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We consider the transformation of multipartite states in the single-copy setting under positive-partial-
transpose-preserving operationssPPT operationsd and obtain both qualitative and quantitative results. First, for
some pure-state transformations that are impossible under local operations and classical communication
sLOCCd, we demonstrate that they become possible with a surprisingly large success probability under PPT
operations. Furthermore, we clarify the convertibility of arbitrary multipartite pure states under PPT operations
and show that a drastic simplification in the classification of pure-state entanglement occurs when the set of
operations is switched from LOCC to PPT operations. Indeed, the infinitely many types of LOCC-
incomparable entanglement are reduced to only one type under the action of PPT operations. This is a clear
manifestation of the increased power afforded by the use of PPT-bound entanglement. In addition, we further
enlarge the set of operations to clarify the effect of another type of bound entanglement, multipartite unlock-
able bound entanglement, and show that a further simplification occurs. As compared to pure states a more
complicated situation emerges in mixed-state settings. While single-copy distillation becomes possible under
PPT operations for some mixed states it remains impossible for other mixed states.
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I. INTRODUCTION

Constraints and resources are intimately related in phys-
ics. If we impose a constraint on a physical setting, then
certain tasks become impossible. A resource must be made
available to overcome the restrictions imposed by the con-
straints. By definition such a resource cannot be created em-
ploying only the constrained set of operations but it may be
manipulated and transformed under these operations. That
the amount of resource does not increase under any operation
satisfying the constraint emerges then as a fundamental
law—for example, in entanglement theoryf1,2g.

One example of particular importance is the restriction to
local quantum operations and classical communication
sLOCCd. The resources that are implied by this constraint are
nonseparable states and in particular pure entangled states
such as singlet states, neither of which can be created by
LOCC alone. This setting gives rise to a theory of entangle-
ment as a resource under LOCC operations.

Any such theory of entanglement as a resource will gen-
erally aim to provide mathematical structures to allow an-
swers to three questions: namely,s1d the characterization of
entanglement,s2d the manipulation of entanglement, ands3d
the quantification of the entanglement resourcef1,2g under
the given constraint. Of particular interest is the question of
how many inequivalent types of entanglement exist within
such a theory. In the limit of infinitely many identically pre-
pared copies of bipartite pure states, entanglement can be
interconverted reversiblyf3g and it is reasonable to say that
there is only one type of pure bipartite entanglement. Even
for pure states, the situation changes dramatically when we
consider the single-copy setting. It has been shown that the
Schmidt rank of bipartite pure states cannot be increased by
LOCC f4–8g. At the single-copy level, the convertibility of

bipartite entanglement is then characterized by the Schmidt
rank f9g. For finite-dimensional systems a state can be con-
verted to another one with finite probability exactly if the
Schmidt number of the target state is not larger than that of
the initial state. In a tripartite setting the situation is more
complicated. Here it is well known, for example, that a GHZ
sGreenberger, Horne, and Zeilingerd state cannot be trans-
formed to aW state and vice versaf9g. These states are then
said to be incomparable. It can be shown that there are two
incomparable types of tripartite entanglement in three-qubit
systems. The situation is even more complicated in multipar-
tite settings composed of many partiesf10–14g or infinite-
dimensional bipartite systemsf15,16g, where there are many
spossibly infinitely manyd incomparable types of entangle-
ment.

A different setting is presented by the concept of partial
time reversal or partial transpositionf17g. For two qubits,
states that remain positive under partial transpositionsde-
noted as PPT statesd are exactly the separable statesf18g but
for higher dimensions this is generally not the case as there
are PPT states that are inseparablef19g. This motivates the
definition of the set of positive-partial-transpose-preserving
operationssPPT operationsd, defined as operations that map
any PPT state into another PPT statef20g. In this case, the
resource are states that are not PPTsdenoted as NPT statesd.
In the single-copy setting for pure states, it has been shown
that both under PPT operationsf21g and with LOCC sup-
ported by PPT-bound entanglementf22g the Schmidt number
can be increased so that state transformations become pos-
sible that are strictly impossible under LOCC. Furthermore,
there are mixed-state transformations that are reversible in
the asymptotic settingf21g. This suggests that a theory of
entanglement under PPT operations might have a much sim-
pler structure than that under the LOCC constraint.

PHYSICAL REVIEW A 71, 052303s2005d

1050-2947/2005/71s5d/052303s13d/$23.00 ©2005 The American Physical Society052303-1



In this paper, we focus attention on the entanglement ma-
nipulation under PPT operations in the nonasymptotic,
single-copy setting to explore what simplifications occur. We
consider PPT-state transformation in multipartite settings and
obtain both qualitative and quantitative results. In Sec. II, the
general settings and notations of PPT-preserving operations
are introduced. In Secs. III and IV, we first demonstrate that
the transformations of pure states that are impossible under
LOCC become possible with a surprisingly large success
probability when employing trace preserving PPT opera-
tions. In Sec. V, a rather tractable scheme of trace-
nonpreserving PPT operations is introduced and discussed.
We will then completely clarify the convertibility of all mul-
tipartite pure states under PPT operations in Sec. VI. In Sec.
VII we enlarge the set of operations beyond that of PPT
operations to consider the effect of multipartite unlockable
bound entangled states. In Sec. VIII, we will consider the
transformation of a single copy of mixed states into pure
entangled states—i.e., the single-copy distillation under PPT
operations. A summary and conclusion are given in Sec. IX.

II. BASIC NOTATION

To begin with, let us denoteHsVd fHsV8dg the space of
Hermitian operators on the Hilbert spaceV fV8g. A superop-
eratorC from V to V8 is a linear transformation fromHsVd
to HsV8d. There is a natural isomorphismf20g which associ-
ates with superoperatorsC :HsVd→HsV8d a Hermitian op-
eratorVsCdPHsVd ^ HsV8d such that for allAPHsVd and
BPHsV8d we have

trhCsAdBj = trhVsCdA ^ Bj. s1d

Maps that are trace nonincreasing then satisfy

trV8hVsCdj ø 1V, s2d

with equality if C is trace preserving. A superoperatorC is
called positive if for anyAù0 we haveCsAdù0 and it is
called completely positive if1W^ Cù0 for any spaceW.
Following f20g complete positivitysCPd of C can be verified
by checking

VsCdGV ù 0, s3d

whereGV denotes the partial transposition with respect toV.
An additional concept comes into play when we consider

multipartite systems. A CP map on bipartite systems
C :HsVAd ^ HsVBd→HsVA8d ^ HsVB8d is called positive par-
tial transpose preservingf20g, if we have GA+C +GAù0
sGB+C +GBù0d for the partial transposition mapGA sGBd
with respect to partyA sBd. On the level of the stateVsCd,
this condition reads

fVsCdGVgGVA
^GVA8 ù 0 or fVsCdGVgGVB

^GVB8 ù 0,

where GVA
sGVA8

d denotes partial transposition applied to
spaceVA sVA8d. In the bipartite case, there are two equivalent
choices for the partial transposition. In the tripartite setting,
however, there are three different possible partial transposi-
tions that are generallynot equivalent. A CP map

