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Entanglement flow in multipartite systems
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We investigate entanglement dynamics in multipartite systems, establishing a quantitative corexept of
tanglement flowboth flow through individual particles and flow along general networks of interacting par-
ticles. In the former case, the rate at which a particle can transmit entanglement is shown to depend on that
particle’s entanglement with the rest of the system. In the latter, we derive aesgtiaofglement rate equations
relating the rate of entanglement generation between two subsets of particles to the entanglement already
present further back along the network. We use the rate equations to derive a lower bound on entanglement
generation in qubit chains, and compare this to existing entanglement creation protocols.
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[. INTRODUCTION The Schrddinger equation already implicitly describes the
) ) ) ) ~complete dynamics of a quantum system, but to gain insight
New fields of physics often give rise to new physical into entanglement dynamics we need equationsekglicitly
quantities to study, and quantum information theory hasnvolve the entanglement of the system, without reference to
proved a rich source of study material. As an amalgam opecific features of the Hamiltonian. One of the first steps
quantum mechanics and information theory, many of the nevalong this path was taken by D&t al. who investigated the
guantities are quantum analogs of familiar friends from clasrate of entanglement generation in two-qubit systéfis
sical information theory: theubit for instance, measures They derived an equation relating the rate of entanglement
guantum information just as th#t measures classical infor- creation to the existing entanglement in the system, along
mation[1]. Other quantities have no obvious classical counwith a factor depending on the form and strength of the in-
terpart. The best-known example is entanglement. Originallyeraction. This latter led to a pleasingly simple quantity mea-
seen as the phenomenon that epitomized quantum weirdne$#!ring the entanglement generating capacity of two-qubit in-
it has become established over the last decade as a physiéafactions6,7]. ) o
quantity, on a par with, say, energy. In a system of two particles coupled by a Hamiltonian, the
The analogy with energy can be pushed quite far: enonly entanglement dynamics that can _take plac_e is creation
tanglement has a number of similar properties. Like energyP! €ntanglement between the two particles. A simple tripar-
entanglement can be quantified in a meaningful @y al- tite system aIrea_dy raises othe( interesting questions. For in-
lowing us to say that one state is more entangled than a _tan(,:,e, in a chain Of. three particles, hO.W does entanglement
other. Like energy, entanglement can be converted from on ﬂOW. through the mlddl_e one? Surprlsmgl_y, we showed in
form .to anothel[s]', and like energy, it is a resource that can Brewous work[12] that, in just such a chalr!, entan_glement
' ' can be created between the two end particles, without the
be used to carry out useful tasks, such as teleportdfibn

X ; middle particleever becoming entangled. This would seem
U““' recen.tly, work concentrated on understanding thesq:o put an end to notions of entanglement flow. However, we
static properties of entangled quantum states. Although WEiso gave a simple proof that this phenomenon is only pos-

are some way from a complete understanding of entangl&siy e for mixed initial states; for pure states, the middle par-
ment statics, there has been significant progress: for instancg e hecessarily becomes entangled during the evolution.
bipartite pure-state entanglement is now well understood. This suggests there is a connection between pure-state

This begs the question: what happens if we allow the state t8ntanglement of a mediating particle and entanglement flow

2 . o
evc_i_l\ée. f | . | through that particle: if it is not entangled, no entanglement
e move from entanglement statics to entanglendgat e "1n Sec. I we show that there is indeed a quantitative

namicsraises many new and interesting questions. How doeg, ation describing how the entanglement of a particle with
entqnglem_ent evqlve as parugles interi&® How good is a the rest of the system limits the flow of entanglement
particular interaction at creating entanglemit7]? More o601 that particle. We first consider a three-qubit system

generally, how good is an interaction at simulating variousbefore dealing with general systems. The concept of en-

Ponlclncal Ip_rocesrse[sB,Q]? Or, turning this on its higdi h,)OW tanglement flowthroughparticles is therefore put on a quan-
nonlocal” is a given procesg.g., a quantum gatgl0,1?  yiaive footing for systems in pure states. This contrasts

This paper ext.ends.the first of these—how entanglemergtrongly with the mixed-state case, in which entanglement
evolves as particles interact—to multipartite systems. can seemingly “tunnel” through mediating systems

Flow through individual particles is one aspect of en-
tanglement dynamics in multipartite systems. But in a net-

*Electronic address: toby.cubitt@mpg.mpg.de work of many interacting particles, we may also be inter-
"Electronic address: frank.verstraete@mpg.mpg.de ested in how entanglement flows along the whole network.
*Electronic address: ignacio.cirac@mpg.mpg.de We develop these ideas in the second half of this paper.
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The inspiration is loosely based on the Arrhenius equa- A. The three-qubit chain
tions for chemical reactions. The reaction mechanism of a
chemical reaction describes the steps by which reactants are,
transformed, via successive intermediate compounds, int@

Consider a chain of three qubits, labekgdh, andc, with

arest-neighbor interactions described by Hamiltonkdgs

nd Hy.. We will restrict the overall state of the system,

g>abc to be pure. However, the reduced state of the two end
bits,p,., need not remain pure during the evoluti@nb is

become entangled at any poipt,. will necessarily be-

me mixedl. To quantify the entanglement betwesandc,

the final products. The rate at which a compound is produce
depends on the amounts of its immediate precursors that a
present. Thus the complete reaction is described by a set

coupled rate equations, one for each step in the reactiog0

mechanism. . . : . we need an entanglement measure valid for mixed states.
I_n_Sec. Il we derive a set of differential equations d_e-.l.he natural choice is the concurrerid]. Though it is an
fs(;:rngl1%:;?22?lrigcet?c:nﬂO%I\;;ea?;;itlgga?cu\/svr:iocr:hgn;:;e I?a ?#;t]'f ?3ntanglement measure in its own right, its interest lies in its
' 9 %cﬂuivalence to one of the important, physically meaningful

e et oot o belanglement megsues: the eianglement of frm gl
9 yp We can write the overall state of the system in its Schmidt

along the net\_/vork. The entanglement dynamics of the Comaecomposition with respect to the partitigh:ac): ).
plete system is described by a coupled set of such entanglg-)\ |6 Dad X+ Aol @adad ). The Schmidt coefficientsy
ment rate equations, one for each step in the interaction nef-’ 1 $/acX1/b™ A2 P2/aclX2/b- . Mo
work. and \,, determlne the_z _nonI(_)caI properties of the state with
Unlike the equations describing flow through individual re%%?;:t ;%ittt)h\:;thp%rgt:ggi I{;I]g;jr?vl/nh%lee?rfgnegrf;ePetm(()afntﬂc])?
particles, these entanglement rate equations apply equal q : ' g

well to both pure and mixed states. Therefore they establis etaceedggﬁgu?:ztnecgf (tjr:;gtné(zj;twgo?lzmﬁw Efg] bt?]gnstgf:r:fd
a concept of entanglement flow along general networks o y ' ¢ 9 '

interacting particles(even though the concept of flow particlesa and b can be represented by ax2 matrix X

throughindividual particles in the system may be meaning-:()‘1|fpl>')\2|‘P2>)' The concurrenc$ can be calculated from
less. the singular values; =g, of A=X X, where2:gy® oy
In Sec. IV we apply our new understanding of entangle-Cac=S1=52=\If A'A-2|detA|. Taking the time-derivative of

ment flow to investigate entanglement generation in chainfiS @nd simplifying the resulting exact expressisee Ap-
of interacting particles. First, we briefly review some exist-PeNdix A for detail$ leads to the following bound on the

ing entanglement generation protocols for qubit chains, irEnt@nglement rate:
the context of the rate equations derived in Sec. Ill. Finally,

we use the rate equations to prove a universal lower bound dcgc < 8JH[\\
~ 1 2.

