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We investigate entanglement dynamics in multipartite systems, establishing a quantitative concept ofen-
tanglement flow: both flow through individual particles and flow along general networks of interacting par-
ticles. In the former case, the rate at which a particle can transmit entanglement is shown to depend on that
particle’s entanglement with the rest of the system. In the latter, we derive a set ofentanglement rate equations,
relating the rate of entanglement generation between two subsets of particles to the entanglement already
present further back along the network. We use the rate equations to derive a lower bound on entanglement
generation in qubit chains, and compare this to existing entanglement creation protocols.
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I. INTRODUCTION

New fields of physics often give rise to new physical
quantities to study, and quantum information theory has
proved a rich source of study material. As an amalgam of
quantum mechanics and information theory, many of the new
quantities are quantum analogs of familiar friends from clas-
sical information theory: thequbit, for instance, measures
quantum information just as thebit measures classical infor-
mationf1g. Other quantities have no obvious classical coun-
terpart. The best-known example is entanglement. Originally
seen as the phenomenon that epitomized quantum weirdness,
it has become established over the last decade as a physical
quantity, on a par with, say, energy.

The analogy with energy can be pushed quite far: en-
tanglement has a number of similar properties. Like energy,
entanglement can be quantified in a meaningful wayf2g, al-
lowing us to say that one state is more entangled than an-
other. Like energy, entanglement can be converted from one
form to anotherf3g; and like energy, it is a resource that can
be used to carry out useful tasks, such as teleportationf4g.

Until recently, work concentrated on understanding these
static properties of entangled quantum states. Although we
are some way from a complete understanding of entangle-
ment statics, there has been significant progress: for instance,
bipartite pure-state entanglement is now well understood.
This begs the question: what happens if we allow the state to
evolve?

The move from entanglement statics to entanglementdy-
namicsraises many new and interesting questions. How does
entanglement evolve as particles interactf5g? How good is a
particular interaction at creating entanglementf5–7g? More
generally, how good is an interaction at simulating various
nonlocal processesf8,9g? Or, turning this on its head, how
“nonlocal” is a given processse.g., a quantum gated f10,11g?
This paper extends the first of these—how entanglement
evolves as particles interact—to multipartite systems.

The Schrödinger equation already implicitly describes the
complete dynamics of a quantum system, but to gain insight
into entanglement dynamics we need equations thatexplicitly
involve the entanglement of the system, without reference to
specific features of the Hamiltonian. One of the first steps
along this path was taken by Düret al. who investigated the
rate of entanglement generation in two-qubit systemsf5g.
They derived an equation relating the rate of entanglement
creation to the existing entanglement in the system, along
with a factor depending on the form and strength of the in-
teraction. This latter led to a pleasingly simple quantity mea-
suring the entanglement generating capacity of two-qubit in-
teractionsf6,7g.

In a system of two particles coupled by a Hamiltonian, the
only entanglement dynamics that can take place is creation
of entanglement between the two particles. A simple tripar-
tite system already raises other interesting questions. For in-
stance, in a chain of three particles, how does entanglement
“flow” through the middle one? Surprisingly, we showed in
previous workf12g that, in just such a chain, entanglement
can be created between the two end particles, without the
middle particleever becoming entangled. This would seem
to put an end to notions of entanglement flow. However, we
also gave a simple proof that this phenomenon is only pos-
sible for mixed initial states; for pure states, the middle par-
ticle necessarily becomes entangled during the evolution.

This suggests there is a connection between pure-state
entanglement of a mediating particle and entanglement flow
through that particle: if it is not entangled, no entanglement
flows. In Sec. II we show that there is indeed a quantitative
relation describing how the entanglement of a particle with
the rest of the system limits the flow of entanglement
through that particle. We first consider a three-qubit system
before dealing with general systems. The concept of en-
tanglement flowthroughparticles is therefore put on a quan-
titative footing for systems in pure states. This contrasts
strongly with the mixed-state case, in which entanglement
can seemingly “tunnel” through mediating systems.

Flow through individual particles is one aspect of en-
tanglement dynamics in multipartite systems. But in a net-
work of many interacting particles, we may also be inter-
ested in how entanglement flows along the whole network.
We develop these ideas in the second half of this paper.
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The inspiration is loosely based on the Arrhenius equa-
tions for chemical reactions. The reaction mechanism of a
chemical reaction describes the steps by which reactants are
transformed, via successive intermediate compounds, into
the final products. The rate at which a compound is produced
depends on the amounts of its immediate precursors that are
present. Thus the complete reaction is described by a set of
coupled rate equations, one for each step in the reaction
mechanism.

In Sec. III we derive a set of differential equations de-
scribing entanglement flow, analogous to the rate equations
for a chemical reaction. The rate at which entanglement is
generated between two sets of particles is shown to depend
on the amount of entanglement already present further back
along the network. The entanglement dynamics of the com-
plete system is described by a coupled set of such entangle-
ment rate equations, one for each step in the interaction net-
work.

Unlike the equations describing flow through individual
particles, these entanglement rate equations apply equally
well to both pure and mixed states. Therefore they establish
a concept of entanglement flow along general networks of
interacting particlesseven though the concept of flow
through individual particles in the system may be meaning-
lessd.

In Sec. IV we apply our new understanding of entangle-
ment flow to investigate entanglement generation in chains
of interacting particles. First, we briefly review some exist-
ing entanglement generation protocols for qubit chains, in
the context of the rate equations derived in Sec. III. Finally,
we use the rate equations to prove a universal lower bound
on the time it takes to create entanglement, or more precisely
the scaling of this with the length of the chainsthe results
can easily be extended to general networksd.

II. FLOW THROUGH PARTICLES

In this section, we will investigate entanglement flow
through mediating particles. Specifically, we will consider
flow through the middle particle in tripartite chains. The re-
sults of f12g show that this concept does not make sense if
the whole system is in a mixed state. But for pure states, the
rate at which entanglement is generated between the end par-
ticles is indeed zero if the middle particle is not entangled.

The latter is suggestive: is there a general quantitative
relationship between the entanglement of a particle, and the
rate at which entanglement can flow through it, for systems
in pure states? If the middle particle is only slightly en-
tangled, does entanglement flow only slowly? We will derive
just such a relationship, first for the simplest tripartite sys-
tem: a three-qubit chain, then for general tripartite chains.

When investigatingsbipartited entanglement flow through
mediating particles in more general settings, the system can
always be described as a tripartite chain: the mediating par-
ticles form one party, and the sets of particles on each side,
which are becoming entangled, form the other two. Thus the
equation for tripartite chains can in fact be applied generally
to describe entanglement flow through mediating systems.

A. The three-qubit chain

Consider a chain of three qubits, labeleda, b, andc, with
nearest-neighbor interactions described by HamiltoniansHab
and Hbc. We will restrict the overall state of the system,
uclabc to be pure. However, the reduced state of the two end
qubits,rac, need not remain pure during the evolutionsif b is
to become entangled at any point,rac will necessarily be-
come mixedd. To quantify the entanglement betweena andc,
we need an entanglement measure valid for mixed states.
The natural choice is the concurrencef13g. Though it is an
entanglement measure in its own right, its interest lies in its
equivalence to one of the important, physically meaningful
entanglement measures: the entanglement of formationf14g.

