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The protection of the coherence of open quantum systems against the influence of their environment is a
very topical issue. A scheme is proposed here which protects a general quantum system from the action of a set
of arbitrary uncontrolled unitary evolutions. This method draws its inspiration from ideas of standard error
correction(ancilla adding, coding and decodingnd the quantum Zeno effect. A demonstration of our method
on a simple atomic system—namely, a rubidium isotope—is proposed.
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I. INTRODUCTION widely investigated theoreticallj10-13 as well as experi-
mentally[14,15. Generalizations have been proposed which
The uncontrollable interaction of an open quantum systenemploy incomplete measurementss]: in this setting, the
with its environment leads to complete loss of the informa-Hilbert space is split into “Zeno subspacédégenerate mul-
tion initially stored in its quantum state. This phenomenon istidimensional eigenspaces of the measured obseryabid
commonly referred to as “loss of coherence.” The questiorihe state vector of the system is compelled by frequent mea-
of how it is possible to avoid the negative influence of thissurements of the physical observable to remain in its initial
process is one of the most interesting issues in modern quageno subspace. The dynamics of the system in the Zeno
tum mechanics and concerns many diﬁerent f|e|ds Of physslubspaces haS alSO been Stud|ed n d|fferent SpeCIfIC Situa-
ics, in particular the domains of quantum information andtons [17]. ) , )
computation. Employmg these ideas, enriched by standard techniques
In the context of quantum information, the effects of in- ToM coding theony{18], we have previously proposed an
teractions with the environment, known as “quantum errors, information protection schemie9] in Zanardi's spirit[20],
may render information storage and processing unreliablg);ﬁgfygﬁggevsg Qgrt];?(?ekre Weyfgmrgeggrg;’gﬂ;ndpgg&?whe
e e T eror o ey comprses he formaton systeto be protecte
work of error correction has been built upon the formalismand an auxmary system (c.allgd an anm!l)a we th.en apply
of quantum operations. The main contributions concerrf controlled unitary operatio@ (the coding matrix which
quantum code$4] and, particularly, the class of stabilizer €N¢0des the information, initially storedn in an entangled
codes[5,6]; other strategies developed suggest the use state ofZ and .A. After a short time interval, during which

e A Infinitesimal errors may have occurred, we apply the unitar
noiseless quantum codes” or “decoherence-free subspacesmc ~ y pply y

: - : . .
[7-9]. All these methods usually demand that errors act iniransformationC™ (the inverse to the previous sjepvhich

dependently on different qubitéthe independent error decodes information. Finally, we measure the ancilla to get
mode) and make use of the symmetry properties associate d of the |nf|n|te5|mql changgs that may hav_e been caused
with these requirements. This implies that the set of errors t y errors. Whereas in classical error-correction theory, the

X . . ancilla contains information about the errors allowing them
be corrected hence is re;trlcted to a special subgroup, c_all%g' be corrected, in our QZE-based approach, the quantum
the Clifford group. In this paper, we present a protection

state of the ancilla resulting from an elementdcpding-

method which draws its inspiration from the ideas of stan-.ors_decodingsequence is close to its initial state, so that

dard error correction and the quantum Zeno effect, and réqe measurement of the ancilla brings it back to its initial
quires no spe<_:|flc §ymmetry of _the errors. Mo_reover, We SUOztate with a probability of nearly 1. The key point of our
gest its physical implementation in an arbitrary quantummethod is to entangle the initial state of the ancilla with the
system and show how it works for the example of a rubidiumstate of the system in such a way that the detection of the
Isotope. ancilla in its initial state implies that the system is also in its

The phenomenon known as the quantum Zeno effediitial state. This is achieved through the coding procedure
(QZE) takes place in a system which is subject to frequentvhich has to ensure that after the exposition of the system to
measurements projecting it onto {isecessarily knownini-  the action of errors, the initial state of the ancilla remains
tial state: if the time interval between two projections isentangled only with the initial state of the system, whereas
small enough, the evolution of the system is nearly “frozen.”any other entanglement remains small during the time inter-
This effect and its inversé&he anti-Zeno effe¢thave been val between consecutive measurements.
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The coding procedure involves a rather complex unitaryto get rid of. Note that the unperturbed part of the Hamil-
transformation in the Hilbert space of the compound systemtonian(1) is assumed to be zefor proportional to the iden-
performing such coding operations is a nontrivial quantumntity so that one can set it to zetd'he standard QZEL0-13
control problem in itself. However, one can achieve this obimplies that we can nearly “freeze” the evolution of the sys-
jective by adapting the idea of nonholonomic control whichtem by measuring it frequently enough in {tsxown) initial
we have previously presentef®1]. Specific algorithms state; in other words, this effect allows us to protect the
which allow us to determine and physically implement theone-dimensional subspace spanned by the initial state of the
coding matrixC have been constructed. system from the influence of the error-inducing Hamiltonian

In this paper, we provide a comprehensive presentation dib). In what follows, we generalize this effect so as to protect
our theoretical scheme, including algorithmic aspects whickan arbitrary multidimensional subspa€drom H(7).
were not dealt with ifi19]. Moreover, we propose a “demon-  Any vector|) of C evolves according to the operator
strative” application of our technique to a physical system:
more precisely, we show how our method can protect one ~ (A
qubit of information stored in the spin variable of the quan- Ult.to) = T{exp{— 'ft H(T)dT} }
tum state of a single rubidium atom, the orbital variable play- 0

ing the role of the ancilla, against a given set of error inducyhere 7 denotes time ordering and where we #etl. For
ing Hamiltonians. Here we describe a realistic experimentajne QZE to hold, we shall only consider evolution in short
setting which achieves the different steps of our schem@me periods, whose duratiofi is so short that the corre-
through the application of a sequence of laser pulses anghonding action of thi components of the Hamiltonian)

Imin inam rement involvin ntan mis- . -
culminates in a measurement involving spontaneous emigg small—i.e.,|EJ" T (ndr<1. We can thus expand
sion. When dealing with ensembles of atoms, as usually doné

in current cold atom experiments, experimental drawbacks M
arise due to dipolar interactions which forbid the actual U(t+T,t):Uinf:i—iE (f
implementation of our application. Yet even though not com- m=1 \Jt
pletely satisfactory from an experimental point of view, the
example we propose here shows the general scope of olihis implies that after a Zeno interval the initial statel )
method as well as its physical operationality. is transformed into |¢o=|)+|S)  where |5y

The_ paper is organizeq as_follows. In Sec. Il, we present az_igr“{'msmém| ) with e,=([f(Dd7). Note that, strictly
multldlmensmnal genera}hzauon .Of the QZ.E an_d Its appl'ca'speaking, the operatdﬁ!inf introduced in Eq{(2) is not uni-
tion to the protection of information contained in Compoundtary: nevertheless, the nonunitary part, due to the truncation

systems. In Sec. lll, we present the algorithms which enablgf the time development of the evolution operator, is of sec-

us to calculate the code space and physically implement th5’nd order in time and is thus negligible in the Zeno limit

coding matrix through the nonho_lon(_)mic control technique.(THo). Moreover, as we exclusively consider finite-
In Sec. IV, we focus on the application of our method to i ional tems interacting with classical external
rubidium isotope. In the Appendix, we present the explicit imensional systems 9 . gy
derivation of the code subspace fields, the approximation, Ec_ﬁ2), holds, without raising any -

' mathematical problem. But it is worth emphasizing that this
is no longer the case when dealing with systems of infinitely
large Hilbert spacéfor example, se§22]).

