intricate
process we shall describe in detail later.

Practically, the pumping can be achieved as follows. One
applies three lasers to the atom: the first laser is right polar-
ized and slightly detuned from the transitions5s↔5pd
whereas the second and third lasers are left polarized and
slightly detuned from the transitionss5p3/2↔5d3/2d and
s5d3/2↔60fd, respectively. The detunings forbid real one-
photon processes: the atom can only absorb three photons
simultaneously and is thereby excited from the ground level
5s to the Rydberg level 60f. By using selection rules, one can
construct the allowed paths represented in Fig. 3: these paths
only coupleun1l and un2l to ug1l and ug2l, respectively.

The second step consists in encoding the information by
the nonholonomic control technique: to impose the coding
matrix on the system, we submit the atom tonC=34 control
pulses of timingshtiji=1,. . .,34, during which two different
combinations of magnetic and Raman electric Hamiltonians
are alternately appliedssee Fig. 4d. To be more explicit, dur-
ing odd-numbered pulsessA-type pulsesd we apply a con-
stant magnetic field

BW = 1 Bx = 710−3T

By = 8.210−3T

Bz = − 6.810−3T
2 ,

which is associated with the Zeeman HamiltonianŴZ, and
two sinusoidal electric laser fields

EW astd = RefEWI ae
−ivRtg, EW a8std = RefEWI a8e

−ivR8 tg,

EWI a = * Ex,a

Ey,ae
−iwy,a

0 *, EWI a8 = * Ex,a8

Ey,a8 e−iwy,a8

0

u ,

whose frequenciesvR and vR8 are, respectively, slightly de-
tuned from the two transitionss60f ↔5d, j = 3

2
d and

s60f ↔5d, j = 5
2

d sdetuningsd andd8d. The characteristic val-
ues of these fields are

Ex,a = Ex,a8 = 8.53 105 V m−1,

FIG. 2. Spectrum of78Rb: The useful part of the spectrum of
rubidium is represented.
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Ey,a = Ey,a8 = 5.23 106 V m−1,

wy,a = wy,a8 = 2.3,

"vR = 0.986324 eV = 7955.14 cm−1,

d = − 0.000010 eV = − 0.080654 cm−1,

"vR8 = 0.986676 eV = 7958.14 cm−1,

d8 = 0.000010 eV = 0.080654 cm−1.

The intensity of the laser beams are typically of the order of
23108 W cm−1. The Raman Hamiltonian associated with

these fields is denoted byŴR,A. The total perturbation isV̂a

=ŴZ+ŴR,A. During even-numbered pulsessB-type pulsesd,

we apply the same magnetic field as forA-type pulses, which
is experimentally convenient, and two sinusoidal electric la-
ser fields

EW bstd = RefEWI be
−ivRtg, EW bstd = RefEWI b8e

−ivR8 tg,

where

EWI b = * Ex,b

Ey,be
−iwy,b

0 *, EWI b8 = * Ex,b8

Ey,b8 e−iwy,b8

0

u ,

whose frequencies are the same as above and whose charac-
teristics values are

Ex,b = Ex,b8 = − 5.23 106 V m−1,

Ey,b = Ey,b8 = 8.53 105 V m−1,

wy,a = wy,a8 = 2.3.

The Raman Hamiltonian associated with these fields is de-

noted by ŴR,B. The corresponding perturbation isV̂b=ŴZ

+ŴR,B. Therefore, since the fine structure of the level 60f is

neglected, the unperturbed HamiltonianĤ0 is taken to be 0,

and the total Hamiltonian has the formĤA=V̂a during A

pulses,ĤB=V̂b during B pulses. The 34 different timings
have been calculated so that

Ûst1, . . . ,t34d = e−iĤBtnCe−iĤAtnC−1
¯ e−iĤAt1 = Ĉ

meets conditionss5d. At the end of the coding step the infor-

mation is transferred into the code spaceC̃=ĈC, encoded on

the codewordshug̃il=Ĉugilji=1,2.
As can be easily checked from Fig. 4 the total duration of

a control period s.125 nsd is approximately 103 times
shorter than the lifetime of the 60f Rydberg state which is
approximately 0.115 ms as can be calculated fromf24g. The
different pulse timings range between 2.9 and 7.4 ns, which
are feasible.

