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“Leakage” errors are particularly serious errors which couple states within a code subspace to states outside
of that subspace, thus destroying the error protection benefit afforded by an encoded state. We generalize an
earlier method for producing leakage elimination decoupling operations and examine the effects of the leakage
eliminating operations on decoherence-free or noiseless subsystems which encode one logical, or protected
qubit into three or four qubits. We find that by eliminating a large class of leakage errors, under some
circumstances, we can create the conditions for a decoherence-free evolution. In other cases we identify a
combined decoherence-free and quantum error correcting code which could eliminate errors in solid-state
qubits with anisotropic exchange interaction Hamiltonians and enable universal quantum computing with only
these interactions.
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I. INTRODUCTION solid-state systems. It has been shown that, for several dif-
Noise protection for quantum information processing is/€rent dtypeﬁ of mterfacnonsk,) and for sevgc;al ﬂ'ﬁerg.?t encod-
an important facet of quantum control and the design of"dS, JECONEreNce-iree subspaces provi e the ability to per-

quantum devices. In quantum computing, coherent control oform universal quantum computing without requiring single

a quantum system is required in order to take advantage GUbit gated11,40-49. Itis therefore important to know the

; ditions for a DFS to exist or, as discussed in this paper
quantum computing speedups. A great deal of work has be€rP" ' ) ’
done, and is still ongoing, to try to achieve multiparticle What methods might be used to create a DFS. For those

control for quantum information processing. In order tocircumstances which do not allow for a DFS implementation

implement noiseless control of quantum computing systemj;,‘lone in order to eliminate all noise in the system, what is

; ) are the best methad) for error protection? This clearly
several methods of error prevention have been introduce ) .
Quantum error correcting codéQECCS [16], detect and epends on the physical system and an analysis of the types

) . of occuring errors will be necessary in order to take advan-
correct errors; decoherence-free or noiseless subsyste

: X ; e of every possible technigue for noise suppression, cor-
(DFS9 [7-12] avoid noises in quantum systems; and dy-rection and/gr%voidance. d PP

hamical decoupling controkDD) [13-27 reduce the errors In this paper we discuss the elimination of leakage errors.
by averaging or symmetrizing them away. Since none of eakage errors destroy a subspace encoding by coupling
these has seen the ultimate success of preventing errors insgates within the encoded subspace of the system Hilbert
prototypical quantum computing device, combinations ofspace with the states which are outside of the code subspace.
more than one of these methods have been explorefihese are particularly serious errors since they eliminate the
[17,28-31. One particularly promising example is the com- usefulness of a subspace encoding. Moreover, they cannot be
bination of dynamical decoupling controls with decoherencehandled by standard QECC methods under the assumption of
free subsystemfl17,19,21,29-32,34,36—88This combina- a set of operations restricted to act on a subspabe We
tion can offer several advantages; it céh reduce the will first review the bang-bang limit of the method of dy-
number of physical qubits required to encode one logicahamical decoupling controls, and the algebraic decomposi-
qubit, (2) enable universal control in systems which cannottion of the operators on the Hilbert space in Sec. Il, in order
be completely controlled otherwisg) avoid noises, ant) to make the article more self-contained. We then review, in
reduce noises even if they are not eliminated or avoidedSec. lll, the definition and construction of leakage elimina-
Such combinations are very likely to be necessary for theion operatorLEOSs) using canonical gates, and then gener-
near-term and longer term goals associated with reliablalize the construction to gates which are not canonical. In
guantum information processingzor a recent review on er- Sec. IV we provide an explicit decomposition of the algebra
ror prevention, seg39]). of operators for the 3-qubit DFS and use it to classify all
For those quantum computing proposals which use quarerrors on this DFS. In this section, we also analyze the errors
tum dots for storing information and the Heisenberg ex-which commonly arise in solid-state implementations of
change interaction for performing gating interactions, a DFSjuantum computing proposals, and determine a strategy for
encoding is promising since it enables universal computingliminating all errors, in addition to leakage errors, which
without the need for single qubit gatgkl,40-49. Architec-  arise from anisotropic exchange errors and cause decoher-
turally, as well as for speed, single qubit gates can be diffience. In the following section, Sec. V, we construct a physi-
cult to implement for unencode@.e., physical qubits in  cally realizable LEO which is not made of canonical gates,
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using the construction in Sec. Ill. We then analyze errors irpulses without the necessity of the “bang-bang” limit.
the 4-qubit DFS which arise in solid-state implementations As a final remark on decoupling operations, we state the
of QC. We summarize our results in the Conclusion. following theorem[31,32 which follows from[29].

