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“Leakage” errors are particularly serious errors which couple states within a code subspace to states outside
of that subspace, thus destroying the error protection benefit afforded by an encoded state. We generalize an
earlier method for producing leakage elimination decoupling operations and examine the effects of the leakage
eliminating operations on decoherence-free or noiseless subsystems which encode one logical, or protected
qubit into three or four qubits. We find that by eliminating a large class of leakage errors, under some
circumstances, we can create the conditions for a decoherence-free evolution. In other cases we identify a
combined decoherence-free and quantum error correcting code which could eliminate errors in solid-state
qubits with anisotropic exchange interaction Hamiltonians and enable universal quantum computing with only
these interactions.
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I. INTRODUCTION

Noise protection for quantum information processing is
an important facet of quantum control and the design of
quantum devices. In quantum computing, coherent control of
a quantum system is required in order to take advantage of
quantum computing speedups. A great deal of work has been
done, and is still ongoing, to try to achieve multiparticle
control for quantum information processing. In order to
implement noiseless control of quantum computing systems,
several methods of error prevention have been introduced.
Quantum error correcting codessQECCsd f1–6g, detect and
correct errors; decoherence-free or noiseless subsystems
sDFSsd f7–12g avoid noises in quantum systems; and dy-
namical decoupling controlssDDd f13–27g reduce the errors
by averaging or symmetrizing them away. Since none of
these has seen the ultimate success of preventing errors in a
prototypical quantum computing device, combinations of
more than one of these methods have been explored
f17,28–37g. One particularly promising example is the com-
bination of dynamical decoupling controls with decoherence-
free subsystemsf17,19,21,29–32,34,36–38g. This combina-
tion can offer several advantages; it cans1d reduce the
number of physical qubits required to encode one logical
qubit, s2d enable universal control in systems which cannot
be completely controlled otherwise,s3d avoid noises, ands4d
reduce noises even if they are not eliminated or avoided.
Such combinations are very likely to be necessary for the
near-term and longer term goals associated with reliable
quantum information processing.sFor a recent review on er-
ror prevention, seef39gd.

For those quantum computing proposals which use quan-
tum dots for storing information and the Heisenberg ex-
change interaction for performing gating interactions, a DFS
encoding is promising since it enables universal computing
without the need for single qubit gatesf11,40–49g. Architec-
turally, as well as for speed, single qubit gates can be diffi-
cult to implement for unencodedsi.e., physicald qubits in

solid-state systems. It has been shown that, for several dif-
ferent types of interactions, and for several different encod-
ings, decoherence-free subspaces provide the ability to per-
form universal quantum computing without requiring single
qubit gatesf11,40–49g. It is therefore important to know the
conditions for a DFS to exist or, as discussed in this paper,
what methods might be used to create a DFS. For those
circumstances which do not allow for a DFS implementation
alone in order to eliminate all noise in the system, what is
sared the best methodssd for error protection? This clearly
depends on the physical system and an analysis of the types
of occuring errors will be necessary in order to take advan-
tage of every possible technique for noise suppression, cor-
rection and/or avoidance.

In this paper we discuss the elimination of leakage errors.
Leakage errors destroy a subspace encoding by coupling
states within the encoded subspace of the system Hilbert
space with the states which are outside of the code subspace.
These are particularly serious errors since they eliminate the
usefulness of a subspace encoding. Moreover, they cannot be
handled by standard QECC methods under the assumption of
a set of operations restricted to act on a subspacef50g. We
will first review the bang-bang limit of the method of dy-
namical decoupling controls, and the algebraic decomposi-
tion of the operators on the Hilbert space in Sec. II, in order
to make the article more self-contained. We then review, in
Sec. III, the definition and construction of leakage elimina-
tion operatorssLEOsd using canonical gates, and then gener-
alize the construction to gates which are not canonical. In
Sec. IV we provide an explicit decomposition of the algebra
of operators for the 3-qubit DFS and use it to classify all
errors on this DFS. In this section, we also analyze the errors
which commonly arise in solid-state implementations of
quantum computing proposals, and determine a strategy for
eliminating all errors, in addition to leakage errors, which
arise from anisotropic exchange errors and cause decoher-
ence. In the following section, Sec. V, we construct a physi-
cally realizable LEO which is not made of canonical gates,
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using the construction in Sec. III. We then analyze errors in
the 4-qubit DFS which arise in solid-state implementations
of QC. We summarize our results in the Conclusion.

II. UNIVERSAL LEAKAGE ELIMINATION

In this section we briefly review dynamical decoupling
controls, symmetrization and the results off37g. For a more
detailed discussion of dynamical decoupling controls, the
reader is referred tof51g, for the group-theoretical underpin-
nings seef29g, for an empirical approach seef19,31g, for a
geometrical approach seef23g or f39,51g for recent reviews.
We then provide a general formula for producing a leakage
elimination operatorsLEOd.

A. Dynamical decoupling controls

Dynamical decoupling controls are control pulses which
are used to average away noises in a quantum system. When
hard, fast pulses are used, these are commonly referred to as
bang-bang controls. Here we review decoupling controls in
the bang-bang limit.

Consider a general Hamiltonian of the form

H = HS+ HB + HSB,

whereHS acts only on the system,HB acts only on the bath,
andHI =HSB=ogSg ^ Bg couples the system to the bath. Let
us now implement control operations,Ui, periodically with
the system undergoing free unitary evolutionsby Hd for a
time Dt between control operations. If we assume that the
free evolution is negligible during the time the control is
“on” sthis assumes “strong” control Hamiltonians are avail-
abled, then we obtain an effective unitary evolution for the
combined system bath given by:

Ueff < p
i=0

N−1

Uiexpf− iHDtgUi
†. s1d

In the limit of largeN and smallDt, such thatNDt= t, ` ,
we can approximateUeff, by a first-order Magnus expansion
and use an effective Hamiltonian to describe this evolution,

Heff <
1

N
o
i=0

N−1

UiHUi
†. s2d

In ideal circumstancessas N→`d, we can eliminateHSB
completely so as to decouple the system and bath. However,
in this paper we combine decoupling operations with an en-
coding, therefore we only require that HSB bemodified.This
drastically reduces the demands on a physical system and on
our controls.

One should note that “strong” and “fast” are relative to
system-bath interactions, notions which have been thor-
oughly quantified inf52g. In addition, we need not require
strong pulses in some casesf51,53g and in other cases, the
fast requirement can be relatively easily satisfiedf54,55g. In
this paper, we will consider dynamical decoupling controls
which assume hard, fast pulses, but we note that appropriate
controls may be available which can serve as decoupling

pulses without the necessity of the “bang-bang” limit.
As a final remark on decoupling operations, we state the

following theoremf31,32g which follows from f29g.
Theorem II.1. Dynamical decoupling with respect to the

set of logical operations of an encoded qubit can be used to
completely decouple the dynamics of the encoded subspace
from the bath.

This theorem is important for the following reasons. First,
the number of pulses required to eliminate noise on physical
qubits can be quite taxing on physical resources. If we re-
strict ourselves to logical operations, we can reduce the num-
ber of required pulses dramatically. Second, in many cases, if
we use logical operations to remove errors, we are restricting
to those operations which are available in experiment. Often
an encoding is chosen for its universality considerations. In
other words, many codes are chosen so that universal quan-
tum computing can be performed on a subspace even if it
cannot be performed on the entire Hilbert space. Those op-
erations which achieve universal control can also be used for
complete decoupling.