Let us assume that we are physically able to perform a
measurement-induced projection odtin the systens (see
We start this section by the geometric presentation of delow the discussion of such projections for compound sys-
multidimensional QZE which allows us to protect an arbi-tems comprising an information subsystem and an ancilla
trary subspace of the Hilbert space against the action of a sétow if we just follow the standard QZE procedure and
of given interaction Hamiltonians. In the second part of thismerely project the state vectpf,), resulting from the infini-
section, we take advantage of this phenomenon to protect dasimal evolution of the initial statg)), ontoC, we obtain a
information-carrying subsystem of a compound quantumvector|iy), which (a priori) differs from|y) [see Fig. 1a)].
system from the influence of some uncontrolled error-This is due to the fact that usually the Opefat{éﬁml,,_,M
indgcingdexternal fif{”ds- o whosehidi ol Hil do not act orthogonally od, which means that the vectors
onsider a quantum systely whosen-aimensional Fil- - £ 1y ang thus the increment vectpiy,) itself are not or-
bert Space IS denoted byt and whose time-dependent th0|gonal toC. It is a well-known me?'r;ifestation of the stan-
Hamiltonian has the form dard Zeno effect: the system is compelled to remain in a
A M A “Zeno subspacelwhich corresponds here ©) in which it
H(D) = >, f(DEm, (1)  presents a remaining dynamics called “Zeno dynanfit3T;
m=1 in our case, this dynamics is unknown and thus threatens the

t+T

fm(r)d7> E. (2

II. MULTIDIMENSIONAL ZENO EFFECT AND
COHERENCE PROTECTION

o , ) . information stored irC. Therefore, we see that the standard
where{Emjm-1,.. areM given independent Hermitian ma- 7enq strategy does not suffice to protect a multidimensional
trices onH and{fr(7)}me1,...m areM unknown functions of  sypspace: we have to adapt it using some ideas of coding
time. The HamiltoniarH(7) accounts for the errors we want theory.
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COHERENCE PROTECTION BY THE QUANTUM ZENO.
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FIG. 1. Multidimensional QZE(a) a simple projection fails to
recover the initial vector,(b) the sequence coding-decoding-
projection protects the initial vector.

To this end, we assume a unitary matéb<acting onH,

which we call the coding matrix, such that the Hermitian

operators{IAEm}npl“”,\,I act orthogonally on the subspaE?e

:éC, which we call the code space. Let us denotel byl
the dimension o€ and by{|y)}i=1..; one of its orthonormal

bases{ﬁi):é\yi)}i:L._, will denote one of the orthonormal
bases oﬁ, the state vector) being called the codewords.
For any pair(|39,[%)) of codewords and any operat,
e{IAEm}mzll___M we have, by the definitions « andC,

W[7s) = 65 (orthonormality conditiop, ©)

(4)

x)) of vectors ofC and for

(~yt||§m|3/3> =0 (orthogonality of the errobs

Equivalently, for any paif),
any operatoEy, e {Exrfmet .

(XIC"ExCl) =0. (5)

In particular, for any pait|ys),|y)) of basis vectors of and
for any operatoﬂAErn € {IAEm}nFlP M

(WCExClys = 0. (6)

If we apply the coding matri€ to the initial state vectoli),
before exposing it to the action of the Hamiltoniél), we
obtain the new vecto|rz~p>:f:|¢) € C [Figs. 1b1) and ¥b2)]
which is transformed after a Zeno interval into |Ze>
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=Und ) =) +|60,  where |8y =-iZp enEm|¥)
=-iZM eExCly) [Fig. 1(b3)]. Decoding | yields the
vector [y)=Cyo)=|¢)+|6y) where [dy)=-iZy
X e C'ECly). From Eq.(5) it can be seen that for any
vector |x)eC, (x|owLy=-i=M en(XIC'E,Cl»=0 which
means that|sy.) is orthogonal toC [Fig. 1(b4]. A
measurement-induced projection ortdinally recovers the
initial vector |#) with a probability very close to {the error
probability is proportional tor?). If the (coding-decoding-
projection sequence is frequently repeated, any vegipof
the subspac€ can thus be protected from the Hamiltonian
(2) for as long as needed. We stress that the role of projective
measurements consists both in confining the systeéh(as
in the standard quantum Zeno effeahd in clearing out the
erroneous component which has been made orthogorgal to
through coding and decoding.

Let us note that a more general version of conditighs
can be considered. Indeed, if for any pair of codewords

(7,[3) of C and any error Hamiltonia,, € {E,},

HEm79) = Sisém

where & is the Kronecker symbol ang,, a real number
depending only on the numben of the error Hamiltonian

Em, the projection ont@=Span{|y;),i=1, ... |} of the state

vector |¢,’3):|¢)—i2mzlsmf£m|¢), obtained after acoding-
decoding sequence, yields

M
ﬁc|¢é> = ‘¢> =i E 8mﬁ(:l’ém| ),
m=1

wherellc=[SL_,|y)(|]; if we denote byl) =S g ys) the
decomposition of the initial information state vector,
IIcEq#) has the form

|
I—[CEm| )= 2 as| 7t><'yt|CTEmC|75>
sit=1
|

=&m 2 aséts| Y= §m| b,

st=1

which finally leads tof[c|zp,;):(l—iﬁmzlsmgm)w). In other

words, the error&,, just introduce a global phase factor in
front of the initial information state vector, but leaves its
coherence intact. Obviously, the correction conditighsare
obtained as a particular case of the above conditions, setting
&n=0 for all m. Yet, though less general, they will be em-
ployed in the rest of the paper for the sake of simplicity.

The multidimensional generalization of the QZE we have
just described allows us to protect any subspaad a Hil-
bert space against Hamiltonians of the foritl) provided
the projection ont@ is physically achievable and the coding
matrix C exists. This result is very useful in the context of
information protection as we will show in the following
paragraphs.
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Consider an information systefof Hilbert space/{; and  information-space density matrix during the whole process
dimensionalityl. This system is subjected to a set\dferror-  can be expressed as the commutator
inducing HamiltoniangE},-1... m Which, for instance, rep- M
resent interactions of the system with uncontrolled exter- ~ ATE AL A
nal fieldsf(t): we want to get rid of this external influence o '[zl f fn()dre|CTERCla)p |,
which is likely to result in the loss of the information stored

in the initial-state VeCtO'Tl/f|>=Ei'=1Ci|Vi>, where{|v)}i-1 from which we infer thaip, satisfies the equation
denotes an orthonormal basisf. To this end, we will use i

the multidimensional Zeno effect. As the multidimensional iﬂ:[ﬁe,ﬁd,

QZE can only protect a subspace of the whole Hilbert space, dt

we first have to add aA-dimensional auxiliary systemt

(called ancilla to our systeniZ, so that the information is .M PN
transferred front, into anl-dimensional subspaa2of the he= 2 f(e|C'ELCla),
(N=1x A)-dimensional Hilbert spacé{=H,® H, of the m=1

compound systen§=7 A (let us note that this ancilla add- 0 o i an effective Hamiltonian which is determined by

'[rﬁl ;r:gcfodrlrjég Izn%tgtt% ?;Zn?eggl?nlga?\téanl}gg:j ?r:rglraggiréglcgg%e error-inducing Hamiltonians transformed by the coding
P y nd decoding and projected onto the initial state of the an-

ing methods Furthermore, we shall suppose that all the state " . - R
vectors of the different Hilbert spac@s, H,, and hencgy  cilla. From Eq.(5) one can infer that,=0 and hencey
are degenerate in enerav so that the unoerturbedhagf € aINS constant in time: as long as we repeat the coding-
genera 9y Inpertu Hoa . decoding-ancilla resetting sequence, the information initially
the Hamiltonian can be set to zero as in the first part of th|sS P
L . T . tored inZ is protected.
section: the subspacdg and the information it carries can

s . It is not always feasible to directly measure the ancilla
thus be protected through the multidimensional QZESec. . : : L
IV, in the example of Rb, we shall see that the multidimen_mdependently from the information system; in other words,