We can write the overall state of the system in its Schmidt
decomposition with respect to the partitionsb:acd: uclabc

=l1uw1lacux1lb+l2uw2lacux2lb. The Schmidt coefficients,l1
and l2, determine the nonlocal properties of the state with
respect to this partition, including entanglement of the
middle qubitb with the rest. Meanwhile, the entanglement of
the reduced state of the end two qubits,rac, can be measured
by the concurrence, denotedCac. Following f15g, the state of
particlesa and b can be represented by a 432 matrix X
=sl1uw1l ,l2uw2ld. The concurrence can be calculated from
the singular values§1ù§2 of A=XTSX, whereS=sy ^ sy:
Cac=§1−§2=Îtr A†A−2udetAu. Taking the time-derivative of
this and simplifying the resulting exact expressionssee Ap-
pendix A for detailsd leads to the following bound on the
entanglement rate:

dCac
2

dt
ø 8iHil1l2.

The factoriHi=iHabi1+iHbci1 measures the strengths of the
interactions.iHi1=oi j uHij u denotes thel1 norm, where the
Hamiltonians are written in the product basisH=oi jHijsi
^ s j, and the Pauli matricess1,2,3=sx,y,z are defined in the
Schmidt basishux1lux2lj. sLocal termssi ^ 1 or 1 ^ s j in the
Hamiltonian cannot alter the entanglement of the system, and
so do not contribute.d

In the context of entanglement dynamics, the important
part of the relation is the product of Schmidt coefficients
l1l2, which is a pure-state bipartite entanglement measure.
sIn fact, up to a numerical factor, it is the concurrence.d Thus
the differential equation tells us that the entanglement of the
middle qubit limits entanglement generation between the end
qubits: not only mustb be entangled for entanglement to be
generated betweena andc sprecisely what was shownnot to
hold for mixed states inf12gd, but the rate at which it is
generated can be larger the more entangledb is.

At first sight, the inequality may appear too weak, as it
does not seem to imply that the derivative is zero once qubits
a andc are maximally entangled. However,Cac andl1l2 are
not independent quantities. Whena andc are maximally en-
tangled, they cannot be entangled with anything else, thus
l1l2=0, and the derivative is zero after all.

A complete quantitative description of entanglement cre-
ation in the three-qubit chain would require an equation de-
scribing the evolution of the Schmidt coefficients. However,
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sb:acd forms a bipartite, pure-state system. Entanglement
creation in bipartite systems and the evolution of the Schmidt
coefficients has been investigated inf5g.

B. Fidelities and entangled fractions

The three-qubit result cannot directly be extended to
higher dimensional systems. While we can restrict the sys-
tem to pure states for the same reasons as in the three-qubit
case, the reduced density matrix of the two end particles can
again become mixed during the evolution. And no closed-
form expression is known for the entanglement of formation
of mixed states, other than in the two-qubit case.

Before turning to higher-dimensional systems, it is in-
structive to consider more carefully the setting in which we
wish to investigate entanglement dynamics. Entanglement
measures are defined in the LOCC paradigm: local opera-
tions and classical communicationsLOCCd can only de-
crease the entanglement of a state. This is the natural para-
digm when thinking about entanglement from an
information-theorist’s point of view, in which entangled
states are shared between different parties who are free to act
locally on their part of the state.

But we are considering entanglement dynamics from a
physical standpoint. In a system of interacting particles, it is
not clear what classical communication means. Any transfer
of classical information between particles would still have to
take place via thesquantumd interactions. It could be argued
that it makes more sense in this context to define entangle-
ment in the local-unitary paradigm: any change to a state due
to local terms in the interaction Hamiltonian should not
change the entanglement.

A physical way of measuring entanglement in this para-
digm is to use the fidelityf16g, which measures the distance
between states.1 The entangled fractionof a stater is then
defined as the maximum fidelity with a maximally entangled
sMEd state:

Fsrd ª max
uflPME

kfurufl,

where the maximization is over all maximally entangled
statesufl in the bipartite Hilbert space ofr. sFor two-qubit
states, it is also called thesinglet fraction.d It measures how
close a given state is to any maximally entangled state, and is
invariant under local unitary operations, as required.

The entangled fraction is also an experimentally relevant
quantity. When trying to engineer an evolution to produce a
particular statesa highly entangled one, for instanced, we
want to know how close the actual state is to the desired
one—precisely what is measured by the fidelity. For ex-
ample, in teleportation experiments, it is the entangled frac-
tion of the entangled pair that determines how close the tele-
ported state is to the originalf17g.

Therefore, in the remainder of this paper, we will consider
evolution of the entangled fraction and related quantities.
Though it is a well-motivated quantity to study in its own

right, it can also be used to give upper and lower bounds on
entanglement measures such as the concurrencef18g sand
hence entanglement of formationd. In particular, if a state is
separable, its entangled fraction is less than or equal to 1/n
swith n the dimension of the smaller of the two Hilbert
spaces making up the bipartite spaced. Whereas ifsand only
if d the entangled fraction is equal to one, the state must be
maximally entangled.

In the final section, we will use our results to derive
bounds on how long it takes to entangle particles when the
system starts in a separable state. In this context, any quan-
tity that takes different values for separable and maximally
entangled states is equally good in principle: we can bound
the time required to change from one value to the other. The
entangled fraction, for example, must increase from 1/n to 1.

C. General tripartite chains

The tripartite chain is a prototype for all indirectsbipar-
tited entanglement creation. We can always divide a system
into three: two systems that are being entangled, and every-
thing else lumped into one mediating system. We can then
investigate entanglement flow through this mediating system.

In a general tripartite chain, consisting of systemsA, B,
andC of arbitrary dimension, interacting by nearest-neighbor
interactionsHAB and HBC, the Schmidt decomposition has
the form uclABC=oiliucilACuilB, where we sort the Schmidt
coefficientsli in descending order. By reexpressing the en-
tangled fraction as a maximization over purifications using
Uhlmann’s theoremssee Appendix Bd, we can derive an ex-
act expression for the time derivative of the entangled frac-
tion. Simplifying the exact result to separate out the en-
tanglement dependence yields a relation analogous to the
three-qubit casessee Appendix C for detailsd:

ḞsrACd ø 2uHuÎFsrACdSo
i j

lil j − l1
2D .

Again, the factoruHu= uHABu`+ uHABu` measures the interac-
tion strengths, independent of the system statesuHu`
=maxi j uHij u denotes thel` normd.

The quantity in brackets is closely related to the entangled
fraction of uclABC in the sB:ACd partition: Fsuclkcud
=s1/ndoi jlil j swith n the smaller of the dimensions ofB and
ACd. Subtractingl1

2 rescales this entangled fraction so that it
is zero when the state is separable. Therefore the entangle-
ment ofB with the rest of the system limits the rate at which
entanglement can flow throughB. As in the three-qubit case,
the derivative implicitly goes to zero when systemsA andC
become maximally entangled, since they cannot then be en-
tangled withB.

