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We consider the transformation of multipartite states in the single-copy setting under positive-partial-
transpose-preserving operatidiFPT operationsand obtain both qualitative and quantitative results. First, for
some pure-state transformations that are impossible under local operations and classical communication
(LOCC), we demonstrate that they become possible with a surprisingly large success probability under PPT
operations. Furthermore, we clarify the convertibility of arbitrary multipartite pure states under PPT operations
and show that a drastic simplification in the classification of pure-state entanglement occurs when the set of
operations is switched from LOCC to PPT operations. Indeed, the infinitely many types of LOCC-
incomparable entanglement are reduced to only one type under the action of PPT operations. This is a clear
manifestation of the increased power afforded by the use of PPT-bound entanglement. In addition, we further
enlarge the set of operations to clarify the effect of another type of bound entanglement, multipartite unlock-
able bound entanglement, and show that a further simplification occurs. As compared to pure states a more
complicated situation emerges in mixed-state settings. While single-copy distillation becomes possible under
PPT operations for some mixed states it remains impossible for other mixed states.
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I. INTRODUCTION bipartite entanglement is then characterized by the Schmidt

Constraints and resources are intimately related in phyg@nk[9]. For finite-dimensional systems a state can be con-
verted to another one with finite probability exactly if the

ics. If we impose a constraint on a physical setting, then X .
certain tasks become impossible. A resource must be madgFmidt number of the target state is not larger than that of
available to overcome the restrictions imposed by the conth® initial state. In a tripartite setting the situation is more
straints. By definition such a resource cannot be created erg@MPlicated. Here it is well known, for example, that a GHZ
ploying only the constrained set of operations but it may be Gréenberger, Horne, and Zeilingestate cannot be trans-
manipulated and transformed under these operations. Thigrmed to aW state and vice vers@]. These states are then

the amount of resource does not increase under any operatigﬁ“d to be incomparable. It can be shown that there are two

e . ncomparable types of tripartite entanglement in three-qubit
safisfying the constraint emerges then as a fundamentélystems. The situation is even more complicated in multipar-
law—for example, in entanglement thedry,2].

. . 4 - tite settings composed of many partig9-14 or infinite-
One example of particular importance is the restriction t 9 b y partigd-14

. . 10N 104imensional bipartite systeni$5,16), where there are many
local quantum operations and classical communicati

ossibly infinitely many incomparable types of entangle-
(LOCC). The resources that are implied by this constraint argﬁent. y y y P P g

nonseparable states and in particular pure entangled statesa gifferent setting is presented by the concept of partial
such as singlet states, neither of which can be created yme reversal or partial transpositid7]. For two qubits,
LOCC alone. This setting gives rise to a theory of entanglestates that remain positive under partial transpositide-
ment as a resource under LOCC operations. noted as PPT stateare exactly the separable staf&8] but

Any such theory of entanglement as a resource will genfor higher dimensions this is generally not the case as there
erally aim to provide mathematical structures to allow an-are PPT states that are insepardil@]. This motivates the
swers to three questions: namely) the characterization of definition of the set of positive-partial-transpose-preserving
entanglement(2) the manipulation of entanglement, a8l  operationsPPT operations defined as operations that map
the quantification of the entanglement resourtg] under any PPT state into another PPT stf26]. In this case, the
the given constraint. Of particular interest is the question ofesource are states that are not RB@noted as NPT states
how many inequivalent types of entanglement exist withinin the single-copy setting for pure states, it has been shown
such a theory. In the limit of infinitely many identically pre- that both under PPT operatioh21] and with LOCC sup-
pared copies of bipartite pure states, entanglement can lmorted by PPT-bound entanglemé§@®] the Schmidt number
interconverted reversibly3] and it is reasonable to say that can be increased so that state transformations become pos-
there is only one type of pure bipartite entanglement. Eversible that are strictly impossible under LOCC. Furthermore,
for pure states, the situation changes dramatically when wthere are mixed-state transformations that are reversible in
consider the single-copy setting. It has been shown that thihe asymptotic setting)21]. This suggests that a theory of
Schmidt rank of bipartite pure states cannot be increased bgntanglement under PPT operations might have a much sim-
LOCC [4-8]. At the single-copy level, the convertibility of pler structure than that under the LOCC constraint.
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In this paper, we focus attention on the entanglement ma¥: H(V,) ® H(Vg) ® H(Vc) — H(V)) @ H(Vg) @ H(VE) will
nipulation under PPT operations in the nonasymptotichbe called PPT in the following if
single-copy setting to explore what simplifications occur. We N
consider PPT-state transformation in multipartite settings and Q¥) V) v= V=0 (4)
obtain both qualitative and quantitative results. In Sec. II, thggr g i=A, B, andC.

general settings and notations of PPT-preserving operations | et ys now consider the transformation of a state
are introduced. In Secs. Ill and IV, we first demonstrate that. /() into a states e H(V’) with the probability ofp(p
the transformations of pure states that are impossible under, ;) For this probabilistic transformation, we construct the

LOCC become possible with a surprisingly large succesgace preserving CP-PPT map with two outcomes: one that

E(r)?]k;ability when employing trace preserving PPT Operagiyes s and one that gives some other state. The two parts

In Sec. V, a rather tractable scheme of tracey o given by the CP-PPT mapis and ¢, respectively. The

nonpreserving PPT operations is introduced and discusse ssociated Hermitian operators are denote@tgnd . The
We will then completely clarify the convertibility of all mul- map ¥ then satisfiesV(p)=p(p— o) or

tipartite pure states under PPT operations in Sec. VI. In Sec.

VII we enlarge the set of operations beyond that of PPT t{W(p)(1l-0o)}=t{Q(V)po (1-0)}=0 (5)
operations to consider the effect of multipartite unlockable ) o )
bound entangled states. In Sec. VIII, we will consider theVN€no is a pure state. The success probability is then given
transformation of a single copy of mixed states into pure®Y

entangled states—i.e., the single-copy distillation under PPT p(p — o) = tt{¥(p)} = tr{QV)p ® 1} = tr{Q(V)p ® 0.
operations. A summary and conclusion are given in Sec. IX.

II. BASIC NOTATION

To begin with, let us denot&{(V) [H(V')] the space of
Hermitian operators on the Hilbert spaddV’]. A superop-
eratorV from V to V' is a linear transformation fror{(V)
to H(V’). There is a natural isomorphisi20] which associ-
ates with superoperator®: H(V) — H(V') a Hermitian op-
eratorQ(¥) e H(V) ® H(V') such that for allA e H(V) and
B e H(V') we have

tr{¥(A)B} = tr{Q(¥)A ® B}. (1)
Maps that are trace nonincreasing then satisfy
try AQ(V)} < 1y, 2

with equality if ¥ is trace preserving. A superoperatbris

called positive if for anyA=0 we haveW(A)=0 and it is
called completely positive iY@ W=0 for any spacew.