C :HsVAd ^ HsVBd ^ HsVCd→HsVA8d ^ HsVB8d ^ HsVC8 d will
be called PPT in the following if

sVsCdGVdGVi
^GVi8 ù 0 s4d

for all i =A, B, andC.
Let us now consider the transformation of a stater

PHsVd into a statesPHsV8d with the probability ofpsr
→sd. For this probabilistic transformation, we construct the
trace-preserving CP-PPT map with two outcomes: one that
gives s and one that gives some other state. The two parts
are given by the CP-PPT mapsC and c, respectively. The
associated Hermitian operators are denoted byV andv. The
mapC then satisfiesCsrd=psr→sds or

trhCsrds1 − sdj = trhVsCdr ^ s1 − sdj = 0 s5d

whens is a pure state. The success probability is then given
by

psr → sd = trhCsrdj = trhVsCdr ^ 1j = trhVsCdr ^ sj.

The PPT mapc, on the other hand, does not suffer any
constraint other than the condition of trace preservation for
C+c. On the level of states, the trace-preserving condition is

trV8hV + vj = 1V, s6d

where, as we will do in the remainder of this paper, we have
dropped theC fcg in VsCd fvscdg for brevity. It should be
noted that a rather simple structure can be assumed forv
without loss of generality. Let us consider a mapx which
maps arbitrary states inHsVd onto a maximally mixed state
of 1V8 /dimhHsV8djPHsV8d. This map is a trace-preserving
CP-PPT map since the corresponding state is1V
^ 1V8 /dimhHsVd ^ HsV8dj. Therefore, a composed map of
x +c is a CP-PPT map ifc is a CP-PPT map. Furthermore, if
C+c is trace preserving,C+x +c is also trace preserving,
and hence the replacement ofc by x +c does not alterpsr
→sd. One may then assumec=x +c since the output ofc is
arbitrary. On the level of the state, this assumption is

v = vV ^
1V8

dimhHsV8dj
. s7d

In the subsequent Sections III and IV, we maximizepsr
→sd for some important classes of pure states in both bipar-
tite and tripartite settings. In particular, we demonstrate that
transformations of pure states that are impossible under
LOCC can be achieved under PPT operations with a surpris-
ingly large success probability.

III. CONVERSION OF MAXIMALLY ENTANGLED
STATES

For two d-dimensional systems we denote the maximally
entangled state byPd

+;ufd
+lkfd

+u where

ufd
+l =

1
Îd

o
i=0

d−1

uii l.

In the single-copy setting, it is known that LOCC cannot
increase the Schmidt rank of a pure statef4–8g. Therefore,
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psPd
+→Pd8

+ d=0 for LOCC transformation wheneverd8.d.
In the following we proceed with the construction of the

CP-PPT mapsC andc that maximize the success probability
for this transformation. Ford8.d this amounts to the maxi-
mization of

psPd
+ → Pd8

+ d = trhVPd
+

^ Pd8
+ j s8d

under the constraints

trhVPd
+

^ s1 − Pd8
+ dj = 0, trV8hV + vj = 1,

sVGVA
^GVA

8 dGV ù 0, VGV ù 0,

svGVA
^GVA

8 dGV ù 0, vGV ù 0, s9d

wherePd
+PHsVd and Pd8

+ PHsV8d. Since bothPd
+

^ Pd8
+ and

Pd
+

^ s1−Pd8
+ d are invariant under the local unitary transfor-

mation ofU1 ^ U1
*

^ U2 ^ U2
* with U1 andU2 being arbitrary

unitary operators, it suffices to considerV and v that are
invariant under these local operations: i.e.,

V = a1Pd
+

^ Pd8
+ + a2s1 − Pd

+d ^ Pd8
+ + a3Pd

+
^

1 − Pd8
+

d82 − 1

+ a4s1 − Pd
+d ^

1 − Pd8
+

d82 − 1
,

vV = b1Pd
+ + b2s1 − Pd

+d.

The first two constraints in Eq.s9d yield a3=0, b1=1−a1,
andb2=1−a2−a4. These equalities can be used to eliminate
b1 and b2 in the remaining constraints. The remaining con-
straints then result in

1 ù a1 ù 0, a2 ù 0, a4 ù 0, 1ù a2 + a4,

sd8 + 1da1 + sd8 + 1dsd − 1da2 + sd − 1da4 ù 0,

− sd8 + 1da1 + sd8 + 1dsd + 1da2 + sd + 1da4 ù 0,

− sd8 − 1da1 − sd8 − 1dsd − 1da2 + sd − 1da4 ù 0,

sd8 − 1da1 − sd8 − 1dsd + 1da2 + sd + 1da4 ù 0,

− a1 − sd − 1da2 − sd − 1da4 + d ù 0,

a1 − sd + 1da2 − sd + 1da4 + d ù 0.

The constraints in the first row arise fromvGVù0 andVGV

ù0. The last two rows are due tosvGVA
^GVA

8 dGVù0 and the

remaining for inequalities arising fromsVGVA
^GVA

8 dGVù0. The
maximization ofpsPd

+→Pd8
+ d=a1 under these constraints is a

linear program and we can identify the optimal solution as
a1=dsd−1d / sdd8+d8−2dd, a2=0, and a4=dsd8−1d / sdd8
+d8−2dd. Consequently, ford8.d the optimal probability
for the transformation ofPd

+ into Pd8
+ , thereby increasing the

Schmidt rank, under PPT operations is given by

psPd
+ → Pd8

+ d =
dsd − 1d

dd8 + d8 − 2d
. s10d

We emphasize that this success probability is nonzero even
whend8.dù2, while it is strictly zero for the LOCC trans-
formation.

IV. CONVERSION FROM THE GHZ TO W STATE

In the tripartite setting, it is well knownf9g that the suc-
cess probabilitypsGHZ→Wd=0 for the LOCC transforma-
tion from a single copy of

uGHZl =
u000l + u111l

Î2

to

uWl =
u001l + u010l + u100l

Î3
.