III. FLOW ALONG NETWORKS

In the previous section, we examined entanglement flow
through the middle particle in a tripartite chain, and noted
that the results can be applied to flow through individual
particles in general systems, by viewing the system as a tri-
partite chain. However, in a large multipartite system, this
approach means lumping many particles together into single

1The fidelity is not a metric on density operators, but it is closely
related to one. See, e.g.,f33g, Sec. 9.2.2.
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composite particles, hiding much of the entanglement dy-
namics. Can we more fully describe entanglement flow in
networks of interacting particles?

In this section we derive a set of differential equations
describing the entanglement dynamics, analogous to the rate
equations for a chemical reaction. These show that the rate at
which entanglement is created between two sets of particles
depends on the existing entanglement further back along the
network. Intuitively, this can be interpreted as entanglement
flowing through the network.

A. Generalized singlet fraction

As in the previous section, we must first address the prob-
lem of how to measure entanglement in large systems. Even
before that, we must decidewhat entanglement to measure,
since multipartite systems provide a plethora of possibilities.
What questions are we interested in investigating using our
putative equations? Perhaps the most natural goal, given a
system of many interacting particles, is to entangle a particu-
lar pair of them: the end qubits in a chain, for example. We
will take this as our motivation for again considering en-
tangled fractions of the two particles. We will also need to
define a new fidelity-based quantity to measure bipartite en-
tanglement embedded in larger systems.

First note that, since any maximally entangled state can be
reached by acting with local unitaries on a particular maxi-
mally entangled state, we can of course maximize over uni-
taries rather than states in the definition of the entangled
fraction:

Fsrd = max
Ua,Ub

kfuUa
†

^ Ub
†rabUa ^ Ubufl.

We can equally well think of the unitaries as acting onr
rather than on the entangled stateuflab. This suggests an
alternative interpretation of the singlet fraction: as the maxi-
mum fidelity with a particular maximally entangled state
se.g., the singletd that can be achieved by acting with local
unitaries.

Based on this interpretation, we define thegeneralized
singlet fraction, a measure of two-qubit entanglement for
bipartite systems of arbitrary dimensionsit can be extended
in the obvious way to measure general bipartite entangle-
ment f19gd:

FsrABd = max
UA,UB

kfutr/absUA ^ UBrABUA
†

^ UB
†dufl, s1d

where a and b are qubit systems embedded inA and B,
respectively,uflab is the singlet state, and the notation tr/ab
indicates the partial trace over all systemsother thana andb.
It measures the maximum fidelity with the singlet achievable
by local unitaries.

Note that, in two-qubit systems, this generalized singlet
fraction reduces to the usual singlet fraction. For any system,
it takes values between 0 and 1, and for separable states it is
less than or equal to 1/2. Also, from the definition, ifA and
B are subsystems ofA8 andB8, so thatrAB=tr/ABsrA8B8d, then
FsrABdøFsrA8B8d.

B. Entanglement rate equations

We are now ready to state our main result: a set of
coupled differential equations describing entanglement flow
in networks of interacting particles. For simplicity, we as-
sume that among the set of interacting particlesS, there are
at least two qubitsa and b, the premise being that we are
interested in entangling these.sThe results can easily be gen-
eralized: seef19g and Conclusions.d Let A andB be disjoint
subsets ofS. The equations describe the rate at which the
generalized singlet fraction ofrAB can increase.

DefineA8 andB8 to be the sets of particles directly con-
nected by an interaction to at least one particle inA or B,
respectivelysi.e., A8 is the set of particles at most “one-
away” from A, thus A#A8; see Fig. 1d. If A8 and B8 are
disjoint sas in Fig. 1d, then the time derivative of the gener-
alized singlet fraction is bounded by

ḞsrABd ø 2iHiÎFsrABdÎFsrA8B8d − FsrABd, s2ad

while if A8 and B8 have one or more particles in common,
then

ḞsrABd ø 2iHiÎFsrABdÎ1 − FsrABd. s2bd

The factoriHi is a sum of strengths of those interactions that
connect a particle inA or B to one outsideA or B, respec-
tively si.e., interactions that “cross the boundary” ofA or B;
see Fig. 1d:

iHi = o
iPA,j¹A;

iPB,j¹B

iHijiHS,

wherei ·iHS denotes the Hilbert-Schmidt norm.
The first step in the proof of theseentanglement rate

equationsis to rewrite the generalized singlet fractions1d in
terms of purifications ofrAB using Uhlmann’s theoremsAp-
pendix Bd. This leads to the following exact expression for
the derivative of the generalized singlet fraction:

ḞsrABd = ÎFsrABd max
UA,UB

uxl

1

i
o

i¹AsBd
jPAsBd

kwuHij ucl − kcuHij uwl,

whereucl is a purification ofrAB, uxl is an extension of the
singlet state to the Hilbert space ofucl, and uwl=UA

†

^ UB
†uxl. Using Lemma 3sAppendix Bd, the terms inside the

sum can be bounded by 1/iskwuHij ucl−H.c.d
ø2iHijiHSÎstruXij ud2−ftrsReXijdg2, whereXij =tr/i j uclkwu. Fi-

FIG. 1. A network of interacting particles showing interactions
and sets defined in the entanglement rate equations. Interactions
“crossing the boundaries” ofA or B are indicated by thicker lines.
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nally, the quantities under the square-root can be related to
generalized singlet fractions:ftrsReXijdg2=FsrABd and
trsuXij ud2øFsrA8B8d, which concludes the proof.sThe Proof is
given in full detail in Appendix B.d

We can gain some insight into entanglement dynamics by
considering the qualitative meaning of the rate equations,
before thinking about solving them. They divide a network
of interacting particles into pairs of concentric sets, sur-
rounding qubitsa and b. For example, in Fig. 1 there are
three such pairs: the qubitsa and b themselves, the sets
labeledA andB, and those labeledA8 andB8. The rate equa-
tions tell us that entanglement must first build up between
the largest sets before it can cascade down successively
smaller ones, finally reaching the two qubitssjust as in a
chemical reaction, intermediate compounds in the reaction
mechanism must be created before the final product is
reachedd. What is more, the rate at which the entanglement
flows from one level to the next depends on the difference in
entanglement between the two levelsssomewhat like the rate
of a reversible chemical reaction, which depends on the dif-
ference between the concentrations of reactants and prod-
ucts; or like flow in fluids, in which the flow rate depends on
the pressure differenced.

The number of pairs of sets is equal to half the “interac-
tion distance” of the two qubitssrounded down to the nearest
integerd, i.e., half the smallest number of links in the network
needed to connecta to b sin Fig. 1, their interaction distance
is 5d. A generalized singlet fraction can be defined on each
pair of sets, along with an accompanying rate equation de-
scribing its evolution. Therefore any network has the same
rate equations as a chain whose length is equal to the inter-
action distance, and whose interaction strengths along each
link of the chain equal the factorsiHi; all entanglement flow
is equivalent to flow along a chain. This is qualitatively simi-
lar to results from quantum random walks, in which a quan-
tum walk over a network is equivalent to a quantum walk
along a chainf20g.