: ~ it is sometimes impossible to perform a projection onto dis-
sional QZE may also be used even thoughiis not zero,  entangled subspaces &f of the form H,® Sparf|a)]: in
provided Hy and the errors have some convenient propersome cases, as for the Rb atq®ec. I\), one can only
ties). Note thatA andZ need not be “physically separate” project onto entangled subspaces of the total Hilbert space
systems, but only have to possess independent Hilbert spacgs In such a case the information initially stored in the vec-
Ha andH,. For example, in Sec. IV, we shall consider the tor |¢)=3I_,ci|v) € H, is transferred into an entangled state
rubidium atom as the compound of two independent subof 7 and.A of the form [¢)==!_,c|y) where thel vectors
systems: namely, its spitwhich plays the role off) and  |y) (i=1,... ), which form an orthonormal basis of the
orbital (which plays the role of4) parts. Doing so, we shall - information-carrying subspac are not factorized as earlier
use the terms “factorized” and “entangled” in a generalizechut are in general entangled states. Nevertheless, the same
manner to designate states obtained as a direct product of thgethod as before can be used in that case to protect infor-
spin and orbital parts, and linear combinations of such statespation, albeit in a different subspace

respectively. To conclude this section, let us make a few remarks about

Let us now return to our problem and first consider theour method. We first emphasize that our technique, though
simple case in which the ancilla is initially in the pure stateinspired by quantum error-correcting codds, is very dif-
|a). The information previously carried ) € H, is then  ferent from them: indeed, in those schemes, the information
transferred into the factorized statdy)=|¢)®|@) is encoded in such a way that it can be corrected from the
=3i_,Gln) ®|a)=Zi_,c|%) which belongs to the tensor action of a set of errors through a syndrome measurement,
product  subspace C=H,® Spai|a)]=Spaf{|%)=[1)  followed by a(conditioned recovery operation, depending
®|a)}i=1... ;). In other words, the initial density matrix of the on the result of the measurement; on the other hand, in our
compound systens is p=(|){4]) @ (|a)«l|). After coding  technique, information is continuously protected by the fre-
(through the matrixC) it readsp=C'pC; at the end of the duent repetition of a three-step cycleoding-decoding-

. o U al ..~ projective measurementin which the projective measure-
action of the errors it is trAa[]qurm?dA 'niié_uinfc PCUin; ment does not give any indication about which error
finally it takes the formpe=CU](C"pCU;«C' after decoding.  occurred, but simply clears out the erroneous component of
In this setting, the projection ontd can be simply achieved the state vector, which has been made orthogonal to the ini-
by measuring the ancilla in its initial stafe). As T is very  tjal information-carrying subspace through coding and de-
short, the state of the ancilla evolves just a little within acoding. Let us now return to conditiori8) and(4) imposed
Zeno interval, such that the probability of detecting it in itS gn the codewordg[%),i=1,... |} and make two points
initial state|a) and thus of projecting the state of the com- gpout them.

pound system ontg is very close to 1. After projection, we  (a) We can establish a useful relation between the dimen-
trace out the ancilla to obtain the final reduced density matrixjon of the ancilla and the number of correctable error

Z)(:<a|éUiTnféTf)éUinféT\a> for the information syster; in  Hamiltonians. The set of the codewords can be seen as a
the same way, one can calculate the initial reduced densitgollection of 2xXN=2I2A real numbers on which 12
matrix is p,=|¢)yi|. The variation 6p=p/—p, of the +2MI?=21%(1+M) constraints, directly derived from Egs.
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(3) and (4), are imposed. The number of free parameters f*(A)=|H6>+M§|E:)||2

must be larger than the number of constraints; hence, we c '

necessarily havel2A=2I%(1+M), which satisfies depending on the number, is minimal for\=0: indeed,
A-1=M. (7)

) + AEIC)2= (C[C) + MCIE[C) + A (CIETIC)

This condition gives_an upper bom_Jnd on the number of inde- + |A|Z<E|I§TI§|6> -1 +|)\|2<6|ETE|6>,
pendent error-inducing Hamiltonians that our method can

correct simultaneously and is called the “Hamming bound. and as<6|éfé|a>>0' fz(\) is minimal for |\|=0—that is,

(B) We may compare our correctability conditio4) ] . o
with the more general conditiorisee[1], p. 436 of standard  A=0. But if (C|E|C) # 0, we can apply the following itera-

guantum error correction: tive method: we minimizé(\) with respect to\, and then
B o o we set/C')=|C)+(\/2)E|C) and takdC’)/\{C'[C") as our
O, w) € €% O(EwE) e {E;({EnD}, new |C); we repeat this sequence as long as need@y:
finally tends to|C), such thatC|E|C)=0.
G’t“ﬂ&ﬁ@) = a7, (8) Let us now return to our problem and show how the pre-

vious remark can help us. What we want is to findectors
which ensure the existence of a code space that is completely) Which meet the conditiong3) and (4); equivalently, we

protected against the error-inducing Hamiltonids Here @0 S&Y that we look for an orthonormal basis in which all

o - _ the matricesl%k have theirl X | upper left blocks equal to
ay are complex numbers, and the $&k} of Hermitian op zero. To solve this problem, one can first be tempted to use

eratorsE, generates a groug({Eyt) of all possible error-  standard techniques of linear algebra, in particular matrix
induced evolution$2). By {E;({En})} we denote a complete diagonalization: however, it appears that these methods do

basis set of operators which spans the space of evolutiofot work, except in the trivial case when all the matriggs

operatorsU and allows one to represent abyas a linear have a common kernel, which is much more than what con-

combination of the basis operatol?‘s]. The variety of all  ditions (3) and(4) require. So we propose to transform our
initial problem in such a way that it can be dealt with by the

i iterative algorithm presented in the previous paragraph. Let

"Us combine the vectors|y;) into a (N 1) “supervector”

linear combinations oij includes not only aIIIAEm but also
many other operators given by commutators of all orders

E,, entering the expansion &f for long times. The condition
(8) is therefore much more restrictive than E¢). More- )

over, even for just two generic matricé~$n, the basis{l%j} |E>:
spans the entire Hilbert spaé¢, yielding C=@. Only if the

set{l%nJ belongs to an extraspecial algebra restricting the

error evolution operatorl to a subgrouG({E,}) CGy()  Then let us build

of the full unitary group infH may a nontrivial code spa&:é I(1-1) (1 +1)
exist. The Zeno effect is the only way to suppress loss of E= > +M >
coherence if it is not the case.

W)

different[(N X 1) X (N X 1)]-dimensional supermatric@ in
lll. CODE SPACE AND THE CODING MATRIX the following way: we consider them as madd dblocks of
dimensionN XN and we successively fill each of these

It is sometimes possible to build the code spdaxplic- blocks with the different Hamiltonianém or the identity

ity from physical considerations: The Appendix gives an A o ) _
example of a situation in which the code basis can be foungnatrix! or 0. To be more explicit, the firstl - 1)/2 matrices
directly. In general, however, we need an algorithm to calcu@re built by simply placing thél X N identity matrix in each
late the code basi§)}i-1. , or, equivalently, the coding of the I(1-1)/2 blocks situated above the diagonal. In the

matrix C. We start this section by describing this algorithm. 125t MI(1+1)/2 ones, theM operatorsE,, are successively
Then, in a second part, we show that the nonholonomic corPlaced in each of thé(l+1)/2 blocks on and above the
trol technique21] can be employed to implement the coding diagonal. One can thus reformulate the conditi@)sas fol-
matrix physically. We also provide an algorithm which lows: for 1sk<I(I-1)/2,
achieves the appropriate control. o

Let us first make a remark which will be useful in what (C|EJC)=0.
follows. Consider a vectdiC) of some Hilbert space and a

matrix E on this space. From the vect{€) we want to Note that this form does not take the normalization condition

= i ~ into account, which will be imposed differently. Similarly,
calculate a vectofC) such thaC|E|C)=0. If (C|[E[C)=0, e conditiong4) are translated into the following form: for

then|C>:|E> and the function I(1-1)/2+1<k<I1(1-1)/2+MI(1+1)/2,
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E

Fe,A2AY, . A) = 2 [[[Co) + A
k=1

(CIEJC)=0.