Following [20] complete positivit CP) of ¥ can be verified
by checking

Q(P)'v=0, (3

whereTl’y, denotes the partial transposition with respecVto

An additional concept comes into play when we conside
multipartite systems. A CP map on bipartite system

W:H(Va) @ H(Vg) — H(V,)) ® H(VR) is called positive par-
tial transpose preservingR0], if we have I'yoWel',=0
(I'geWeI'g=0) for the partial transposition map, (I'g)
with respect to partyA (B). On the level of the stat@ (W),
this condition reads

[QWMVVEV,i =0 or [Q(P)V]Ve®Tvy =0,

I

The PPT mapy, on the other hand, does not suffer any
constraint other than the condition of trace preservation for
W+ 4. On the level of states, the trace-preserving condition is

trvr{Q + (1)} = lv, (6)

where, as we will do in the remainder of this paper, we have
dropped thel [¢] in Q(¥) [w(y)] for brevity. It should be
noted that a rather simple structure can be assumeda for
without loss of generality. Let us consider a mgpvhich
maps arbitrary states i (V) onto a maximally mixed state
of Iy//dim{H(V’)} e H(V'). This map is a trace-preserving
CP-PPT map since the corresponding state lis

® 1y /dim{H(V) ® H(V')}. Therefore, a composed map of
xeyis a CP-PPT map ify is a CP-PPT map. Furthermore, if
W+ is trace preserving¥ + ye ¢ is also trace preserving,
and hence the replacement #fby xo ¢ does not altep(p

— o). One may then assumye= y° ¢ since the output of/ is
arbitrary. On the level of the state, this assumption is

]lvl
SToy® —————.
CTVE dim{H (v}
In the subsequent Sections Il and IV, we maximizg

— o) for some important classes of pure states in both bipar-
tite and tripartite settings. In particular, we demonstrate that

()

transformations of pure states that are impossible under

SLOCC can be achieved under PPT operations with a surpris-

ingly large success probability.

IIl. CONVERSION OF MAXIMALLY ENTANGLED
STATES

For two d-dimensional systems we denote the maximally
entangled state b} =|p;){(¢4| where

d-1

where I'y, (FV/&) denotes partial transposition applied to
spaceV, (V,). In the bipartite case, there are two equivalent
choices for the partial transposition. In the tripartite setting,
however, there are three different possible partial transposin the single-copy setting, it is known that LOCC cannot
tions that are generallynot equivalent. A CP map increase the Schmidt rank of a pure stpte8]. Therefore,

W 1S
| a) = V,G§)|”>-
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p(Pg—> Pg,):o for LOCC transformation whenever >d. . d(d-1)

In the following we proceed with the construction of the P(Pg— Py) = dd' +d' -2d°
CP-PPT map¥ andy that maximize the success probability ) ) -
for this transformation. Fod’ >d this amounts to the maxi- Ve emphasize that this success probability is nonzero even
mization of whend’ >d=2, while it is strictly zero for the LOCC trans-

formation.

(10)

p(P§ — Py =tr{QP; ® Py} (8)
under the constraints

tr{OP;® (1-P;)}=0, th{Q+aw}=1,

IV. CONVERSION FROM THE GHZ TO W STATE

In the tripartite setting, it is well knowf9] that the suc-
cess probabilityp(GHZ— W) =0 for the LOCC transforma-

Qvev)v=0, 0fv=o, tion from a single copy of
) |000 +[111)
(wFVA®FvA)FV =0, w'V= 0, (9) |GHZ> = T
wherePj e H(V) and P}, e H(V'). Since bothP;® Py, and
PQ@(JI—P;,) are invariant under the local unitary transfor-
mation ofU; ® U] ® U,® U, with U; andU, being arbitrary W) = 003 + |010> + |1OO>
unitary operators, it suffices to consid@r and w that are ’3

invariant under these local operations: i.e., . . .
In the following we will demonstrate that this is not the case

. . 1-Pg, when we consider PPT operations. To this end, we maximize
O =a,Pj® Py, +ay(1 - Py ® Py, +a3Py ® —
‘ ‘ d?-1 P(pgrz — pw) = t{Qpghz ® pw} (11
o 1= Py under the constraints forA,B,C,
+tay(l-Py® —5—,
d“-1 t{Qperz ® (1= pw)} =0, th{Q+w}=1,

wy =byPg+by(1- Py). @VENYv=0, Qv=0

The first two constraints in Eq9) yield a;=0, b;=1-a,,

andb,=1-a,—-a,. These equalities can be used to eliminate (wrvi®r(,i)rv >0 o'V=0
b, andb, in the remaining constraints. The remaining con- ' '
straints then result in wherepgz=|GHZ)(GHZ| € H(V) and py=|WxW,| e H(V").

The solution of the problem is greatly aided by the use of
a number of symmetries. Indeed, both the staigs,® (1
—-pw) andpgyz® pw are invariant under the local operations

1=a,=0, a=0, a,=0, l1l=a,+tay,,

(d+1)a +(d +1)(d-1)a,+(d-1)a, =0,

(A X XeXelel®,
—-(d' +1a;+(d' +1)(d+ Da,+ (d+ 1)a, =0,

bzZzezZelelel®,
-(d' -1a;-(d' -1)(d-Da,+(d-1)a,=0,

C1l®ZeZeI®le,
(d'-1a; - (d' -1)(d+ Da,+(d+ )a, =0,

(d) leleZeZeZ,

-(d-1a,-(d-1)a,+d=0,

_(d+ Day— (d+ Dag+d=0. (e P®oPi®Pi0I®]l®,

The constraints in the first row arise fromtv=0 and Qv NHleleleP,® P, Py,
Iy ®\, \[ ) ) )
=0. The last two rows are due t@'Va®'va)'v=0 and the where P;=|0)0|+|1)(1/e2™"3 and P,=e7/2|0)(0]+|1)(1]e™.