In the following we will demonstrate that this is not the case
when we consider PPT operations. To this end, we maximize

psrGHZ → rWd = trhVrGHZ ^ rWj s11d

under the constraints fori =A,B,C,

trhVrGHZ ^ s1 − rWdj = 0, trV8hV + vj = 1,

sVGVi
^GVi

8 dGV ù 0, VGV ù 0,

svGVi
^GVi

8 dGV ù 0, vGV ù 0,

whererGHZ= uGHZlkGHZuPHsVd andrW= uWlkWuPHsV8d.
The solution of the problem is greatly aided by the use of

a number of symmetries. Indeed, both the statesrGHZ ^ s1
−rWd andrGHZ ^ rW are invariant under the local operations

sad X ^ X ^ X ^ 1 ^ 1 ^ ,

sbd Z ^ Z ^ 1 ^ 1 ^ 1 ^ ,

scd 1 ^ Z ^ Z ^ 1 ^ 1 ^ ,

sdd ^ 1 ^ 1 ^ Z ^ Z ^ Z,

sed P1 ^ P1 ^ P1 ^ 1 ^ 1 ^ ,

sfd 1 ^ 1 ^ 1 ^ P2 ^ P2 ^ P2,

where P1= u0lk0u+ u1lk1ue2pi/3 and P2=epi/2u0lk0u+ u1lk1uepi.
These local symmetries are supplemented by the nonlocal
joint permutation symmetry

sgd Ps123d 3 Ps456d,

whereP represents an arbitrary index permutation. The sym-
metriessad–sgd allow for a considerable simplification ofV
andv. Indeed, the symmetriessbd, scd, andsed ensure that the
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matrix elementsVi1j1k1l1m1n1,i2j2k2l2m2n2
can only be nonzero if

the indices satisfy simultaneouslyi1= i2, j1= j2, andk1=k2 or
i1=1−i2, j1=1− j2, andk1=1−k2. The symmetrysgd yields

Vabcdef,ghijkl = VPsabcdPsdefd,PsghidPs jkld s12d

for any index permutationP. Symmetrysad yields

V000l1m1n1,000l2m2n2
= V111l1m1n1,111l2m2n2

, s13d

V001l1m1n1,001l2m2n2
= V110l1m1n1,110l2m2n2

, s14d

V000l1m1n1,111l2m2n2
= V111l1m1n1,000l2m2n2

. s15d

Presenting all nonzero matrix elements ofVabcdef,ghijkl for
sabc,ghid=s000,000d, sabc,ghid=s001,001d, and
sabc,ghid=s000,111d fixes all other matrix elements by vir-
tue of the symmetries, Eqs.s12d–s15d, and the Hermiticity of
V. To obtain a trial solution we chose

V000000,000000= V001000,001000= − V000000,111000= b1,

V000001,000001= V000001,000010= V000001,000100= b2,

V000011,000011= V000011,000101= V000011,000110= b4,

V001001,001001= − V001001,001010= − V001001,001100= b2,

V001010,001010= V001010,001100= V001100,001100= b2,

V001011,001011= V001011,001101= − V001011,001110= − b4,

V001101,001101= − V001101,001110= V001110,001110= b4,

V001111,001111= 3V000111,000111= − 3V000111,111111= 3b6,

V000001,111001= V000001,111010= V000001,111100= b2,

V000010,111010= V000010,111100= V000100,111100= b2,

V000011,111011= V000011,111101= V000011,111110= − b4,

V000101,111101= V000101,111110= V000110,111110= − b4.

Likewise, the nonzero matrix elements ofvV can be con-
structed from

svVd000,000= 1 −b6 − 3b4 − 3b2 − b1,

svVd001,001= svVd000,111,

svVd000,111= b6 + 3b4 − 3b2 + b1,

where we chose

b1 =
1 +Î1 − 4x2

6
, b2 =

x

3
, b4 =

b2
2

b1
, b6 =

9b4
2

3x
,

x =
1

8
f− 2 + s18 − 6Î3d1/3 + s18 + 6Î3d1/3g.

A lengthy but elementary calculationspreferably executed
employing a program capable of symbolic manipulationsd
then confirms that this trial solution satisfies all the con-
straints and yields the success probability

trhVrGHZ ^ rWj = 6b2. s16d

We then consider the dual problem, of the primal problem
Eq. s11d f23g. Every feasible point of the dual problem pro-
vides an upper bound on the solution of the primal problem,
Eq. s11d. The above result of Eq.s16d is then proved to be
optimal as shown in Appendix A.

As a consequence, the optimal probability for the trans-
formation of a GHZ to aW state under PPT operations is
given by

psGHZ→ Wd = 6b2 < 0.75436 . . . , s17d

which is more than 75%. This very high success probability
is somewhat surprising, since the success probability for the
LOCC transformation is strictly zero. Note that this result
also implies that a GHZ state can be transformed into aW
state employing LOCC supplemented by PPT-bound en-
tanglement.

V. TRACE-NONPRESERVING CP-PPT MAPS

In the previous two sections we have demonstrated ex-
plicitly that the success probability for the transformation
between pure states can in some cases be improved signifi-
cantly by employing PPT operations instead of LOCC opera-
tions. Obtaining the optimal success probabilities is a hard
task, however, especially in the multipartite setting. In the
following we will consider the slightly more tractable setting
of trace-nonpreserving PPT maps. In this setting we also
optimize a CP-PPT mapC or equivalently the associated
stateV, but the trace-preserving condition of Eq.s6d is re-
placed by the trace-nonincreasing condition of

trV8hVj ø 1V. s18d

As a result, the completionc of the mapC is a CP map but
it is not necessarily a PPT map. This will generally allow one
to find success probabilities for state transformations that are
larger than those obtained under trace-preserving PPT opera-
tions. It is important to note, however, that any transforma-
tion that possesses a nonvanishing success probability under
trace-nonpreservingCP-PPT maps will also have a nonvan-
ishing success probability undertrace-preservingCP-PPT
maps. To see this, letVsCd be the state corresponding to a
trace-nonpreserving CP-PPT mapC. Since the completionc
is not necessarily a PPT map,vscdGV is sometimes a NPT
state. However, if we consider the states ofV8sC8d
=eVsCd and v8sc8d=evscd+s1−ed1 ^ 1 /dimhHsV8dj, the
statesv8dGV becomes a PPT state for a nonzero value of 1
ùe.0. BothsV8dGV andsv8dGV are PPT states satisfying the
trace-preserving condition of Eq.s6d, andC8 accomplishes
the same transformation asC, albeit with a smaller success
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probability. In this way, one can always construct a trace-
preserving CP-PPT map from the trace-nonpreserving CP-
PPT map giving the same transformation.

The optimal probability in the trace-nonpreserving
scheme for the transformation of maximally entangled states
sd8.dd can be obtained in the same fashion as in Sec. III.
Employing the notation of Sec. III we obtain the constraints

1 ù a1 ù 0, a2 ù 0, a4 ù 0, 1ù a2 + a4,

sd8 + 1da1 + sd8 + 1dsd − 1da2 + sd − 1da4 ù 0,

− sd8 + 1da1 + sd8 + 1dsd + 1da2 + sd + 1da4 ù 0,

− sd8 − 1da1 − sd8 − 1dsd − 1da2 + sd − 1da4 ù 0,

sd8 − 1da1 − sd8 − 1dsd + 1da2 + sd + 1da4 ù 0,

under which the success probability, given bya1, has to be
maximized. The result is

psPd
+ → Pd8

+ d =
d − 1

d8 − 1
, s19d

whose PPT mapC is, on the level of the stateV,

V =
d − 1

d8 − 1
Pd

+
^ Pd8

+ +
1

d82 − 1
s1 − Pd

+d ^ s1 − Pd8
+ d. s20d

It is noteworthy that the probability of Eq.s19d can be writ-
ten as a ratio of the negativity of the initial and target state:
i.e.,

psPd
+ → Pd8

+ d =
NsPd

+d

NsPd8
+ d

,

whereNssd=strusGu−1d /2 f21,24g. This somewhat fascinat-
ing expression resembles the case of the LOCC transforma-
tion of pure states, where the optimal probability agrees with
a ratio of a LOCC monotone such that it is the partial sum-
mation of squared Schmidt coefficientsf6g. Although the
monotonicity of the negativity intrace-nonpreservingPPT
operations has not been proved yetsin trace-preservingPPT
operations with a single outcome the negativity is a mono-
tonef21gd, the tractable expression of Eq.s19d is likely to be
explained as a ratio of some monotone function.