B. Algebraic decomposition

In order to discuss the effects of the dynamical decoupling
operations on encoded qubits, we will briefly review the de-
composition of the algebraf10,56g which can describe all
error prevention schemesf57g.

The interaction algebra, denotedA, is generated by the set
hHS,Sgj. This algebra is, in general, reducible, and closed
under Hermitian conjugationsmeaningA†=Ad. This algebra
is a subalgebra of the full set of endomorphisms of the total
Hilbert spaceH, EsHd which are linear operators onH. The
irreducible components of this algebra are described by the
decomposition

A = %
JPJ

InJ
^ MsdJ,Cd, s3d

where theJ, a shorthand for all relevant representation indi-
ces, label the irreducible representations and theMsdJ,Cd are
dJ3dJ complex matrices. This representation is a direct sum
decompositionsblock diagonald with nJ labelling the states
of the system in the corresponding Hilbert space decompo-
sition

H > %
JPJ

CnJ ^ CdJ. s4d

Each factorCnJ corresponds to a noiseless subsystem. The
commutant ofA, denotedA8, is in EsHd and is defined as

A8 = hX P EsHdufX,Ag = 0j. s5d

The existence of a decoherence-free, or noiseless, subsystem
is equivalent to

A8 = %
JPJ

MsnJ,Cd ^ IdJ
Þ CI . s6d

This implies a nontrivial group of symmetries of the commu-
tant. The unitary part ofA8, UsA8d, is the set of unitary
symmetries of the error algebraA.

Note that DFSs, QECCs and topological codes can all be
described by this same algebraic decompositionf57g. We can
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therefore generically discuss encoded qubits in the context of
quantum error prevention without regard to the type of en-
coding although we will primarily direct our attention to
DFSs.

III. LEAKAGE AND LEAKAGE ELIMINATION
OPERATORS (LEOs)

Qubits can be either a subspace of a larger system Hilbert
space or an encoded subspace of a larger Hilbert space. The
idealized, isolated two-level system never occurs in nature,
when all energy scales are taken into account. We therefore
seek to eliminate, or reduce the difference between an ideal-
ized qubit and the approximate two-level systems available
in experiments. Whether these are two physical states in a
larger Hilbert space, or a state which is encoded into some
set of states through a nontrivial transformation, we will dis-
cuss a generalized notion of a code and encoded subspace.
This encoded subspace, or codespace, will be denotedC. The
othogonal complement of the codespace, also a subspace of
the system Hilbert space, will be denotedC'. Our objective
will be to eliminate the coupling betweenC, and C'. We
refer to such errors as leakage errors. However, unlike con-
siderations of leakage introduced during logical, or gating
operationsf5,47,58–62g, we will consider residual errors and
errors introduced by system-bath couplings as inf37g.

Let us first consider the simple case of a physical or en-
coded qubit. In this case we would like to eliminate the leak-
age from a two-level system within anN-level system. We
will choose an ordered basis for theN-level system Hilbert
spacehu jlj j=0

N−1 such that the codeC will be spanned by the
first two levels. The algebra of operations on the system
Hilbert space can then be classified in the following way,

E = SB 0

0 0
D, E' = S0 0

0 C
D, L = S0 D

F 0
D , s7d

whereB andC are 232 andsN−2d3 sN−2d blocks respec-
tively, andD ,F are 23 sN−2d andsN−2d32 blocks respec-
tively. Operators of the typeE represent logical operations,
i.e., they act entirely within the code subspace.E' operations
act only onC' and thus have no effect on the qubit subspace
f63g. Finally, L represents the leakage operators. This decom-
position, for physical or encoded qubits is quite general and
the operatorsB act only on the logical qubit labels.

Generally, modifying the Hamiltoniansmore specifically,
the system-bath interaction Hamiltoniand through the use of
dynamical decoupling controls can change the conditions un-
der which quantum information is protected against errors.
Clearly, this is accomplished by modifying the sethHS,Sgj,
which modifies the interaction algebraA and thus the irre-
ducible components ofA. For example, we can create DFSs
where none were possible without such a modification by
inducing a symmetryf17,19,21,29–32,34,36–38g. We could
also eliminate correlated errors, thus changing the require-
ments for a QECC. As described in Sec. II A, dynamical
decoupling controls can be seen as a projection onto a sub-
space of the space of operators acting on the system Hilbert
space.

More to the point of this paper, we can eliminate some of
the components of the interaction algebra by eliminating
some of theSg sor some combination thereofd. In our case,
we seek to eliminate leakage. We therefore give a general
classification of elements of the algebra according to their
effect on the code space. The elements of the interaction
algebrahAij=A, will be classified ashEij,A, which act on
the code,hEi

'j,A which affect the orthogonal subspace,
and leakage errorshLij,A which couple the elements of the
codeC with states in the orthogonal subspaceC'.

From the general decomposition of the algebra in Sec.
II B, we should note the following facts. One can always
decompose the algebra into a set which acts on the system
Hilbert space and a set which acts on the Hilbert space of the
environment. These sets can be taken to be Hermitian opera-
tors with complex coefficients. The set of operators may then
always be expressed as some linear combination of tensor
products of the two sets with complex coefficients. This im-
plies that, although the symmetries appropriate for a DFS
may not always exist, we may always use a DFS-compatible
basis. This will be important in Secs. IV and V where we
will discuss a basis for which a code can be constructed
which will protect against errors, even when no symmetry in
the operator algebra exists initially.

A. Canonical LEOs

In the simplest case of a “parity-kick” bang-bang control
f13,15,18,56g, the decoupling sequence produces the effec-
tive evolution:

Heff <
1

2o
i=0

1

UiHUi
†, s8d

i.e., there is only one nontrivial decoupling pulsesU0; Id
f64g. We will restrict out attention to parity-kick pulses due
to time constraints which restricts the number of pulses that
can be applied in many physical systems.

Abtractly, we can state the consequences of the parity-
kick pulse sequence as follows. Given any subspaceC,H,
there is a canonically associatedZ2 group sthe cyclic group
of order twod. This group is generated by the operatorRL
ªexpsipPCd, wherePC is the projector onto the code space
C. In the language ofZ2 graded spaces, this operator is a
parity operator, i.e.,RL

2= I, inducing aZ2 grading of the state
space. This means thatH splits as a direct sum,Hs0d % Hs1d,
of two orthogonal subspaces: the oddsevend sectorHs0d=C
sHs1dd. This grading can be lifted to the operator algebra over
H turning this sLied algebra into a super- orZ2-graded Lie
algebra. Operators commutingsanticommmutingd with RL
are referred to as evensoddd. Let XPEsHd; the even sector
of the algebra is given byhXu fRL ,Xg=0j si.e., RLXRL

†=Xd
and the odd sector of the algebra is given byhXu hRL ,Xj
=0j si.e., RLXRL

†=−Xd.
As an example, let us suppose that allSg are in the odd

sector of the algebra. According to the pulse sequence, Eq.
s8d, any HSB=Sg ^ Bg, odd, in the system-bath Hamiltonian
will be removed after a complete set of operations. Therefore
when allSg are odd, complete decoupling is achievable using
only RL.
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Now consider aleakage-elimination operatorsLEOd as in
f37g

RL = eifS− I 0

0 I
D , s9d

where the blocks have the same dimensions as in Eq.s7d and
expsifd is an overall phase factor. This operator anticom-
mutes with the leakage operatorshRL ,Lj=0, while fRL ,Eg
=fRL ,E'g=0. Clearly such a sequence exactly produces the
grading of the algebra described above.RL is a LEO since it
follows that the followingsparity-kickd sequence eliminates
the leakage errors:

lim
n→`

se−iHt/nRL
†e−iHt/nRLdn = e−iHEte−iH't, s10d

where HE sH'd corresponds to part of the error algebra
which affects onlyC sC'd. To physically implement this, in
practice one takesn=1 and makes the timet very small
compared to the bath correlation time as discussed in Sec.
II A. Equation s10d then holds to ordert2, and implies that
one intersperses periods of free evolution for timet with RL,
RL

† applied as strong pulses. The terme−iH't in Eq. s10d has
no effect on the qubit subspace. The terme−iHEt may result in
logical errors, which will have to be treated by other meth-
ods, e.g., concatenation with a QECCf28,65,66g, or addi-
tional BB pulsesf16,23,31g. Therefore, in order to eliminate
leakage, we seek a LEO for a given encoding, which is ob-
tainable from a controllable system HamiltonianHS acting
for a timet, i.e., RL=exps−iHStd.