remaining for inequalities arising frof€)'va®"v)'v=0.The = These local symmetries are supplemented by the nonlocal
maximization ofp(Py— Pd,) a; under these constraints is a joint permutation symmetry

linear program and we can identify the optimal solution as

a,=d(d-1)/(dd’ +d'-2d), a,=0, and a,=d(d’-1)/(dd’ (g) P(123 X P(456),

+d’~-2d). Consequently, fod’>d the optimal probability whereP represents an arbitrary index permutation. The sym-
for the transformation oPj into Pd,, thereby increasing the metries(a)<(g) allow for a considerable simplification &2
Schmidt rank, under PPT operations is given by andw. Indeed, the symmetrigb), (c), and(e) ensure that the
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matrix eIementsQi1jlkl|lm1n1,i2j2k2|2mznz can only be nonzero if
the indices satisfy simultaneoushzi,, j;=j,, andk,=k, or
i1=1-i,, j4=1-],, andk;=1-k,. The symmetry(g) yields

Qabcdefghijki = p(abgPiden, PghiP(ik) (12
for any index permutatio. Symmetry(a) yields
Qooa,myn,,000,mn, = Q1111,mn, 111,m,n,» (13
QOO:IJ 1myn;,001,m,n, = Q11(] 1Myny,110,myn, 0 (14)
Qooa,myn, 118,myn, = Q1111,mn,,000,m,n,- (15

Presenting all nonzero matrix elements(bf;gegnijii for
(abc,ghi)=(000, 000, (abc,ghi)=(001,0032, and
(abc,ghi)=(000, 111 fixes all other matrix elements by vir-
tue of the symmetries, Eq€l2)—(15), and the Hermiticity of
(). To obtain a trial solution we chose

Q000000,000005 £2001000,001005 ~ L000000,111006" D1,
Q000001,00000F 000001,000015 2000001,000105 P25
Q000011,00001F L000011,00010F 2000011,000115 P45

Q001001,00100F ~ 2001001,001025 ~ L001001,0011065 P2,
Q001010,001015 001010,001105 001100,001105 P25
Qo01011,00101F 001011,00110F ~ Lo01011,001125 ~ Pas
Qoo1101,00110F ~ Lo01101,001126 L001110,001116" P4s
Qgo1111,00111F 3000111,00011F ~ 3000111,11111F D65
Qo00001,11200F L000001,111015 L000001,111105 P25
Q000010,111015 L000010,111105 L000100,111105 P2,
Qoo0011,11101F Qoooo11,11110F Loooo11,111115 ~ P4y

Qooo101,11110F Looo101,1111165 Looo110,111115 ~ Pa-

Likewise, the nonzero matrix elements @f, can be con-
structed from

(wv)ooo,ooo: 1 -bg—3b, - 3b, — by,

(wv)001,001: (wv)ooo,1111

(@v)o00,111= g + 304 — 30, + by,

where we chose

_b

| 2
_1+Vl-4
== - = _bl,

1 6 ’ -

b, =
2 3x

b, be

X
3l
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1 - —
x=gl-2+(18~ 6v3)12+ (18 + 6y3)2].

A lengthy but elementary calculatiofpreferably executed
employing a program capable of symbolic manipulatjons
then confirms that this trial solution satisfies all the con-
straints and yields the success probability

t{Qpghz ® pwt = 6by. (16)

We then consider the dual problem, of the primal problem
Eq. (11) [23]. Every feasible point of the dual problem pro-
vides an upper bound on the solution of the primal problem,
Eqg. (11). The above result of Eq16) is then proved to be
optimal as shown in Appendix A.

As a consequence, the optimal probability for the trans-
formation of a GHZ to aW state under PPT operations is
given by

p(GHZ — W) = 6b, ~ 0.75436. ... , (17)

which is more than 75%. This very high success probability
is somewhat surprising, since the success probability for the
LOCC transformation is strictly zero. Note that this result
also implies that a GHZ state can be transformed iniy/ a
state employing LOCC supplemented by PPT-bound en-
tanglement.

V. TRACE-NONPRESERVING CP-PPT MAPS

In the previous two sections we have demonstrated ex-
plicitly that the success probability for the transformation
between pure states can in some cases be improved signifi-
cantly by employing PPT operations instead of LOCC opera-
tions. Obtaining the optimal success probabilities is a hard
task, however, especially in the multipartite setting. In the
following we will consider the slightly more tractable setting
of trace-nonpreserving PPT maps. In this setting we also
optimize a CP-PPT mafy or equivalently the associated
state(), but the trace-preserving condition of E®) is re-
placed by the trace-nonincreasing condition of

try{Q} < 1. (18

As a result, the completiot of the mapW¥ is a CP map but

it is notnecessarily a PPT map. This will generally allow one
to find success probabilities for state transformations that are
larger than those obtained under trace-preserving PPT opera-
tions. It is important to note, however, that any transforma-
tion that possesses a nonvanishing success probability under
trace-nonpreservingP-PPT maps will also have a nonvan-
ishing success probability undérace-preservingCP-PPT
maps. To see this, l€2(V) be the state corresponding to a
trace-nonpreserving CP-PPT mdp Since the completiogy

is not necessarily a PPT map(y)'v is sometimes a NPT
state. However, if we consider the states Of (V')
=eQ)(¥) and o' (¢)=€ew(h)+(1-€e)l @ 1/dim{H(V")}, the
state(w’)'v becomes a PPT state for a nonzero value of 1
=e>0. Both(Q')'vand(w’)"v are PPT states satisfying the
trace-preserving condition of E¢6), and W’ accomplishes

the same transformation a8, albeit with a smaller success
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probability. In this way, one can always construct a trace-although the optimal probability may be smaller than 1/3.
preserving CP-PPT map from the trace-nonpreserving CPFherefore, PPT operations can interconvert even the LOCC-

PPT map giving the same transformation.
The optimal

incomparable pure states. In the next section, we will com-

probability in the trace-nonpreserving pletely clarify the convertibility by PPT operations for all

scheme for the transformation of maximally entangled statemultipartite pure states in the single-copy setting.
(d’>d) can be obtained in the same fashion as in Sec. Ill.