Note that the factoriHi in the rate equations indiscrimi-
nately includes all interactions that cross the boundary. We
might expect different interactions to contribute differently,
depending on their location in the network. In fact, in Ap-
pendix B, we derive a more general version of the rate equa-
tions, which accounts for each possible interaction pathway
separately, and can therefore take into account the different
roles different particles play in the entanglement dynamics,
due to their differing connectivity. The inequality in the cor-
responding rate equations is therefore tighter, but it leads to
exponentiallysin the number of particlesd more equations
describing the entanglement dynamics of a system, and gives
a less intuitive picture of entanglement flow. We will find
that the simpler form given here is sufficient to derive a
number of interesting results.

C. Limits from the rate equations

It is straightforward to prove inductively that the curves
produced by saturating the inequalities in the rate equations
s2ad ands2bd constitute upper bounds on the evolution of the
generalized singlet fractions; i.e., the fastest possible evolu-

tion allowed by the rate equations is that which saturates the
rate equations at each point in time.

If the interaction distance between the qubits we intend to
entangle isd, then the full set of rate equations involvebd/2c
generalized singlet fractions, which we will denoteFkstd, k
=1¯ bd/2c. sb·c denotes rounding down to the nearest inte-
ger.d We number them such thatFbd/2c is the singlet fraction
of the two qubits. If we defineF0=1, then the evolution of
eachFkstd is described by Eq.s2ad.

Let fkstd be the curves that saturate the rate equations, i.e.,
fkstd is the solution to

ḟ k = 2iHiÎfk
Îfk−1 − fk,

with f0=1. sFor simplicity, we can take all coupling strengths
iHi to be 1.d Assume thatfkstd is an upper bound onFkstd,
i.e., fkstdùFkstd for all t. If fk+1std is not an upper bound on
Fk+1std, thenFk+1std must cross it at some point. If this occurs

at t= t0, then Fk+1st0d= fk+1st0d and Ḟk+1st0d. ḟ k+1st0d;2 but
Fk+1std must still satisfy the inequality in Eq.s2ad. Thus

Ḟk+1 ø 2ÎFk+1st0dÎFkst0d − Fk+1st0d

ø 2Îfk+1st0dÎfkst0d − fk+1st0d = ḟ k+1st0d,

which contradicts the assumption thatFk+1std crossesfk+1std
at t0. Thus if fkstd is an upper bound, then so isfk+1std.

The initial step in the inductionfthat f1std is an upper
boundg follows from the second of the rate equationss2bd
and the fact that the generalized singlet fraction is upper
bounded by 1. Figure 2 shows numerically calculated curves
fkstd saturating the rate equations.

IV. HOW FAST CAN ENTANGLEMENT BE CREATED?

How fast can entanglement be generated in a system of
interacting particles? The question is both theoretically inter-
esting and experimentally important. Many quantum infor-
mation processing tasks require entanglement, and the faster
this can be produced, the less the system will suffer from
decoherence. Quantum computing algorithms often generate
large amounts of entanglement during their execution, so de-
termining how fast entanglement can be generated can also
provide bounds on algorithm complexityf21g.

In this section, we briefly review some existing entangle-
ment generation schemes in the context of the entanglement
rate equations derived in the previous section. We then in-
vestigate what universal limits the rate equations put on how
fast entanglement can be generated, or more precisely, how
the time required to entangle two particles scales with the
size of the system.

2It is also possible that att0, the first derivatives are equal:

Ḟk+1st0d= ḟ k+1st0d, but a higher order derivative ofFk+1 is larger than
that of fk+1. In this case, we can find a new pointt0+e, infinitesi-
mally close to t0, at which the original conditions hold:Fk+1st0
+ed= fk+1st0+ed andḞk+1st0+ed. ḟ k+1st0+ed. The proof can then be
applied at this new point.
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A. Entanglement generation schemes

How fast entanglement can be generated depends, of
course, on how we are able to manipulate the system. For
definiteness, consider entanglement generation in a qubit
chain. It turns out that measurement is a very powerful re-
source. If we are able to carry out local operations on any
qubit, including local measurements and classical communi-
cation of the outcomes, then the end qubits in a chain can be
maximally entangled in a timeindependentof the length of
the chain. Though not discussed in the context of entangle-
ment generation, Briegel and Raussendorff22g showed that a
cluster state can be created in a chain in constant time, and
local measurements on a cluster state allow a Bell state to be
projected out on any desired pair of qubits, including the end
pair f23g.

The constant scaling assumes we neglect the time re-
quired for classical communication of the measurement out-
comes to the ends of the chain. This can be justified on
theoretical grounds, since classical communication cannot
create entanglement, and it makes sense to consider the in-
teractions as the resource. In many physical implementa-
tions, it is also reasonable on pragmatic grounds: classical
communication is usually much easier to implement than
quantum processes. However, if the interactions are really
the only nonlocal resource, then classical communication
must also be implemented via the chain, and local measure-
ments are of no benefit, which is equivalent to the local-
control scenario described below. This might be the relevant
scenario, for instance, for quantum computers.

If we can apply local unitary operations on any qubit in
the chain, butnot measurements, then we can efficiently
simulate evolution under any Hamiltoniansthis is true for
general systems of interacting particles, not just for qubit
chainsf24,25gd. Again, it is reasonable to discount local re-
sources, which in this scenario means neglecting the time

required to carry out the local unitariessthe “fast local uni-
tary” approximationd; and again, this can also be justified on
physical grounds, since local unitaries are typically much
faster than interactions.

Khaneja and Glaser have developed an interesting proto-
col for state transfer in this scenariof26g, in the context of
NMR spectroscopy, which can easily be transformed into an
entanglement generation protocol. First the middle qubits are
entangled, then the state of each middle qubit is encoded into
a three-qubit state. The encoded states are transferred along
the chain towards the ends, where they are decoded again.
The protocol requires local unitaries to be applied at discrete
times. The evolution of the generalized singlet fractions is
shown in Fig 3, clearly reflecting the fact that the protocol is
based on moving states step-by-step along the chain. It
achieves a surprising threefold speedup over the trivial swap-
ping protocol for entanglement generation in a chainsen-
tangle the middle qubits; move to the ends by swappingd,
though the scaling of the time with the length of the chain is
still linear, as in the trivial protocol. In the next section, we
will use the entanglement rate equations to derive a lower
bound on the scaling in this local-control scenario.

Finally, we may have no local control over the qubits,
only retaining the ability to switch on interactions in the
entire chain, and switch them off at some later time. Chri-
standl et al. developed a state-transfer protocol for qubit
chains in this scenariof27g, and Yunget al. have given a
simple extension to entanglement generationf28g. The only
local control required is fixing the coupling strengths be-
tween different qubits, which must be inhomogeneous. Fig-
ure 4 shows the entanglement dynamics for the odd chain-
length protocol of Ref.f28g—very different to that of Fig. 3.
If the strongest coupling strength is normalized to some fixed
value, then the time to create a maximally entangled pair
again scales linearly with the length of the chainf29g.