In f37g, several examples were given of physical systems
which, formally, have logical operations which are also natu-
rally projective si.e., they act as projections onto the code
subspaced. Such operations were termed canonical. As men-
tioned above, in some situations, the physically available
sand controllabled interactions do not include operations
which are also projections. We will provide one important
example in Sec. V, the four-qubit DFS in a solid state system
which uses Heisenberg exchange interactions for gating op-
erations. In this case it is highly desirable to have a more
general method for producing the appropriate LEO which
does not include a projection. Next we will provide a gener-
alized LEO which circumvents the need for canonical gating
operations, before discussing the LEOs for the three- and
four-qubit DFSs.

B. Generalized LEO

Generally, when a canonical logical operation is experi-
mentally available, we can construct a LEO using the meth-
ods fromf37g where the projectorPC sdefined thered is re-
dundant. In fact, an operator of the following form serves as
a LEO,

RL = exps− ipsLd, s11d

where sL is any operation such thatsL=sL
†, sL

2= I on the
code space, andsLucl=0 for any uclPC'. The primary ex-
ample is whensL is a canonical logical operation. Such is
the case for the 3-qubit DFS which uses Heisenberg ex-

change for logical gating operations, as will be shown later
ssee alsof37gd.

A more general characterization of a LEO is the follow-
ing. Let the Hamiltonian for a LEO be given by

H = SH1 0

0 H2
D , s12d

whereH1 acts on the code subspace andH2 on the orthogo-
nal subspace. IfH1 is diagonal with evensoddd integers as
the diagonal elements andH2 is diagonal with oddsevend
integers as the diagonal elements, then one may write the
LEO as

RL = U exps− ipHdU†, s13d

whereU=U1 % U2 is a direct sumsblock diagonald. In this
case H is not projective since it has nonzero eigenvalues
when acting on the subspace orthogonal to the code. The
effective LEO, however, is unchanged, i.e., the form Eq.s9d
is obtained, which again produces aZ2 grading of the algebra
and thus eliminates leakage errors as desired. Such is the
case for the four-qubit DFS example in Sec. V.

C. Leakage elimination to/from a subspace

Given the form of the operators that cause leakage, Eq.
s7d and the form of the leakage elimination operator Eq.s9d,
we in fact have the choice to eliminate leakage betweenC
andC' either by acting onC, or by action onC'.

The advantage of the first, is that, in principle, we may
use theorem II.1f31,32g, or the methods off19g, to eliminate
all errors on the encoded state space, even the logical errors.
This requiressin many casesd acting on the codespace with
logical operations. If, however, we do not have the experi-
mental capabilities to implement the operations quickly
enough for the given bath, or if the operations are imperfect,
such operations may cause more errors in the systemf52g.
However, we may choose to apply the alternative of operat-
ing on C'. If the states are properly confined to the code
space, thenC' states should not be occupied, and decoupling
pulses will have no effect. If theC' states are becoming
populated, then the decoupling pulses applied toC' will
eliminate leakage. As long as the decoupling pulses are prop-
erly constrained to act purely onC' then this results in in-
creased tolerance to other pulse imperfections, in the sense
that states inC are unaffected. As we will see, in the case of
the three- and four-qubit DFSs, a large class of errors are
leakage type errors. Therefore decoupling with respect toC'

could serve as an effective error suppression method in those
cases where direct action on the codespace is inadvisable.

IV. LEOs AND THE 3-QUBIT DFS

The three qubit DFS encodes one logical qubit using a
subsystem of three physical qubits. It is the most efficient
way in which to protect a single logical qubit from collective
errors of any typesbit-flip, phase-flip, or bothd f10g. It has
been shown that the exchange interaction is sufficient for
implementing a universal set of gating operations on this
system while preserving the DFSf11,40g. In this section we
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will consider the effects of a LEO on this DFS and examine
ways in which to protect information which is encoded in
this subsystem.

A. 3-qubit DFS

We will represent the three-qubit DFS encoded qubit in
the following way, whereu0l= u1/2l, u1l= u−1/2l are the two
states of a single spin-1/2snote that this convention is op-
posite to that of Ref.f11gd:

s14d

This notation means that u0Ll=a0su010l− u100ld /Î2
+b0su011l− u101ld /Î2 sarbitrary superpositiond, and like-
wise u1Ll=a1s2u001l− u010l− u100ld /Î6+b1s−2u110l+ u011l
+ u101ld /Î6. The logical zerosu0Lld and logical onesu1Lld
comprise the code subspaceC. These states belong to the two
J=1/2 irreducible representationssirrepsd of SUs2d. The co-
efficients are then the Wigner-Clebsch-Gordan coefficients
f67g and the last 4 states comprise aJ=3/2 representation of
SUs2d. The twoJ=1/2 irreps can be distinguished by a de-
generacy labell=0,1. Thus a basis state in the eight-
dimensional Hilbert space is fully identified by the three
quantum numbersuJ,l ,ml, wherem is the z component of
the total spinJ. In this notation we can write

u0Ll = a0u1/2,0,1/2l + b0u1/2,0,− 1/2l

and

u1Ll = a1u1/2,1,1/2l + b1u1/2,1,− 1/2l

.

B. Gating operations for the 3-qubit DFS and LEOs

Physical gates were given in Refs.f11,40,42g and shown
to be compatible with the DFS. The gates derived in Ref.
f11g are generated by the Heisenberg exchange interaction
between pairs of physical qubits:

Eij =
1

2
sI + sW i · sW jd, s15d

wheresW =ssx,sy,szd is the vector of Pauli matrices. As writ-
tenEij is the exchange operation between qubitsi and j , i.e.,
Eij ufliucl j = ucliufl j. The logical “X” operation is given by
f11g

X̄ =
1
Î3

sE23 − E13d =1
0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0
2 ^ I2, s16d

where we have labeled the rows and columns by the basis
elementshuJ=1/2,l=0l , uJ=1/2,l=1l , uJ=3/2lj, and I2 is
the 232 identity matrix which accounts for the fact that the
action ofEij is independent of them labelsz component ofJd
of the basis states. The logical “Z” operation is given byf68g

Z̄ =
1

3
sE13 + E23 − 2E12d =1

1 0 0 0

0 − 1 0 0

0 0 0 0

0 0 0 0
2 ^ I2, s17d

and Ȳ can be obtained from these two by commutation.
Recall that any operator can be decomposed in terms of a

linear combination of traceless, Hermitian matricessplus the
identityd with complex coefficients. The exponentiation of
the set of traceless, Hermitian operators with real coefficients
will give the set of unitary transformations on the Hilbert
space. Thus a Hermitian basis can be used to decompose the
error operators and Hamiltonians on the set of quantum
states.