Employing the notation of Sec. lll we obtain the constraints

1=a,=0, a,=0, a,=0, l=a,tay,,

(d +1)a; +(d' +1)(d-1)a,+(d—1)a, =0,
—-(d" +Day+(d' +1)(d+Day+ (d+1)a, =0,
-(d' -Da; -

(d'-1(d-1Day+(d-1a, =0,

(d' - Da, -

under which the success probability, given &y has to be
maximized. The result is

(d-1)(d+1a,+(d+1a,=0

d—l

p(P;— Py) = g-1 (19)

whose PPT map is, on the level of the stat8,
d 1 1
It is noteworthy that the probability of E419) can be writ-

l Py ®(1- Pd,) (20)

ten as a ratio of the negativity of the initial and target state:

ie.,
N(Py)

N(P},)’
whereN(o)=(tr|o"|-1)/2 [21,24]. This somewhat fascinat-

p(P§ — P}) =

ing expression resembles the case of the LOCC transform
tion of pure states, where the optimal probability agrees with
a ratio of a LOCC monotone such that it is the partial sum-

mation of squared Schmidt coefficienit§]. Although the
monotonicity of the negativity inrace-nonpreservind®PT
operations has not been proved Viettrace-preserving®PT

a-

VI. CONVERTIBILITY OF PURE STATES

In this section we will consider the transformation be-
tween single copies dl-partite pure states under PPT op-
erations. By definition, PPT operations map PPT states to
PPT states. As a consequence, transformations such as
|ae) @ 10c) —|GHZ) or [¢pp) ® [0c) — |04) ® | hpc) are im-
possible, since they are not PPT preserving with respect to
party C. Therefore, let us first assume for the transformation
of |)—|¢) that both|¢) and|y) are “genuinely” entangled
over all N parties. This assumption means that

(lpX¢)'i 0 and(|p)(g])' 2 0, (23

for all possible bipartite partitioning of. For example,i
=A,B,C in a tripartite setting, and i
=A,B,C,D,AB,AC,AD in a four-partite setting. As dis-
cussed in the previous section, it suffices to consider trace-
nonpreserving CP-PPT maps in order to check the con-
vertibility under trace-preserving PPT operations. Therefore,
we will construct an() satisfying the constraints

tr{Q[y) (@ (1= )¢} =0,

Q'v=0, (Q™veTy)v=0, (24)

where|#) € H(V), |¢) e H(V'), andi stands for any possible
bipartite partitioning as explained below E@3). We have
omitted the trace-nonincreasing condition, because we are
not interested in the explicit value of the success probability
but only whether it is zero or not. In view of E§20), a
Suitable trial form is

Q=X ® [¢)(¢l + (1 - X)),

(25

for which the first two constraints in Eq24) are satisfied

|l (yh) © (1=

operations with a single outcome the negativity is a monowhenx= 0. Furthermore, due to the assumption of E2p),

tone[21]), the tractable expression of Ed.9) is likely to be
explained as a ratio of some monotone function.

In the tripartite setting, the optimization of the success,
in this trace-
nonpreserving scheme. The result of the optimization for the

probability is still a hard task even

transformation of GHZ=W is

p(GHZ—>V\l):— (21)
and for the transformation oV— GHZ we have
p(W— GHZ) == (22)

the last constraintQ"i®)['v=0 is also satisfied for an ap-
propriate value ok=xy>0 as shown if22]. As a result, for
=X we have

QXU © |d)Xd])} =% >0, (26)

so that for arbitrary pairs of genuind-partite entangled
states of|) and |¢) we can always find af) such that
p(|»—|p))>0. As a consequence, all genuiepartite
pure entangled states are interconvertible by PPT operations.
In this way, the classification dN-partite entanglement is
drastically simplified when we consider PPT operations.
Let us next investigate the convertibility between an

N-partite statgy') and an(N-1)-partite statep™Y). It is

The proofs of these two results are described in Appendixesbvious that|¢™")— |4} is impossible because such a

B and C. This result implies that the transformation\f

transformation is not PPT preserving. Likewise the transfor-

—GHZ is also possible by trace-preserving PPT operationgnation of [#V)—|¢™N"Y) is impossible if the set of en-
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Neartite VII. UNLOCKABLE STATES AND CONVERSION
P w OF PURE STATES

As mentioned in the previous section, the transformation

Tripartite |¢ap) © |0c) — |GHZag0) (28)
(N=3)
v— cannot be achieved even when PPT operations are employed
(Z_,) and therefore cannot be achieved by LOCC supported by
- PPT-bound entanglement. However, it has been shown that a
Separable PPT-operations s GHZ state can be distilled from a tripartite NPT-bound en-

unlockable BE === tangled state ifA and B perform a global operation on the
o o o state[29]. Such NPT-bound entangled states are called un-

FIG. 1. The classification and convertibility of multipartite pure |qckable states because bound entanglement is unlocked by
entangled states under PPT operationdenotes the Schmidt rank the global operatiori30,40,4]. The global operation oA
of bipartite entanglement, and the set of entangled partigdNin dB can be accomplis,hea by LOCC consumldg} ), and
~1)-partite em.‘"’mg.lemem. is assumed to be a Su.bset of the set %gnsequently the transformation of Eg8) is possibIBe’when
entanglec_i parties iN-partite entanglement. There is only one type LOCC is supported by the unlockable bound entanglement
of N-partite entanglement under PPT operations. Furthermore, thﬁzg] Likewise. unlockable states which can be utilized for
convertibility with the support of unlockable bound entanglementth .LOCC i ' f tion f _1 lite GHZ stat
(BE) is also showr({see alsq29)). e ransformation from afN-1)-partite state

to anN-partite GHZ state have been shown[28]. In this
L : section we consider this type of transformation using a cer-
tangled parties ij¢™"Y) is not a subset of the set of en- .- general scheme yp 9
tangled parties ing™) (e.g., |4 ) — |42 is impossible : neral : -

i I 1¥asc T 1PaD/ b g To this end, we generalize PPT operations by relaxing the
Otherwise, the transformation is possible because appT-preserving condition with respect & (QVe@ I, )TV
N-partite GHZ state can be transformed to(&h-1)-partite S . . . Ve

. =0, which is responsible for the impossibility of the trans-
GHZ stats by LOCCN’ and hen(h:lc_elthe seﬂylen'nal transformag, mation of Eq.(28). We will therefore construct a may
tion of |/ .).>_>|.GHZ( )>_’|GHZ.( ..)>H|¢( . ) is possible. ~\hose associated Hermitian operafbrsatisfies
The classification and convertibility of arbitrary multipartite
pure entangled states under PPT operations are summarized
in Fig. 1.