Osborne and Linden have also developed a protocol for
state transfer in qubit chains, which could be adapted to en-

FIG. 2. Numerically calculated generalized singlet fraction
curves fkstd saturating the inequalities in the entanglement rate
equationss2ad and s2bd. The final solid curve is fork=50, i.e., the
singlet fraction of the end qubits is separated by an interaction
distanced=100.fThe dashed curves show the corresponding upper
and lower boundsukstd and lkstd for k=50, from Sec. IV B.g

FIG. 3. Entanglement dynamics in the entanglement generation
protocol based on Khaneja and Glaser’s state transfer schemef26g,
for a chain of ten qubits. Successive curves show the evolution of
generalized singlet fractionsF1 through F5, numbered as in Sec.
III C.
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tanglement generation, involving limited local control over a
vanishingly smallsin the limit of large chain lengthsd number
of qubits at each end of the chainf30g.

B. Bounds on entanglement generation

In this section we will use the entanglement rate equations
to derive a lower bound on how the time to create a maxi-
mally entangled state scales with the size of the system.

Unfortunately, the set of differential equations defined by
the rate equationss2ad and s2bd has no known closed-form
analytic solutionsat least none that we could find in the
literatured. Solving numerically can provide numerical
bounds on the time required for entanglement generation
ssee Fig. 2d. The interesting question, though, is how this
time scales with the size of the systemsfor instance, the
length of a chaind, which requires an analytic result.

For simplicity, we will derive a bound on the scaling of
the time to entangle the end qubits in a chain of lengthL.
The bL /2c generalized singlet fractionsFk will be numbered
such thatFbL/2c is the singlet fraction of the end two qubits.
We assume all interaction strengths are equal to 1, and that
the chain is initially in a completely separable pure state
fthus Fkst=0d=1/2 for all kg. The result can easily be gen-
eralized to different interaction strengths, and indeed to gen-
eral networks of particlesscf. discussion in Sec. III Bd.

We are interested in the time at whichFbL/2c sthe singlet
fraction of the two end qubitsd reaches 1, as a function ofL.
Though the rate equations do not have an analytic solution,
we can inductively prove a bound on the scaling of this time
with L, using an argument similar to that used in Sec. III C.

There, we showed that the curves obtained when the in-
equalities in the rate equations are saturated give upper
bounds on the evolution of the generalized singlet fractions.
We can use the same argument to prove that we still get

upper bounds if we weaken the inequalities, using the fact
that Fkstdø1, and instead solve

ḟ kstd = 2Îfk−1std − fkstd.

We can use the argument a third time to prove that ifukstd is
an upper bound on the newfkstd, then the solutionuk+1std to

u̇k+1std = 2Îukstd − uk+1std s3d

is an upper bound onfk+1std. That is, we haveukstdù fkstd
ùFkstd. fAs concerns boundary conditions, we simply re-
quire thatuk+1s0dù fk+1s0d=Fk+1s0d=1/2.g

Now assume there is aukstd of the form

ukstd =
t2

ak
+

1 + e

2
s4d

that is an upper bound onfkstd for some positive constantsak

ande. The differential equation foruk+1std then has a solution
of the same form asukstd sas can be seen by direct substitu-
tiond, with ak+1 given by the recursion relation

ak+1 =
ak

2
+

ak

2
Î1 +

4

ak
.

Sinceuk+1s0d=s1+ed /2, which is greater than the initial con-
dition fk+1s0d=Fk+1s0d=1/2, uk+1std is an upper bound on
fk+1std by the argument above.

All that remains is the initial step in the induction: that
there is indeed a boundu1std on f1std with the form assumed
in Eq. s4d, for some constantsa1 and e. Fortuitously, the
differential equations2bd for F1std sthe generalized singlet
fraction of the entire chain, split into two halvesd can be
solved analytically when the inequality is saturatedsand
without weakening the inequalityd. The solution has the form

f1std = sin2st + fd,

with f an arbitrary constant. There is also a trivial solution:
f1std=1. Since the chain starts in a completely separable pure
state, the initial condition isf1s0d=1/2, and thesolution we
require is

f1std = Hsin2st + p/4d, t ø p/4,

1, t . p/4.
J

The two parts to the solution merely reflect the fact that once
the generalized singlet fraction has reached its maximum
value of 1, there is nothing to be gained by further interac-
tion, and the interactions affectingF1 snamely, the interac-
tions in the middle of the chaind should be switched off.

Knowing an explicit solution forf1std, it is easy to find a
boundu1std with the appropriate form. To make the algebra
simpler, we can upperboundf1std by t+1/2. Thus au1std
with the form given in Eq.s4d that satisfiesu1stdù t+1/2
will suffice to complete the proof. This leads to the relation
a1ø2e. Any positive a1 and « satisfying this will give an
appropriate u1stdù f1stdùF1std, and will guarantee that
u1s0d=s1+ed /2ù f1s0d=F1s0d=1/2. Therefore we have
shown that an upper bound onF1std with the appropriate
form exists, which completes the proof. For neatness, we can

FIG. 4. Entanglement dynamics in the entanglement generation
scheme for odd chain lengths from Ref.f28g, here for nine qubits.
Successive curves show the evolution of generalized singlet frac-
tionsF1 throughF4, numbered as in Sec. III C.sNote that times are
not comparable to those in Fig. 3, since interaction strengths inf28g
are not normalized.d
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let e→0, so thatuks0d→Fks0d=1/2 anda0→0 fas used to
give the curveu50std shown in Fig. 2g.

Solving ubL/2cstd=1 gives alower bound on the time re-
quired for f bL/2c to reach 1, which is itself a lower bound on
the timeTent required for the singlet fraction of the end two
qubitsFbL/2c to reach 1, or equivalently, for the end qubits to
become maximally entangled.

We are interested in the scaling ofTent for large chain
lengths, when ak becomes large. Rather than solving
ubL/2cstd=1 explicitly to obtain the bound, we can Taylor ex-
pand the square root in the recursion relation to show that it
asymptomatically approachesak=ak−1+1, or equivalently
ak=a1+k, ask→`. Thus for largeL, the bound tends to

TentùÎ bL/2c
2

,

a square-root scaling with chain lengthssee Fig. 5d.
We have loosened many an inequality during the proof of

the square-root bound. Could the rate equations give a tighter
bound? We can use essentially the same proof with the in-
equalities reversed to prove that a square-root bound is the
best that can be obtained.

Instead of usingFkstdø1 to weaken the inequality right at
the beginning, we useFkstdù1/2, which is valid when the
Fkstd saturate the inequalities in the rate equations, i.e., when
Fkstd= fkstd. Then, solutions of

l̇ kstd = Î2Îlk−1std − lkstd

arelower bounds onfkstd. We can rescale the timet= t /Î2 to
so that the differential equation forlkstd has the same form as
that forukstd in the previous prooffEq. s3dg. Assuming solu-
tions of the formlkstd=t2/ak, solving the resulting recursion
relation, and proving there is alower bound onf1std of the
appropriate form, leads to anupperbound on the scaling, for

any evolution saturating the rate equations. For large chain
lengths, the bound tends toTentøÎbL /2c, also a square-root
scaling. Therefore the square-root bound we have derived is,
up to aÎ2 numerical factor, the best that can be obtained
from the entanglement rate equationsssee Fig. 5d.