Here we will give a complete set of 64 operators on the
space of three qubitss63 traceless and the identityd and iden-
tify the logical operators, collective operators, and leakage
operators. This enables the identification of various types of
noise which can occur on the DFS and their effect on the
code. The decomposition of the errors in terms of basis ele-
ments and the identification of the types of errorssleakage,
collective, logicald on the code, will be useful for identifying
the type of error correction procedure which should be used
to correct errors affecting the code.

We note that it is also possible to eliminate all noises
which are not collective, thus producing the conditions for a
DFS f19,21,29,34g. Our primary concern will be leakage er-
rors and a leakage elimination operatorsLEOd. For this pur-
pose, we note that, given the form of Eqs.s16d ands17d, the
logical operations for the 3-qubit DFS formed from physi-
cally available exchange interactions are canonical, and
thus provide an experimentally available LEO.

C. The DFS basis

As we saw above, collective errors on the DFS set of
states act to mix the two states within theu0Ll subspacesand
simultaneously those within theu1Ll subspaced, but do not
mix the two subspaces with each other. Thus we use the
labels 0L and 1L to identify the two-state subsystem used for
storing quantum information. This set of states is related to
the standard setscomputational basis set,u000l,…,u111ld
through a transformation we will denoteUdfs, and which can
be read off directly from Eq.s14d:
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Udfs
s3d =





0 0

1
Î2

0 −
1
Î2

0 0 0

0 0 0
1
Î2

0 −
1
Î2

0 0

0
2
Î6

−
1
Î6

0 −
1
Î6

0 0 0

0 0 0
1
Î6

0
1
Î6

−
2
Î6

0

1 0 0 0 0 0 0 0

0
1
Î3

1
Î3

0
1
Î3

0 0 0

0 0 0
1
Î3

0
1
Î3

1
Î3

0

0 0 0 0 0 0 0 1






.

s18d

Circuits for implementing logic gates on the 3-qubit DFS
were given in Refs.f11,40,42g. Here we take a different ap-
proach. Rather than examining the DFS in the physical basis,
as in Refs.f11,40,42g, we examine the DFS in the DFS basis
where the code and the effects of logical operators and leak-
age errors are more transparent. This DFS basis will be de-
noted with a tilde. This distinguishes a set of operators acting
on the code from the physical gating operators. The two sets
of operators are related by the DFS transformation

UdfsOUdfs
† =Õ. In the DFS-basis operators take the form

s19d

whereÕl1,l2

J1,J2 is a s2J1+1d3 s2J2+1d-dimensional block cou-
pling uJ1,l1l states withuJ2,l2l states. In the DFS basis,
states are represented, using the notation of Sec. IV A, as
vectors of the formsa0,b0,a1,b1,g−3/2,g−1/2,g1/2,g3/2dt,
where thea, b coefficients belong to theJ=1/2 subsystems,
and where theg coefficients belong to theJ=3/2 subspace.

The advantage of the DFS basis is this: In the DFS-basis
every operator can be decomposed into a tensor product of

the formÕm ^ Õl ^ ÕJ, where each operator acts on the cor-
responding quantum number in a stateuJ,l ,ml.

D. Decomposition of the algebra

In f37g, leakage errors betweenC and C' were treated.
Here we will carry this analysis further and investigate the
types of errors which may arise according to the algebraic
decomposition and their effect on the code. Note that the
matrices in Eq.s7d are 838 matrices. Out of these, onlyD
andF represent leakage processes, so that there are a total of
32 independent such errors. In the DFS-basis these leakage
errors between theJ=1/2 and J=3/2 subspaces have a
simple representation. In terms of Eq.s19d they appear as

s20d

The nonzero, off-diagonal blocks ares23 f2s1/2d+1gd
3 sf2s3/2d+1gd=434 matrices, whileÕleak is 838. It is
then clear that we can construct an operator basis for the
leakage errors using the DFS basis as follows:

X̃ ^ Õl ^ ÕJ, or Ỹ ^ Õl ^ ÕJ, s21d

where Õl, ÕJP hĨ ,X̃,Ỹ,Z̃j, i.e., eachÕi, i =l ,m is a Pauli

matrix, or the identity matrix, in the DFS basis. The role ofX̃

and Ỹ swhich act on theJ factord is to put the 434 matrix

Õl ^ ÕJ on the off-diagonal, as in Eq.s20d.
Similarly, a logical operator takes the form

s22d

sa nonzero 434 blockd and, e.g., the logicalsx appears as

s23d

Thus the logical basis elements for the 3-qubit DFS code are
represented simply by

s̄x =
1

2
sĨ + Z̃d ^ X̃ ^ Ĩ ,

s̄y =
1

2
sĨ + Z̃d ^ Ỹ ^ Ĩ ,

s̄z =
1

2
sĨ + Z̃d ^ Z̃ ^ Ĩ . s24d

The factorsĨ +Z̃d /2 in these tensor products acts as a projec-
tion onto the code space. Therefore these operations act as
ordinary Pauli matrices onC, or the 0L−1L block of the code
and are canonical operators in our sensesnote that they also
preserve them factors ofu0Ll, u1Lld. As we have seen in the
previous section, these can be implemented using Heisenberg
exchange interactions between qubits. Thusa canonical LEO
is experimentally available in systems which use Heisenberg
exchange operations for gating and are encoded in the
3-qubit DFS.

The DFS logical statesuCLl=au0Ll+bu1Ll are, by con-
struction, invariant under collective errors. Thesunnormal-
izedd generators of collective errors areSa=osi

a, a=x,y,z.
To express these operators in the DFS basis, we transform by
Udfs:
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SX = sĨ + Z̃dĨ X̃ + Î3sĨ − Z̃dĨ X̃ + sĨ − Z̃dX̃X̃ + sĨ − Z̃dỸỸ,

s25d

SY = sĨ + Z̃dĨ Ỹ + Î3sĨ − Z̃dĨ Ỹ + sĨ − Z̃dX̃Ỹ + sĨ − Z̃dỸX̃,

s26d

SZ = sĨ + Z̃dĨ Z̃ + sĨ − Z̃dĨ Z̃ + sĨ − Z̃dZ̃Ĩ = Ĩ Ĩ Z̃ + sĨ − Z̃dZ̃Ĩ .

s27d

This may appear to be a less convenient form than the form
of the operators in the physical basis, but in fact the interpre-

tation is quite simple. For example, consider the termsĨ
+Z̃dĨ X̃ appearing inSX; in the DFS basis it is represented by

s28d

i.e., it corresponds to an identical action on the twoJ=1/2
subsystems, which is the signature of a collective error. Of

course, the termssĨ +Z̃dĨ Ỹ, sĨ +Z̃dĨ Z̃ have a similar interpre-
tation. The remaining terms appearing in Eqs.s25d–s27d are
all projections on the orthogonal subspaceC', since they

contain the factorsĨ −Z̃d. Thus they do not cause any errors
on the DFS.