It is important to note here that the power of PPT opera-
tions, by whichN-partite pure entangled states become inter- QT =0, QT v= 0, (29)
convertible as discussed above, immediately implies that the
same ho_Id_s for LOCC supported by PPT-bound en_tangbwhereP:\B:|¢>,§B><¢;B| e H(V) and pgpz € H(V'). As a trial
ment. This is due to the fact that any PPT transformation cafyrm for (), we adopt again E¢25): i.e.,
be accomplishedwith smaller but nonzero probabiliyby
LOCC supported by the additional resource of PPT states Q=xP'.® +(1-P" -

= p (I-Prp) ® L= pgHz).  (30)
[25] (see the note df26]). Indeed, AB = Fehz ae) e

tr{QPre ® (1= parp)} =0, Q'v=0,

As mentioned in the previous section,
W(p) = th QW) V(p'v @ 1}, (27)
(Pre)"» 2 0 andpgh, # 0
and the state of)(¥)'v=0, which is a PPT state ¥ is a )
CP-PPT map due thQ(®)"®1{]'v=0, is utilized and con- €nsure the existence &§>0 such tha(Q"V.*v,)"v=0 for

sumed in the LOCC implementation 8f(p) [25]. If a CP- ~ 0<X<X, (indeed, we have,=3) and likewise with respect
PPT map¥ can accomplish a transformation that is impos-tO B. W? can now Che_Ck QaSIIy that all constraints in a;p). '
sible under LOCC alone, thef(W)'v must be entangled &€ fatlsﬂed fox=3, ylgldlng a nonero success probability
(otherwise the transformation can also be accomplished b #ae) —IGHZ) >0 since HQ(Prp® pgiz)}>0. Conse-
LOCC because LOCC can generate any separable,stage  gquently, the transformation ¢é,g) —|GHZ) is possible un-
therefore the PPT stat@(¥)"v is a PPT-bound entangled der the set of operations that maps NPT-BE states with re-
state[19]. Consequently, one can conclude that a transformaSPect to party C into itself, as expected. Employing
tion such as GHZ>W can be accomplished by LOCC with Symmetries oz ® pgz, the optimized success probability
the consumption of PPT-bound entangled states. Much atte# the trace-nonpreserving scheme is then obtained as
tion has been paid to bound entanglement to clarify its prop- 3

erties, and several applications of bound entanglement have + _>

been reported28—-39. As shown above, PPT-bound en- P(|¢ag) — |GHZ)) = 5’ (31)
tanglement enables the LOCC implementation of large

classes of entanglement transformations that are impossibsnd, on the level of states, the m#prealizing this success
by LOCC alone. probability is given by
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3, 1, 2 Lod=d) |, 20+

Q - 5PAB® pGHZ+ 56l PAB) ® Gl PGHz ~ Poo1 pllo)' Q - d(d/ _ 1) |:Pd+ (d + 1)d/ d d’ + (d + 1)d/ Pd
(32) 1-P;,

where pgg;=]001(001 and p;10=|110¢110. It can be con- © d2-1

firmed that the stat€é)'v is an unlockable state as follows.
Due to the constraints (_(QFVA®F\I/A)FV>O and(QFvE,@F(/B)Fv for 2<d’ <d, wherePj is the projector onto the symmetric
=0, the mixed state of2'Vv is undistillable by LOCC, be- subspace ofd® Y. The optimal success probability under
cause LOCC is PPT preserving and no tripartite and bipartitérace-preserving CP-PPT operations is then given by
pure entangled states exist that are PPT with respect to both
A andB. However, a GHZ state can be distilled framVv of

. . ——— ford' >d=2,
Eq.(30) or Eq.(32) if A andB perform global operations that a . dd' +d -2d
distinguishPjg and1-Pjg. plog— Py) = 2
Similarly, the map¥, whose associated state is d(d’—l) for2=<d =d.
Q=380 ® plrp+ (1= pdii) ® (1= pliy), (33 (35)
; (N) ' ;
can transform af\-partite GHZ statépg,,,) to anN’-partite Therefore, the success probability is nonzerodoe 2.

GHZ state, and furthermore the std®V is an unlockable On the other hand, the success probability for the same
state ifN’>N=2[42]. As shown in the previous section, all transformation under LOCC operations alone is strictly zero
genuineN-partite entangled states are interconverted by PP{yheneverd’ >2. This can be proved as follows: TM_Q in
maps. The composition of the PPT maps and the map givepq,. (34) are maximally entangled states 6A® 2. There-

in Eqg. (33) is again a map whose associated state is an Urfpre, eaChM—j) can be prepared fror®; by local unitary
lockable state. This Implles that all pure entangIEd states Cafpansformations 0n|y_ ASJ-S IS an equa| mixture of all pos-
when a single copy of an appropriate unlockable bound ent OCcC, and hence the transformation®f— o2 has a finite
tangled state is available as a resource. In this way, the coRyccess probability. If we furthermore assume that dor
sumption of unlockable bound entanglement allows one t6. 5 the transformatior?— P?, has a finite success prob-
overcome the LOCC constraint between pure states with dif- bility under LOCC, then this implies tha®— o2 — P;,

ferent sets of entangled parties, while the consumption of . . ,
PPT-bound entanglement overcomes the LOCC constrairﬂlso_ has a finite Success probability und_er LOCC. This con-
dicts that the Schmidt rank cannot be increased by LOCC.

?Izeigyezliz.n pure states with the same set of entangled part erefore, the result of Eq35) implies that the success
probability of the single-copy distillation is also significantly

improved when PPT operations are considered.

It should be noted that the transformation «ff— P is

So far, we have concentrated our attention on the discug?ossible under LOCC. Indeed, the local project® P to
sion of transformations between pure states. In this sectior?g Where P=[0)0[+|1)(1|, can accomplish this. Further-
we will now consider the transformation of a single copy ofmore,P§—>Pg, is possible under PPT operations, which en-
a mixed statg into a maximally entangled stai|: i.e., the  ables the sequential transformationadgf— P — P}.. There-
single-copy distillation from a mixed state employing PPTfore, the feasibility ofo(a§— P},) can be regarded as being a

VIIl. SINGLE-COPY DISTILLATION

opeLre;tions. der th i ric Wi tate which i consequence of the feasibility ptP; — Pg,) under PPT op-
-€1 US consider the antisymmetric Werner state WhICh 13, ations. Note, however, that Eq4.0 and (35) for d'>2
defined as )
imply that we have
2 2
a_ a — - - + +
A= @ 4" @-g il (34 p(o? — P}) > plof — PHp(P; — Py).  (36)

wherePy is the projector onto the antisymmetric subspace ofHence the direct transformation is accomplished with a
Yo, and|y;)=(lij)-ji))/\2. For the transformation of higher success probability than that for the corresponding
a§—>P§,, we can construct CP-PPT mapsWfand its CP-  sequential transformation.