Our initial multivectorial problem given by Eq$3) and (4)

has thus been transformed into a simpler one which can beith respect to theE ¢ numbers)\ actually, we separate
handled by the same kind of iterative algorithm as in ourthe real and |mag|nary parts mf(‘” =a+ip and calculate
preliminary — remark: we just have to find a the appropriatea(’’s and 8"'s by solvmg the set of P
(NX1)-dimensional supervectofC) such that for kk  equations

<I(I-D/2+MI(1+1)/2,

aFCO
~ A o~ PO
(CIEdC)=o0. ook
Let us now review our iterative algorithm in more detail. IFc
First we randomly pick a supervect(, which will be the —(0‘;
starting point of the first step: we normalize this vector by gen

imposing to each of it$ components to ha\{e norm:I1/If_ which can be translated into the linear system
one of the components ¢€,) is non-normalizable—that is,

equals zero—we pick up a new random supervel@gr as a k(|Co>) A0 = 5(|C0>),
starting point.

Then, as in our preliminary remark, we minimize the where K(|Co>) is a (2EX 2E)-dimensional real matrix de-
function fined by

Re((CO|IAEiTIAE,-|Co>) forl<i<Eand 1< <E,
~IM(ColE/E;_€/Co) for 1<i<Eand 1+E <] < 2E,

kij(|C0>) =9 ) ]
IM((Co|E{_cE;|Cy) for L1+E<i<2Eand1<j<E
Re(<Co|E EEj gCy) forl+Es<is<2Eand 1+E<j =< 2E,
[
5(|Co>) is a Z-dimensional real vector defined by We repeat this sequence of operations as long as needed.
Thus, at themth step, we minimize the function
- - Re(Cy|Ei|Cy)) for1<is<E,
D(ICo)) = . olE:lCo) Fo (™Y™Y, amY)
IM((ColEi_g|Co)) for E+1<i=<2E, m .
- _ —1) ~
and A is a ZE-dimensional real vector containing the pa- =2 ICm2 + N VECrmpl?
(0), (0): k=1
rametersay,’s and B, ’s:
a(10) by solving the real linear system
© K(Cm-0) . A™Y =D(ICp-).
Ao-| %

oL This yields the\{™ s and|AC,,,_,) from which we calculate
: |Cr0=|Cm-1)+3|AC-p). If possible, we normaliz¢C, ,)
() and take the resulting vector as the starting pfiny of the
E (m+1)th step; otherwise, we pick up a new veciGp) as a

Once thec numbers\\”=(a(” +i8”)'s have been found, we starting point. Finally|C,) tends to|C) such that Ok
calculate|AC) =S A\VE,|Co) and [CH)=|C)+3|ACy). We  €[1,1(1-1)/2],(C|EC)=0.

normalize|C/) by requiring each of it§ components to have This algorithm was numerically implemented and allowed
the norm=1I and take the result of this operation as ourus to exhibit new codes: we protected 2 qubits among 7
new starting pointC,). If one of the components d€() is  against the action of 31 errof&1 individual errors+10 col-
non-normalizable—that is, equals zero—we pick up a newective error$ and 4 qubits among 9 against the action of 27
random supervectdC,) as a starting point. individual errors[19].
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The coding matrixC which allows us to transfer the in- Note that we assuméiozo (Sec. lI; hence,l:|a:\A/a and

formation from the spacé€ to the code spacé is a rather Hy=V,
complex unitary operator on the Hilbert space of the com- Actually, this procedure provides a lot of useless work:
pound systenS=7® .A. We have just shown how to calcu- indeed, most of the information contained in the coding ma-
late the codewords, which actually form the fitstolumns  ix is irrelevant and thé\? real parameters o do not all
of C, but one can wonder how to implement it physically. have to be controlled exactly: the numh®&s of necessary
The question of the physical feasibility of the coding matrix control parameterg;} is much less thaiN?. Let us examine
C can be solved by the nonholonomic control technique.  this point in more detail.

The nonholonomic control technique has been suggested The coding matrix is characterized by the relatidfis
by our team as a means of controlling the evolution of quanThe problem of control thus reduces to findingtimingst;,
tum systemg21]. Basically, it consists in alternately apply- Which we will formally gather in a time vector

ing two “well-chosen” perturbation‘s?s’a and\A/b to the system t,
S we want to control during pulses with timingis The total

Hamiltonian I:|:I:|o+\A/ thus has a pulsed shape and alter-
nately takes the two value$l,=Hy+V, (during odd-
numbered pulsesand H,=Hy+V, (even-numbered pulses such that the nonholonomic evolution matrix

The timingst; play the role of free parameters one has to - . - .
adjust in order to perform the desired control operation. To  U(E) = exd=iHt, Jexp(— iHpt, 1) - exp(— iHty)

be more explicit, the perturbationNg andVbA musit beAchosen meets conditiong6): for any pair (|9, y))1=si<s Of basis
SO that the commutators of all orders df=H,+V, and vectors ofC and any operatoﬁme{lém}npl“__M

H,=Hy+V, span the whole space of Hermitian matrices act-
ing on the system we want to control: this is called the (WUTHELU®]ye =0. (9)
bracket generation conditiofiBGC). From the Campbell-

Baker-Hausdorf formula, it follows that this is a necessary! "€ numbenc of control parameters must exceetg the num-
condition of controllability. It also proves to be sufficient in Per of mdgpendent constraints which is cleariji“—that

all the practical cases we dealt with. For that reason, wéS» Nc=MI". The number of really necessary control param-
consider that we have “good controllability conditions” as &€rs appears to be much smaller tIh&n_We have to design
soon as the BGC is checked. The numbenf control tim- & NeW algorithm Whl_ch achieves a partial and less expensive
ings depends on the problem to be solved. For instance, if wgontrol of the evolution operator of the system. _
want to impose the arbitrary evolutio '{Jarb on an The a}lgprlthm we shall use to calculgte the appropriate
N-dimensional system, we need at leagt=N? timings control t'|m|.ngsti mixes thg iterative algorithm presented at
sinceN? is the total nu,mber of free real parameters crraracthe beginning of this section and the nonholonomic control

terizing aN X N unitary matrix. We dealt with this problem tseig::g:qblfgékl_zi;veorlgfr%d;[ﬁi thg(N> 1) (N>1) ]-dimen-
of complete control in previous papdial] and developed a 9
general algorithm to find the appropriate timingswhich O(f) 0O -+ 0
realize -
. 0 . 0

. - o= O VO S

U(tyty, ... the) = exp(— iH gty2) : : : :
Xexd—iﬁthz_l) “‘exg_”:lbtl) =l:Jarb. 0 0 o U(f)

We can directly apply this result to our coding problem in @nd the(Nx I)-dimensional supervector
the following way: first, we find the codeword§%),i

=1, ... |} by the iterative algorithm we have presented in the B hfl)
first part of this section; then, we complete the set véc- IC)=
tors {[%),i=1,...1} with (N-1) vectors {[%),j=l [v1)

+1,... N} to form an orthonormal basis ¢f. We build the

coding matrix by taking the vectof§y),i=1,... N} as col- composed of the coordinates of thdasis vectors of, we