These observations facilitate the completion of the basis.
Consider next the basis for operations on the orthogonal sub-
spaceC' which are analogous to the logical operations onC.
These can be determined from the sets24d by simply replac-

ing the projectorsĨ +Z̃d by sĨ −Z̃d. However, in order to keep
all basis elements linearly independent, in particular orthogo-
nal to SZ, we must modifys̄z

':

s̄x
' = sĨ − Z̃dX̃Ĩ ,

s̄y
' = sĨ − Z̃dỸĨ ,

s̄z
' = 2Ĩ Ĩ Z̃ − sĨ − Z̃dZ̃Ĩ . s29d

We now complete the 64 element orthogonal basis for the
algebraf69g. Consider first the collectiveX error, Eq.s25d.
The following four elements, appearing inSX, and whose
interpretation as errors that either leave the DFS invariant or
annihilate it was discussed above, span a 4-dimensional sub-
space of the algebra:

sĨ + Z̃dĨ X̃,sĨ − Z̃dĨ X̃,sĨ − Z̃dX̃X̃,sĨ − Z̃dỸỸ. s30d

To find a set of operators which are mutually orthogonal and
orthogonal toSX, we use the following procedure. First we
normalize the collectiveX error swith an overall factor of
1/Î6d. We then require that the set of mutually orthogonal
operatorss30d be taken from the set of orthogonal basis ele-
ments, to another set of orthogonal elements. The appropriate
mapping is an element ofSOs4d since it maps four orthonor-
mal vectors to four orthonormal vectors. Therefore, form an
SOs4d matrix whose first column elements are all 1 /Î6, and

whose remaining three columns provide the following coef-
ficients sthe set formed in this way is not uniqued:

SX1
=

1
Î30

sĨ + Z̃dĨ X̃ +
1

Î10
sĨ − Z̃dĨ X̃ +

1
Î30

sĨ − Z̃dX̃X̃

−Î5

6
sĨ − Z̃dỸỸ, s31d

SX2
= −

Î3

2
sĨ + Z̃dĨ X̃ +

1

2
sĨ − Z̃dĨ X̃, s32d

SX3
= −

1

2Î5
sĨ + Z̃dĨ X̃ −

1

2
Î3

5
sĨ − Z̃dĨ X̃ +

2
Î5

sĨ − Z̃dX̃X̃.

s33d

The result is three additional orthonormal basis elements
which all act trivially on the DFS.

The same procedure can be used for the collectiveY error
fEq. s26dg to obtain the following set of trivially acting er-
rors:

SY1
=

1
Î30

sĨ + Z̃dĨ Ỹ +
1

Î10
sĨ − Z̃dĨ Ỹ +

1
Î30

sĨ − Z̃dX̃Ỹ

−Î5

6
sĨ + Z̃dỸX̃, s34d

SY2
= −

Î3

2
sĨ + Z̃dĨ Ỹ +

1

2
sĨ − Z̃dĨ Ỹ, s35d

SY3
= −

1

2Î5
sĨ + Z̃dĨ Ỹ −

1

2
Î3

5
sĨ − Z̃dĨ Ỹ +

2
Î5

sĨ − Z̃dX̃Ỹ.

s36d

Some of the lack of symmetry can be remedied by a different
choice for theSOs4d matrix. However, no significant simpli-
fication is obtained. Thesdiagonald collectiveZ error may be
completed by finding the remaining elements in the set of
eight diagonal elements which span the subspace of diagonal
elements of the algebrasthe Cartan subalgebrad. We now
choose elements to complete the basis, including this set. We
start with the following diagonal matrices

Z̃ĨZ̃, Z̃Ĩ Ĩ , s37d

which clearly also act as collective errors. Counting indicates
there are 14 remaining basis elements. These can be taken to
be

sĨ − Z̃dX̃Z̃, sĨ − Z̃dỸZ̃, sĨ − Z̃dZ̃X̃,

sĨ − Z̃dZ̃Ỹ, sĨ − Z̃dZ̃Z̃, s38d

which act to annihilate the DFS; and

sĨ + Z̃dX̃X̃, sĨ + Z̃dX̃Ỹ, sĨ + Z̃dX̃Z̃,

sĨ + Z̃dỸX̃, sĨ + Z̃dỸỸ, sĨ + Z̃dỸZ̃,
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sĨ + Z̃dZ̃X̃, sĨ + Z̃dZ̃Ỹ, sĨ + Z̃dZ̃Z̃, s39d

which act nontrivially on the DFS in that they mix them
factors ofu0Ll, u1Ll.

One may verify that we have enumerated 64 basis ele-
ments, with the property that they are trace orthogonal and
therefore span the space of three-qubit operators. These were
chosen compatible with the appropriate subspaces of the
three-qubit DFS. The advantage of explicitly listing a com-
plete set of basis elements is that we may now classify the
operators and their actions on the code space.

E. Classification of errors

In this subsection we classify the different types of opera-
tors in terms of how they affect the three-qubit DFS code.
We will then discuss the effect of asymmetric exchange op-
erations on this code in the next subsection.

As stated previouslyf63g, we will not consider the errors
of type s38d or s29d as elements of the algebra which would
cause irrevocable loss of informationsnote, however, that
one could in principle remove them by symmetrizing with
respect toC'd. In addition, we have previously classified
basis elements Eq.s24d as logical operations which give rise
to logical errors when they are contained in the error algebra.
The elements of the form Eq.s21d are a basis for the leakage
type errors, while terms of the form Eqs.s24d, s26d, ands27d,
are collective operations and will not affect the DFS encoded
states. The two diagonal elementss37d do not cause leakage
and do not add anything beyond logical type errors. The
remaining operations need to be interpreted.

After some consideration, it is clear that theSXi
, SYi

op-
erators are actually elements of the stabilizer subgroup. For a
DFS this is defined asf11g

D̂svWd = expFo
a

vasŜa − I ^ MadG , s40d

where the elements of the vectorvW, va are complex numbers,

the Ŝa come from the set which generates the collective error
algebraA swe can includeHS as S0d and Ma is a matrix
which only mixes noncode indices. Thus the linear combina-
tions that are used in the sum that is in the argument of the
exponential, will span the space of the primitives in the col-
lective errors, and theSXi

, SYi
are included in these linear

combinations. Another way in which to see that these opera-
tors do not affect the code space is by acting with them on

the code. The terms inSXi
, and SYi

of the form sI +Z̃dpp

where thep is any operator, are the only ones which act on
the code spaceswith no effectd, the others act on the orthogo-
nal complementC'. Thus these operations do not affect the
code and are thus elements of the stabilizer.

The remaining errorss39d are products of elements of the
logical operations and the collective operations. In this case
the operator has the formAA8 which is a product of an
operator which does nothing to the codesa stabilizer ele-
mentd and a logical error.

Now that the complete set of basis elements spanning the
three-qubit DFS has been explicitly represented, and we have

identified the action of these operators on the code, we may
discuss their significance in a more practical setting. We will
next decompose the errors that are seen as obstacles to build-
ing practical solid state quantum computing systems and dis-
cuss the effect of these errors in terms of the complete set of
operations on the code space.

F. Errors in quantum-dot qubits

A dominant type of error in solid-state quantum dot quan-
tum computing architectures arises from spin-orbit interac-
tions f70g. Spin-orbit interactions couple charge degrees of
freedom associated with the orbital wave functions to the
spin degrees of freedom used to store and manipulate infor-
mation. Since charge often interacts much more strongly
with the environmentf71g, spin-orbit interactions give rise to
decoherence in these devices.

There are several ways in which to treat the gating errors
which arise due to anisotropic exchange interactions. One
way is to treat them with a QECC, which, as stated in the
Introduction, requires a substantial qubit overhead. A second
way is to use shaped pulsesf72g. A third way is to use
dressed qubitsf73g. Alternatively the spin-orbit interaction
can also be used to construct a universal gate setf74,75g.
Here we assume the form of spin-orbit interactions which
give rise to errors which are of the same form as the asym-
metric, or anisotropic exchange. However, we treat these as
decoheringscausing information lossd, rather than unitary er-
rors.