on the time it takes to create entanglement, or more precisely dt
the scaling of this with the length of the chalthe results
can easily be extended to general netwprks The factor||H|=|Ha4l1+||Hpdly measures the strengths of the

interactions.|[H||;=;|H;;| denotes thd; norm, where the
Hamiltonians are written in the product basis=X;H;;o;
Il. FLOW THROUGH PARTICLES ® o}, and the Pauli matrices; , 5=oy, . are defined in the
Schmidt basig|x1)|x2)}. (Local termso;®1 or 1® g in the
In this section, we will investigate entanglement flow Hamiltonian cannot alter the entanglement of the system, and
through mediating particles. Specifically, we will consider so do not contribute.
flow through the middle particle in tripartite chains. The re- In the context of entanglement dynamics, the important
sults of[12] show that this concept does not make sense ipart of the relation is the product of Schmidt coefficients
the whole system is in a mixed state. But for pure states, th&,\,, which is a pure-state bipartite entanglement measure.
rate at which entanglement is generated between the end pdhn fact, up to a numerical factor, it is the concurrendéus
ticles is indeed zero if the middle particle is not entangled. the differential equation tells us that the entanglement of the
The latter is suggestive: is there a general quantitativeniddle qubit limits entanglement generation between the end
relationship between the entanglement of a particle, and theubits: not only musb be entangled for entanglement to be
rate at which entanglement can flow through it, for systemgenerated betweemandc (precisely what was showmot to
in pure states? If the middle particle is only slightly en-hold for mixed states if12]), but therate at which it is
tangled, does entanglement flow only slowly? We will derivegenerated can be larger the more entanglésl
just such a relationship, first for the simplest tripartite sys- At first sight, the inequality may appear too weak, as it
tem: a three-qubit chain, then for general tripartite chains. does not seem to imply that the derivative is zero once qubits
When investigatingbipartite entanglement flow through a andc are maximally entangled. Howeves,. and\\, are
mediating particles in more general settings, the system camot independent quantities. Wharandc are maximally en-
always be described as a tripartite chain: the mediating patangled, they cannot be entangled with anything else, thus
ticles form one party, and the sets of particles on each sidey;A,=0, and the derivative is zero after all.
which are becoming entangled, form the other two. Thus the A complete quantitative description of entanglement cre-
equation for tripartite chains can in fact be applied generallyation in the three-qubit chain would require an equation de-
to describe entanglement flow through mediating systems. scribing the evolution of the Schmidt coefficients. However,
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(b:ac) forms a bipartite, pure-state system. Entanglementight, it can also be used to give upper and lower bounds on
creation in bipartite systems and the evolution of the Schmidentanglement measures such as the concurrgttgle(and
coefficients has been investigated[ . hence entanglement of formatjorin particular, if a state is
separable, its entangled fraction is less than or equalho 1/
(with n the dimension of the smaller of the two Hilbert
spaces making up the bipartite spad&hereas ifland only
The three-qubit result cannot directly be extended tdf) the entangled fraction is equal to one, the state must be
higher dimensional systems. While we can restrict the sysmaximally entangled.
tem to pure states for the same reasons as in the three-qubit In the final section, we will use our results to derive
case, the reduced density matrix of the two end particles capounds on how long it takes to entangle particles when the
again become mixed during the evolution. And no closedsystem starts in a separable state. In this context, any quan-
form expression is known for the entanglement of formationtity that takes different values for separable and maximally
of mixed states, other than in the two-qubit case. entangled states is equally good in principle: we can bound
Before turning to higher-dimensional systems, it is in-the time required to change from one value to the other. The
structive to consider more carefully the setting in which weentangled fraction, for example, must increase from tb/1.
wish to investigate entanglement dynamics. Entanglement
measures are defined in the LOCC paradigm: local opera-
tions and classical communicatioghOCC) can only de-
crease the entanglement of a state. This is the natural para- The tripartite chain is a prototype for all indire@ipar-
digm when thinking about entanglement from antite) entanglement creation. We can always divide a system
information-theorist's point of view, in which entangled into three: two systems that are being entangled, and every-
states are shared between different parties who are free to dbing else lumped into one mediating system. We can then
locally on their part of the state. investigate entanglement flow through this mediating system.
But we are considering entanglement dynamics from a In a general tripartite chain, consisting of systefysB,
physical standpoint. In a system of interacting particles, it isandC of arbitrary dimension, interacting by nearest-neighbor
not clear what classical communication means. Any transfeinteractionsHg and Hgc, the Schmidt decomposition has
of classical information between particles would still have tothe form |)agc==iNi|#)adi)s, Where we sort the Schmidt
take place via théguantum interactions. It could be argued coefficients; in descending order. By reexpressing the en-
that it makes more sense in this context to define entanglgangled fraction as a maximization over purifications using
ment in the local-unitary paradigm: any change to a state dughimann’s theorentsee Appendix B we can derive an ex-
to local terms in the interaction Hamiltonian should notact expression for the time derivative of the entangled frac-
change the entanglement. tion. Simplifying the exact result to separate out the en-
A physical way of measuring entanglement in this paratanglement dependence yields a relation analogous to the
digm is to use the fidelity16], which measures the distance three-qubit casésee Appendix C for details
between state5The entangled fractiorof a statep is then ) R
defined as the maximum fidelity with a maximally entangled Flpac) < 2|H|\*’F(pAc)(2 Nikj = )\i)
(ME) state: !