How does our bound compare with the entanglement gen-
eration protocols described in the previous section? The gen-
eralized singlet fractions evolve quite differently in those
protocols, compared to the evolution that would saturate the
rate equationsscompare Figs. 3 and 4 with Fig. 2d. All ex-
isting protocols that we know of scale linearly with the
length of the chain—no better than the trivial swapping pro-
tocol sentangle the middle qubits; move to the ends by swap-
pingd. It is an interesting open problem to determine whether
any protocol can achieve a square-root scaling, or whether
the bound derived via the rate equations is too weak and
cannot be saturatedswhich would suggest some improve-
ment on the rate equations might be possibled.

V. CONCLUSIONS

We have investigated entanglement flow, both through in-
dividual particles and along networks of interacting particles.
In both cases, we have derived differential equations relating
the rate of entanglement generation to the existing entangle-
ment in the system.

Entanglement flow through a particle is limited by the
entanglement of that particle with the rest of the system,
providing the system is in a pure state.sPrevious workf12g
has already shown that the entanglement can be transmitted
by a particle without that particle becoming entangled at all,
if the system is in a mixed state.d

To describe entanglement flow along general networks of
interacting particles, we have derived a set of entanglement
rate equations, analogous to the rate equations for a chemical
reaction. These can intuitively be interpreted as describing a
flow of entanglement along the network. We have used the
rate equations to prove a square-root lower bound on the
scaling with system size of the time required to create a
maximally entangled state, and compared this to existing en-
tanglement generation protocols. Whether this bound is
achievable, or whether the rate equations can be improved to
give a tighter bound, remains an interesting open problem.

The entanglement rate equations were derived in the con-
text of two-qubit entanglement creation. However, since they
involve fidelity-based quantities, they can easily be extended
to more general settings. First, the quantities and equations
can be extended to bipartite entanglement generation in arbi-
trary spaces by taking fidelities with a bipartite maximally
entangled state in the appropriate space. Second, they can be
generalized to the multipartite setting by taking fidelities
with the desired multipartite entangled statese.g., a Green-
berger, Horne, ZeilingersGHZd statef34gd, rather than with a
bipartite entangled state.

Together, the results establish a quantitative concept of
entanglement flow in interacting systems. This is of interest
as an abstract concept in itself, but could also be interesting
both theoretically and practically: in the analysis of quantum
algorithms, for example, since these often involve creating

FIG. 5. Scaling with chain-lengthL of the timeTent required to
create a maximally entangled state between the ends. The points
show numerical results obtained by saturating the rate equations
s2ad ands2bd. The solid and dashed curves show the analytic lower
and upper bounds,TentùÎbL /2c /2 andTentøÎbL /2c, respectively.
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large amounts of entanglement during their operation, or in
physical implementations of quantum systems, in which it is
important to carry out any manipulationsincluding entangle-
ment creationd as fast as possible, to beat decoherence.
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APPENDIX A: THREE-QUBIT CHAIN

To derive the three-qubit result, we use a matrix analysis
approach to calculate the concurrence, developed inf15g.
Writing the Schmidt decomposition of the three-qubit system
with respect to the partitionsb:acd as uclabc=l1uw1lacux1lb

+l2uw2lacux2lb, we can represent the state ofab by a 432
matrix X=sl1uw1l ,l2uw2ld. The reduced density matrix is
then given byrac=XX†.

The concurrenceCac of rac can be obtained from the sin-
gular values ofA=XTSX, whereS=sy ^ sy f15g. In our case,
A is a 232 matrix sbecauserac has rank twod, with just two
singular values:§1ù§2. Thus Cac=§1−§2. Since trA†A=§1

2

+§2
2 and udetAu=§1§2, we can also write this as

Cac
2 = tr A†A − 2udetAu. sA1d

To calculate the time-derivative of the concurrence, we
must calculate the derivatives of trsA†Ad andudetAu. From its

definition, Ȧ=ẊTSX+XTSẊ. Meanwhile, dstr A†Ad /dt

=trsA†Ȧ+Ȧ†Ad, which, after a little algebra, leads to

dstr A†Ad
dt

= 4 RestrsSr*SẊX†dd. sA2d

Since A is a 232 matrix, detA=trsAsyA
Tsyd /2. Thus

dsdetAd /dt=trsȦsyA
Tsy+AsyȦ

Tsyd /2 which, after a little
more algebra, gives

dsdetAd
dt

= 4 trsXsyX
TSXsyẊ

TSd. sA3d

The three-qubit chain evolves according to the Hamil-
tonianH=Hab^ 1c+1a ^ Hbc. The two-qubit HamiltonianHab
has a product decompositionHab=oi jaijsi ^ s j, where the
Pauli matricessi are defined in thehux1l , ux2lj basis, and
coefficientsaij are real. Similarly forHbc and coefficientscij .
The Schrödinger equation describing the evolution of the
system stateucl translates into an equation for the evolution
of X:

Ẋ = − io
i j

saijsi ^ 1Xs j
T + cij1 ^ siXs j

Td.

We can use this, along with expressionssA2d and sA3d, in
the time-derivative of Eq.sA1d to obtain an expression for
the derivative of the concurrence:

dCac
2

dt
= hsH,ucldl1l2.

The factorhsH , ucld=oi jaijhij
a +cijhij

c depends on both the
interactions and the system state, and is a rather complicated
sum over terms involvingaij andcij . We define

sij
k = kw̃iusk ^ 1uw jl,

tij
k = kw̃iu1 ^ skuw jl,

oij = kwiuw̃ jl,

hix
a = − isl1

2s12
i o11 + l2

2s21
i o22d,

hiy
a = l2

2s21
i o22 − l1

2s12
i o11,

hiz
a = − il1l2ss21

i o12 − s12
i o21d,

and definehij
c similarly to hij

a, but with thesij ’s replaced by
tij ’s. Note thatsii

k = tii
k =0. sThe tildes denote the spin-flip op-

erationf13g: uw̃l=sy ^ syuw* l.d Then

hsH,ucld = 4 ReSo
i j

aijhij
a + cijhij

cD + 4Uo
i j

aijhij
a + cijhij

cU .

However, as we are primarily interested in the depen-
dence on entanglementsi.e., the dependence on the Schmidt
coefficientsd, we can bound the magnitudes of thesij

k , tij
k , and

oij by 1, and assume all terms sum in phase, giving the bound

hsH,ucld ø 8o
i j

uaij u + ucij u,

which is independent of the system state, depending only on
the interaction strengths.