Consider a bilinear coupling in the physical basis of the
form

HSB
s2d = o

i, j
o

a,b=hx,y,zj
gij

absi
as j

b
^ Bij

ab, s41d

wheregij
ab is a rank-2 tensor. The symmetrization procedure

of f34g, that prepares collective decoherence conditions, ap-
plies only to linear coupling, so will not work in this case. In
this case we must consider the possibility of leakage. The
bilinear termgij

absi
as j

b can be decomposed intosid a scalar
gsW i ·sW j, which is proportional to the Heisenberg exchange
operator and thus has the effect of logical errorsE; sii d a
rank-1 tensor

bW · ssW i 3 sW jd; s42d

siii d a mixed rank tensor

ssW i · gW idssW j · gW jd s43d

which cannot couple the twoS=1/2 states to each other, but
can couple them toS=3/2 states causing leakage. Thus we
see that theS=3/2 subspace acts as a source for leakage
ffrom sii d and siii dg, and that there is also the possibility of
snoncollectived errorsffrom sii dg which do not have the same
effect on theu0Ll, u1Ll states and therefore cause logical er-
rors. Clearly, higher-order interactionsHSB

snd with n.2 can
cause similar leakage and logical errors. We also note that
the scalar coupling can be included as a special case of the
type siii d errors. This is the way in which it will arise in our
calculations.
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We will now examine the errorss42d ands43d in the basis
for encoded operations and thus identify their effect on the
code space. To be specific, the errors in Eqs.s42d and s43d
will be transformed into the tilde basis, which acts on the
code space, byUdfsEsUdfs

† , whereEs is either of the forms42d
or s43d. We will then decompose these operations in the DFS
stilded basis of Sec. IV D.

Let us first consider errors of the forms42d. We will con-
sider only the errors on physical qubits one and two and
neglect leakage errors of the types21d. After omitting these
two types of errors, the remaining errors are of the form

1
Î3

fb12
x sI + Z̃dỸX̃ + b12

y sI + Z̃dỸỸ + b12
z sI + Z̃dỸZ̃g. s44d

Assuming that we can remove leakage errors using an appro-
priate LEO, our goal is to analyze the remaining errors to see
how they affect the encoded qubits.

Note first that in Eq.s44d we are examining errors caused
by interactions between qubits one and two. If only errors
between qubits one and two are present, there exists an in-
herent asymmetry in the noise, thus we would not expect a
DFS to protect against this type of error. However, it turns
out that the basis elementssprimitivesd here are the same as
those found in the interactions between qubits two and three
and in qubits one and three. Cancellation or partial cancella-
tion of this type of error will occur when the interactions
between pairs of qubits combine to form only stabilizer op-
erations, a situation which could be achieved through
material/environment engineering or by dynamical decou-
pling symmetrization with respect to the code space. Here
we will only consider the asymmetric case of a pair of qubits
squbits 1 and 2d.

How should we interpret the errors in Eq.s44d? Consider
the first term. Examining the logical errors, we see that the
error present in Eq.s44d is proportional tos̄ySX less those

terms which are of the formsI −Z̃d**. Thus it is a logicalY
multiplied by a collectiveX error less those errors which act
only onC'. The other terms are also proportional to a logical
Y operation. This indicates that we may protect against all of
the remaining errors with the concatenation of this DFS by a
QECC which protects against logicalY errors. This can be
accomplished by using a 3-to-1 QECC encoding. This may
well be a significant advantage over a pure QECC given
available resources in solid-state implementations of quan-
tum computing.

Now we examine errors of the forms43d. Here, as before,
we will analyze only the effect of this type of error on physi-
cal qubits one and two. We will also again omit the leakage
errors which are of the forms21d. The remaining 10 terms of
the DFS transformed errorss43d are

g1
xg2

x − g1
yg2

y

2Î3
sI − Z̃dX̃I +

g1
yg2

x + g1
xg2

y

2Î3
sI − Z̃dỸI

+
s− g1

zg2
y + g1

yg2
zd

2Î3
sI + Z̃dỸX̃ +

g1
zg2

x − g1
xg2

z

2Î3
sI + Z̃dỸỸ

+
− g1

yg2
x + g1

xg2
y

2Î3
sI + Z̃dỸZ̃ +

1

3
s− g1

xg2
x − g1

yg2
y − g1

zg2
zd

3sI + Z̃dZ̃I +
g1

zg2
x + g1

xg2
z

2Î3
sI − Z̃dZ̃X̃ +

sg1
zg2

y + g1
yg2

zd

2Î3

3sI − Z̃dZ̃Ỹ +
1

6
s− g1

xg2
x − g1

yg2
y + 2g1

zg2
zdsI − Z̃dZ̃Z̃

+
1

3
s− g1

xg2
x − g1

yg2
y − g1

zg2
zdZ̃II . s45d

Terms 1,2,7,8,9 act onC' and thus have no effect on the
code. Term 10 is a combination of exchange operations
which does not affect the code subspace. Terms 3,4,5,6 act
on the code space. They act either as a logical errorsterm 6d
or as a logical error composed with a collective error. The
logical errors must be treated using other methods. In this
case, we see that all errors other than term 6 give rise to
logical Y errors. To remove all errors in the system, we have
different choices which could be good alternatives depending
upon the physical system. First, we could eliminate the errors
using more decoupling pulses. Second, we could choose a
system where the term 6 is negligible. This would enable
complete elimination of the errors with one other decoupling
pulse. Third, if term 6 is negligible, we could treat theY
errors with the concatenation of the DFS with a QECC. The
required QECC would use only three qubits to encode one.

Let us assume that we can introduce another decoupling
pulse to eliminate the logicalZ errorsterm 6d so that we only
have logicalY errors present in our computation. This could
be accomplished, for example, by implementing an extra
p /2-logical-X rotation in half the LEO time. To eliminate the
remainingY errors, we concatenate the DFS with a QECC
f28g by encoding the DFS-protected logical qubits into a
QECC which is protected againstY errors. We may describe
this briefly as follows. We use the state consisting of three
logical sDFSd qubit states to construct the following nine-
qubit codesnine physical qubitsd

ucEl = au0L0L0Ll + bu1L1L1Ll.

Suppose that a logicalY error occurs on one of the logical
qubits, say the second. Then, in terms of the encoded DFS
states, the logical qubit undergoes the following transforma-
tion:

ucEl = au0L0L0Ll + bu1L1L1Ll → − iau0L1L0Ll + ibu1L0L1Ll.

s46d

Detecting errors on this logical state may be accomplished
by detecting differences between any two pair of DFS en-
coded qubits according to the stabilizer formalismf4g. Alter-
natively, the original Shor codef1g which protects againstX
errors sor equivalentlyZ errorsd on physical qubits may be
modified for our purposes by simply changing local bases on
each logical qubit to describe the formalism in terms of theY
errors. sEvery operator and state would be rotated byp /2
about theZ axis in the logical basis.d The advantage of such
a concatenation is described inf28g. The fidelity is effec-
tively decoupled from the error rate on logical qubits and
depends only on the strength of the perturbation which
causes the asymmetries in the system-bath interaction and
disturbs the DFS encoding. We should note that, whereas our
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formalism to this point is valid for any Heisenberg exchange
based quantum computing scheme, this final readout and cor-
rection of the error on the QECC encoded qubit will depend
upon the details of the system.