PPT completiony employing the twirling symmetries of the ~ The discussion above demonstrates that PPT operations
two states. The result of the optimization is, on the level ofcan improve the success probability of the single-copy dis-

the state() (the statew is given byw,=1-try ), tillation for some mixed states. One may perhaps expect that
single-copy distillation becomes possible for all NPT mixed
2 - , - Py states when we consider PPT operations. This, however, is
0= dd +d —2q| "4® Py +(d' -1)Py® 92-1 not the case. As shown [@43] (see alsd44]), LOCC cannot
distill any pure entangled state from a single copy of mixed
for d'=d=2 and statesp on C4@ CY if rank(p)=d?-2. For such high-rank
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mixed states, PPT operations cannot distill any pure enfore, certain restrictions of entanglement manipulation of
tangled state either. The proof of this statement is given iimixed states under LOCC persist under PPT maps, and the
Appendix D. classification of mixed states under PPT operations in the
This highlights the fact that LOCC-state manipulation single-copy settings is not as simple as that in the pure-state
suffers certain restrictions that PPT operations cannot relaxase.
Indeed, the convertibility of some mixed stat@sto pure It is important to further clarify how the structure of
entangled state¢sat the single-copy level and, therefore, the theory of entanglement is simplified under PPT operations
convertibility of mixed states under PPT operations remairespecially in the mixed-state settings and in asymptotic set-
much more involved than the convertibility of pure states. tings, as this might enable a unified and systematic under-
standing of characteristics of quantum entanglement as a re-

source.
IX. SUMMARY

In this paper we have considered the transformation of ACKNOWLEDGMENTS
single copies of multiparticle entanglement under sets of op- ] o ] o
erations that are larger than the class of local operations and_This research was initiated during two visits to the
classical communication. In particular, we consideredERATO project on “Quantum Information Science.” This
probabilistic-state transformations under positive-partial- WOrk is part of the QIP-IRGQwww.gipirc.org supported by
transpose-preserving magePT maps We demonstrated EPSRC(Grant No. GR/882176_)0and the EU(Grant No.
that transformations that are strictly impossible under LOCAST-2001-3887Y, the Royal Society Leverhulme Trust, and
can have a finite success probability under trace-preservinge Leverhulime Trust.
PPT maps. For specific examples the optimal success prob-
abilities are determined. Surprisingly large values are ob- APPENDIX A: OPTIMALITY OF THE CONVERSION
tained, for example, for the transformation from the GHZ to EROM THE GHZ TO W STATE
W state which under trace-preserving PPT maps has a suc- ] ) o
cess probability of more than 75% while it is strictly forbid- !N this appendix, we prove the optimality of EQ.6), the
den under LOCC. Furthermore, we completely clarified thgProbability for the transformation from the GHZ W state.
convertibility of arbitrary multipartite pure states under PPT 10 this end, we consider the dual problem of the primal
operations. As a remarkable result, we showed that alProblem, Eq(11) [23]. The Lagrange function for the mini-
N-partite pure entangled states are interconvertible unddpization problem in Eq(11) is given by
PPT operations at the single-copy level, and therefore infi- I T
nitely many different types of entanglement under LOCC are L=-t{Qpenz ® 1} - ._AEB c (triAj 1} + tr{ps o))
merged into only one type. In this way, a drastic simplifica- Y
tion in the classification of pure-state entanglement occurs +tr{Ae(try (Q + @) = D} + 1tr{Qpgpz ® (1 - pw)}
when the constrained set of operations is changed from
LOCC to PPT operations. It should be emphasized that de- +tr{Ap(try € = D} + trideg(tryw = D},
spite such drastic simplification in the single-copy settingsyhere Np:NepsAa Mg, A, mas g, uc=0. This  Lagrange
the theory of entanglement under PPT operations possessgfction has to be minimized over dll, w=0. This is fea-
the desirable properties that PPT operations alone cannot créiple only if
ate pure-state entanglement and that the amount of bipartite
pure-state entanglement is uniquely determined in 0= , )\iri +(pHz = Ap =N ® 1 = vpgrz ® (1 - py),

asymptotic settingf45]. i=AB,C
The above results can be regarded as an application of
PPT-bound entanglement. In multipartite settings, however, 0=-(Ne+Nep ®L+ M£A+ MEB+ ,ugc'

another type of bound entanglement called unlockable bound ) } )
entanglement exists. Motivated by this, we enlarged the clag§ Which case we obtain the dual function
of PPT operations to consider the effects of unlockable —_
bound entanglement. As a result we showed that all pure O(pAephe ) = = Uhikep ™ et Apf- (AL)
entangled states become interconvertible independent of tHevery feasible point of the dual problem provides an upper
number of parties, and therefore a further drastic simplificabound on the solution of the primal problem, Efj1). With
tion in the classification of pure states occurs when LOCC ighe symmetries shown in Sec. 1V, the Lagrange dual problem
supported by unlockable bound entanglement. of primal problem, Eq(11), is

Finally, we considered one aspect of mixed-state en- .
tanglement transformations: namely, the single-copy distilla- min tr{kep+ Ae+ Ao} (A2)
tion by PPT operations. We demonstrated that PPT operainder the constraints
tions can distill a pure entangled state from a single copy of
some mixed states with finite success probability, while the (pgnz—Ap—Ne) ® 1= vpgrz ® (1 - py) + > )\iFVi <0,

success probability under LOCC is strictly zero. However, i=AB.C
we also proved that PPT operations cannot distill pure en-
tangled states from mixed states with very high rank. There- NasNg: Aes a g tei Mgy Aep = 0,
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= (et Aep ® l+ﬂFVA+MFVB+MFVC§ 0. under trace-nonpreserving CP-PPT maps. This problem is
A B ¢ equivalent to the maximization of
To prove the optimality of Eq(16), it suffices to provide a

trial solution for the dual problem that matches the value Eq. tr{¥(per2)} =t Qpcrz © 1} (BL)
(16). To this end, we chose=2, A,e=A,=0, and(Ae)i;=0  under the constraints
except for

tr{Qpgrz ® (1-pw)} =0,
Meii=bz,  (N)18=(Ne)g 1=~ 30y PGHz pw

Furthermore, olv=0, t{QW)}=<1,

(n)i = (a)ica0j+a0= = (a)ijra0= = (wa)ivaoi = (Mp)irsj+s QUeThIV=0, (QeeTHlv=0, (QFcTEv= 0,

= (1B)isa2j+32= — (Up)ivgj+a2= — (UB)i+32j+8 (B2)
= (1o)ir16j+16= (MC)i+2aj+24= — (UC)i+16j+24 This problem possesses the same symmetaggg) pre-
== (Kc)it24i+16= b2 sented in Sec. IV. Following the same arguments as in Sec.