In the tripartite setting, the optimization of the success
probability is still a hard task even in this trace-
nonpreserving scheme. The result of the optimization for the
transformation of GHZ→W is

psGHZ→ Wd =
4

5
, s21d

and for the transformation ofW→GHZ we have

psW→ GHZd =
1

3
. s22d

The proofs of these two results are described in Appendixes
B and C. This result implies that the transformation ofW
→GHZ is also possible by trace-preserving PPT operations,

although the optimal probability may be smaller than 1/3.
Therefore, PPT operations can interconvert even the LOCC-
incomparable pure states. In the next section, we will com-
pletely clarify the convertibility by PPT operations for all
multipartite pure states in the single-copy setting.

VI. CONVERTIBILITY OF PURE STATES

In this section we will consider the transformation be-
tween single copies ofN-partite pure states under PPT op-
erations. By definition, PPT operations map PPT states to
PPT states. As a consequence, transformations such as
ufAB

+ l ^ u0Cl→ uGHZl or ufAB
+ l ^ u0Cl→ u0Al ^ ufBC

+ l are im-
possible, since they are not PPT preserving with respect to
party C. Therefore, let us first assume for the transformation
of ucl→ ufl that bothucl and ucl are “genuinely” entangled
over all N parties. This assumption means that

suclkcudGi à 0 andsuflkfudGi à 0, s23d

for all possible bipartite partitioning ofi. For example,i
=A,B,C in a tripartite setting, and i
=A,B,C,D ,AB,AC,AD in a four-partite setting. As dis-
cussed in the previous section, it suffices to consider trace-
nonpreserving CP-PPT mapsC in order to check the con-
vertibility under trace-preserving PPT operations. Therefore,
we will construct anV satisfying the constraints

trhVuclkcu ^ s1 − uflkfudj = 0,

VGV ù 0, sVGVi
^GVi

8 dGV ù 0, s24d

whereuclPHsVd, uflPHsV8d, andi stands for any possible
bipartite partitioning as explained below Eq.s23d. We have
omitted the trace-nonincreasing condition, because we are
not interested in the explicit value of the success probability
but only whether it is zero or not. In view of Eq.s20d, a
suitable trial form is

V = xuclkcu ^ uflkfu + s1 − uclkcud ^ s1 − uflkfud,

s25d

for which the first two constraints in Eq.s24d are satisfied
whenxù0. Furthermore, due to the assumption of Eq.s23d,
the last constraintsVGi ^Gi8dGVù0 is also satisfied for an ap-
propriate value ofx=x0.0 as shown inf22g. As a result, for
x=x0 we have

trhVsuclkcu ^ uflkfudj = x0 . 0, s26d

so that for arbitrary pairs of genuineN-partite entangled
states ofucl and ufl we can always find anV such that
psucl→ ufld.0. As a consequence, all genuineN-partite
pure entangled states are interconvertible by PPT operations.
In this way, the classification ofN-partite entanglement is
drastically simplified when we consider PPT operations.

Let us next investigate the convertibility between an
N-partite stateucsNdl and ansN−1d-partite stateufsN−1dl. It is
obvious thatufsN−1dl→ ucsNdl is impossible because such a
transformation is not PPT preserving. Likewise the transfor-
mation of ucsNdl→ ufsN−1dl is impossible if the set of en-
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tangled parties inufsN−1dl is not a subset of the set of en-
tangled parties inucsNdl se.g., ucABC

s3d l→ ufAD
s2d l is impossibled.

Otherwise, the transformation is possible because an
N-partite GHZ state can be transformed to ansN−1d-partite
GHZ state by LOCC, and hence the sequential transforma-
tion of ucsNdl→ uGHZsNdl→ uGHZsN−1dl→ ufsN−1dl is possible.
The classification and convertibility of arbitrary multipartite
pure entangled states under PPT operations are summarized
in Fig. 1.

It is important to note here that the power of PPT opera-
tions, by whichN-partite pure entangled states become inter-
convertible as discussed above, immediately implies that the
same holds for LOCC supported by PPT-bound entangle-
ment. This is due to the fact that any PPT transformation can
be accomplishedswith smaller but nonzero probabilityd by
LOCC supported by the additional resource of PPT states
f25g ssee the note off26gd. Indeed,

Csrd = trVhVsCdGVsrGV ^ 1dj, s27d

and the state ofVsCdGVù0, which is a PPT state ifC is a

CP-PPT map due tofVsCdGi ^Gi8gGVù0, is utilized and con-
sumed in the LOCC implementation ofCsrd f25g. If a CP-
PPT mapC can accomplish a transformation that is impos-
sible under LOCC alone, thenVsCdGV must be entangled
sotherwise the transformation can also be accomplished by
LOCC because LOCC can generate any separable stated, and
therefore the PPT stateVsCdGV is a PPT-bound entangled
statef19g. Consequently, one can conclude that a transforma-
tion such as GHZ↔W can be accomplished by LOCC with
the consumption of PPT-bound entangled states. Much atten-
tion has been paid to bound entanglement to clarify its prop-
erties, and several applications of bound entanglement have
been reportedf28–39g. As shown above, PPT-bound en-
tanglement enables the LOCC implementation of large
classes of entanglement transformations that are impossible
by LOCC alone.

VII. UNLOCKABLE STATES AND CONVERSION
OF PURE STATES

As mentioned in the previous section, the transformation

ufAB
+ l ^ u0Cl → uGHZABCl s28d

cannot be achieved even when PPT operations are employed
and therefore cannot be achieved by LOCC supported by
PPT-bound entanglement. However, it has been shown that a
GHZ state can be distilled from a tripartite NPT-bound en-
tangled state ifA and B perform a global operation on the
statef29g. Such NPT-bound entangled states are called un-
lockable states because bound entanglement is unlocked by
the global operationf30,40,41g. The global operation ofA
andB can be accomplished by LOCC consumingufAB

+ l, and
consequently the transformation of Eq.s28d is possible when
LOCC is supported by the unlockable bound entanglement
f29g. Likewise, unlockable states which can be utilized for
the LOCC transformation from ansN−1d-partite GHZ state
to an N-partite GHZ state have been shown inf29g. In this
section we consider this type of transformation using a cer-
tain general scheme.