- can set the problem of control, EQ), in the following
umns ofC, and finally we calculate thec=N* appropriate  equivalent form: we look for a time vectdrsuch that
timings {t;} such that o
R R Dk, <C|UT(t_))EkU(f)|C>:01 (10)
Ultatz, . fhe) = expl=iHale) where the matricefE }; ¢ denoteE different matrices of
X exp(— iHptyz_y) -~ exp(— iHgty) = C dimension(N X 1) X (NX 1) which have been introduced in
the beginning of this section. In other words, we look for the
through the complete control algorithm presented2d].  time vector f which sets to zero the test functioB(f)
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EEE:1|<C|0T(f)Ek0(D|C>|2_ The idea of our algorithm is to ily solvable by standard techniques of linear algebra. Yet we
will proceed in a slightly different way. We set

take the supervectdlCo)=U(fy)|C), wheref, is a random nc > MI%—say,nc=MI?+ n wheredn is an integer of order

time vector, as the starting point for an elementary step of th‘i : 5

, . ) o . . Then we randomly pickMI< timings t; among thenc
iterative algorithm and look for the small time incremeity  \yhich will be considered as free parameters, whereas the
such thatU(f, +dty)|C) follows the direction provided by the other on ones will be regarded as frozen. In other words, we
result|Co)+|ACy) of the iterative algorithm. The repetition randomly choose a permutatian € S, (symmetric group

of this sequence finally yield§=f,+dty+dt;+--- which  of ordernc) and take the timingséti’:tgo(i)}izlp__M,z as free
meets Eq(10). parameters whereas the timing$=t, i}i-1.izn. are fro-

Let us now _describe the_ al_gorith_m in“ more _detail. FE,rSt’zen. This leads to new versions of E¢sl) and (12):
we randomly pick a set of timingty; in a “realistic range,

dictated by the system under consideration: in particular,
control-pulse timings have to be much shorter than the typi-
cal lifetime of the system and be much longer than the typi-
cal response delay required by the experiment. Then we
minimize the function

Ok, C

P UL DO
(T(to) ' dt'o) ExU(to)
ﬁt/

c +Ul(EE Q(f) dt's || C
Fe, MY, .. A2) = S [ICo) + MOEICOP T
k=1
1 - 1 ~
as we did in the algorithm presented at the beginning of this <C0 + EAC0|EK|C0+ EAC°> —(ColE{Cp
section: we obtain thﬁ<k°)’s and|ACy)=Z,MECp). At that = f , (13
. . > . 1 1
point, we look for the small incremeut, of the time vector <Co +=ACy|Cy+ —ACO>
ty such that 2 2
UL DU
Dk, C (__)(to) . dto) EKU(to) “ R N
A S(to) - dt’'o=W(AC,)). (14)
N LA &U R N . . .
+ UT(to)Ek<__,(t0) -dto> c quat|on(14) is nOYV cIearIy a sguare sysEem. S.olvmg Eq.
at (14) yields the MI%-dimensional incrementit’, which we

1 . 1 ~ complete withén zeros into anc-dimensional vector; by re-
<Co+ EACO|EK|CO+ 5AC0> —(ColEdC ordering timings, we obtain the total time-vector increment
= ‘ 1 1 . (1) dt, Thus we have foi e [1,MI2], dto, ) # O (free param-
<C0+ EACO|CO+ EACO> eterg, whereas foii e [1+MI?,n¢], dtp ,,i)=0 (frozen tim-

_ _ ings. Then we set?=fy+adt, where a is a convergence
It should be noticed that we do not consider the eIfOl-pefficient and calculate the test functionG(f)

supermatricesky, corresponding to orthonormality condi- =2k|<C|UT(f)I§kU(f)|C>|2 in f=f for different values ofa
tions: in other words, we just take matrices i - -

~ ) ] e[0,1]. If we find an «; such thatG(f]) <G({y), we take
{Edkepia-12+110-12+Mmi(+1)/2) INto account. Thus we deal -

. . : " f,=t{* as our new time vector and keep the same free-
with MI(1+1)/2 complex equatlons. This set of equatlonsVarying timings: in other words, the permutatieg govern-
can be reduced to the real linear system

ing the timings that play the role of control parameters in the
second step of the algorithm remains the same—that;is,
=0y. If we cannot find an appropriate,, this means we are

whereS(t,) andW(|ACO>) are, respectively, aMI2x nc real  Situated in a local minimum o6; then, we set; =t, and
matrix and aM|2-dimensional real vector. We obtained Eq. Pick & new set of free-varying parameters by simply choos-
(12) by splitting the set ofMI(1+1)/2 complex equations ing a new permutatiomr; # o randomly. This rotathn pro-
(11) into two sets ofMI(I+1)/2 real equations and rejecting cedure among control parameters allows us to avoid possible

those which are trivial0=0) or redundant. Even though this IOC\";‘\II mrmlmatct);:ithe test ‘;]U”CU?G Wf ;/ivannt to <I:arr]10el. e
procedure is straightforward, the explicit expressions of th ¢ repeat fhis sequence ot operations as long as needed.

_ ~ _ o %At the mth step, we take the supervectoCp, 1)
different elements o andW involve many indices and are _0(,{ )|C) as the starting point of an elementary step of the
so unpleasant that we prefer not to reproduce them here. ~— ~ "1 9p y step

The linear system we have just found is a priori rectanguiterative algorithm. We Ca|CU|atFACm—1>=§>\(km_1)Ek|Cm—1>
lar (MI%X ng), but actually we have not fixed the numbgy  and findMI%dimensional variations vectait’,,_; of the M|?
yet. Previously, we stated thati-=MI% we could be free parametergcharacterized by permutatios,, ;) such
tempted to sehc=MI? so as to obtain a square system, easthat

S(fo) - dty= W(IAC)), (12
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UL DU N (S
Ok, C (__,(tm—l) ’ dt’m—l) EU(tm-a) + UT(tm—l)Ek( —(ta) - dt,m—l) c
at’ at’
1 S 1 S
Ch1t EACm—1|Ek|Cm—1 + EACm—l - <Cm—l|Ek|Cm—l>
1 1
Cra1t _ACm—1|Cm—1 +SACh
2 2
|
by solving the associated square linear system IV. COHERENCE PROTECTION APPLIED TO THE

RUBIDIUM ATOM

S(E-1) - Ay = WIAC 1)) The goal of this section is to apply our method to a real
physical system. As we shall see below, the chosen system, a

We completeft’wl with &n zeros and reorder the timings so rubidium isotope, due to its structure, lends itself particularly
as to obtaindt Then we takd®=f. -+ adt If there well to a straightforward implementation of our technique

. -1 o Sm~tm1T Ame1 and allows us to illustrate its different steps quite simply: to
exists anay, such that~(t;m <F(t.,-1), we sett,,=t;™ as our

i be more specific, following the scheme we presented in the
new time vector and keep the same free parameters for th&e\ious sections, we show that it is possible to protect one
(m+1)th step: the permutation characterizing free-varyingq pit of information encoded on the two spin states of the

timings in the(m+1)th step will be the same as in teth  groynd level 5 of the radioactive isotop&Rb against the

step—that is,07,=0pn-1. Otherwise we takéy=ty-,as our action ofM =6 error-inducing Hamiltoniang,,,. For numeri-

i i 2
time vector and.randomly p'Ck. uptl® new free parameters ., cajculations we considered three magnetic Hamiltonians
among thenc timings, by choosing a new permutatiof, for

the (m+1)th step.
We have not said anything about the decoding so far. If

the two HamiltoniansH,=V, and H,=V;, can be reversed 4nq three electric Hamiltonians of second order:

(note that we assumé,=0)—i.e., the sign o/, andV,, can
be reversed by altering of the control field parameters—the
implementation of the decoding matrix is quite easy: it

amounts to reversiny, andV, and applying the same con- In the following, we propose a detailed physical setting
trol timing sequence backwards. To be more explicit, onevhich achieves the desired protection operation: in particu-
starts by applying \}b during timing thes then -{/a during Iari we providehcharchtferistic VE|3.|U(|ES c&f control fieldsI and
. 9 : o pulse timings. These different calculated parameters relate to
E”C‘l*“-’ and finally -V, duringt,. On the contrary, i/, and a single isolated atom. As we shall see at the end of this
V}, cannot be reversed, one cannot apply this technique. Weection, when dealing with an ensemble of atoms, serious
must use the general nonholonomic control tEChnique, inexperimenta| drawbacks emerge which prevent us from ac-
volving N? control parameters, to find timings which realize tyally implementing our application. Nevertheless, the ex-
c ample considered shows the operationality of our method
The algorithm we have just described was numericallywhich is able, in a given physical situation, to provide a
implemented and has already given satisfying numerical reprecise frame for its implementation.
sults on a realistic 7-qubit system subject to the action of 21 Before presenting the details of the proposed implemen-
errors[19]. In the next section, we deal with another realtation, let us motivate the choice of the rubidium atom.
physical system which lends itself particularly well to a dem-Alkali-metal atoms like Rb are very interesting for our pur-
onstration of our method. pose because of their hydrogenlike behavior. Such an atom is
To conclude this section, let us emphasize that, to outhe compound of an information subsystem—i.e., the spin
knowledge, there is only a formal link between our methodpart of the wave function, and an ancilla—i.e., the orbital
and the so-called “bang-bang” control schem23]. Actu-  part of the quantum state. As we shall see, it is easy to in-
ally, in this kind of techniques, fast and strong pulses arecrease the dimensionality of the ancilla by simply pumping
applied which average the interaction Hamiltonian betweerthe atom towards a shell of higher orbital angular momentum
the system and its environment to zero. By contrast, ouk.
method employs pulses which are designed to code We chos€’®Rb among all alkali-metal systems because of
information—that is, to transfer it into a proper subspace, ints spectroscopic characteri€gig. 2) [24,25. In particular,
which errors act orthogonally: decoding and measurementRb has no hyperfine structufiés nuclear spin is Pwhich
then allow us to recover initial information. ensures that the ground leves 5 degenerate: this is neces-

{Ef o L+ 2S.k=x,y,2}

{IAE;I o« 2= 2 k1 =x,y,zk <l}.
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.5 1
|V2>—> |’}’2>: ‘601:,] :E,mj :_E>'

In other words, using the terminology of the previous sec-
tions, the information initially stored ift, is transferred into

)
)]

The choice of the subspacemay appear arbitrary at this
stage, but it will be justified later by the practical feasibility
of the projection process ont®. Let us note that is an
“entangled” subspace whose basis vec{bs}i-; » are gen-

eral entangled states of the spin and orbital parts: this means
(Sec. I) that the projection step will not consist in a simple
measurement of the ancilla but will involve a more intricate
process we shall describe in detail later.

Practically, the pumping can be achieved as follows. One
applies three lasers to the atom: the first laser is right polar-
ized and slightly detuned from the transitidbs«< 5p)
whereas the second and third lasers are left polarized and
slightly detuned from the transition§5ps,«<5d;,) and
(5d5,,+ 60f), respectively. The detunings forbid real one-
photon processes: the atom can only absorb three photons
simultaneously and is thereby excited from the ground level
5sto the Rydberg level 80 By using selection rules, one can
construct the allowed paths represented in Fig. 3: these paths

5
60f,] = _,mj =
2

C=Spa{|n>=

5
|y2) = ‘601‘,1=51mj:

sary for the projection scheme as we shall see below. Morednly couple|vy) and|v,) to |y;) and|y,), respectively.

over, it has a long enough lifetimgr=17.66 min for the

proposed experiment.

The second step consists in encoding the information by
the nonholonomic control technique: to impose the coding

Let us now review each step of our method in detail. Asmatrix on the system, we submit the atomnko=34 control
mentioned above, the information we want to protect is ini-Pulses of timings{ti}=1 34 during which two different
tially encoded on the two spin statpg)=|5s, j :%,mj:—%> combinations of magnetic and Raman electric Hamiltonians

and|vy)=5s, :%'mj:%> of the ground level §of the atom:; ~ are alternately applietsee Fig. 4. To be more explicit, dur-

these two states span the information spa@¢ ing odd-numbered pulsei@-type pulses we apply a con-
=Spaifi/»,),|,)] whose dimension is in that case2. The Stant magnetic field

first step of our scheme consists in adding an anglli@ the B,=710°T

information system. The role ofl is played by the orbital B=| B.=8210°T

part of the wave function. In the ground state=0), its yo = '

dimension isA=2L+1=1 (roughly speaking, there is no an- B,=-6.810°T

cilla). If we want to protect one qubit of information against
M=6 error-inducing Hamiltonians, we have to increase th
dimensionality of the ancilla up tA=M+1=7[Eq. (7)]: this
can be achieved by pumping the atom up to a shél(L
=3). We choose the highly excited Rydberg staté §0 as to
make the fine structure as weak as possitile splitting for E E/
60f is approximately 10 cm ™t [24]). We shall first consider R X2 - xa

the fine structure is negligible so that tiNel X A=2Xx 7 Ea= |Eya€ %2 | E;=|E) e %a,

=14 basis vectors of the total Hilbert spakle=H, ® H  are 0 0

almost perfectly degenerate; the validity of this approxima-

tion will be discussed at the end of this section. To be moravhose frequenciesr and wy are, respectively, slightly de-
specific, the pumping is done in such a way that tuned from the two transitions(60f<—>5d,j=§) and
(60f —5d, | :g) (detuningss and &’). The characteristic val-
ues of these fields are

Ea=EL,=85%x10°vm™,

which is associated with the Zeeman Hamilton\&l@, and
Swo sinusoidal electric laser fields

E.(0) = RE,e =], E4t) =RqEje ],

.5 3
) — )= ‘GOf,J ZE’mJ':">'
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 J=52 S = /- R
1/2 3/2 5/2\ 7/2 5/2 232 -12 172 312 5/2 7/2\

60f "

FIG. 3. Ancilla adding by pumping. Photon
polarization and involved sub-Zeeman levels are
represented. The fine structure of the Rydberg
level 60f is not resolvable.

WA
Eya= E§a: 52X 10°Vm, we apply the same magnetic field as fotype pulses, which
' ’ is experimentally convenient, and two sinusoidal electric la-
Pya=@a=2.3, ser fields
Ey(t) = REE,E7“R], Ep(t) = REEje™R
hwr=0.986324 eV = 7955.14 crh o0) =ReBE ™, Eylt) =ReEye ™,
where
5=-0.000010 eV = - 0.080654 ¢ ,
Ex’b X,b

fiwp=0.986676 eV = 7958.14 cth Ep= [Eyne™?® . Ef=|E),eom

0 0

=0.000010 eV = 0.080654 crh )
whose frequencies are the same as above and whose charac-
The intensity of the laser beams are typically of the order oferistics values are

2x10° Wcem™. The Raman Hamiltonian associated with
these fields is denoted Bi/g o. The total perturbation i¥/,
=Wz+Wg a. During even-numbered pulsé¢B-type pulsef

Exp=Eyp=-52x10°Vm™

Eyp=E;,=85x10°Vm™,

laser 60f Fra= Pya=2:3.

fields The Raman Hamiltonian associated with these fields is de-
W'y noted by\i\/RyB. The corresponding perturbation {ﬁ,:\i\/z
J=5/2 +WRB Therefore, since the fine structure of the levef 80
’ ¥yo neglected, the unperturbed Hamlltonlua is taken to be 0,
5d. | and the total Hamiltonian has the forHA V during A

- puIses,HB—Vb during B pulses. The 34 different timings
\ have been calculated so that