. . . r IV most matrix elements of) vanish. In the following we
for i=9,...,16. Finally, one chooses the matrldx«£§A, Ag'e

Iy Iy Iy . Ty will present those nonvanishing matrix elements that are suf-
and A 'e. As Ag*e and A ;e can be obtained frvormA *bY " ficient to reconstruct all the remaining nonzero elements of
cyclic permutations, we only need to specky’s. Fori.j  the trial solution from the symmetries of the problem. With

=1,...,8 we have b,=0.8/3=2,=4b; we find
vy =y — _ _
NA)ij = (N, 564,564 = X js Q001000001005 2€2001111,00111F P15
r r = - -
(AL D 564§ = Ay D564 = Vi), Q001001,00100F {2001010,001016° 001100,001105" b2,
O\FVA)_ = ()\FVA) =S Q001001001018 2001001001105 ~ 2001010,001105 ~ b2,
A /i+8,j+8 A /484,484 1,1
where the nonzero elements XfandY are given by Q001011,00101 F Q001101,00110F 2001110,001115 P35

Xl,1: 1, X4,4:X6,6:X6,4:X4,6:25/16’ Q ) ) —b
001011,00110T 001011,001110 001101,001110 O3,
X2,3= X 5= X32= X5 5=~ 5/4, Q - 80 —b
000000,000000- ©32000111,00011T P1,
Y1,1:Y4,4:Y6,6:_1/3’ Q -0 -0 -b
000001,00000I" =%000010,00001G- *#000100,000100- P2,
Yo0=-Y77=-1,
' ' Q000001000016 2000001,000105 2000010,000106" D2
Y23=Y25=Y35=Y33=Y35==Y,6==2/3, ) -0 -0 -b
000011,000011 =%000101,00010T *#000110,000110- O3,

Y5,2:Y5,3:_Y5,5:_Y6,4:_Y8,8:_2/31 Q -0 -0 b
000011,000101" =2000011,000116- £ 4000101,000110- O3,

Y67:Y76:7/801 _ _
' ' 9000000,111000_ 8‘(‘2000111,111111_ - bl!

JE—
Y74=Y47=(-42+y159559/1200.

A direct calculation, ideally employing a software capable of
symbolic manipulations, now shows that these values deter- Q000001,111015 2000001,111105 2000010111105 D2
mine a feasible point of the dual problem. The dual function

for the above choice yields the valug6-i.e., the same as Q00001111101 F Qooo101,11110F Looo110, 111115 ~ b3,
for the primal problem which establishes the optimality of
the solution for the primal problem.

Q000001111007 L000010,111015 000100,111105 D2,

Qo00011,11110F Qo00011,111115 Looo101,111116 ~ bs-

Now an elementary but lengthy calculation shows that the
APPENDIX B: FROM GHZ TO W EMPLOYING chosen parameters define a feasible point of the problem and
TRACE-NONPRESERVING PPT MAPS yield a success probability of{fdpg,®1}=0.8.
To prove the optimality of this result we now consider the
In this appendix we determine the optimal success probedual problem. The Lagrange function for the minimization
ability for the transformation of a GHZ state to a W state problem in Eq.(B1) is given by
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L(Q,AaAg Ao N, ) = t{vpgpz ® (1= pw)} + tr{Ap}
- tr{Q(pGHZ A ) ®1+ )\FA + )\FB
+ N\,

whereX,, NyA, AgB, A\c©=0. The Lagrange function has to be
minimized over allQ)=0. This is feasible only if

PcHz @ l+)\AA+)\BB+)\FC_)\p® 1- VpgHz ® (l—pw) <0,
(B3)

in which case we obtain the dual function
g()\A1)\B1)\C1)\p1 V) == tr{)\p} (B4)

Maximizing this function under the constrainkg, \g, Ac,

\,=0 and Eq/(B3) yields upper bounds on the success prob-

abilities of the primal problem. The following trial solution

yields —t{\ }=-0.8, satisfying all the constraints and match-
ing the value of the primal optimum, thereby proving its
optimality. For simplicity we only give the nonzero matrix

elements

)\p8,1 = 04,

Ap1,1= Npgg= ~Ap18=—

Ma11= = Na1,a= ~Ma1,6= Mg a= Nag 6= Mg s = Naa6
= 4)\A5,5: - 2)\A5,8: 08/3,

AMa57,57= ~ Nas7,60= ~ Mas7,62= Ma60,60= Ma62,62= Naea,64
= Na60,62= M as1,61= ~ 2Nas1,64= 0.8/3,

r=1.8.

The elements ofig and A\ are obtained from\, by cyclic
permutation of the partied, B, andC so that, for example,
A as 5= Ngy.2. Direct calculation no shows that this trial solu-
tion is feasible for the dual problem and yields the vadue
-0.8 which is identical to that obtained from the trial solu-
tion for the primal problem. This completes the proof of
optimality.

APPENDIX C: FROM W TO GHZ EMPLOYING
TRACE-NONPRESERVING PPT MAPS

The optimization of the success probability for the trans-

formation fromW to GHZ proceed along very similar lines

as those given in the previous appendix. Mathematically the

problem is formulated as

tr{¥(pw)} = tr{Qpy ® 1}
under the constraints

tr{Qpw ® (1 - peHz)} =0,

(C1)

r{Ql <1, Q'v=o0,

(QFA®FA)FV >0, (QFB®Fé)FV >0, (Qrc®r’c)rv =0.

PHYSICAL REVIEW A 71, 052303(2005

Sec. IV most matrix elements &1 vanish. In the following

we will present those nonvanishing matrix elements that are
sufficient to reconstruct all the remaining nonzero elements
of the trial solution from the symmetries of the problem.
With b;=3b,/4=3b,=1/86,

Q000001,00000F 2111001,11100F 11/90,
Q001001,00100F 4 2010001,01000F 42100001,20000F P2,
Q001001,01000F 2001001,10000F ~ 22010001,10000F ~ b2/2,
Q011001,01100F 2101001,10100F 22110001,11000F P1,
Q011001,10100F ~ 2Q011001,11000F ~ 202101001,11000F D3>
Q000000,000005 2111000,111006 02/2,
Q001000,001005 £2010000,020005 £2100000,100005 D3,
Q001000,010005 €2001000,100005 £2010000,100005 D3,
Q011000,011006 £2101000,101005 {2110000,110005" P3/2,
Q011000,101006 2011000,110006 2101000,110005" P3/2,

Q000000,00011F ~ 72111000,11111410 = — 7/90,
Q001000,00111F 2010000,02011F 2100000,10011F b3,
Q001000,02011F 001000,10011F 010000,10011F b3,

9011000,011111: 9101000,101111: 9110000,110111: bs/2,

Q011000 10111T Q011000 11011T Q101000 110117 D3/2.