B. Fidelities and entangled fractions

C. General tripartite chains

Again, the factor]H|=|Hag|..+|Hagl» measures the interac-
tion strengths, independent of the system stéd|..
S , =mayx;|H;;| denotes thé.. norm).

where the maximization is over all maximally entangled The quantity in brackets is closely related to the entangled
Staiesw?i n tTe blpﬁlrgttfgllblerttfsmi_ce ;lfl.t(For tWO'qlLb't fraction of |)agc In the (B:AC) partition: F(|y){])
states, it is also calle ngletfraction) It measures how _ e : -
close a given state is to any maximally entangled state, and rg”gﬁgtﬁgétff g'{@ ?et:Ce afen;a:ug ZL::; d||r3in3|(t)'ns Bfa?: tit

: 7 gled fraction so that i

invariant under local unitary operations, as required. is zero when the state is separable. Therefore the entangle-

F(p) == max (¢|p|¢),
|¢) e ME

want to know how close the actual state is to the desire he derivative implicitly goes to zero when systefandC

one—precisely what is measured by the fidelity. For ex- ecome maximally entangled, since they cannot then be en-

ample, in teleportation experiments, it is the entangled fracgangled WithB.

tion of the entangled pair that determines how close the tele-

ported state is to the origindl7]. lll. FLOW ALONG NETWORKS
Therefore, in the remainder of this paper, we will consider

evolution of the entangled fraction and related quantities

Though it is a well-motivated quantity to study in its own

In the previous section, we examined entanglement flow
through the middle particle in a tripartite chain, and noted
that the results can be applied to flow through individual
particles in general systems, by viewing the system as a tri-
The fidelity is not a metric on density operators, but it is closely partite chain. However, in a large multipartite system, this
related to one. See, e.¢33], Sec. 9.2.2. approach means lumping many particles together into single
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composite particles, hiding much of the entanglement dy-
namics. Can we more fully describe entanglement flow in
networks of interacting particles?

In this section we derive a set of differential equations
describing the entanglement dynamics, analogous to the rate
equations for a chemical reaction. These show that the rate at
which entanglement is created between two sets of particles
depends on the existing entanglement further back along the
network. Intuitively, this can be interpreted as entanglement
flowing through the network.

FIG. 1. A network of interacting particles showing interactions
and sets defined in the entanglement rate equations. Interactions
“crossing the boundaries” & or B are indicated by thicker lines.

A. Generalized singlet fraction

As in the previous section, we must first address the prob- B. Entanglement rate equations
lem of how to measure entanglement in large systems. Even We are now ready to state our main result: a set of
before that, we must decidehat entanglement to measure, coupled differential equations describing entanglement flow
since multipartite systems provide a plethora of possibilitiesin networks of interacting particles. For simplicity, we as-
What questions are we interested in investigating using ousume that among the set of interacting partiGeshere are
putative equations? Perhaps the most natural goal, given g least two qubita andb, the premise being that we are
system of many interacting particles, is to entangle a particuinterested in entangling thes@he results can easily be gen-
lar pair of them: the end qubits in a chain, for example. Weeralized: se¢19] and Conclusions.Let A andB be disjoint
will take this as our motivation for again considering en-subsets ofS. The equations describe the rate at which the
tangled fractions of the two particles. We will also need togeneralized singlet fraction gfyg can increase.
define a new fidelity-based quantity to measure bipartite en- Define A’ andB’ to be the sets of particles directly con-
tanglement embedded in larger systems. nected by an interaction to at least one particledior B,

First note that, since any maximally entangled state can bgespectively(i.e., A’ is the set of particles at most “one-
reached by acting with local unitaries on a particular maxi-away” from A, thus ACA’; see Fig. 1L If A’ andB’ are
mally entangled state, we can of course maximize over unidisjoint (as in Fig. 3, then the time derivative of the gener-
taries rather than states in the definition of the entangledlized singlet fraction is bounded by

fraction: ) ’ /
F(pas) < 2|HINF(pap) VF(pare) — Flpap), (28

while if A’ andB’ have one or more particles in common,
then

F(p) = m3x<¢>|u;® UlpapUa ® Uy o).

a~b

We can equally well think of the unitaries as acting en . | ,
rather than on the entangled stat®.,. This suggests an F(pap) < 2|HI[NF(pap) V1 = F(pap). (2b)
alternative interpretation of the singlet fraction: as the maxi-The factor|H|| is a sum of strengths of those interactions that
mum fldellty with a particular maXima”y entangled state connect a partide i\ or B to one outsideA or B, respec-
(e.g., the singletthat can be achieved by acting with local tively (i.e., interactions that “cross the boundary”Abr B;

Unitaries. see F|g J_
Based on this interpretation, we define theneralized
singlet fraction a measure of two-qubit entanglement for [H[l = > ”Hij”HSa
bipartite systems of arbitrary dimensidit can be extended TeAjeA
in the obvious way to measure general bipartite entangle- icBj¢B
ment[19]): where|-||ys denotes the Hilbert-Schmidt norm.

The first step in the proof of thesentanglement rate
F(pap) = Max(eltra(Ua ® UgpagUh ® U4, (1) equationss to rewrite the generalized singlet fractiéd in
Unls terms of purifications opag using Uhlmann’s theorertAp-
pendix B. This leads to the following exact expression for

where a and b are qubit systems embedded Anand B, the derivative of the generalized singlet fraction:

respectively,| @), is the singlet state, and the notatiopfr
indicates the partial trace over all systeatkerthana andb. - — 1
It measures the maximum fidelity with the singlet achievable F(pag) = VF(pas) Umgx i 2 (¢lHijl) = (WlHile),
by local unitaries. f’>B I'¢i(2)

Note that, in two-qubit systems, this generalized singlet X JEA®)
fraction reduces to the usual singlet fraction. For any systemyhere|y) is a purification ofpag, |x) is an extension of the
it takes values between 0 and 1, and for separable states it$inglet state to the Hilbert space o¢f), and |<p>:UI\
less than or equal to 1/2. Also, from the definitionAifand ®U;§|X>. Using Lemma 3Appendix B), the terms inside the
B are subsystems @' andB’, so thatppp=tr/as(pas), then sum can be bounded by il{eH;|»)—H.c)
F(pag) <F(pag’)- < 2||H;jllusy (tr]X;)2=[tr(Re X;j) 12, where X;; =tr;;| )¢ Fi-
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nally, the quantities under the square-root can be related tion allowed by the rate equations is that which saturates the
generalized singlet fractions:[tr(ReXij)]Z:F(pAB) and rate equations at each point in time.

tr(|X;))><F(pass'), which concludes the proofThe Proof is If the interaction distance between the qubits we intend to
given in full detail in Appendix B). entangle igd, then the full set of rate equations invol\t¥ 2]