Physical implementations will dictate which combination
of decoupling pulses, materials engineering, or a QECC is a
valid option for the elimination of remaining errors after
leakage has been removed.

V. LEOs AND THE 4-QUBIT DFS

The four qubit DFS encodes one logical qubit using a
subspace of four physical qubits. It protects a single logical
qubit from collective errors of any typesbit-flip, phase-flip,
or bothd. It has been shown that the exchange interaction is
sufficient for implementing a universal set of gating opera-
tions on this system while preserving the DFSf11,40g. In this
section we will answer the following questions:s1d Is there a
LEO available in solid-state implementations using the
4–qubit DFS, which relies on the exchange interaction?s2d
Is there a canonical set of such gates?s3d After leakage is
removed, can we completely remove all errors in asymmetric
exchange, and if so, how?

A. The four-qubit DFS

The four-qubit DFS contains two singlet states for the
representative qubit, three triplets and a spin 2, or quintuplet.
The singlet states, which represent the logical zero and one
of the DFS encoded qubit are given by

S0 = u0Ll =
1

2
su0101l + u1010l − u0110l − u1001ld s47d

and

S1 = u1Ll =
1

Î12
s2u0011l + 2u1100l − u0110l − u1001l

− u0101l − u1010ld, s48d

where as before, e.g., u0101l= u1/2l ^ u−1/2l ^ u1/2l
^ u−1/2l in the standard angular momentum basis.S0 andS1

comprise the code spaceC for this DFS and the remaining
states are the states inC'.

The triplet states are given by

T11
1 = u11l =

1

2
su0100l + u1000l − u0001l − u0010ld,

T10
1 = u10l =

1
Î2

su1100l − u0011ld,

T1−1
1 = u1 − 1l =

1

2
su1110l + u1101l − u1011l − u0111ld,

T11
2 = u11l =

1
Î2

su0001l − u0010ld,

T10
2 = u10l =

1

2
su1001l + u0101l − u1010l − u0110ld,

T1−1
2 = u1 − 1l =

1
Î2

su1101l − u1110ld,

T11
3 = u11l =

1
Î2

su0100l − u1000ld,

T10
3 = u10l =

1

2
su0110l + u0101l − u1010l − u1001ld,

T1−1
3 = u1 − 1l =

1
Î2

su0111l − u1011ld. s49d

The spin-2 representation is given by the following set of
statessa quintupletd

Q22 = u22l = u0000l,

Q21 = u10l =
1

2
su1000l + u0100l + u0010l + u0001ld,

Q20 = u1 − 1l =
1
Î6

su1100l + u1010l + u1001l + u0110l

+ u0101l + u0011ld,

Q2−1 = u2 − 1l =
1

2
su0111l + u1011l + u1101l + u1110ld,

Q2−2 = u2 − 2l = u1111l. s50d

We will refer to this set of states as the set of DFS states
with the logical elements comprisingC and the other states
sT and Q statesd comprisingC'. In the latter part of this
section we will again use a DFS basis for the operators and a
transformationUdfs to change from the computational basis
set of states and operators to the DFS sets. Let us now dis-
cuss logical operations on the DFS.

B. Gate operations and LEOs

Physical gates were given in Ref.f11g and shown to be
compatible with the DFS. These are given by the exchange
interaction between pairs of physical qubits. The logical “X”
operation is given by

X̄ =
1
Î3

sE23 − E13d, s51d

where, again,Eij is the exchange operation between qubitsi
and j , and I2 is the 232 identity matrix. The logical “Z”
operation is given by

Z̄ = − E12 s52d

and Ȳ can be obtained from these two. However, there is a
distinct difference between this set of logical operations and
the analogous set in Sec. IV. The difference is that naturally
occurring logical operations on the three-qubit DFS have ei-
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genvalue zero on the states inC'. This in not the case for the
four-qubit DFS. For example, all states inC' have eigenval-
ues of +1 for states inC', with the exception ofT3 whose

states have eigenvalue −1 when acted on byZ̄. These gates
are not “canonical” in our sense and so the projection onto
the code subspace is not automatic. One must either use an-
other set of gating operations which are projective or use the
generalized LEO of Sec. III B. We explore each of these two
possibilities in the next two subsections.

C. A LEO from exchange

As noted inf37g there exist physically available opera-
tions which are “canonical” in many circumstances, meaning
that they are projective onto the code subspace. The defini-

tion of Z̄ given in f11g sand the previous sectiond is not
canonical. We therefore seek to construct a physically avail-
able LEO. We do this using the definition of the generalized
LEO given in Sec. III B.

Let the ssquare of thed total spin angular momentum op-

erator be denotedSW2 with eigenvalueSsS+1d. Then

4SW2 = So
i

sW iD2
,

wheresW i =ssi
x,si

y,si
zd are the Pauli matrices acting on theith

qubit. Therefore

SW2/2 =
12 + 2oi, j

sW i · sW j

8

gives an appropriate LEO of the form given in Eq.s9d. This
can be seen as follows. On theS=0 ssingletd subspaces the
operator gives zero. On theS=1 subspaces the operator gives
1 and on theS=3 subspace it gives 3. Therefore the appro-
priate LEO is given by

RL = exph− ipS2/2j,

which reproduces the LEO of Eq.s9d.
Now consider a modified set of logical operations:

X̄ → X̄8 = X̄ + S2/2, s53d

Ȳ → Ȳ8 = Ȳ + S2/2, s54d

Z̄ → Z̄8 = Z̄ + S2/2. s55d

This set may be used to obtain an appropriate LEO by expo-
nentiation, e.g.,

RL = exph− ipsZ̄8dj.

Similarly we can construct a LEO usingX̄8 or Ȳ8. Since the

operatorSW2 is composed of exchange interactions, it is also
experimentally available.

D. A canonical LEO from exchange

One may ask the question: what set of gates would be
canonical if we use only exchange operations? One way to

answer this question is to do the following calculation. Start

with operations which act asX̄, Ȳ andZ̄ and have eigenvalue
zero on the states inC'. These are operators in the DFSsi.e.,
the tilded basis. Then use the DFS transformation to trans-
form from the DFS basis back to the physical basis to find
the set of physical interactions necessary to perform canoni-
cal gating operations. We now use this procedure to find such
a LEO.

The DFS basis for this system has logical operations
which transform between the two one-dimensional spin-0
representations. These may be represented by ordinary Pauli
matrices which act only on the 232 block. The operations
which perform these logical operations are labelled using the
spin-0 index and a 0, 1 degeneracy index,Ol1,l2

0,0 , which in
this case has only a single entry for each pairl1, l2. Accord-
ing to the definition, canonical logical operations would have
the following form in the DFS basis:

s̄i = S si 01432

02314 014314
D , s56d

where 0m3n is anm3n matrix of zeros. This operation acts
simultaneously as a projector onto the code subspace and a
Pauli operator on the encoded state. Now, let the DFS trans-
formation be given byUdfs, the computational basis states be
given by uccl, and the DFS states be given byucdfsl:

Udfsuccl = ucdfsl. s57d

Then the logical operations are related to the operations in
the computational basis by

s̄iucdfsl = Udfss̄i
cuccl, s58d

where s̄i is the canonical logical operation in the logical
basis ands̄i

c is the logical operation in the computational
basis. This physical realization of the canonical operations
will be found using