APPENDIX B: ENTANGLEMENT RATE EQUATIONS

The proof of the entanglement rate equations revolves
around Uhlmann’s theoremf16,31g, which relates the fidelity
of two mixed states to the fidelity of their purifications:

Theorem 1. (Uhlmann). If r and s are two states in the
same Hilbert spaceH, let ucl and uwl be purifications ofr
ands into a sin general largerd Hilbert spaceH ^ H8. Then

Fsr,sd = max
ucl,uwl

ukwuclu2,

where the maximization is over all purifications.
Since any purification can be transformed into another by

a unitary acting onH8, we can fix one of the purifications
and only maximize over the other one. Also, global phases
can be chosen to ensure the overlapkw ucl is real and posi-
tive, so the absolute value can be dropped.

Recall that the entanglement rate equationss2ad and s2bd
involve two disjoint subsets,A and B, of the entire set of
particlesS, which are interacting via two-particle interactions
Hij . We can apply Uhlmann’s theorem to the generalized
singlet fraction ofrAB at time t:

sB1d
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whereux̄l, ŪA, andŪB denote the particular state and unitar-
ies achieving the maximum.sWe are retaining the unitaries,
rather than incorporating them into one of the purifications,
for later convenience. Strictly speaking, they should be ex-
tended toH ^ H8 and writtenUA ^ UB ^ 1rest. In the interests
of economy, we will drop all1rest’s.d

The stateUA ^ UBucl can be chosen to be any fixed puri-
fication of the two-qubit density operatorsab. We use that
freedom to makeucl a purification of the overall system state
rS, which guarantees thatUA ^ UBucl is a purification ofsab,
as required by Uhlmann’s theorem. As foruxl, since ufl is
already pure, it is simply an extension toH ^ H8 : uxl
= uflabuqlrest sthe maximization then being overuqld.

If the system evolves under the HamiltonianH=oi jHij for
an infinitesimal timedt, the state evolves torABst+dtd
=tr/ABfe−iHdtrSstdeiHdtg. By writing the density matrix of the
entire system,rS, in a product basis for the partition
sAB: restd and expanding the exponentials to first order indt,
it is straightforward to show that only interactions involving
at least one particle inAB give a first-order contribution to
the evolution. ThereforeH need only include that smaller set
of interactions. Letting

Udt = expS− idt o
i P S
jPAB

HijD
be the resultingsinfinitesimald unitary evolution operator, the
singlet fraction after the evolution becomes

FABst + dtd = max
VA,VB

uzl

kzuVA ^ VB ·Udtujl2, sB2d

where we have used Uhlmann’s theorem again. The stateuzl
is again simply an extension ofufl to H ^ H8, and VA
^ VBUdtujl can be chosen to be any fixed purification of the
two-qubit density operator

tab = tr/absVA ^ VBUdtrSUdt
† VA

†
^ VB

†d.

Again making use of this freedom, and recalling that we
choseucl to be a purification ofrS, we can chooseujl to be
the same state as before:ujl= ucl.

The stateux̄l and unitariesŪA andŪB were defined to be
those maximizing expressionsB1d. Thus by definition,

kx̄uŪA ^ ŪBucl ù kxuUA ^ UBucl

for all uxl, UA andUB. In particular, this is true for infinitesi-
mal changes, e.g.ux̄l+dtux'l whereux'l is orthogonal touxl.
Thus kx'uŪA ^ ŪBuclø0. However, if this were strictly
negative for someux'l, then −ux'l would make it positive.

Thereforekx'uŪA ^ ŪBucl=0. Similarly, considering infini-
tesimal changes to the unitaries, we can show that

kx̄uŪAHA ^ ŪBucl = 0, kx̄uŪA ^ ŪBHBucl = 0,

kx'uŪA ^ ŪBucl = 0. sB3d

ExpressionsB2d for the generalized singlet fraction at
time t+dt must tend to expressionsB1d sthe corresponding
expression for timetd as dt→0, so uzl= ux̄l+dtux'l and

VAsBd=ŪAsBds1+ idtHAsBdd, whereHAsBd is a Hermitian opera-
tor on AsBd. Using this, expandingUdt=1− idtH+Osdt2d
swhereH is the sum of interactions involving at least one
particle in A or Bd, and making use of relationssB3d, we
have

FABst + dtd = kx̄uŪA ^ ŪBs1 − idtHducl2 + Osdt2d.

That is, the state and unitaries maximizing expressionsB1d
also maximize Eq.sB2d, to first order indt.

HamiltonianH currently includes all interactions involv-
ing at least one particle inA or B. By expandingH in the
previous expression as a sum over these two-particle inter-
actions, we can use the same relationssB3d to show that only
interactions crossing theboundaryof A or B need to be in-
cluded to give the generalized singlet fraction to first order in
dt:

FABst + dtd = kx̄uŪA ^ ŪBS1 − idt o
i ¹ AsBd

jPAsBd

HijDucl2 + Osdt2d.

Now, global phases were chosen to make it real and posi-

tive, sokx̄uŪA ^ ŪBucl=ÎFABstd. Thus, expanding the square
in the previous expression and only retaining first order
terms in dt, we arrive at a first expression for the time-
derivative of the generalized singlet fraction:

ḞABstd = ÎFABstd ·
1

i
o

i¹AsBd
jPAsBd

kwuHij ucl − kcuHij uwl, sB4d

whereuwl=ŪA
†

^ ŪB
†ux̄l.

To proceed, we will need the following Propositionf32g
which we use to prove the subsequent Lemma:

Proposition 2 (Fan-Hoffman). For any operatorX, the or-
dered singular valuessi

↓ of X are individually greater than or
equal to the ordered eigenvaluesr i

↓ of ReX=sX+X†d /2. That
is, si

↓ù r i
↓∀ i. Note that the eigenvalues of ReX can be nega-

tive, in which case theabsolute valuesof the eigenvalues
need not obey the Proposition.

Lemma 3. For any operatorX, struXud2−ftrsReXdg2

ù trfsIm Xd2g, whereuXu=ÎXX†, ReX=sX+X†d /2, and ImX
=sX−X†d /2i.

Proof. Assume initially that trsReXd is non-negative. De-
fining PsNd to be the set of positivesnegatived eigenvalues of
ReX,

o
iÞ j

ssis j − r ir jd = o
iÞ j

sis j − o
i,jPP

iÞ j

r ir j + o
iPP

jPN

ur iuur ju + o
iPN

jPP

ur iuur ju

− o
i,jPN

iÞ j

ur iuur ju = o
i or j¹P

iÞ j

sis j + o
iPP

jPN

ur iuur ju

+ o
i,jPP

iÞ j

ssi
↓s j

↓ − r i
↓r j

↓d

+ o
iPN

ur iuSo
jPP

ur ju − o
jPN

jÞi

ur juD .
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The first two terms are clearly positive, the third is positive
by Proposition 2, and the last by the assumption that
trsReXdù0. ThusoiÞ jssis j −r ir jdù0. Now,

struXud2 − ftrsReXdg2 = So
i

siD2
− So

i

r iD2
= o

i

si
2 − o

i

r i
2

+ 2o
iÞ j

ssis j − r ir jd ù o
i

si
2 − o

i

r i
2

= trsXX†d − trfsReXd2g = trfsIm Xd2g,

where in the last line we have expandedX=ReX+ i Im X,
and used the fact that ReX and ImX are both Hermitian and
that the trace of their commutator is 0.