We can gain some insight into entanglement dynamics bgeneralized singlet fractions, which we will dendig(t), k
considering the qualitative meaning of the rate equationsy1---|d/2]. (-] denotes rounding down to the nearest inte-
before thinking about solving them. They divide a networkger) We number them such th&iy,, is the singlet fraction
of interacting particles into pairs of concentric sets, sur-of the two qubits. If we definé,=1, then the evolution of
rounding qubitsa and b. For example, in Fig. 1 there are eachF(t) is described by Eq.2a).
three such pairs: the qubis and b themselves, the sets Let f,(t) be the curves that saturate the rate equations, i.e.,
labeledA andB, and those labeled’ andB'. The rate equa- f,(t) is the solution to
tions tell us that entanglement must first build up between
the largest sets before it can cascade down successively fk:2||H||VrTI(\;’fk_l_fk,
smaller ones, finally reaching the two qubijsst as in a
chemical reaction, intermediate compounds in the reactiowith fy=1. (For simplicity, we can take all coupling strengths
mechanism must be created before the final product i§H|| to be 1) Assume thatf,(t) is an upper bound of(t),
reachedl What is more, the rate at which the entanglemeni.e., f,(t)=F(t) for all t. If f.,,(t) is notan upper bound on
flows from one level to the next depends on the difference irF,.,(t), thenF,,(t) must cross it at some point. If this occurs
crlanglement eteen e o eveBenal e e e a1 1=t 1he Fyt)=Fu) and P>t
ference between the concentrations of reactants and prod-k*l() must still satisfy the inequality in Ed2a). Thus
ucts; or like flow in fluids, in which the flow rate depends on - , f
the pressure differeny:e I:k+1 < 2VFk+1(tO)VFk(t0) - I:k+1(t0)

The number of pairs of sets is equal to half the “interac- | _ i
tion distance” of the two qubitsounded down to the nearest = 2Vfia(lo) Vfilto) = fiera(t) = finalto),
intege), i.e., half the smallest number of links in the network which contradicts the assumption tHag,(t) crosses . 4(t)
needed to conneetto b (in Fig. 1, their interaction distance att,. Thus if f,(t) is an upper bound, then so fig.4(t).
is 5). A generalized singlet fraction can be defined on each The injtial step in the inductiorfithat f,(t) is an upper
pair of sets, along with an accompanying rate equation desqnq follows from the second of the rate equatiofb)
scribing its evolution. Therefore any network has the same,q the fact that the generalized singlet fraction is upper

rate equations as a chain whose length is equal to the intefonged by 1. Figure 2 shows numerically calculated curves
action distance, and whose interaction strengths along eacfrkm(t) saturating the rate equations.

link of the chain equal the factoffi|; all entanglement flow
is equivalent to flow along a chain. This is qualitatively simi-
lar to results from quantum random walks, in which a quan- V. HOW FAST CAN ENTANGLEMENT BE CREATED?
tum walk over a network is equivalent to a quantum walk
along a chairf20].

How fast can entanglement be generated in a system of

. . ... . interacting particles? The question is both theoretically inter-
Notg that the faqtoHHH n the rate equations indiscrimi- esting an%l pexperimentallyqimportant. Many quantumyinfor-
na_ltely mcludes_ all Interactions that cross t_he bou.ndary. W?nation processing tasks require entanglement, and the faster
might expect different interactions to contribute differently, this can be produced. the less the svstem will suffer from
depending on their location in the network. In fact, in Ap- P ' y

pendix B, we derive a more general version of the rate equ decoherence. Quantum computing algorithms often generate

tions, which accounts for each possible interaction athwa%Irge amounts of entanglement during their execution, so de-
’ P P rmining how fast entanglement can be generated can also

separately, and can therefore take into account the differe ?rovi de bounds on algorithm complexif1]
roles different particles play in the entanglement dynamics; In this section, we briefly review some éxisting entangle-

due to their differing cc_)nneptivity. The in_equality in _the €O ment generation schemes in the context of the entanglement
respondmg rate equations Is therefore tighter, but it I_eads Pate equations derived in the previous section. We then in-
exponentially(in the number of particlgsmore equations vestigate what universal limits the rate equations put on how

describing the entanglement dynamics of a system, and givggst entanglement can be generated, or more precisely, how

ﬁl;?s;éngﬂﬁvfeflgﬁ;e ?{/:nmﬁggéege:sf;g\gﬁwg \gglri\fl'gdathe time required to entangle two particles scales with the
P 9 size of the system.

number of interesting results.

It is also possible that aty, the first derivatives are equal:
Frr1(to) = fre1(to), but a higher order derivative &, is larger than
It is straightforward to prove inductively that the curves that of f,4. In this case, we can find a new poligt e, infinitesi-
produced by saturating the inequalities in the rate equationwally close tot,, at which the original conditions holdzy,4(tg
(2a) and(2b) constitute upper bounds on the evolution of the+e)=f,,;(ty+€) andFy,1(tg+ €) > fi.1(to+ €). The proof can then be
generalized singlet fractions; i.e., the fastest possible evoluapplied at this new point.

C. Limits from the rate equations
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&

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 8
time t time t/ n/4

FIG. 2. Numerically calculated generalized singlet fraction  F|G. 3. Entanglement dynamics in the entanglement generation
curves fi(t) saturating the inequalities in the entanglement rateprotocol based on Khaneja and Glaser’s state transfer scf#éhe
equations(2a) and(2b). The final solid curve is fok=50, i.e., the  for a chain of ten qubits. Successive curves show the evolution of

singlet fraction of the end qubits is separated by an interactioyeneralized singlet fractions; through Fs, numbered as in Sec.
distanced=100.[The dashed curves show the corresponding uppefj; c.

and lower boundsi(t) andl,(t) for k=50, from Sec. IV B}
required to carry out the local unitari¢the “fast local uni-
A. Entanglement generation schemes tary” approximatioy, and again, this can also be justified on
physical grounds, since local unitaries are typically much

How fast entanglement can be generated depends, @ster than interactions.
course, on how we are able to manipulate the system. For Khaneja and Glaser have developed an interesting proto-
definiteness, consider entanglement generation in a qubdol for state transfer in this scenafig6], in the context of
chain. It turns out that measurement is a very powerful reNMR spectroscopy, which can easily be transformed into an
source. If we are able to carry out local operations on angentanglement generation protocol. First the middle qubits are
qubit, including local measurements and classical communientangled, then the state of each middle qubit is encoded into
cation of the outcomes, then the end qubits in a chain can b& three-qubit state. The encoded states are transferred along
maximally entangled in a timendependenof the length of the chain towards the ends, where they are decoded again.
the chain. Though not discussed in the context of entangleFhe protocol requires local unitaries to be applied at discrete
ment generation, Briegel and Raussendi®®] showed that a times. The evolution of the generalized singlet fractions is
cluster state can be created in a chain in constant time, arghown in Fig 3, clearly reflecting the fact that the protocol is
local measurements on a cluster state allow a Bell state to deased on moving states step-by-step along the chain. It
projected out on any desired pair of qubits, including the endachieves a surprising threefold speedup over the trivial swap-
pair [23]. ping protocol for entanglement generation in a chen-