FIG. 3. Ancilla adding by pumping. Photon
polarization and involved sub-Zeeman levels are
represented. The fine structure of the Rydberg
level 60f is not resolvable.

FIG. 4. Coding step through the nonholonomic control tech-

nique. The two HamiltoniansĤa and Ĥb are alternately applied to
the system during pulses of timingshtisnsdj=h3.9763, 6.4748,
4.2274, 3.6259, 2.8717, 3.6281, 7.2263, 6.4260, 4.8070, 5.0394,
6.5242, 4.8890, 4.2400, 7.3834, 4.8653, 5.4799, 4.5341, 4.3099,
6.2959, 3.7346, 6.5293, 6.8586, 6.0749, 5.1213, 4.6806, 3.4985,
3.9909, 4.6701, 4.5168, 6.4702, 4.7787, 5.3476, 3.4567, 3.8009j.
The frequencies of the laser fields involved in the encoding step are
represented on the spectrum of the rubidium atom. The fine struc-
ture of the Rydberg level 60f is not represented.
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After a short time, the information stored in the system
acquires a small erroneous component due to the action of
the error Hamiltonians, which is orthogonal to the code

spaceC̃. Then, we apply the decoding matrixĈ−1 to the atom

as suggested at the end of Sec. III. We reverseBW and the
detuningsd andd8, and leave all the other values unchanged

sthis amounts to taking the opposite of HamiltoniansĤA and

ĤBd, and apply the same sequence of control pulses back-
wards: we start with anA pulse whose timing istnC

, then
apply aB pulse duringtnC−1, etc. ssee Fig. 5d. The decoding
step yields an erroneous state whose projection ontoC is the
initial information state.

In the last step the erroneous state vector is projected onto
the subspaceC to recover the initial information. Projection
is a nonunitary process which cannot be achieved through a
Hamiltonian process, but requires the introduction of irre-
versibility. To this end, we make use of a path which is
symmetric with the pumping step and consists in two stimu-
lated and one spontaneous emissions. To be more explicit,
we apply two left circularly polarized lasersssee Fig. 6d

slightly detuned from the transitionss60f ↔5d, j = 3
2

d and
s5d, j = 3

2 ↔5p, j = 3
2

d. Due to these laser fields, the atom is
likely to fall towards the ground state and emit two stimu-
lated and one spontaneous photons.

Using the selection rules, one can infer that, if a circularly
right-polarized spontaneous photon is emitted, the only states
to be coupled to the ground level areug1l andug2l to un1l and
un2l, respectivelyssee Fig. 6d. This means that the emission
of a right-polarized spontaneous photon brings the “correct”
part of the state vector back intoHI =Spanfun1l , un2lg. On the
contrary, the other cases—“left polarized,” “linearly polar-
ized spontaneous photon,” or “no photon at all”—do not lead
to the right projection process.

The “left-polarized—photon” and “no-photon-emitted”
cases are quite unlikely: indeed the probability that they oc-
cur is proportional to the square of the error amplitude—that
is, to the square of the Zeno intervalT, which is very short.
The “linearly-polarized-photon” case is quite annoying be-
cause it mixes the two pathsug1l→ un1l and ug2l→ un2l. This
parasitic process and its relative probability must be sup-
pressed, with respect to the process followed by the “right-
polarized”-photon emission. This can be done by launching
the 78Rb atom, previously cooled, into a Fabry-Perot cavity,
in an atomic fountain mannersfine tuning of the lasers driv-
ing the 60f-5d and 5d-5p transitions will be necessary to
avoid reflection of the external laser radiation from the cav-
ityd. The decay rate for the three-photon transitionugil
→ unil is

Ggini
= 2pUdgil j

E1

"D1
U2U dl jmk

E2

"sD1 + D2d
U2

2p"cksudWmkni
eWR

* u2%skWsd,

where kWs is the wave vector of the spontaneously emitted
photon,eWR is the left-polarized-photon polarization unit vec-
tor, %skWsd is the density of statessnormalized to the cavity
volumed for the cavity field atkWs, and the overbar denotes
averaging over the directions ofkWs. The transition dipole mo-
ments are denoted bydab: during the projective process the
states coupled toug1l and ug2l are, respectively,

FIG. 5. Decoding step by the nonholonomic control technique.
We reverse the magnetic field and the detunings of the electric
fields, as represented on the spectrum of the rubidium atom, and
apply the same control sequence as for codingssame timingsd back-
wards. The fine structure of the level 60f is not represented.