For completeness, we can remove the assumption
trsReXdù0 by noting that, if there existed an operatorX
with trsReXd,0 such that the Lemma did not hold, then
the operator −X would also violate the Lemma. But then
trfRes−Xdgù0, so the Lemma must hold for all operators.j

Recall thatHij really meansHij ^ 1rest. Thus

1

i
skwuHij ucl − H.c.d = trSHij ·

1

i
str/i j uclkwu − H.c.dD

= 2 trsHij Im Xijd whereXij = tr/i j uclkwu

ø 2Îtr Hij
2ÎtrfsIm Xijd2g sby Cauchy-Schwartzd

ø 2iHijiHS
ÎstruXij ud2 − ftrsReXijdg2 sB5d

using Lemma 3 in the last line.si ·iHS denotes the Hilbert-
Schmidt norm.d

Finally, we need to relate the quantities under the square-
root to generalized singlet fractions. First,ftrsReXijdg2

=fRestruclkwudg2=kw ucl2=FABstd, since global phases were
chosen to makekw ucl real and positive.

Second,Hij acts on one particlej within A or B, and a
particle i outside. If j is in A, define the setsAi8=Aø i and
Bi8=B. If it is in B, defineAi8=A, Bi8=Bø i. We apply Uhl-
mann’s theorem to the definition of the generalized singlet
fraction for rAi8Bi8

, and again choose the same stateucl for
one of the purifications. So long asAi8 andBi8 are disjoint, we
have

FAi8Bi8
std = max

VA8,VB8

uzl

kzuVA8 ^ VB8ucl2 ù max
VA8,VB8

kx̄uŪAVA8

^ ŪBVB8ucl2 = max
VA8,VB8

kwuVA8 ^ VB8ucl2

ù max
Uij

kwuUij ucl2 = max
Uij

ftrsUijXijdg2 = trsuXij ud2,

where an inequality appears each time we restrict the maxi-
mization. The last line follows from the fact that, for any
operator, truXu=maxUutrsUXdu, which is easily proved via the
polar decomposition ofX. If Ai8 and Bi8 have a particle in
commonsit must be particlei if they dod, then the second of
the two inequalities is not valid. We can instead bound
trsuXij ud2ø1.

Thus using ftrsReXijdg2=FABstd and trsuXij ud2øFAi8Bi8
std

sAi8 andBi8 disjointd or trsuXij ud2ø1 sAi8 andBi8 overlappingd

in Eq. sB5d, and substituting the result in Eq.sB4d, we arrive
at a version of the entanglement rate equation:

ḞABstd ø 2 o
i¹AsBd
jPAsBd

iHijiHS
ÎFABstdÎFAi8Bi8

std − FABstd,

whereFAi8Bi8
is defined to be 1 ifAi8 andBi8 overlap.

To describe entanglement flow in a network of interacting
particles, one such rate equation must be written down forall
meaningful generalized singlet fractions that can be defined
on the networks“meaningful” implying that the setsA andB
include particlesa andb, respectively, and are each made up
of “one piece”d.

Recall that, sinceAi8 andBi8 are subsets ofA8 andB8 ssee
Fig. 1d, FAi8Bi8

øFA8B8. We can use this to arrive at the simpler
version of the entanglement rate equations presented in the
main text:

ḞABstd ø 2 o
i¹AsBd
jPAsBd

iHijiHS
ÎFABstdÎFA8B8std − FABstd.

APPENDIX C: GENERAL TRIPARTITE CHAINS

The first half of the derivation of the entanglement rate
equations given in Appendix B can be reused in the proof of
the tripartite chain result. Recall that the three systemsA, B,
and C making up the chain are in an overall pure state
uclABC, and interact by nearest-neighbor interactions:H
=HAB+HBC. As noted in Sec. III A, the entangled fraction
FAC of rAC can be expressed as a maximization over unitaries
UA andUC rather than states. Applying Uhlmann’s relation, it
can be rewritten

FAC = max
UA,UC

uxl

kxuUA ^ UCucl = kwucl.

We can chooseucl to be the overall system stateuclABC,
since this is a purification ofrAC. uxl is then an extension of
a maximally entangled stateuflAC on HAC to the space

HABC: uxl= uflACuzlB. We defineuwl=ŪA
†

^ ŪC
† ux̄l= uf̄lACuz̄l,

where bars denote the particular unitaries and states achiev-
ing the maximum.

Although the rate equations involve thegeneralizedsin-
glet fraction, up to expressionsB4d the derivation in Appen-
dix B applies equally well to the entangled fraction. Expres-
sion sB4d then becomes

ḞACstd = ÎFACstd
1

i
skwuHucl − kcuHuwld, sC1d

Now, writing the state in its Schmidt decomposition for
the partitionsB:ACd, uclABC=oiliucilACuilB, where we sort
the Schmidt coefficients in descending order:l1ùl2ù ¯

ùln. Extending huilBj to form a complete basis forHB,
uwl can be written in the product decomposition
uwl= uf̄lACoiaiuilB sthe ai are complex in generald.
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We know that uwl maximizes kw ucl=oiai
*likf̄ ucil.

Clearly, the phases ofai must be chosen to cancel the phases
of kf̄ ucil. The relationship between the magnitudes of the

ai’s and kf̄ ucil’s can be found using Lagrange multipliers,
with the normalization constraintoiuaiu2=1, yielding

ai =
likciuf̄l

Îo
k

lk
2ukf̄ucklu2

. sC2d

We also know that, for any Hamiltonian acting only onA
or C, kwuHAucl=kwuHCucl=0 fapplying the same reasoning
as used to prove relationssB3d in Appendix Bg. Thus

a1
*l1kf̄uHAsCducil = − o

iÞ1
ai

*likf̄uHAsCducil. sC3d

Now, the system HamiltonianH=HAB+HAC. kwuHABucl
=oi jai

*l jkf̄uBki uHABu jlBuc jl. For thei = j =1 terms in the sum,

Bk1uHABu1lB is just some Hamiltonian acting only onA. Simi-
larly for Bk1uHABu1lB. Thus using Eqs.sC2d and sC3d,

kwuHucl = o
iÞ1

ai
*liskf̄,i uHuci,il − kf̄,1uHuci,1ld

+ o
iÞ j

ai
*likf̄,i uHuc j, jl

= o
iÞ1

li
2hii + o

iÞ j

lil jhij ,

where

hii =
kciuf̄lskf̄,i uHuci,il − kf̄,1uHuci,1ld

Îo
k

lk
2ukf̄ucklu2

,

hij =
kciuf̄lkf̄,i uHuci, jl

Îo
k

lk
2ukf̄ucklu2

for i Þ j .

Using this in Eq.sC1d, and boundingshij −hij
* d / i ø2uHu

=2suHABu`+ uHBCu`d swhere uMu`=maxi j uMij u denotes thel`

normd, we arrive at the final result:

ḞACstd ø 2uHuÎFACstdSo
i j

lil j − l1
2D .
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