The constant scaling assumes we neglect the time reangle the middle qubits; move to the ends by swapping
quired for classical communication of the measurement outthough the scaling of the time with the length of the chain is
comes to the ends of the chain. This can be justified omstill linear, as in the trivial protocol. In the next section, we
theoretical grounds, since classical communication cannowill use the entanglement rate equations to derive a lower
create entanglement, and it makes sense to consider the ibeund on the scaling in this local-control scenario.
teractions as the resource. In many physical implementa- Finally, we may have no local control over the qubits,
tions, it is also reasonable on pragmatic grounds: classicalnly retaining the ability to switch on interactions in the
communication is usually much easier to implement tharentire chain, and switch them off at some later time. Chri-
gquantum processes. However, if the interactions are reallgtandl et al. developed a state-transfer protocol for qubit
the only nonlocal resource, then classical communicationchains in this scenarip27], and Yunget al. have given a
must also be implemented via the chain, and local measuraimple extension to entanglement generafi®8]. The only
ments are of no benefit, which is equivalent to the localdocal control required is fixing the coupling strengths be-
control scenario described below. This might be the relevantween different qubits, which must be inhomogeneous. Fig-
scenario, for instance, for quantum computers. ure 4 shows the entanglement dynamics for the odd chain-

If we can apply local unitary operations on any qubit in length protocol of Ref[28]—very different to that of Fig. 3.
the chain, butnot measurements, then we can efficiently If the strongest coupling strength is normalized to some fixed
simulate evolution under any Hamiltonidthis is true for  value, then the time to create a maximally entangled pair
general systems of interacting particles, not just for qubitagain scales linearly with the length of the chf29].
chains[24,25). Again, it is reasonable to discount local re-  Osborne and Linden have also developed a protocol for
sources, which in this scenario means neglecting the timstate transfer in qubit chains, which could be adapted to en-
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1 ' y upper bounds if we weaken the inequalities, using the fact
ook . that F,(t) <1, and instead solve
°% ' () = 2Vfia () = (D).
orr ] We can use the argument a third time to prove thai(f) is
06f 1 an upper bound on the nefpt), then the solution,4(t) to

w=®? ke (1) = 2VU(0) = Uy (0) )
al is an upper bound off,4(t). That is, we haveu(t)=f,(t)
03 1 =F,(t). [As concerns boundary conditions, we simply re-
02t 1 quire thatuy,1(0) = f,1(0)=Fy.1(0)=1/2]
o Now assume there is @(t) of the form
. . , : 2 1l+e
% 05 1 15 2 ult) = —+ (4)
time t / w4 &

FIG. 4. Entanglement dynamics in the entanglement generatiquat IS an upper bo_und dm(t)_ for some positive ConStanaﬁ
scheme for odd chain lengths from REZ8], here for nine qubits. ande. The differential equation fau,.(t) then ha_'s a Somt'o_n
Successive curves show the evolution of generalized singlet fra@f the same form ag,(t) (as can be seen by direct substitu-
tions F, throughF,, numbered as in Sec. Ill Note that times are  tion), with a,,; given by the recursion relation
not comparable to those in Fig. 3, since interaction strengt{28h

are not normalizedl. Q1= & + & 1+ i
2 2 ay

tanglement gener.ation, inv_olving Iimited_ local control over asinceu,,,(0)=(1+¢€)/2, which is greater than the initial con-
vanishingly smallin the limit of large chain lengthsumber  dition f,,;(0)=F,,;(0)=1/2, uy.4(t) is an upper bound on
of qubits at each end of the chdig0]. fr.1(t) by the argument above.

All that remains is the initial step in the induction: that
there is indeed a boung(t) on f,(t) with the form assumed
in Eq. (4), for some constanta; and e. Fortuitously, the

In this section we will use the entanglement rate equationslifferential equation(2b) for F,(t) (the generalized singlet
to derive a lower bound on how the time to create a maxifraction of the entire chain, split into two halvyesan be
mally entangled state scales with the size of the system. solved analytically when the inequality is saturatehd

Unfortunately, the set of differential equations defined bywithout weakening the inequalityThe solution has the form
the rate equationfa) and (2b) has no known closed-form

analytic solution(at least none that we could find in the f1(t) = sirf(t+ ¢),

literaturg. Solving numerically can provide numerical with ¢ an arbitrary constant. There is also a trivial solution:
bounds on the time required for entanglement generatioR (t)=1. Since the chain starts in a completely separable pure

(see Fig. 2 The interesting question, though, is how this giate, the initial condition i§,(0)=1/2, and thesolution we
time scales with the size of the systdifor instance, the require is

length of a chaily which requires an analytic result.
fi(t) = {

B. Bounds on entanglement generation

sir(t+ wl4), t<ml4,
1, t> wl4.

For simplicity, we will derive a bound on the scaling of
the time to entangle the end qubits in a chain of length
The[L/2| generalized singlet fractioris, will be numbered .
such thatFy ,,, is the singlet fraction of the end two qubits. The two parts to the solution merely reflect the fact that once
We assume all interaction strengths are equal to 1, and th#t€ generalized singlet fraction has reached its maximum
the chain is initially in a completely separable pure statevalue of 1, there is nothing to be gained by further interac-
[thus F,(t=0)=1/2 for all k]. The result can easily be gen- tion, and the interactions affectirfg;, (namely, the interac-
eralized to different interaction strengths, and indeed to gentions in the middle of the chajrshould be switched off.
eral networks of particlegcf. discussion in Sec. Il B Knowing an explicit solution foff,(t), it is easy to find a

We are interested in the time at whiéh, (the singlet b_oundul(t) with the appropriate form. To make the algebra
fraction of the two end qubijseaches 1, as a function bf ~ Simpler, we can upperbounfi(t) by t+1/2. Thus au,(t)
Though the rate equations do not have an analytic solutionWith the form given in Eq.(4) that satisfiesu;(t)=t+1/2
we can inductively prove a bound on the scaling of this timewill suffice to complete the proof. This leads to the relation
with L, using an argument similar to that used in Sec. lll C.a;=<2e. Any positive a; and ¢ satisfying this will give an

There, we showed that the curves obtained when the inappropriate uy(t) =f,(t)=F,(t), and will guarantee that
equalities in the rate equations are saturated give upper(0)=(1+e)/2=f,(0)=F,(0)=1/2. Therefore we have
bounds on the evolution of the generalized singlet fractionsshown that an upper bound dfy(t) with the appropriate
We can use the same argument to prove that we still geform exists, which completes the proof. For neatness, we can
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5 ' y ' ' ' ' ' any evolution saturating the rate_equations. For large chain
lengths, the bound tends &< \|L/2], also a square-root
scaling. Therefore the square-root bound we have derived is,
up to a\2 numerical factor, the best that can be obtained
from the entanglement rate equatidsse Fig. 5.