With this trial solution we find §Qpy® pGHZ}—-

To prove the optimality of this result we now consider the
dual problem. The Lagrange function for the minimization
problem in Eq.(C1) is given by

L@ Aadghehp ) ==ty =tr X A —tr{O((py
i=AB,C
=Ap) ® 1=vpw® (1= paha) 1,
(C2

where\,, N\, Ag, A\c=0. This Lagrange function has to be

minimized over all) =0 which is feasible only if

(pw=Ap) ® 1 = vpw ® (1 = pgz) + > Mri@ri <0,
i=A,B,C
(C3
in which case we obtain the dual function
g()\A’)\B’)\Ci)\p’ V) == tl‘{)\p} (C4)

Symmetries analogous to those presented in the previodsow we need to maximize this function under the constraints
sections hold. Following the arguments analogous to those iNa, A\g, Ac, \p=0 and Eq.(C3). Each trial solution gives an
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upper bound on the success probability of the primal prob- 1
lem. It turns out that we can approach the{kﬁ}:—é arbi- He = @[47 —3W =45\,
trarily closely. ,
We begin by determining all nonzero matrix elements of + 11569 ~ 2220 + 3330\ o + (45N o~ 300)°].
Ap i terms Ofkp, , SO that Clearly, forv=2 and\, ,= 11—335 the first four eigenvalues are
Np3,3= Nps,5= N2, 2, nonpositive. Now we can verify by direct inspection that for
any choice of\, ,>1/9 there is a choice of>2 such that
Np23= Np2s= Npa.s= — A2, #2. the two eigenvalueg.. are negative so that also the con-
] . straint, Eq.(C5), is satisfied. Therefore, for any value of
Furthermore, we completely determine the matrisgshs,  —tr{) }<-1 we can satisfy the constraints. This shows that

and\c. To this end we give all the nonzero values\gfas  the primal problem which achieves a success proballity
the other matrices are uniquely determined through cyclic-1/3 g optimal.

permutations from\:

N _ } -\ APPENDIX D: SINGLE-COPY DISTILLATION
A18,237 ~  ~ MA34,39 FROM HIGH-RANK MIXED STATES

In this appendix, we prove that PPT perations cannot dis-
till any pure entangled states from a single copypain ¢
® €Y when rankp) =d?-2. To this end, it suffices to show
that the success probabiliptp — Pg,) under PPT operations

Aa18,39= ~ 0 Naza 23

and (W) in the trace-nonpreserving scheme is strictly zero, where
Na17,17= N33 33= ~ Na17,33= ~ a3 17= 0.1/9, peH(V) and P}, e H(V'). Since bothp® P}, and p& (1
—P;,) are invariant under the local unitary transformation of
Ma1s,18= Maza,34= 0.3\ a1 34= Nazs 18~ 0.2, loleoUeU", it suffices to conside) invariant under these

local operations: i.e.,
4N p19,19= Mags 35= 2Na19,35= 2Nazs 19~ 0.4/9, - pt
0=AP, +B® —5 = (D1)

Na20,20= 4N a36,36= 2Na20,36= 2Nazs,20= 0.4/9, d?-1’

with A andB being matrices of{(V). The success probabil-

N = A\ =2\ =2\ =0.4/9, Lo
A21,21 A37,37 A21,37 A37,21 |ty is then

4N p32,32= Nass,38= 2Nas2,38= 2Nass 2= 0.4/9, p(p— P%) =tr{Qp ® P} = tr{Ap}, (D2)

)\A23,23: )\A39,39: 0.3;)\/_\23'39: )\A39,23: 02, and constraints fof) are

t{Qp ® (1-P},)}=tr{Bp} =0,
Na24,24= Naa0,40= ~ Na24,40= ~ Nago,24= 0.1/9. Qpe( )y = iBp)
The elements ofg and A\ are obtained from\, by cyclic
permutation of the partie8, B, andC so that, for example,
Aass=Ng22- A direct calculation shows that the constraints

A=0, B=0, 1=A+B,

A Ng, Ac, Ap=0 are satisfied with these choices. Now we BIA= AlA= — BA
need to verify whether the constraint d-1 d+1
(ow=2p) ® L= vpy® (1= per) + > M1¥T1<0 SinceB=0 and trBp=0, the support space @& must be
i=AB,C contained in the kernel space pf and hence rarB) <2
(c5)  When rankp)=d?-2. On the other handg'A=0 must hold
from
can be verified as well. Note that we still have the free pa-
rameters\, , and v. A lengthy computatioripreferably em- 1 A= 1 Bl
ploying Mathematicashows that the left-hand side of the d-1__ d+1 "

constraint has six distinct nonzero eigenvalues: namely,
1 and B must be a separable stdteaving out normalization
=2-u, = = (13-135.., ), since rankB) <d [47]. Therefore, by using appropriate local
Ha hoH 90( 22 basis,B can be written as

B=y|11)(11] + Zef)(ef

: (D3)

1 1
= (=2-4B\p,), ma=——(4-45\,)), :
Ha 30( P2 Ha 30( 22 wherey andz are non-negative values and
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lefy = (cosul|1) + sinu|2)) ® (cosv|1) + sinv|2)) (D4)

is a product vector. In this choice of local baséA=B. Let
P be the projector on the support spaceBj® and Q=
—P. The condition of

Bla= Ala= - '

d-1 d+1

implies that QA'AQ=0, and hence&QA'AQ=0 must hold.
Furthermore ATA+[1/(d’ +1)]B"» must be a positive opera-
tor, for which Q(A'A+[1/(d’+1)]B"A)Q=0 also holds.
Therefore, support space AfA+[1/(d’+1)]B"A must beP,
and hence the support spacefdt must be contained in the
support space dB'A. As a result, rankd\») <rankB"'4) < 2.
Furthermore A'» must be written in the form of

Ala=r|11)(11] + s|11)(ef| + s

efy(11 +tlef)ef|,

andA is then given by
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A=r|11)(11] + slel)(1f| + s’

1f)(el| + tlef)ef].

Therefore,A must be essentially a two-qubit stafeaving
out normalizatioh since A=0 must hold. If the two-qubit
state A is entangled, rar(d’'A) must be 4[48,49, which
contradicts that rar(lal’A) < 2. Therefore A and A'A must be
written in a separable form.

In the case where sinsinv # 0, the support space & 4,
which is spanned bji1) and|ef), contains only two product
vectors (|11) and |ef) itself) [50], and henceA's must be
written as

Ala=r[11)(11] + t|ef)ef|, (D5)

andA=A"~, As a result, the support space Afis contained
in the support space &, and hence(p— Pg,):tr Ap=0 as
tr Bp=0. In the case where sinsinv=0, |e)=|1) or |f)
=|1) holds. As a resultA is spanned by{|11),|1f)} (or
{|{11),]e1)}) which is a kernel ofp, and hencep(p— P,)
=trAp=0.
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