Theorem I1.1 Dynamical decoupling with respect to the
set of logical operations of an encoded qubit can be used to
completely decouple the dynamics of the encoded subspace

In this section we briefly review dynamical decoupling from the bath. _ _
controls, symmetrization and the results[87]. For a more This theorem is important for the following reasons. First,
detailed discussion of dynamical decoupling controls, thdhe number of pulses required to eliminate noise on physical
reader is referred tf51], for the group-theoretical underpin- 9ubits can be quite taxing on physical resources. If we re-
nings seg29], for an empirical approach sé&9,31], for a strict ourse_lves to logical oper_at|ons, we can _reduce the num-
geometrical approach s¢23] or [39,51] for recent reviews. ber of required pulses dramatically. Second, in many cases, if

We then provide a general formula for producing a leakageVe use logical (_)peratio_ns to remove errors, we are restricting
elimination operatofLEO). to those operations which are available in experiment. Often

an encoding is chosen for its universality considerations. In

. . other words, many codes are chosen so that universal quan-

A. Dynamical decoupling controls tum computing can be performed on a subspace even if it

Dynamical decoupling controls are control pulses whichc@nnot be performed on the entire Hilbert space. Those op-

are used to average away noises in a quantum system. Whe&Fations which achieve universal control can also be used for
hard, fast pulses are used, these are commonly referred to &8mplete decoupling.

bang-bang controls. Here we review decoupling controls in
the bang-bang limit.

II. UNIVERSAL LEAKAGE ELIMINATION

B. Algebraic decomposition

Consider a general Hamiltonian of the form In order to discuss the effects of the dynamical decoupling
operations on encoded qubits, we will briefly review the de-
H=Hs+Hg+Hsgg, composition of the algebrfl0,56 which can describe all

whereHs acts only on the systenig acts only on the bath, ©€fTor prevention schemgs7].

andH,=Hes==,S,® B, couples the system to the bath. Let The inter_action algel_)ra,_ denoted is genergted by the set
us now implement control operations;, periodically with  tHs:S,}. This algebra is, in general, :Ledumble_, and closed
the system undergoing free unitary evolutithy H) for a  under Hermitian conjugatiofmeaningA’=.A). This algebra
time At between control operations. If we assume that thdS & subalgebra of the fu.II set of _endomorph|sms of the total
free evolution is negligible during the time the control is Hilbert spaceft, £(H) which are linear operators dt. The
“on” (this assumes “strong” control Hamiltonians are avail-irreducible components of this algebra are described by the

able, then we obtain an effective unitary evolution for the decomposition

combined system bath given by: _ .
N-1 A - GEBJI ny & M(dJr(ﬂ)! (3)
Uest = H Uiexd - iHAtJU]. (1) where theJ, a shorthand for all relevant representation indi-
=0 ces, label the irreducible representations andMiie;, ) are

In the limit of largeN and smallAt, such thatNAt=t< e, d; X d; complex matrices. This representation is a direct sum
we can approximateleg, by a first-order Magnus expansion decomposition(block diagonal with n; labelling the states
and use an effective Hamiltonian to describe this evolution,0f the system in the corresponding Hilbert space decompo-
L N-1 sition
Herr=~ — > UHU. 2 H= & (Me (Y, )
N i=0 JeJ