A /
Kt ¥ J=3/2 .
-if

U(ty, ... tgg) = e Hetnce

FIG. 4. Coding step through the nonholonomic control tech-meets conditions5). At the end of the codlng step the infor-
nigue. The two Hamﬂtomanlei and Hb are alternately applied to  yation is transferred into the code spaﬁ;eCC encoded on
the system during pulses of timingg;(ng}={3.9763, 6.4748,

4.2274, 3.6259, 2.8717, 3.6281, 7.2263, 6.4260, 4.8070, 5.0394N€ codewords[y,)= Clyliz

6.5242, 4.8890, 4.2400, 7.3834, 4.8653, 5.4799, 4.5341, 4.3099, As can be easily checked from Fig. 4 the total duration of
6.2950, 3.7346, 6.5293, 6.8586, 6.0749, 5.1213, 4.6806, 3.498& control period (=125 ng is approximately 19 times
3.9909, 4.6701, 4.5168, 6.4702, 4.7787, 5.3476, 3.4567, 3.8009shorter than the lifetime of the 6(Rydberg state which is
The frequencies of the laser fields involved in the encoding step arapproximately 0.115 ms as can be calculated ff@d4]. The
represented on the spectrum of the rubidium atom. The fine strudifferent pulse timings range between 2.9 and 7.4 ns, which
ture of the Rydberg level 60s not represented. are feasible.

Alne-1... @ Hati = C
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A sllghtly detuned from the transition&s0f < 5d, J—g) and
J””A laser 60f (5d, j—§<—>5p J——) Due to these laser fields, the atom is
W oa e fields = likely to fall towards the ground state and emit two stimu-
hl '\ AN W'y lated and one spontaneous photons.
\\ . Using the selection rules, one can infer that, if a circularly
j;}a =(;a —_— — ,._Ti right-polarized spontaneous photon is emitted, the only states
b ! J=5/2 |to be coupled to the ground level dng) and|y,) to |»,) and
T B / vy), respectively(see Fig. 6 This means that the emission
H, 'V”_E ;_E : &( dd of a right-polarized spontaneous photon brings the “correct”
> —>—>—> ¢ > \ part of the state vector back int@, = Spat|»y),|v,)]. On the
S i J=3/2 contrary, the other cases—‘left polarized,” “linearly polar-
\ﬂa_ ized spontaneous photon,” or “no photon at all’—do not lead

to the right projection process.

FIG. 5. Decoding step by the nonholonomic control technique. The “left-polarized—photon” and “no-photon-emitted”
We reverse the magnetic field and the detunings of the electricases are quite unlikely: indeed the probability that they oc-
fields, as represented on the spectrum of the rubidium atom, angur is proportional to the square of the error amplitude—that
apply the same control sequence as for codgne timingsback- s, to the square of the Zeno intervBl which is very short.
wards. The fine structure of the levelf6i8 not represented. The “linearly-polarized-photon” case is quite annoying be-

cause it mixes the two pathg,) — |v1) and|y,) — |v). This

After a short time, the information stored in the systemparasitic process and its relative probability must be sup-
acquires a small erroneous component due to the action gfressed, with respect to the process followed by the “right-
the error Hamiltonians, which is orthogonal to the codepolarized”-photon emission. This can be done by launching

spaceC. Then, we apply the decoding matix? to the atom  the "®Rb atom, previously cooled, into a Fabry-Perot cavity,
as suggested at the end of Sec. Ill. We reveisand the in an atomic fountain mannéfine tuning of the lasers driv-

detuningss and &, and leave all the other values unchanged 9 the 60-5d and 51-5p transitions will be necessary to
A avoid reflection of the external laser radiation from the cav-

(this amounts to taking the opposite of Hamiltonidfhsand ity). The decay rate for the three-photon transitipg)
Hg), and apply the same sequence of control pulses back-:|y;) is

wards: we start with ad\ pulse whose timing 'Snc' then

apply aB pulse duringtnc_l, etc. (see Fig. 5. The decoding

step yields an erroneous state whose projection Grisothe Fyivi =

initial information state.

In the last step the erroneous state vector is projected onto
the subspacé€ to recover the initial information. Projection wherek; is the wave vector of the spontaneously emitted
is a nonunitary process which cannot be achieved through BNOtoN.€r is the left-polarized-photon polarization unit vec-
Hamiltonian process, but requires the introduction of irre-toF; e(ky is the density of stategormalized to the cavity
versibility. To this end, we make use of a path which isvolume for the cavity field atks and the overbar denotes
symmetric with the pumping step and consists in two stimu-averaging over the directions kf The transition dipole mo-
lated and one spontaneous emissions. To be more explicipents are denoted ky,,: during the projective process the
we apply two left circularly polarized lasersee Fig. &  states coupled tpy;) and|y,) are, respectively,

dyn Ea 2
hA,

d}\J,uk 2
fi(Ap+Ay)

2
2mtickyd,, , 20 (K,

Q=52 SR L
12 372 5/2\ 7/2 5/2 232 12 12 312 5/2 7/2 )

60f "

La

FIG. 6. Projection path. The lasers involved
are marked by solid arrows; the spontaneous pho-
ton is represented by a dashed arrow. The differ-
ent polarizations are specified. The fine structure
2 132 :’EA, +A, of the level 60 is not represented.
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_ 3 1 ~ 3 1 2
Ny = 5d-1_5-mj__§ INo) = 5P'J—E-mj—+5 ) Tsp,

3 1 3 3 in order to diminish errors caused by the decay of these
lg) = ‘Sd,j =>m=3 o) = ‘5P,J =>m=2/( unstable states.
To complete the projection step, one has to transfer the
The enhancemertby the presence of cavihof the den-  atom in its coherent superposition back to thé state: this
sity of states for the modes propagating paraxially tozhe is achieved by the same pumping sequence as in the first
axis ensures that step. The mismatch of the Clebsch-Gordan coefficient prod-
ucts will cause again the error probability -The infor-
mation is then restored with very high probability and the
Y system is ready to undergo a new protection cycle.

From the beginning of this section we have neglected the
where vy is the decay rate of5p,j=3,m=+3) into [5s,j  fine structure splitting of the level 8P which is approxi-
:%,mj:+%>, so that the undesired process followed by themately 2x10°cm™ and corresponds to a period
m-photon emission is relatively less important than it was in~1.5 us. To conclude this section, let us now take it into
free space. For the density matrix elememygsthe following  account and see its effect on each step of our scheme.

d)\j,ukEZ
fi(A1+Ay)

‘ Ay Fa ’
™

dy Ex 2

A,

d)\jp,kEZ

r T
hi(A+Ay)

Y11 72Y2

system of equations can be writtérr0, 1): Obviously the pumping and projection steps will not be
, ) affected by the fine structure, since the information-carrying
Py =~ Loy vectors{|y,),|y»)} belong to the same multipléf=5/2).