To this end, we generalize PPT operations by relaxing the
PPT-preserving condition with respect toC, sVGVC ^ GVC

8 dGV

ù0, which is responsible for the impossibility of the trans-
formation of Eq.s28d. We will therefore construct a mapC
whose associated Hermitian operatorV satisfies

trhVPAB
+

^ s1 − rGHZdj = 0, VGV ù 0,

sVGVA
^GVA

8 dGV ù 0, sVGVB
^GVB

8 dGV ù 0, s29d

wherePAB
+ = ufAB

+ lkfAB
+ uPHsVd andrGHZPHsV8d. As a trial

form for V, we adopt again Eq.s25d: i.e.,

V = xPAB
+

^ rGHZ + s1 − PAB
+ d ^ s1 − rGHZd. s30d

As mentioned in the previous section,

sPAB
+ dGA à 0 andrGHZ

GA à 0

ensure the existence ofx0.0 such thatsVGVA
^GVA

8 dGVù0 for
0,xøx0 sindeed, we havex0=3d and likewise with respect
to B. We can now check easily that all constraints in Eq.s29d
are satisfied forx=3, yielding a nonzero success probability
psufAB

+ l→ uGHZld.0 since trhVsPAB
+

^ rGHZdj.0. Conse-
quently, the transformation ofufAB

+ l→ uGHZl is possible un-
der the set of operations that maps NPT-BE states with re-
spect to party C into itself, as expected. Employing
symmetries ofPAB

+
^ rGHZ, the optimized success probability

in the trace-nonpreserving scheme is then obtained as

psufAB
+ l → uGHZld =

3

5
, s31d

and, on the level of states, the mapC realizing this success
probability is given by

FIG. 1. The classification and convertibility of multipartite pure
entangled states under PPT operations.r denotes the Schmidt rank
of bipartite entanglement, and the set of entangled parties insN
−1d-partite entanglement is assumed to be a subset of the set of
entangled parties inN-partite entanglement. There is only one type
of N-partite entanglement under PPT operations. Furthermore, the
convertibility with the support of unlockable bound entanglement
sBEd is also shownssee alsof29gd.
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V =
3

5
PAB

+
^ rGHZ +

1

5
s1 − PAB

+ d ^ s1 − rGHZ − r001− r110d,

s32d

wherer001= u001lk001u and r110= u110lk110u. It can be con-
firmed that the stateVGV is an unlockable state as follows.

Due to the constraints ofsVGVA
^GVA

8 dGVù0 andsVGVB
^GVB

8 dGV

ù0, the mixed state ofVGV is undistillable by LOCC, be-
cause LOCC is PPT preserving and no tripartite and bipartite
pure entangled states exist that are PPT with respect to both
A andB. However, a GHZ state can be distilled fromVGV of
Eq. s30d or Eq.s32d if A andB perform global operations that
distinguishPAB

+ and1−PAB
+ .

Similarly, the mapC, whose associated state is

V = 3rGHZ
sNd

^ rGHZ
sN8d + s1 − rGHZ

sNd d ^ s1 − rGHZ
sN8d d, s33d

can transform anN-partite GHZ statesrGHZ
sNd d to anN8-partite

GHZ state, and furthermore the stateVGV is an unlockable
state ifN8.Nù2 f42g. As shown in the previous section, all
genuineN-partite entangled states are interconverted by PPT
maps. The composition of the PPT maps and the map given
in Eq. s33d is again a map whose associated state is an un-
lockable state. This implies that all pure entangled states can
be interconverted independently of the number of partiessNd
when a single copy of an appropriate unlockable bound en-
tangled state is available as a resource. In this way, the con-
sumption of unlockable bound entanglement allows one to
overcome the LOCC constraint between pure states with dif-
ferent sets of entangled parties, while the consumption of
PPT-bound entanglement overcomes the LOCC constraint
between pure states with the same set of entangled parties
sFig. 1d.

VIII. SINGLE-COPY DISTILLATION

So far, we have concentrated our attention on the discus-
sion of transformations between pure states. In this section,
we will now consider the transformation of a single copy of
a mixed stater into a maximally entangled statePd8

+ : i.e., the
single-copy distillation from a mixed state employing PPT
operations.

Let us consider the antisymmetric Werner state which is
defined as

sd
a =

2

d2 − d
Pd

a =
2

d2 − d
o
j.i

uci j
−lkci j

−u, s34d

wherePd
a is the projector onto the antisymmetric subspace of

Cd ^ Cd, and uci j
−l=sui j l− u ji ld /Î2. For the transformation of

sd
s→Pd8

+ , we can construct CP-PPT maps ofC and its CP-
PPT completionc employing the twirling symmetries of the
two states. The result of the optimization is, on the level of
the stateV sthe statev is given byvV=1−trV8 Vd,

V =
2

dd8 + d8 − 2d
FPd

a
^ Pd8

+ + sd8 − 1dPd
s

^

1 − Pd8
+

d82 − 1
G

for d8ùdù2 and

V =
2

dsd8 − 1dFPd
a +

sd − d8d
sd + 1dd8

Pd
sG ^ Pd8

+ +
2sd8 + 1d
sd + 1dd8

Pd
s

^

1 − Pd8
+

d82 − 1

for 2ød8ød, wherePd
s is the projector onto the symmetric

subspace ofCd ^ Cd. The optimal success probability under
trace-preserving CP-PPT operations is then given by

pssd
a → Pd8

+ d =5
2

dd8 + d8 − 2d
for d8 . d ù 2,

2

dsd8 − 1d
for 2 ø d8 ø d. 6

s35d

Therefore, the success probability is nonzero ford8ù2.
On the other hand, the success probability for the same

transformation under LOCC operations alone is strictly zero
wheneverd8.2. This can be proved as follows: Theuci j

−l in
Eq. s34d are maximally entangled states onC2 ^ C2. There-
fore, eachuci j

−l can be prepared fromP2
+ by local unitary

transformations only. Assd
a is an equal mixture of all pos-

sible uci j
−l, sd

a can be prepared from a single copy ofP2
+ by

LOCC, and hence the transformation ofP2
+→sd

a has a finite
success probability. If we furthermore assume that ford8
.2 the transformationsd

a→Pd8
+ has a finite success prob-

ability under LOCC, then this implies thatP2
+→sd

a→Pd8
+

also has a finite success probability under LOCC. This con-
tradicts that the Schmidt rank cannot be increased by LOCC.
Therefore, the result of Eq.s35d implies that the success
probability of the single-copy distillation is also significantly
improved when PPT operations are considered.