In ideal circumstancegas N— ), we can eliminateHgg ~ Each factorC™ corresponds to a noiseless subsystem. The
completely so as to decouple the system and bath. Howevegommutant ofA, denotedA’, is in £(H) and is defined as

in this paper we combine decoupling operations with an en- , _

coding, therefore we only require thatsglbe modified. This A" ={X e E(H)|[X,A]=0}. ®)
drastically reduces the demands on a physical system and orhe existence of a decoherence-free, or noiseless, subsystem

our controls is equivalent to
One should note that “strong” and “fast” are relative to ) ) )
system-bath interactions, notions which have been thor- A'= & M(n;,C) ® 1y, # CI. (6)

oughly quantified in52]. In addition, we need not require =g

strong pulses in some casgsl,53 and in other cases, the This implies a nontrivial group of symmetries of the commu-
fast requirement can be relatively easily satisfigd,55. In  tant. The unitary part ofd’, U(A’), is the set of unitary
this paper, we will consider dynamical decoupling controlssymmetries of the error algebré.

which assume hard, fast pulses, but we note that appropriate Note that DFSs, QECCs and topological codes can all be
controls may be available which can serve as decouplingescribed by this same algebraic decompositféfl. We can
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therefore generically discuss encoded qubits in the context of More to the point of this paper, we can eliminate some of
quantum error prevention without regard to the type of enthe components of the interaction algebra by eliminating
coding although we will primarily direct our attention to some of theS, (or some combination thergofin our case,
DFSs. we seek to eliminate leakage. We therefore give a general
classification of elements of the algebra according to their
effect on the code space. The elements of the interaction
lll. LEAKAGE AND LEAKAGE ELIMINATION algebra{A}=A, will be classified agE;} C A, which act on
OPERATORS (LEOs) the code,{E;"}C.A which affect the orthogonal subspace,

Qubits can be either a subspace of a larger system HilbeRNd leakage errord} C A which couple the elements of the

space or an encoded subspace of a larger Hilbert space. TRRAEC With states in the orthogonal subspate ,
idealized, isolated two-level system never occurs in nature, oM the general decomposition of the algebra in Sec.

when all energy scales are taken into account. We therefore B, We should note the following facts. One can always

seek to eliminate, or reduce the difference between an ideafl€compose the algebra into a set which acts on the system
ilbert space and a set which acts on the Hilbert space of the

ized qubit and the approximate two-level systems availabléll® "
in experiments. Whether these are two physical states in gnvironment. These sets can be taken to be Hermitian opera-

larger Hilbert space, or a state which is encoded into somErs With complex coefficients. The set of operators may then
set of states through a nontrivial transformation, we will dis-2Ways be expressed as some linear combination of tensor

cuss a generalized notion of a code and encoded subspa®@goducts of the two sets with complex coefficients. This im-

This encoded subspace, or codespace, will be derbtede plies that, although the symmetries appropriate for a DFS

othogonal complement of the codespace, also a subspace 'GfY Not always exist, we may always use a DFS-compatible

the system Hilbert space, will be denoi@dl. Our objective  Pasis. This will be important in Secs. IV and V where we

will be to eliminate the coupling betweef, and C*. We WI||' dlsc_uss a basis for which a code can be construct_ed
refer to such errors as leakage errors. However, unlike conYich will protect against errors, even when no symmetry in
siderations of leakage introduced during logical, or gating"€ Operator algebra exists initially.

operationg5,47,58—62, we will consider residual errors and A. Canonical LEOs

errors introduced by system-bath couplings ag3i. ) e
Let us first consider the simple case of a physical or en- N the simplest case of a “parity-kick” bang-bang control

coded qubit. In this case we would like to eliminate the leak{13,15,18,58 the decoupling sequence produces the effec-
age from a two-level system within aX-level system. We five evolution:

will choose an ordered basis for tielevel system Hilbert 12

spacef{|j)}j5y such that the cod€ will be spanned by the Herr~ =, UHU!, (8)

first two levels. The algebra of operations on the system 2i0

Hilbert space can then be classified in the following way, i.e., there is only one nontrivial decoupling puld,=1)