How does our bound compare with the entanglement gen-
eration protocols described in the previous section? The gen-
eralized singlet fractions evolve quite differently in those
protocols, compared to the evolution that would saturate the
rate equationgcompare Figs. 3 and 4 with Fig).2All ex-
isting protocols that we know of scale linearly with the
length of the chain—no better than the trivial swapping pro-
tocol (entangle the middle qubits; move to the ends by swap-
ping). It is an interesting open problem to determine whether
3 o 0 o 3o B0 0 o o any protocol can achleve a square-root scalmg, or whether

Chain length L the bound derived via the rate equations is too weak and
cannot be saturatefivhich would suggest some improve-

FIG. 5. Scaling with chain-length of the timeT, required to ~ment on the rate equations might be possible
create a maximally entangled state between the ends. The points
show numerical results obtained by saturating the rate equations
(2a) and(2b). The solid and dashed curves show the analytic lower V. CONCLUSIONS
and upper boundse,=\lL/2]/2 and Tep=|L/2], respectively.

0 L

We have investigated entanglement flow, both through in-
dividual particles and along networks of interacting particles.
let e—0, so thatu,(0) —F(0)=1/2 anda,— 0 [as used to In both cases, we have derived differential equations relating
give the curveusy(t) shown in Fig. 2. the rate of entanglement generation to the existing entangle-

Solving u, ;»(t)=1 gives alower bound on the time re- ment in the system.
quired for f} » to reach 1, which is itself a lower bound on  Entanglement flow through a particle is limited by the
the timeT,,, required for the singlet fraction of the end two entanglement of that particle with the rest of the system,
qubits Fy;» to reach 1, or equivalently, for the end qubits to providing the system is in a pure stat®revious work12]
become maximally entangled. has already shown that the entanglement can be transmitted

We are interested in the scaling @f,, for large chain by a particle without that particle becoming entangled at all,
lengths, whena, becomes large. Rather than solving if the system is in a mixed staje.
uy/2(t)=1 explicitly to obtain the bound, we can Taylor ex-  To describe entanglement flow along general networks of
pand the square root in the recursion relation to show that interacting particles, we have derived a set of entanglement
asymptomatically approaches=a,_,+1, or equivalently rate equations, analogous to the rate equations for a chemical

a,=a,+k, ask— . Thus for largel, the bound tends to reaction. These can intuitively be interpreted as describing a
flow of entanglement along the network. We have used the

[L/2] rate equations to prove a square-root lower bound on the

Tent= o scaling with system size of the time required to create a

maximally entangled state, and compared this to existing en-

a square-root scaling with chain lengsee Fig. 5. tanglement generation protocols. Whether this bound is

We have loosened many an inequality during the proof ofchievable, or whether the rate equations can be improved to
the square-root bound. Could the rate equations give a tightefive a tighter bound, remains an interesting open problem.
bound? We can use essentially the same proof with the in- The entanglement rate equations were derived in the con-
equalities reversed to prove that a square-root bound is thext of two-qubit entanglement creation. However, since they
best that can be obtained. involve fidelity-based quantities, they can easily be extended

Instead of usingr,(t) <1 to weaken the inequality right at to more general settings. First, the quantities and equations
the beginning, we us€(t)=1/2, which is valid when the can be extended to bipartite entanglement generation in arbi-
F(t) saturate the inequalities in the rate equations, i.e., whetrary spaces by taking fidelities with a bipartite maximally

F.(t)=f.(t). Then, solutions of entangled state in the appropriate space. Second, they can be
. generalized to the multipartite setting by taking fidelities
I (t) = \“‘E\*“‘k-l(t) — 1, (1) with the desired multipartite entangled stééeg., a Green-

. - berger, Horne, ZeilingeiGHZ) state[34]), rather than with a
arelower bounds orf,(t). We can rescale the time=t/\2 to bipartite entangled state.

so that the differential equation foy(7) has the same formas  Together, the results establish a quantitative concept of
that for uy(t) in the previous proofEg. (3)]. Assuming solu-  entanglement flow in interacting systems. This is of interest
tions of the formi,(7)=7/a, solving the resulting recursion as an abstract concept in itself, but could also be interesting
relation, and proving there is lawer bound onfy(t) of the  both theoretically and practically: in the analysis of quantum

appropriate form, leads to arpperbound on the scaling, for algorithms, for example, since these often involve creating
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large amounts of entanglement during their operation, or in  The factorh(H,|z//>):2ija1-jhﬁ+cij hﬁ depends on both the
physical implementations of quantum systems, in which it isinteractions and the system state, and is a rather complicated
important to carry out any manipulatigmcluding entangle- sum over terms involvingy; andc;;. We define
ment creatiopas fast as possible, to beat decoherence.

s = (@iloc e 1 @),
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To derive the th o I _ el hiy = = INA2(Sp1012~ $12021),
o derive the three-qubit result, we use a matrix analysis , - . ,
approach to caIcuIateqthe concurrence, developefili. / ar,'d deﬂnehﬁ smlller_ly to hﬁ b.Ut with thes;;’s replgce_d by
Writing the Schmidt decomposition of the three-qubit systemtij s. Note thaNts‘ﬁ_—t” =0. (T?e tildes denote the spin-flip op-
with respect to the partitioib:ac) as |#)apc=M1]@1)adX1)b eration[13]: [¢)=0y® ay/¢*).) Then
+ Nyl 02)ad X2)p, WE can represent the state af by a 4x 2 _ R 4 e e
matrix X=(\1|¢1),\5|@y)). The reduced density matrix is h(H,[47) 4RE<% 3 +C”h”>+4
then given byp,.=XX".

The concurrenc€, of p,. can be obtained from the sin-
gular values 0A=XT2X, whereX =0y ® oy [15]. In our case,
A is a 2X 2 matrix (because,. has rank tw@, with just two
singular valuess;=s,. Thus C,.=s;—s,. Since trATA:qi
+g5 and|detA|=s;s,, we can also write this as

C2.=tr ATA-2/detA|. (A1)
To calculate the time-derivative of the concurrence, WeWhiCh is independent of the system state, depending only on

must calculate the derivatives ofA*A) and|detA|. From its € interaction strengths.

APPENDIX A: THREE-QUBIT CHAIN

Z a;hd +c;ht |
ij

However, as we are primarily interested in the depen-
dence on entanglemetfite., the dependence on the Schmidt
coefficient3, we can bound the magnitudes of Biﬁje t:j and
0;j by 1, and assume all terms sum in phase, giving the bound

h(H,|)) < 82 |aj| + [cij]
i

=tr(ATA+ATA), which, after a little algebra, leads to ,
The proof of the entanglement rate equations revolves

d(tr ATA) it around Uhlmann’s theorefi6,31], which relates the fidelity
dt =4 Retr(Xp 2XX)). (A2) of two mixed states to the fidelity of their purifications:
_ . . Theorem 1. (Uhlmann)if p and o are two states in the
Since A is a 2x2 matrix, detA=tr(AoyA's,)/2. Thus  same Hilbert spacé, let |) and|¢) be purifications ofp

d(detA)/dt=tr(Ac,ATa,+AdyATa,)/2 which, after a litle ande into a(in general largerHilbert spaceH ® H'. Then

more algebra, gives F(p,0) = ﬂ;?);'w‘@'z’
d(detA) T T le
da 4 X0y X ZXoyX'3). (A3 \where the maximization is over all purifications.