It should be noted that the transformation ofsd
a→P2

+ is
possible under LOCC. Indeed, the local projectionP^ P to
sd

a, where P= u0lk0u+ u1lk1u, can accomplish this. Further-
more,P2

+→Pd8
+ is possible under PPT operations, which en-

ables the sequential transformation ofsd
a→P2

+→Pd8
+ . There-

fore, the feasibility ofpssd
a→Pd8

+ d can be regarded as being a
consequence of the feasibility ofpsP2

+→Pd8
+ d under PPT op-

erations. Note, however, that Eqs.s10d and s35d for d8.2
imply that we have

pssd
a → Pd8

+ d . pssd
a → P2

+dpsP2
+ → Pd8

+ d. s36d

Hence the direct transformation is accomplished with a
higher success probability than that for the corresponding
sequential transformation.

The discussion above demonstrates that PPT operations
can improve the success probability of the single-copy dis-
tillation for some mixed states. One may perhaps expect that
single-copy distillation becomes possible for all NPT mixed
states when we consider PPT operations. This, however, is
not the case. As shown inf43g ssee alsof44gd, LOCC cannot
distill any pure entangled state from a single copy of mixed
statesr on Cd ^ Cd if ranksrdùd2−2. For such high-rank
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mixed states, PPT operations cannot distill any pure en-
tangled state either. The proof of this statement is given in
Appendix D.

This highlights the fact that LOCC-state manipulation
suffers certain restrictions that PPT operations cannot relax.
Indeed, the convertibility of some mixed statessinto pure
entangled statesd at the single-copy level and, therefore, the
convertibility of mixed states under PPT operations remain
much more involved than the convertibility of pure states.

IX. SUMMARY

In this paper we have considered the transformation of
single copies of multiparticle entanglement under sets of op-
erations that are larger than the class of local operations and
classical communication. In particular, we considered
probabilistic-state transformations under positive-partial-
transpose-preserving mapssPPT mapsd. We demonstrated
that transformations that are strictly impossible under LOCC
can have a finite success probability under trace-preserving
PPT maps. For specific examples the optimal success prob-
abilities are determined. Surprisingly large values are ob-
tained, for example, for the transformation from the GHZ to
W state which under trace-preserving PPT maps has a suc-
cess probability of more than 75% while it is strictly forbid-
den under LOCC. Furthermore, we completely clarified the
convertibility of arbitrary multipartite pure states under PPT
operations. As a remarkable result, we showed that all
N-partite pure entangled states are interconvertible under
PPT operations at the single-copy level, and therefore infi-
nitely many different types of entanglement under LOCC are
merged into only one type. In this way, a drastic simplifica-
tion in the classification of pure-state entanglement occurs
when the constrained set of operations is changed from
LOCC to PPT operations. It should be emphasized that de-
spite such drastic simplification in the single-copy settings,
the theory of entanglement under PPT operations possesses
the desirable properties that PPT operations alone cannot cre-
ate pure-state entanglement and that the amount of bipartite
pure-state entanglement is uniquely determined in
asymptotic settingsf45g.

The above results can be regarded as an application of
PPT-bound entanglement. In multipartite settings, however,
another type of bound entanglement called unlockable bound
entanglement exists. Motivated by this, we enlarged the class
of PPT operations to consider the effects of unlockable
bound entanglement. As a result we showed that all pure
entangled states become interconvertible independent of the
number of parties, and therefore a further drastic simplifica-
tion in the classification of pure states occurs when LOCC is
supported by unlockable bound entanglement.

Finally, we considered one aspect of mixed-state en-
tanglement transformations: namely, the single-copy distilla-
tion by PPT operations. We demonstrated that PPT opera-
tions can distill a pure entangled state from a single copy of
some mixed states with finite success probability, while the
success probability under LOCC is strictly zero. However,
we also proved that PPT operations cannot distill pure en-
tangled states from mixed states with very high rank. There-

fore, certain restrictions of entanglement manipulation of
mixed states under LOCC persist under PPT maps, and the
classification of mixed states under PPT operations in the
single-copy settings is not as simple as that in the pure-state
case.

It is important to further clarify how the structure of
theory of entanglement is simplified under PPT operations
especially in the mixed-state settings and in asymptotic set-
tings, as this might enable a unified and systematic under-
standing of characteristics of quantum entanglement as a re-
source.
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APPENDIX A: OPTIMALITY OF THE CONVERSION
FROM THE GHZ TO W STATE

In this appendix, we prove the optimality of Eq.s16d, the
probability for the transformation from the GHZ toW state.
To this end, we consider the dual problem of the primal
problem, Eq.s11d f23g. The Lagrange function for the mini-
mization problem in Eq.s11d is given by

L = − trhVrGHZ ^ 1j − o
i=A,B,C

strhli
GiVj + trhmi

Givjd

+ trhlestrV8sV + vd − 1dj + ntrhVrGHZ ^ s1 − rWdj

+ trhlpstrV8V − 1dj + trhlepstrV8v − 1dj,

where lp,lep,lA,lB,lC,mA,mB,mCù0. This Lagrange
function has to be minimized over allV ,vù0. This is fea-
sible only if

0 ù o
i=A,B,C

li
Gi + srGHZ − lp − led ^ 1 − nrGHZ ^ s1 − rWd,

0 ù − sle + lepd ^ 1 + mA
GA + mB

GB + mC
GC,

in which case we obtain the dual function

gslp,lep,le,nd = − trhlep+ le + lpj. sA1d

Every feasible point of the dual problem provides an upper
bound on the solution of the primal problem, Eq.s11d. With
the symmetries shown in Sec. IV, the Lagrange dual problem
of primal problem, Eq.s11d, is

min trhlep+ le + lpj sA2d

under the constraints

srGHZ − lp − led ^ 1 − nrGHZ ^ s1 − rWd + o
i=A,B,C

li
GVi ø 0,

lA,lB,lC,mA,mB,mC,lp,lepù 0,
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− sle + lepd ^ 1 + mA
GVA + mB

GVB + mC
GVC ø 0.

To prove the optimality of Eq.s16d, it suffices to provide a
trial solution for the dual problem that matches the value Eq.
s16d. To this end, we chosen= 8

3, lpe=lp=0, andsledi,j =0
except for

sledi,i = b2, sled1,8= sled8,1= − 3b2.

Furthermore,

smAdi,i = smAdi+40,i+40= − smAdi,i+40= − smAdi+40,i = smBdi+8,i+8

= smBdi+32,i+32= − smBdi+8,i+32= − smBdi+32,i+8

= smCdi+16,i+16= smCdi+24,i+24= − smCdi+16,i+24

= − smCdi+24,i+16= b2

for i =9, . . . ,16. Finally, one chooses the matriceslA
GVA, lB

GVB

and lC
GVC. As lB

GVB and lC
GVC can be obtained fromlA

GVA by
cyclic permutations, we only need to specifylA

GVA. For i , j
=1, . . . ,8 we have

slA
GVAdi,j = slA

GVAd56+i,56+j = Xi,j ,

slA
GVAdi,56+j = slA

GVAd56+i,j = Yi,j ,

slA
GVAdi+8,j+8 = slA

GVAd48+i,48+j = di,j ,

where the nonzero elements ofX andY are given by

X1,1= 1, X4,4= X6,6= X6,4= X4,6= 25/16,

X2,3= X2,5= X3,2= X5,2= − 5/4,

Y1,1= Y4,4= Y6,6= − 1/3,

Y2,2= − Y7,7= − 1,

Y2,3= Y2,5= Y3,2= Y3,3= Y3,5= − Y4,6= − 2/3,

Y5,2= Y5,3= − Y5,5= − Y6,4= − Y8,8= − 2/3,

Y6,7= Y7,6= 7/80,

Y7,4= Y4,7= s− 42 +Î159559d/1200.