B 0 00 0D [64]. We will restrict out attention to parity-kick pulses due
E= (0 0), L= (O C)' = (F 0 ) (7) to time constraints which restricts the number of pulses that
can be applied in many physical systems.

whereB andC are 2x 2 and(N-2) X (N-2) blocks respec- Abtractly, we can state the consequences of the parity-
tively, andD, F are 2x (N-2) and(N-2) X 2 blocks respec- kick pulse sequence as follows. Given any subspgace,
tively. Operators of the typ& represent logical operations, there is a canonically associatégl group (the cyclic group
i.e., they act entirely within the code subspageé.operations ~ Of order twg. This group is generated by the operaRyr
act only onC* and thus have no effect on the qubit subspace=expillc), wherell; is the projector onto the code space
[63]. Finally, L represents the leakage operators. This decomC- In the language of, graded spaces, this operator is a
position, for physical or encoded qubits is quite general andbarity operator, i.e R?=1, inducing aZ, grading of the state
the operators® act only on the logical qubit labels. space. This means that splits as a direct sunt/© @ H?,

Generally, modifying the Hamiltoniatmore specifically, ~of two orthogonal subspaces: the ogiven sector©=C
the system-bath interaction Hamiltonjathrough the use of (H'Y). This grading can be lifted to the operator algebra over
dynamical decoupling controls can change the conditions unk turning this(Lie) algebra into a super- df,-graded Lie
der which quantum information is protected against errorsalgebra. Operators commutin@nticommmuting with R
Clearly, this is accomplished by modifying the gels,S,}, ~ are referred to as evelodd. Let X e £(H); the even sector
which modifies the interaction algebré and thus the irre- of the algebra is given byX|[R_,X]=0} (i.e., R XR =X)
ducible components ofl. For example, we can create DFSs and the odd sector of the algebra is given {§/{R ,X}
where none were possible without such a modification by=0} (i.e., RLXR’[:—X).
inducing a symmetry17,19,21,29-32,34,36—-388W\e could As an example, let us suppose that@Jlare in the odd
also eliminate correlated errors, thus changing the requiresector of the algebra. According to the pulse sequence, Eq.
ments for a QECC. As described in Sec. Il A, dynamical(8), any Hgg=S,®B,, odd, in the system-bath Hamiltonian
decoupling controls can be seen as a projection onto a sulill be removed after a complete set of operations. Therefore
space of the space of operators acting on the system Hilbewthen allS, are odd, complete decoupling is achievable using
space. only R,.
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Now consider deakage-elimination operatq,EO) as in  change for logical gating operations, as will be shown later

[37] (see alsd37]).
A more general characterization of a LEO is the follow-
R, = eiq5<_| 0) 9) ing. Let the Hamiltonian for a LEO be given by
o 1)
H, O
where the blocks have the same dimensions as ifBand H= 0 H,)’ (12

expi¢p) is an overall phase factor. This operator anticom-
mutes with the leakage operatdf® ,L}=0, while [R_,E] = whereH; acts on the code subspace dthgon the orthogo-
=[R_,E*]=0. Clearly such a sequence exactly produces th@al subspace. IH, is diagonal with everiodd) integers as
grading of the algebra described aboRe.is a LEO since it the diagonal elements artd, is diagonal with odd(even
follows that the following(parity-kick) sequence eliminates integers as the diagonal elements, then one may write the
the leakage errors: LEO as

lim (e—th/nR’[e—th/nRL)n — e—iHEte—iHit1 (10) R.=U exp- iﬂ-H)UT, (13)
n—o

whereU=U;® U, is a direct sum(block diagona). In this
where Hg (H*) corresponds to part of the error algebracase H is not projective since it has nonzero eigenvalues
which affects onlyC (Ct). To physically implement this, in when acting on the subspace orthogonal to the cdde
practice one takes=1 and makes the time very small  effective LEO, however, is unchanged, i.e., the form €.
compared to the bath correlation time as discussed in Sets obtained, which again produce&agrading of the algebra

Il A. Equation (10) then holds to ordet?, and implies that and thus eliminates leakage errors as desired. Such is the
one intersperses periods of free evolution for tinvéth R,  case for the four-qubit DFS example in Sec. V.