. _ _ . Since any purification can be transformed into another by

The three-qubit chain evolves according to the Hamil-a ynitary acting or#{’, we can fix one of the purifications
tonianH=Hgp® Ic+1,® Hye. The two-qubit Hamiltoniata,  and only maximize over the other one. Also, global phases
has a product decompositidf,,=2;a;0;® oj, where the  can be chosen to ensure the overapy) is real and posi-
Pauli matriceso; are defined in thd|y,),|x.)} basis, and tive, so the absolute value can be dropped.
coefficientsa;; are real. Similarly foH,. and coefficients;;. Recall that the entanglement rate equatit@e and (2b)
The Schrédinger equation describing the evolution of thanyolve two disjoint subsetsA and B, of the entire set of
system statéy) translates into an equation for the evolution particlesS, which are interacting via two-particle interactions
of X: Hj;. We can apply Uhlmann’s theorem to the generalized

: singlet fraction of at timet:
X:_iz (aija'i®}lXa'jT+Cile®0'iX0'jT). g Phe
ij Fap(t) = [I]mg((d’hr/ab(UA ® Uppap()UL @ U)| )

AYB

We can use this, along with expressid@e) and (A3), in b
the time-derivative of Eq(Al) to obtain an expression for = max (x|U, ® Ug|¢)> by Uhlmann
the derivative of the concurrence: Up 4 i
X
dC
=h(H, NiNo. =177 -
ar - HIPAA = (7T, @ T 0, (B1)
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where|x), U, andUg denote the particular state and unitar-
ies achieving the maximuniWe are retaining the unitaries,
rather than incorporating them into one of the purifications
for later convenience. Strictly speaking, they should be ex
tended toH ® H' and writtenU,® Ug® l,s In the interests
of economy, we will drop all S.)

The stateU,® Ug|#) can be chosen to be any fixed puri-
fication of the two-qubit density operater,,. We use that
freedom to makéx) a purification of the overall system state
ps, Which guarantees that, ® Ug|y) is a purification ofo,
as required by Uhlmann’s theorem. As fi), since|¢) is
already pure, it is simply an extension tH®H':|x)
=| ) apl Nrest (the maximization then being ovéd)).

If the system evolves under the HamiltonidrX;;H;; for
an infinitesimal timeét, the state evolves tcpAB(t+ ot)
=tr,agl € pg(t)eH . By writing the density matrix of the
entire system,ps, in a product basis for the partition
(AB:resh and expanding the exponentials to first ordestin
it is straightforward to show that only interactions involving
at least one particle iAB give a first-order contribution to
the evolution. Thereforél need only include that smaller set
of interactions. Letting

Ugl: eXF(

be the resultinginfinitesima) unitary evolution operator, the
singlet fraction after the evolution becomes

Fag(t+ 8t) = max({[Va ® Vg - Ugl&?,
A

—ist > Hy
ieS
jeAB

(B2)

12)

where we have used Uhlmann’s theorem again. The kiate
is again simply an extension df) to H®H’, and Vu

® VU g/€) can be chosen to be any fixed purification of the
two-qubit density operator

Tab = than(Va ® VU spsURVA ® V).

Again making use of this freedom, and recalling that we
chose|#) to be a purification ofps, we can choos&) to be
the same state as befot€)=|y).

The statgy) and unitariedJ, and UB were defined to be
those maximizing expressidiB1). Thus by definition,

(dUA® Uglgh) = (x|Ua ® Uglup
for all |x), U, andUg. In particular, this is true for infinitesi-
mal changes, e.gx)+ ot/ x ") where|x ") is orthogonal tdy).

Thus (x*|U5r® Ugly)<0. However, if this were strictly
negative for somey "), then 4x*) would make it positive.

Therefore(x*|U,® Ug|#)=0. Similarly, considering infini-
tesimal changes to the unitaries, we can show that

&[UAHA ® UB| =0, <ﬂUA ® UBHB| =0,
(x“|Un® Ugly=0. (B3)

Expression(B2) for the generalized singlet fraction at
time t+ & must tend to expressiofB1) (the corresponding
expression for timet) as 8t—0, so |{)=[x)+&|x*) and

PHYSICAL REVIEW A71, 052308(2005

VA(B):UA(B)(JH&HA(B)), whereH,g, is a Hermitian opera-
tor on A(B). Using this, expandingJ z=1-i8tH+O(4t?)

(whereH is the sum of interactions involving at least one

particle in A or B), and making use of relationdg3), we
have

Fag(t+ 8t) = (x[Un ® Ug(l — i 8tH)| )%+ O(88).

That is, the state and unitaries maximizing express$i)
also maximize Eq(B2), to first order inét.

HamiltonianH currently includes all interactions involv-
ing at least one particle iA or B. By expandingH in the
previous expression as a sum over these two-particle inter-
actions, we can use the same relatid®3) to show that only
interactions crossing thieoundaryof A or B need to be in-
cluded to give the generalized singlet fraction to first order in
ot

Faglt+ ) = (X[Up ® UB<11

—idt X H;
i ¢ AB)
jeAB)

)|w>2+0<6t2>.

Now, global phases were chosen to make it real and posi-

tive, so(x]Ua® Ug|i)=+Fag(t). Thus, expanding the square
in the previous expression and only retaining first order
terms in &, we arrive at a first expression for the time-
derivative of the generalized singlet fraction:

Fas(t) = VFag() - = E (e|Hijlp) = (WHile), (B4)

|¢A(B
jeA(B)
where|p)= ul ®UB|_§

To proceed we will need the following Propositifd2]
which we use to prove the subsequent Lemma:

Proposition 2 (Fan-Hoffman)For any operatokK, the or-
dered singular values' of X are individually greater than or
equal to the ordered e|genvaluésof ReX=(X+X"/2. That
is, al> rl 0i. Note that the eigenvalues of Recan be nega-
tive, in Which case thabsolute valueof the eigenvalues
need not obey the Proposition.

Lemma 3 For any operatorX, (trX|)?-[tr(ReX)]?
=tr[(Im X)?], where|X|=yXX', ReX=(X+X")/2, and ImX
=(X-X"/2i.

Proof. Assume initially that {fRe X) is non-negative. De-
fining P(N) to be the set of positivenegative eigenvalues of
ReX,

X (goy—rir) =2 oioj— X rirp+ 2 rillegl+ 2 Irillr|

i#] i#] ijeP ieP ieN
i #] jeN jeP
- |ri||rj|: > oio; + > |ri||rj|
i,jeN iorjeP ieP
i#] i+ jeN
+ 2 (oo =rir)
i,jeP
i#]
+3 |n|(2 FED |rj|).
ieN jeP jeN
j#i
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The first two terms are clearly positive, the third is positivein Eq. (B5), and substituting the result in EB4), we arrive
by Proposition 2, and the last by the assumption thaat a version of the entanglement rate equation:
tr(ReX)=0. ThusZ.j(oio;—rir;)=0. Now,

Fas) <2 X [HijllusV FAB(t)\/FA B/ /(t) = Fag(t),

(tr]X])2 - [tr(ReX) 2= (2 m)z— (E ri)2= Sof-2rf eAE)

i i jeA®)

+ 22 (gijoj—rir) = E - E rf whereF g is defined to be 1 iA/ andB/ overlap.