FIG. 6. Projection path. The lasers involved
are marked by solid arrows; the spontaneous pho-
ton is represented by a dashed arrow. The differ-
ent polarizations are specified. The fine structure
of the level 60f is not represented.
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Hul1l = U5d, j =
3

2
,mj = −

1

2
L,ul2l = U5p, j =

3

2
,mj = +

1

2
LJ ,

Hum1l = U5d, j =
3

2
,mj =

1

2
L,um2l = U5p, j =

3

2
,mj =

3

2
LJ .

The enhancementsby the presence of cavityd of the den-
sity of states for the modes propagating paraxially to thez
axis ensures that

Gg1n1
,Gg2n2

@ Udgil j
E1

"D1
U2U dl jmk

E2

"sD1 + D2d
U2

g,

where g is the decay rate ofu5p, j = 3
2 ,mj = + 1

2l into u5s, j
= 1

2 ,mj = + 1
2l, so that the undesired process followed by the

p-photon emission is relatively less important than it was in
free space. For the density matrix elementsrab the following
system of equations can be writtensi =0,1d:

ṙgigi
= − Ggini

ṙgigi
,

ṙnini
= Ggini

ṙgigi
,

ṙg1g2
= −

1

2
sGg1n1

+ Gg2n2
drg1g2

,

ṙn1n2
= ÎGg1n1

Gg2n2
rg1g2

.

To avoid dephasing which would corrupt the information, the
coherence matrix elementrg1g2

must be transferred with the
maximum efficiency intorn1n2

: the efficiency

h =
2ÎGg1n1

Gg2n2

Gg1n1
+ Gg2n2

is thus crucial. According to the Wigner-Eckart theorem,

Gg1n1

Gg2n2

= SC3/2 −1/2 1 −1
5/2 −3/2 C3/2 1/2 1 −1

3/2 −1/2 C1/2 −1/2 1 1
3/2 1/2

C3/2 1/2 1 −1
5/2 −1/2 C3/2 3/2 1 −1

3/2 1/2 C1/2 1/2 1 1
3/2 3/2 D2

,

where on the right-hand side the ratio of the products of the
Clebsch-Gordan coefficients corresponding to the transitions
stands. These coefficients, which can be found inf26g, lead
to h=12Î2/17<0.998 27. In other words, the probability of
error during the Zeno projection stage due to the small dif-
ference of the Clebsch-Gordan coefficient products for the
two paths is equal to or less than 1−h<0.001 73fequality is
reached if the initial state issu0l± u1ld /Î2g. Note that the
states 60f, 5d, and 5p have finite lifetimestk ssee Fig. 2d.
Thus the transition ratesGgini

must be much larger than

1/t60f ,

Udgil j
E1

"D1
U2Y t5d,

and

Udgil j
E1

"D1
U2U dl jmk

E2

"sD1 + D2d
U2Y t5p,

in order to diminish errors caused by the decay of these
unstable states.

To complete the projection step, one has to transfer the
atom in its coherent superposition back to the 60f state: this
is achieved by the same pumping sequence as in the first
step. The mismatch of the Clebsch-Gordan coefficient prod-
ucts will cause again the error probability 1−h. The infor-
mation is then restored with very high probability and the
system is ready to undergo a new protection cycle.

From the beginning of this section we have neglected the
fine structure splitting of the level 60f, which is approxi-
mately 2310−5 cm−1 and corresponds to a periodt f
,1.5 ms. To conclude this section, let us now take it into
account and see its effect on each step of our scheme.

Obviously the pumping and projection steps will not be
affected by the fine structure, since the information-carrying
vectorshug1l , ug2lj belong to the same multipletsJ=5/2d.