R! applied as strong pulses. The teem tin Eqg. (10) has
no effect on the qubit subspace. The tes'e! may result in C. Leakage elimination to/from a subspace
logical errors, which will have to be treated by other meth-
ods, e.g., concatenation with a QE(28,65,68, or addi-
tional BB pulseq16,23,31. Therefore, in order to eliminate
leakage we seek a LEO for a given encoding, which is ob-

tainable from a controllable system Hamiltonigty acting The advantage of the first, is that, in principle, we may

foratimer i.e., R =exp-iHsr). _ use theorem 11.131,32], or the methods df19], to eliminate
In [37], several examples were given of physical systems,| arrors on the encoded state space, even the logical errors.

which, fqrmally, _have logical operatio_ns \_/vhich are also natu—pis requires(in many casesacting on the codespace with
rally projective (i.e., they act as projections onto the code|qgical operations. If, however, we do not have the experi-

subspack Such operations were termed canonical. As MeNthental capabilites to implement the operations quickly

tioned above, in some situations, the physically availabley,q,gh for the given bath, or if the operations are imperfect,
(and controllablg interactions do not include operations ¢, operations may cause more errors in the sy§&sh
which are also projections. We will provide one important o yever, we may choose to apply the alternative of operat-
example in Sec. V, the four-qubit DFS in a solid state systemng on ¢1, If the states are properly confined to the code
which uses Heisenberg exchange interactions for gating ORspace, the states should not be occupied, and decoupling
erations. In this case it is highly desirable to have a mOreyises will have no effect. If th€' states are becoming
general method for producing the appropriate LEO Wh'ChpopuIated, then the decoupling pulses applied’to will

does not include a projection. Next we will provide a gener-gjiminate leakage. As long as the decoupling pulses are prop-
alized LEO which circumvents the need for canonical gatlnge”y constrained to act purely a@" then this results in in-

operations, before discussing the LEOs for the three- anfleaseq tolerance to other pulse imperfections, in the sense

four-qubit DFSs. that states irC are unaffected. As we will see, in the case of
the three- and four-qubit DFSs, a large class of errors are
B. Generalized LEO leakage type errors. Therefore decoupling with respeC_’tLto
) ) . _could serve as an effective error suppression method in those
Generally, when a canonical logical operation is experi-ases where direct action on the codespace is inadvisable.
mentally available, we can construct a LEO using the meth-
ods from[37] where the projectofl, (defined thergis re-

dundant. In fact, an operator of the following form serves as

a LEO, The three qubit DFS encodes one logical qubit using a
(11) subsystem of three physical qubits. It is the most efficient
way in which to protect a single logical qubit from collective
where oy_is any operation such that, =o], o?=1 on the errors of any typebit-flip, phase-flip, or both[10]. It has
code space, and|#)=0 for any|#) e C*. The primary ex- been shown that the exchange interaction is sufficient for
ample is wheno_ is a canonical logical operation. Such is implementing a universal set of gating operations on this
the case for the 3-qubit DFS which uses Heisenberg exsystem while preserving the DH$1,40. In this section we

Given the form of the operators that cause leakage, Eq.
(7) and the form of the leakage elimination operator £,
we in fact have the choice to eliminate leakage betwéen
andC+* either by acting or, or by action onC*.