The coding and decoding steps are neither modified by

Pov=00,p the existence of the fine structure. Indeed, since the typical
iVi U . . . . .
period of the fine structure Hamiltonian,~ 1.5 us, is more
1 than 10 times longer than the total duration of the coding or
Py ==y, +T Vp, decoding steps, it is legitimate to neglect its effect.
e 20 e The influence of the fine structure on the free evolution

period during which errors are likely to occur is more com-
Pon=\T, T po . pllcated to study in th_e general case. Yet two simple I|m|t|ng
ve Y regimes can be considered. If the spectrum of the coupling
To avoid dephasing which would corrupt the information, thefunctions f(t)’'s is very narrow[i.e., if the variation time
coherence matrix eleme;m;/172 must be transferred with the scale of thef,(t)’s is much longer than¢], one can show

maximum efficiency intg,,,,: the efficiency that our scheme applies directly as thouqh there were no fine
structure, provided the error Hamiltoniafs,} are replaced
9= Z—VFVMFWZ by{l%ﬁf]’)}, WhereIAEEg) is obtained fronfEm by simply setting to

Fylyl + FVsz zero the rectangular submatrices which couple the two mul-

tiplets (J=5/2,7/2. The second limiting regime corre-

sponds to a very broad spectrum for thgt)'s (variation

T (Cs/z -3/2 3/2 -1/2 3/2 1/2 )2 time scale much shorter tham): in that case, one can show
1

is thus crucial. According to the Wigner-Eckart theorem,

nh | 2827121 -8z 12 1 172 72 1 that our scheme applies provided one chooses a Zeno inter-
52 12 (32 12 312 312 .
32121 -132321 -~12 1211 val T multiple of 7.

i ) i In all this section, we implicitly supposed that the rub-
where on the right-hand side the ratio of the products of they;,m atom was alone, but in actual experiments, one usually
Clebsch-Gordan coefficients corresponding to the transitiongorks with an ensemble of atoms: this generates serious ex-
stands. These coefficients, which can be foun{#l, lead  perimental drawbacks which we deal with now. Rydberg at-
to #=12y2/17~0.998 27. In other words, the probability of omg are sensitive to the Doppler effect: nevertheless, in the
error during the Zeno projection stage due to the small diftase of cold atoms, this is negligible. But the most dramatic
ference of the Clebsch-Gordan coefficient products for thffect is due to interactions between atoms such as dipolar
two paths is equal to or less than 4~0.001 73equality is  forces[27]. In a standard magneto-optical trap containing
reached if the initial state i$|0)+[1))/v2]. Note that the  gphout 1000 atoms in Rydberg states=60), the typical en-
states 66, 5d, and $ have finite lifetimess, (see Fig. 2 ergy of these interactions is 1 MHz, corresponding to a
Thus the transition rates, , must be much larger than dephasing time of 1 m8]. As different atoms see different
environments and are thus subject to different interactions, it

r

Y2V2

Ursor, will be impossible to properly code and thus protect the in-
formation stored in the different atoms of the ensemble. Be-
dyi)\.El 2 yond these problems, we nevertheless want to emphasize the
A, T5d demonstrative value of our example: the system considered
here(rubidium isotope in a Rydberg stat¢hough not com-
and pletely satisfactory from an experimental point of view, is
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indeed quite practical for a straightforward demonstration otronic spin of the atom iS=1/2. Thenatural basis wave
our scheme, since the information-carrying subsystem antlinctions are|lL,M_;S,Mg). A qubit of information is en-
ancilla are clearly identified and every step is “simply” coded on the two states

achieved. Other systems must be found, which will be ad- M _

dressed in future publications; however, the application con- [7%)=|ILSM;) = > CLMTSMJL-ML:SMQ, i=1,2,
sidered here has already suggested the physical relevance MLMs

and applicability of our method. where Cl)i’sy, is the Clebsch-Gordan coefficient. In the

scheme we proposed for a rubidium atohw3, J=5/2,
V. CONCLUSIONS M, =-3/2,M;,=-1/2—that is,

In this paper, an original scheme has been presented 5 3
which allows us to protect the quantum coherence stored in a [y1) = | 60f,j = E'mj =- 5/
information systen?¥ against the action of a set M given

error-inducing Hamiltonianék. 5 1
The information initially stored in the Hilbert spaé¢ of ly,) = ‘601‘,] =-mj=- _>_

the information system is transferred into a subsgaoéthe 2 2

g':?neg; ?ﬁ%cueg?ﬁ:agAﬁ];{g noglz?(ﬁi;&zsz;’ggc?ﬁs;gf?; _ We want to protect this information against the action of six

cilla to the main system. A multidimensional generalization'ndépendent error-inducing Hamiltoniag, three magnetic

of the QZE has been presented which makes it possible tgnd three electric interaction Hamiltonians. We shall see that

protect such a subspace against the action offifs pro-  the code spacé=Spaiifyy), [7,)] can be simply built from

vided the dimensiorA of the ancilla meets the Hamming physical considerations on the action of the Hamiltonﬁps
boundA=M+1. The information is thus encoded in another Let us first consider magnetic errors. The interaction

subspac@, called the “code space,” through the applicationHamiltonian of the atom with the magnetic fieRldirected
of the coding matrixC: in this appropriate subspace, the along thekth axis (k=x,y,2) is

error-inducing HamiltoniansE, act orthogonally. After a cp_ ~ :
short time, the information thus contains a small orthogonal Bic= neBi(Lic+ 250,
erroneous component dge to the action of Eygeit is then 4 being the Bohr magneton. Remembering tﬁat(L
decoded by application @I‘_l and restored by an appropriate +L)/2, Ly:([;f__)/z;, whereL, (L_) is the operator in-
physical measurement which projects the state vector ©nto creasing(lowering) the z projection of the orbital angular
with very high probability. The repetition of this sequence asmomentum, and similar relations for the spin operators, one
long as needed protects the information stored in the systergan conclude that a pair of the states with defiigrojec-

A physical achievement of the coding and decoding stepgons of orbital and spin angular momenta is a good basis for
have been proposed which employs the nonholonomic conthe code subspace if the difference of the of their quantum
trol technique. The different algorithmic tools needed OnumberM, =L, is greater than or equal to 2. To use this
implement our scheme have been presented. option, one needs to consider the error caused by a magnetic

Finally, an application has been proposed which makegie|d oriented along. The states with definite,, S, are the

use of the rubidium atom. One qubit of information is en'eigenstates of the HamiItoniﬁf. A general superposition of

coded in the spin states _Of the atom \_Nherea_s the or_bltal pa{&va such states must not be rotated in the Hilbert space under
plays the role of the ancilla. A realistic physical setting has

been proposed: in particular, a projection process based dRe action ofEf. This means that the eigenvalues must be
the spontaneous emission has been suggested. equal to each other. Thus the states
%) =ILM;SMs= +1/2),
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EXPLICIT DERIVATION OF THE CODE SUBSPACE rubidium, caused by the electric fieftloriented alongz—is

. ) . . . _ given by constBE?M?Z. The valueb characterizes the polar-

In this appendix we deal with a particular physical situa-jzapility of the atom in the given state. Omitting the irrel-
tion in which the code subspacecan be explicitly derived. evant constant, we may represent the Hamiltonian of the
We consider an atom with zero nuclear spin on the levehtom-field interactiorfwith respect to the particular manifold
characterized by the orbital angular momentunThe elec-  of sublevels of the given atomic statey the operator
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e bEELz, K=x,y,z. (A1) flips. Thg error vector is al_ways orthogonal to any their su-
perposition, as can be easily seen. Among various code sub-
Note that, since the fine splitting is zero, the spin variablespaces protecting against electric errors there is one that pro-
are unaffected by the Stark effect. Rewriting the operatorgects against magnetic errors, too. The basis vectors of this

Ey, in terms ofL,, subspace are

. 1r) 1-, 1 1- %) =|L,M_ = - 1;SMg= +1/2),
Ei:—bgi[ZLf+ZLE+§L(L+1)—EL§:|,
75y = LM = +1;SMg=-1/2).

. of 1sy 1., 1 1., It may happen that for singlet electronic states of atoms
Ey=-b&y| - ZL+ - ZL— + EL(L +1)- ELZ ’ with nonzero nuclear spin, whose nuclear magnetic moment
Mnucl IS INCOMmMensurate witlug, one cannot apply this ex-
one can conclude that the basis of the coding space can bepéicit derivation of the code space for the correctionboth
pair of states of oppositg, and opposite., (so thatL,| is the  the “electric” and “magnetic” errors. One has then to look for
same for both of these stajedndeed, these states are nota more complex coding transformation through the algorithm
mixed by the HamiltoniarfA1), which does not cause spin we presented in Sec. Ill.
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