The coding and decoding steps are neither modified by
the existence of the fine structure. Indeed, since the typical
period of the fine structure Hamiltonian,t f ,1.5 ms, is more
than 10 times longer than the total duration of the coding or
decoding steps, it is legitimate to neglect its effect.

The influence of the fine structure on the free evolution
period during which errors are likely to occur is more com-
plicated to study in the general case. Yet two simple limiting
regimes can be considered. If the spectrum of the coupling
functions fmstd’s is very narrowfi.e., if the variation time
scale of thefmstd’s is much longer thant fg, one can show
that our scheme applies directly as though there were no fine

structure, provided the error HamiltonianshÊmj are replaced

by hÊm
s0dj, whereÊm

s0d is obtained fromÊm by simply setting to
zero the rectangular submatrices which couple the two mul-
tiplets sJ=5/2,7/2d. The second limiting regime corre-
sponds to a very broad spectrum for thefmstd’s svariation
time scale much shorter thant fd: in that case, one can show
that our scheme applies provided one chooses a Zeno inter-
val T multiple of t f.

In all this section, we implicitly supposed that the rub-
dium atom was alone, but in actual experiments, one usually
works with an ensemble of atoms: this generates serious ex-
perimental drawbacks which we deal with now. Rydberg at-
oms are sensitive to the Doppler effect: nevertheless, in the
case of cold atoms, this is negligible. But the most dramatic
effect is due to interactions between atoms such as dipolar
forces f27g. In a standard magneto-optical trap containing
about 1000 atoms in Rydberg statessn.60d, the typical en-
ergy of these interactions is 1 MHz, corresponding to a
dephasing time of 1 msf28g. As different atoms see different
environments and are thus subject to different interactions, it
will be impossible to properly code and thus protect the in-
formation stored in the different atoms of the ensemble. Be-
yond these problems, we nevertheless want to emphasize the
demonstrative value of our example: the system considered
heresrubidium isotope in a Rydberg stated, though not com-
pletely satisfactory from an experimental point of view, is
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indeed quite practical for a straightforward demonstration of
our scheme, since the information-carrying subsystem and
ancilla are clearly identified and every step is “simply”
achieved. Other systems must be found, which will be ad-
dressed in future publications; however, the application con-
sidered here has already suggested the physical relevance
and applicability of our method.

V. CONCLUSIONS

In this paper, an original scheme has been presented
which allows us to protect the quantum coherence stored in a
information systemI against the action of a set ofM given

error-inducing HamiltoniansÊk.
The information initially stored in the Hilbert spaceHI of

the information system is transferred into a subspaceC of the
Hilbert spaceH=HI ^ HA of the compound systemI ^ A
formed through adding an auxiliary systemA called an an-
cilla to the main system. A multidimensional generalization
of the QZE has been presented which makes it possible to

protect such a subspace against the action of theÊk’s, pro-
vided the dimensionA of the ancilla meets the Hamming
boundAùM +1. The information is thus encoded in another

subspaceC̃, called the “code space,” through the application

of the coding matrixĈ: in this appropriate subspace, the

error-inducing HamiltoniansÊk act orthogonally. After a
short time, the information thus contains a small orthogonal

erroneous component due to the action of theÊk; it is then

decoded by application ofĈ−1 and restored by an appropriate
physical measurement which projects the state vector ontoC
with very high probability. The repetition of this sequence as
long as needed protects the information stored in the system.

A physical achievement of the coding and decoding steps
have been proposed which employs the nonholonomic con-
trol technique. The different algorithmic tools needed to
implement our scheme have been presented.