Udfs
−1s̄iUdfs= s̄i

c. s59d

Using only the exchange operations between qubitsi and j ,
Eij = I +sW i ·sW j, the canonical operations are given by

s̄x
c = s2I − E13ds2I − E24d − s2I − E23ds2I − E14d s60d

and

s̄z
c = 2s2I − E34ds2I − E12d − s2I − E13ds2I − E24d − s2I − E23d

3s2I − E14d s61d

and the commutator of these two gives the third logical ele-
ment. It is clear from this form that 4-body interactions are
required to construct canonical logical operations using only
exchange operations. Although there are methods for con-
structing these from more fundamental interactionsf76,77g
so that they may be useful for some quantum computing
purposesse.g., simulationsd they are likely impractical for
BB controls due to time constraints. Alternatively, it has been
shown that these four-body interactions naturally arise in
spin-coupled quantum dots with significant effect, and it has
been suggested that one might take advantage of these ef-
fects when designing gating operationsf78g.
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E. Decomposition of the algebra

The detailed analysis of Sec. IV becomes much more
complicated for the four-qubit DFS. The set of operators for
the Hilbert space of four qubits containss24d2=28=256 basis
elements. This set obviously becomes prohibitively large for
such a detailed analysis as the number of qubits grows. How-
ever, there are several key observations which summarize
our three-qubit analysis and which are quite general.sThese
can also be seen from the algebraic decomposition of Sec.
II B.d The operations in the DFS basis may be classified as
follows: Logical operations, operations onC', collective op-
erations, leakage operations, sums and/or products of one or
more of these types. Thus identifying these types will enable
the identification of general operations in terms of these. As
in the treatment of the 3-qubit DFS, we will assume that the
LEO can be implemented so that leakage errors are irrel-
evant. In this case, we need only remove logical operations
sthis will also remove operations which are products of logi-
cal operations and another typed. Therefore our goal is to
identify logical operations and then extract those operators in
the spin-orbit coupling terms which give rise to logical type
errors, whether or not they are combined with collective er-
rors.

Logical errors are those generated by logical operations
given in Sec. V B. In order to discern their effect on the DFS,

we may transform these to the DFS basis byUdfsOUdfs
† =Õ,

where the transformationUdfs is defined by the transforma-
tion from the computational basis states to the logicalsDFSd
basis states of Sec. V A.

The extraction of logical operations and operations which
are products of logical operations with another are readily
performed withMATHEMATICA . We first note the form of
logical operations when we choose an ordered logical, or
DFS, basis. The first two entries for this ordered basis are
u0Ll and u1Ll. Logical basis elements for the algebra, when
restricted to the code subspace, have the form

sI + Z̃dsI + Z̃dsI + Z̃dÕi , s62d

where Õi P hX̃,Ỹ,Z̃j. These observations imply that, from
Sec. III, B is a 232 matrix, C is a 14314 matrix, E is 2
314 andE' is 1432.

It is clear from Eq.s62d that on this two-dimensional sub-
space, these operators span the space of logical operations.
As noted above, we could include products of these with
other operations and/or include operations onC', by a direct
sum. However, these have no effect on the code once leakage
errors have been removed, and eliminating logical elements
eliminates the other errors as well.

The collective errors, which also have no effect on the
code annihilate the code elementssthey are singlet statesd.
Therefore, in this case the collective errors are trivial.

Having established the correspondence between the rel-
evant parts of the argument for the three-qubit DFS and the
requirements for noise-free evolution for the four-qubit DFS,
we may now analyze the errors which occur on this code in
solid-state qubits.

F. Errors in quantum-dot qubits

As was done for the three-qubit DFS, we will examine
errors corresponding to Eqs.s42d and s43d. We will again
suppose that the errors of the typesid are included as type
siii d, and that an appropriate LEO is experimentally avail-
able, so that we may neglect leakage errors. We therefore
decompose the four-qubit DFS transformed terms, Eqs.s42d
and s43d, into the DFS basis elements. In this case the rep-
resentations used for the DFS states are not completely sym-
metric in the four qubits. We must therefore consider two
pairs of interactions, the interactions between qubits one and
two, and between qubits two and three.

The error arising from Eq.s42d between physical qubits 1
and 2, and neglecting leakage operations and operations on
C', consists of just one term:

−
1

3Î2
sg1

xg2
x + g1

yg2
y + g1

zg2
zdsI + Z̃dsI + Z̃dsI + Z̃dZ̃. s63d

There are two different terms for the Eq.s42d when acting
between qubits 2 and 3:

1

6Î2
sg2

xg3
x + g2

yg3
y + g2

zg3
zdsI + Z̃dsI + Z̃dsI + Z̃dZ̃, s64d

1

2Î6
sg2

xg3
x + g2

yg3
y + g2

zg3
zdsI + Z̃dsI + Z̃dsI + Z̃dX̃. s65d

A rather stark difference between the three-qubit DFS and
the four-qubit DFS is the fact that no errors of the form Eq.
s43d contribute to logical errors on this code. We therefore
need not correct this type of error. These types of errors
occur in zinc-blende type semiconductor structures which
have a broken inversion symmetry. Knowing that removing
all leakage errors can render this type of error insignificant is
an important advantage of this code.

Another quite striking difference between the two codes is
that the scalar term, errors of the formsid, are the only types
present. Thus if this type of error could be eliminated by
materials engineering, no errors would be present on the en-
coded qubits.

To correct all errors of the forms in Eqs.s42d and s43d,
without the ability to eliminate the scalar coupling, for the
four-qubit DFS code, we may apply the same methods as in
the three-qubit case.s1d More decoupling pulses could be
applied to eliminate the logicalX andZ errors.s2d Another
decoupling pulse could be used to eliminate theZ type errors
and a three-logical-qubit QECC could be used to eliminate
the X type error.

However, the important difference between the two codes
is that the antisymmetric term, also known as a
Dzyaloshinski-Moriya term, is not present after the imple-
mentation of an appropriate LEO. Therefore, if this term is a
dominant source of errors in a particular implementation of
quantum dot quantum computing, then the four-qubit DFS
has a distinct advantage over the three-qubit DFS.
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VI. CONCLUSIONS

We have given methods for the implementation of leakage
elimination operatorssLEOsd which are, in many circum-
stances, physically available in experiments. These LEOs
eliminate a large and important class of errors; those that
would serve to destroy a subspace encoding. The methods
for producing these have shown promise in many experi-
ments and here we have generalized the method for produc-
ing such LEOs.

Symmetrization by dynamical decoupling can be per-
formed by decoupling the code from its orthogonal subspace
or the orthogonal subspace from the code. In the first case,
we can, in principle, remove all errors from the code space.
While this is not true when the decoupling is performed with
respect to the orthogonal subspace, the advantage of this
method is that it does not introduce further errors if imper-
fect decoupling controls are used.

For the three- and four-qubit DFSs, we have given a
method for producing LEOs using the exchange interaction

which is physically available in solid-state qubit implemen-
tations of quantum computing. We have shown that after
leakage errors have been removed, the remaining bilinear
couplings which could give rise to errors may be treated with
either a QECC or a cycle involving extra decoupling pulses.
For the four-qubit DFS there are similarities in our ability to
experimentally treat errors. However, it has two advantages
over the three-qubit DFS. First, only scalar type bilinear in-
teractions affect the code. Second, eliminating leakage errors
from the four-qubit DFS removes the Dzyaloshinski-Moriya
interaction errors. These are present in many semiconductors
which have a broken inversion symmetry and are the main
part of the anisotropic exchange interaction.
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