) ' ' To describe entanglement flow in a network of interacting
= tr(XX") -t (ReX)?] = tr[ (Im X)?], particles, one such rate equation must be written dowalfor
meaningful generalized singlet fractions that can be defined
on the network“meaningful” implying that the setd andB
include particles andb, respectively, and are each made up
‘one piece’.

Recall that, sincé\’ andB/ are subsets oA’ andB’ (see

where in the last line we have expand&dReX+iIm X,
and used the fact that Reand ImX are both Hermitian and
that the trace of their commutator is O.

For completeness, we can remove the assumptloRf
tr(ReX)=0 by noting that, if there existed an operafér
with tr(ReX)<0 such that the Lemma did not hold, then Fig. 1), Fae <Fae'. We can use this to arrive at the simpler
the operator X would also violate the Lemma. But then version of the entanglement rate equations presented in the

tRe(-X)]=0, so the Lemma must hold for all operatcls. ~ Main text:

Recall thatH;; really meansH;; ® I s, Thus : |
Fag) <2 X [HijllsVF as(t) VFarer (1) — Fag(®).
i¢A(B)

(<¢|H|J|¢> HC)—tr( (tr/u|¢><<P| H-C-)) jeA®B)

=2 tr(H” Im X”) WhereXij = tr/,J|z//)<cp|

APPENDIX C: GENERAL TRIPARTITE CHAINS

<2\tr HZvtr[(Im X;;)?]  (by Cauchy-Schwariz
> 5 The first half of the derivation of the entanglement rate
= 2|Hy s (trXy ) - [tr(Re ;)] (B5) equations given in Appendix B can be reused ig the proof of
using Lemma 3 in the last lind||-||,s denotes the Hilbert- the tripartite chain result. Recall that the three systémB,
Schmidt norm). and C making up the chain are in an overall pure state
Finally, we need to relate the quantities under the squarg)asc, and interact by nearest-neighbor interactiohs:
root to generalized singlet fractions. Fws[ttr(ReX,J)]2 =Hag+Hpgc. As noted in Sec. lll A, the entangled fraction
=[Re(tr|){¢]) 1>=(e| ¥)?=Fag(t), since global phases were Fac Of pac can be expressed as a maximization over unitaries
chosen to makég| ¢) real and positive. U, andU¢ rather than states. Applying Uhlmann’s relation, it

Second,H;; acts on one particl¢ within A or B, and a @ be rewritten
particlei outside. Ifj is in A, define the set&y =AU and _ _

=B. If it is in B, defineA/ =A, B/=BUi. We apply Uhl- Fac™ max(xlUa @ Ucli) = (el
mann’s theorem to the definition of the generalized singlet
fraction for PAB!» and again choose the same statp for
one of the purifications. So long &¢ andB/ are disjoint, wve ~We can choosgy) to be the overall system staj¢)agc,

%

have since this is a purification gfac. |x) is then an extension of
a maximally entangled statgp)ac on Hpc to the space
FA =4 (1) = max<§|VA, ® V| )* = Vmax(—[UAVA, Hagc: [ X)=|d)acl D We define|p)= U} ®Uc|_§ |¢>Ac|§>
Al B’ Al B’

where bars denote the particular unitaries and states achiev-
0 ing the maximum.
® UpVe/ i) = max<<p|VA, ® Vg |92 Although the rate equations involve tigeneralizedsin-
Var Vg glet fraction, up to expressiaiB4) the derivation in Appen-
_ _ dix B applies equally well to the entangled fraction. Expres-
= m?’<¢|uij|¢>2 = 'TL‘J?){”(UHXH)]Z = ()2, sion (B4) then becomes
ij ij

where an inequality appears each time we restrict the maxi- . — 1

mization. The last line follows from the fact that, for any Facl(t) = \"FAc(t)i‘(<¢|H|l!/>—<¢|H|<P>), (C1
operator, #iX|=max,|tr(UX)|, which is easily proved via the

polar decomposition oK. If A’ and B/ have a particle in Now, writing the state in its Schmidt decomposition for

common(it must be particlé if they do) then the second of the partition(B:AC), [¢)asc=Zi\i|#i)acli)e, Where we sort

the two inequalities is not valid. We can instead boundthe Schmidt coefficients in descending ordef=\,=---

tr(X;)?<1. =\,. Extending{|i)g} to form a complete basis fotg,
Thus using[tr(ReX;)1?=Fag(t) and t(]X;|)?< Fae: (t) |¢) can be written in the product decomposition

(A/ andB/ disjoint) or tr(|X;[)?<1 (A’ andB/ overlapplng lo)=|d)acZiaii)g (the o; are complex in general

052308-11



CUBITT, VERSTRAETE, AND CIRAC PHYSICAL REVIEW A71, 052308(2005

We know that |¢) maximizes (¢|y)=Tia (| ). (elHIg = 2 ai N(ilHI i, i) = (b, 2HI 1, 1)
Clearly, the phases af; must be chosen to cancel the phases i#1
of <¢|¢i)._'l'he relationship betwe_en the magnltude§ qf the +3 a:)\i<ai|H|¢/j.j>
ai's and(¢|#)'s can be found using Lagrange multipliers, i#]
with the normalization constrair®;|«;|2=1, yieldin
el Y J = 2 Mhy + 2 Nghy,
i#1 i#j
N where
= —'W'@ : (C2 _ _
A2 MK o = WABilHID - (6, 1HIw1, 1)
k i — — s
2Nl
We also know that, for any Hamiltonian acting only An \/ k el

or C, {¢|Hp|)=(e|Hc|)=0 [applying the same reasoning

as used to prove relatioriB3) in Appendix B|. Thus <¢i|$)($i|H|¢i,j>
hij = — fori #+ ] .
B B N
a\(p|Ha ) = - 2 a N{(pHaclt).  (C3) k
i#1 Using this in Eq.(C1), and bounding(h;—hj)/i<2[H]|
Now, the system Hamiltoniati=Hag+Hac. (¢|Haglt) ~ =2(|Haglx+[Hgcl<) (Where [M|.=max;|M;| denotes thd.,.
=3, ar)\j<¢|B<i|HAB|j>B|’/fj>- For thei=j =1 terms in the sum, norm), we arrive at the final result:
s(1/Hagl1)g is just some Ham?ltonian acting only @ Simi- Faclt) < 2|H|Vm(z N\ - )&)
larly for g(1|Hag/1). Thus using Eqs(C2) and(C3), i
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