Finally, an application has been proposed which makes
use of the rubidium atom. One qubit of information is en-
coded in the spin states of the atom whereas the orbital part
plays the role of the ancilla. A realistic physical setting has
been proposed: in particular, a projection process based on
the spontaneous emission has been suggested.
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EXPLICIT DERIVATION OF THE CODE SUBSPACE

In this appendix we deal with a particular physical situa-

tion in which the code subspaceC̃ can be explicitly derived.
We consider an atom with zero nuclear spin on the level
characterized by the orbital angular momentumL. The elec-

tronic spin of the atom isS=1/2. Thenatural basis wave
functions areuL ,ML ;S,MSl. A qubit of information is en-
coded on the two states

ug̃il = uJLSMJi
l = o

ML,MS

CLMLSMS

JMJi uL,ML;S,MSl, i = 1,2,

where CLMLSMS

JMJ is the Clebsch-Gordan coefficient. In the
scheme we proposed for a rubidium atom,L=3, J=5/2,
MJ1

=−3/2, MJ2
=−1/2—that is,

ug1l = U60f, j =
5

2
,mj = −

3

2
L ,

ug2l = U60f, j =
5

2
,mj = −

1

2
L .

We want to protect this information against the action of six

independent error-inducing HamiltoniansÊk, three magnetic
and three electric interaction Hamiltonians. We shall see that

the code spaceC̃=Spanfug̃1l , ug̃2lg can be simply built from

physical considerations on the action of the HamiltoniansÊk.
Let us first consider magnetic errors. The interaction

Hamiltonian of the atom with the magnetic fieldBW directed
along thekth axis sk=x,y,zd is

Êk
b = mBBksL̂k + 2Ŝkd,

mB being the Bohr magneton. Remembering thatL̂x=sL̂+

+ L̂−d /2, L̂y=sL̂+− L̂−d /2i, where L̂+ sL̂−d is the operator in-
creasingsloweringd the z projection of the orbital angular
momentum, and similar relations for the spin operators, one
can conclude that a pair of the states with definitez projec-
tions of orbital and spin angular momenta is a good basis for
the code subspace if the difference of the of their quantum
numberML;Lz is greater than or equal to 2. To use this
option, one needs to consider the error caused by a magnetic
field oriented alongz. The states with definiteLz, Sz are the

eigenstates of the HamiltonianÊk
b. A general superposition of

two such states must not be rotated in the Hilbert space under

the action ofÊz
b. This means that the eigenvalues must be

equal to each other. Thus the states

ug̃1
bl = uL,ML;S,MS= + 1/2l,

ug̃2
bl = uL,ML + 2;S,MS= − 1/2l,

with M øL−2, constitute a good code basis for protecting

one qubit against the action of theÊk
b.

We shall now consider errors caused by quasistatic elec-
tric fields. The static Stark shift of a level with zero fine
splitting—i.e., a highly excited Rydberg level, like 60f in

rubidium, caused by the electric fieldEW oriented alongz—is
given by const−bE2ML

2. The valueb characterizes the polar-
izability of the atom in the given state. Omitting the irrel-
evant constant, we may represent the Hamiltonian of the
atom-field interactionswith respect to the particular manifold
of sublevels of the given atomic stated by the operator
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Êk
« = − bEk

2L̂k
2, k = x,y,z. sA1d

Note that, since the fine splitting is zero, the spin variables
are unaffected by the Stark effect. Rewriting the operators

Êx,y
« in terms ofL̂z,

Êx
« = − bEx

2F1

4
L̂+

2 +
1

4
L̂−

2 +
1

2
LsL + 1d −

1

2
L̂z

2G ,

Êy
« = − bEy

2F−
1

4
L̂+

2 −
1

4
L̂−

2 +
1

2
LsL + 1d −

1

2
L̂z

2G ,

one can conclude that the basis of the coding space can be a
pair of states of oppositeSz and oppositeLz sso thatuLzu is the
same for both of these statesd. Indeed, these states are not
mixed by the HamiltoniansA1d, which does not cause spin

flips. The error vector is always orthogonal to any their su-
perposition, as can be easily seen. Among various code sub-
spaces protecting against electric errors there is one that pro-
tects against magnetic errors, too. The basis vectors of this
subspace are

ug̃1
b,«l = uL,ML = − 1;S,MS= + 1/2l,

ug̃2
b,«l = uL,ML = + 1;S,MS= − 1/2l.

It may happen that for singlet electronic states of atoms
with nonzero nuclear spin, whose nuclear magnetic moment
mnucl is incommensurate withmB, one cannot apply this ex-
plicit derivation of the code space for the correction ofboth
the “electric” and “magnetic” errors. One has then to look for
a more complex coding transformation through the algorithm
we presented in Sec. III.
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