A direct calculation, ideally employing a software capable of
symbolic manipulations, now shows that these values deter-
mine a feasible point of the dual problem. The dual function
for the above choice yields the value 6b2—i.e., the same as
for the primal problem which establishes the optimality of
the solution for the primal problem.

APPENDIX B: FROM GHZ TO W EMPLOYING
TRACE-NONPRESERVING PPT MAPS

In this appendix we determine the optimal success prob-
ability for the transformation of a GHZ state to a W state

under trace-nonpreserving CP-PPT maps. This problem is
equivalent to the maximization of

trhCsrGHZdj = trhVrGHZ ^ 1j sB1d

under the constraints

trhVrGHZ ^ s1 − rWdj = 0,

VGV ù 0, trV8hVsCdj ø 1,

sVGA^GA8dGV ù 0, sVGB^GB8dGV ù 0, sVGC^GC8 dGV ù 0.

sB2d

This problem possesses the same symmetriessad–sgd pre-
sented in Sec. IV. Following the same arguments as in Sec.
IV most matrix elements ofV vanish. In the following we
will present those nonvanishing matrix elements that are suf-
ficient to reconstruct all the remaining nonzero elements of
the trial solution from the symmetries of the problem. With
b1=0.8/3=2b2=4b3 we find

V001000,001000= 2V001111,001111= b1,

V001001,001001= V001010,001010= V001100,001100= b2,

V001001,001010= V001001,001100= − V001010,001100= − b2,

V001011,001011= V001101,001101= V001110,001110= b3,

V001011,001101= − V001011,001110= − V001101,001110= b3,

V000000,000000= 8V000111,000111= b1,

V000001,000001= V000010,000010= V000100,000100= b2,

V000001,000010= V000001,000100= V000010,000100= b2,

V000011,000011= V000101,000101= V000110,000110= b3,

V000011,000101= V000011,000110= V000101,000110= b3,

V000000,111000= 8V000111,111111= − b1,

V000001,111001= V000010,111010= V000100,111100= b2,

V000001,111010= V000001,111100= V000010,111100= b2,

V000011,111011= V000101,111101= V000110,111110= − b3,

V000011,111101= V000011,111110= V000101,111110= − b3.

Now an elementary but lengthy calculation shows that the
chosen parameters define a feasible point of the problem and
yield a success probability of trhVrGHZ ^ 1j=0.8.

To prove the optimality of this result we now consider the
dual problem. The Lagrange function for the minimization
problem in Eq.sB1d is given by
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LsV,lA,lB,lC,lp,nd = trhnrGHZ ^ s1 − rWdj + trhlpj

− trhVsrGHZ − lpd ^ 1 + lA
GA + lB

GB

+ lC
GCj,

wherelp, lA
GA, lB

GB, lC
GCù0. The Lagrange function has to be

minimized over allVù0. This is feasible only if

rGHZ ^ 1 + lA
GA + lB

GB + lC
GC − lp ^ 1 − nrGHZ ^ s1 − rWd ø 0,

sB3d

in which case we obtain the dual function

gslA,lB,lC,lp,nd = − trhlpj. sB4d

Maximizing this function under the constraintslA, lB, lC,
lpù0 and Eq.sB3d yields upper bounds on the success prob-
abilities of the primal problem. The following trial solution
yields −trhlpj=−0.8, satisfying all the constraints and match-
ing the value of the primal optimum, thereby proving its
optimality. For simplicity we only give the nonzero matrix
elements

lp1,1= lp8,8= − lp1,8= − lp8,1= 0.4,

lA1,1= − lA1,4= − lA1,6= lA4,4= lA6,6= lA8,8= lA4,6

= 4lA5,5= − 2lA5,8= 0.8/3,

lA57,57= − lA57,60= − lA57,62= lA60,60= lA62,62= lA64,64

= lA60,62= 4lA61,61= − 2lA61,64= 0.8/3,

n = 1.8.

The elements oflB and lC are obtained fromlA by cyclic
permutation of the partiesA, B, andC so that, for example,
lA5,5=lB2,2. Direct calculation no shows that this trial solu-
tion is feasible for the dual problem and yields the valueg
=−0.8 which is identical to that obtained from the trial solu-
tion for the primal problem. This completes the proof of
optimality.

APPENDIX C: FROM W TO GHZ EMPLOYING
TRACE-NONPRESERVING PPT MAPS

The optimization of the success probability for the trans-
formation fromW to GHZ proceed along very similar lines
as those given in the previous appendix. Mathematically the
problem is formulated as

trhCsrWdj = trhVrW ^ 1j sC1d

under the constraints

trhVrW ^ s1 − rGHZdj = 0,

trV8hVj ø 1, VGV ù 0,

sVGA^GA8dGV ù 0, sVGB^GB8dGV ù 0, sVGC^GC8 dGV ù 0.

Symmetries analogous to those presented in the previous
sections hold. Following the arguments analogous to those in

Sec. IV most matrix elements ofV vanish. In the following
we will present those nonvanishing matrix elements that are
sufficient to reconstruct all the remaining nonzero elements
of the trial solution from the symmetries of the problem.
With b1=3b2/4=3b3=1/6,

V000001,000001= V111001,111001= 11/90,

V001001,001001= 4V010001,010001= 4V100001,100001= b2,

V001001,010001= V001001,100001= − 2V010001,100001= − b2/2,

V011001,011001= V101001,101001= 2V110001,110001= b1,

V011001,101001= − 2V011001,110001= − 2V101001,110001= b3,

V000000,000000= V111000,111000= b2/2,

V001000,001000= V010000,010000= V100000,100000= b3,

V001000,010000= V001000,100000= V010000,100000= b3,

V011000,011000= V101000,101000= V110000,110000= b3/2,

V011000,101000= V011000,110000= V101000,110000= b3/2,

V000000,000111= − 7V111000,111111/10 = − 7/90,

V001000,001111= V010000,010111= V100000,100111= b3,

V001000,010111= V001000,100111= V010000,100111= b3,

V011000,011111= V101000,101111= V110000,110111= b3/2,

V011000,101111= V011000,110111= V101000,110111= b3/2.

With this trial solution we find trhVrW^ rGHZj= 1
3.

To prove the optimality of this result we now consider the
dual problem. The Lagrange function for the minimization
problem in Eq.sC1d is given by

LsV,lA,lB,lC,lp,nd = − trlp − tr o
i=A,B,C

li
Gi ^Gi8 − trhVssrW

− lpd ^ 1 − nrW ^ s1 − rGHZddj,

sC2d

wherelp, lA, lB, lCù0. This Lagrange function has to be
minimized over allVù0 which is feasible only if

srW − lpd ^ 1 − nrW ^ s1 − rGHZd + o
i=A,B,C

li
Gi ^Gi8 ø 0,

sC3d

in which case we obtain the dual function

gslA,lB,lC,lp,nd = − trhlpj. sC4d

Now we need to maximize this function under the constraints
lA, lB, lC, lpù0 and Eq.sC3d. Each trial solution gives an
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upper bound on the success probability of the primal prob-
lem. It turns out that we can approach the −trhlpj=−1

3 arbi-
trarily closely.

We begin by determining all nonzero matrix elements of
lp in terms oflp2,2 so that

lp3,3= lp5,5= lp2,2,

lp2,3= lp2,5= lp3,5= − lp2,2/2.

Furthermore, we completely determine the matriceslA, lB,
andlC. To this end we give all the nonzero values oflA as
the other matrices are uniquely determined through cyclic
permutations fromlA:

lA18,23= −
1

5
= lA34,39,

lA18,39= −
3

10
= lA34,23

and

lA17,17= lA33,33= − lA17,33= − lA33,17= 0.1/9,

lA18,18= lA34,34= 0.3;lA18,34= lA34,18= 0.2,

4lA19,19= lA35,35= 2lA19,35= 2lA35,19= 0.4/9,

lA20,20= 4lA36,36= 2lA20,36= 2lA36,20= 0.4/9,

lA21,21= 4lA37,37= 2lA21,37= 2lA37,21= 0.4/9,

4lA32,32= lA38,38= 2lA32,38= 2lA38,32= 0.4/9,

lA23,23= lA39,39= 0.3;lA23,39= lA39,23= 0.2,

lA24,24= lA40,40= − lA24,40= − lA40,24= 0.1/9.

The elements oflB and lC are obtained fromlA by cyclic
permutation of the partiesA, B, andC so that, for example,
lA5,5=lB2,2. A direct calculation shows that the constraints
lA, lB, lC, lpù0 are satisfied with these choices. Now we
need to verify whether the constraint

srW − lpd ^ 1 − nrW ^ s1 − rGHZd + o
i=A,B,C

li
Gi ^G8i ø 0

sC5d

can be verified as well. Note that we still have the free pa-
rameterslp2,2 andn. A lengthy computationspreferably em-
ploying Mathematicad shows that the left-hand side of the
constraint has six distinct nonzero eigenvalues: namely,

m1 = 2 −n, m2 =
1

90
s13 − 135lp2,2d,

m3 =
1

30
s− 2 − 45lp2,2d, m4 =

1

30
s4 − 45lp2,2d,

m± =
1

60
f47 − 30n − 45lp2,2

± Î1569 − 2220n + 3330lp2,2+ s45lp2,2− 30nd2g.

Clearly, fornù2 andlp2,2ù
13
135 the first four eigenvalues are

nonpositive. Now we can verify by direct inspection that for
any choice oflp2,2.1/9 there is a choice ofn.2 such that
the two eigenvaluesm± are negative so that also the con-
straint, Eq. sC5d, is satisfied. Therefore, for any value of
−trhlpj,−1

3 we can satisfy the constraints. This shows that
the primal problem which achieves a success probabilityp
=1/3 is optimal.

APPENDIX D: SINGLE-COPY DISTILLATION
FROM HIGH-RANK MIXED STATES

In this appendix, we prove that PPT perations cannot dis-
till any pure entangled states from a single copy ofr on Cd

^ Cd when ranksrdùd2−2. To this end, it suffices to show
that the success probabilitypsr→Pd8

+ d under PPT operations
sCd in the trace-nonpreserving scheme is strictly zero, where
rPHsVd and Pd8

+ PHsV8d. Since bothr ^ Pd8
+ and r ^ s1

−Pd8
+ d are invariant under the local unitary transformation of

1 ^ 1 ^ U ^ U* , it suffices to considerV invariant under these
local operations: i.e.,

V = A ^ Pd8
+ + B ^

1 − Pd8
+

d82 − 1
, sD1d

with A andB being matrices onHsVd. The success probabil-
ity is then

psr → Pd8
+ d = trhVr ^ Pd8

+ j = trhArj, sD2d

and constraints forV are

trhVr ^ s1 − Pd8
+ dj = trhBrj = 0,

A ù 0, B ù 0, 1 ù A + B,

1

d8 − 1
BGA ù AGA ù −

1

d8 + 1
BGA.

Since Bù0 and trBr=0, the support space ofB must be
contained in the kernel space ofr, and hence ranksBdø2
when ranksrdùd2−2. On the other hand,BGAù0 must hold
from

1

d8 − 1
BGA ù −

1

d8 + 1
BGA,

andB must be a separable statesleaving out normalizationd
since ranksBdød f47g. Therefore, by using appropriate local
basis,B can be written as

B = yu11lk11u + zueflkefu, sD3d

wherey andz are non-negative values and
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uefl = scosuu1l + sinuu2ld ^ scosvu1l + sinvu2ld sD4d

is a product vector. In this choice of local basis,BGA=B. Let
P be the projector on the support space ofBGA and Q; I
−P. The condition of

1

d8 − 1
BGA ù AGA ù −

1

d8 + 1
BGA

implies that ±QAGAQù0, and henceQAGAQ=0 must hold.
Furthermore,AGA+f1/sd8+1dgBGA must be a positive opera-
tor, for which Q(AGA+f1/sd8+1dgBGA)Q=0 also holds.
Therefore, support space ofAGA+f1/sd8+1dgBGA must beP,
and hence the support space ofAGA must be contained in the
support space ofBGA. As a result, ranksAGAdø ranksBGAdø2.
Furthermore,AGA must be written in the form of

AGA = r u11lk11u + su11lkefu + s* ueflk11u + tueflkefu,

andA is then given by

A = r u11lk11u + sue1lk1f u + s* u1flke1u + tueflkefu.

Therefore,A must be essentially a two-qubit statesleaving
out normalizationd since Aù0 must hold. If the two-qubit
state A is entangled, ranksAGAd must be 4f48,49g, which
contradicts that ranksAGAdø2. Therefore,A andAGA must be
written in a separable form.

In the case where sinu sinvÞ0, the support space ofAGA,
which is spanned byu11l anduefl, contains only two product
vectors su11l and uefl itselfd f50g, and henceAGA must be
written as

AGA = r u11lk11u + tueflkefu, sD5d

andA=AGA. As a result, the support space ofA is contained
in the support space ofB, and hencepsr→Pd8

+ d=tr Ar=0 as
tr Br=0. In the case where sinu sinv=0, uel= u1l or ufl
= u1l holds. As a result,A is spanned byhu11l , u1flj sor
hu11l , ue1ljd which is a kernel ofr, and hencepsr→Pd8

+ d
=trAr=0.
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