IV. LEOs AND THE 3-QUBIT DFS

RL = EX[(— i’]TO'L),
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will consider the effects of a LEO on this DFS and examine 0100

ways in which to protect information which is encoded in _ 1 1000
this subsystem. X=—=(Ey3s—E9 = ® |y, 16
y \5( 23~ E13) 0000 2 (16)

0 00O

A. 3-qubit DFS

We will represent the three-qubit DFS encoded qubit in )
the following way, wheré0)=|1/2), |1)=|-1/2) are the two where we have labeled the rows and columns by the basis

states of a single spin-1/@ote that this convention is op- €lements{lJ=1/2 x=0),[J=1/2 A=1),[J=3/2)}, and |, is

posite to that of Ref[11]): the 2X 2 identity matrix which accounts for the fact that the
action ofE;; is independent of thg label (zcomponent o)
(1010) - |100))/\/§ } of the basis states. The logical™operation is given by68]
0.)
(o11) = [101)\2 =
1 0 0O
(2[001) - 010y - [100))\6 | ]
1. -1 0 -100
(= 2|110)+]011) + [101))\6 Z==(Ei3+Ep3— 2E) = ® 1, (17)
3 0 0 00O
1000) 0 0 00
(|001) + |010) + | 100))/y3 "
(j011)+]101) + [110)/V3 andY can be obtained from these two by commutation.
[111) Recall that any operator can be decomposed in terms of a
(14 linear combination of traceless, Hermitian matri¢pkis the

. . = identity) with complex coefficients. The exponentiation of
This  notation means ] that |0|_>:Ct’o(|0']?0>—|100>)/. V2 the set of traceless, Hermitian operators with real coefficients
+Bo(|01D~[10D)/v2 (arbitrary superposition and like- il give the set of unitary transformations on the Hilbert
wise |1)=a;(2/001)-|010-[100)/V6+B,(-2/110+[01)  space. Thus a Hermitian basis can be used to decompose the
+/101)/\6. The logical zero(|0,)) and logical one(|1,))  error operators and Hamiltonians on the set of quantum
comprise the code subspateThese states belong to the two states.

J=1/2 irreducible representatiorigreps of SU2). The co- Here we will give a complete set of 64 operators on the
efficients are then the Wigner-Clebsch-Gordan coefficientspace of three qubi($3 traceless and the identitgnd iden-

[67] and the last 4 states comprisd=a3/2 representation of tify the logical operators, collective operators, and leakage
SU2). The twoJ=1/2 irreps can be distinguished by a de- operators. This enables the identification of various types of
generacy label\=0,1. Thus a basis state in the eight- noise which can occur on the DFS and their effect on the
dimensional Hilbert space is fully identified by the three code. The decomposition of the errors in terms of basis ele-
quantum number§l,\, u), where u is the z component of ~ments and the identification of the types of err@eakage,

the total spind. In this notation we can write collective, logical on the code, will be useful for identifying
the type of error correction procedure which should be used

|0L) = |1/2,0,1/2 + By|1/2,0,- 1/2 to correct errors affecting the code.
We note that it is also possible to eliminate all noises
and which are not collective, thus producing the conditions for a
DFS[19,21,29,34 Our primary concern will be leakage er-
1) = y|1/2,1,1/2 + B4[1/2,1,- 1/2 rors and a leakage elimination operatbEO). For this pur-
pose, we note that, given the form of E¢$6) and(17), the
logical operations for the 3-qubit DFS formed from physi-
cally available exchange interactions are canonical, and
B. Gating operations for the 3-qubit DFS and LEOs thus provide an experimentally available LEO.

Physical gates were given in Refd1,40,43 and shown
to be compatible with the DFS. The gates derived in Ref. C. The DFS basis
[11] are generated by the Heisenberg exchange interaction
between pairs of physical qubits: As we saw above, collective errors on the DFS set of
states act to mix the two states within i) subspacéand
simultaneously those within thi, ) subspack but do not
mix the two subspaces with each other. Thus we use the
labels Q and 1 to identify the two-state subsystem used for
whereo=(0y,0y,07) is the vector of Pauli matrices. As writ- storing quantum information. This set of states is related to
tenE; is the exchange operation between qubisdj, i.e., the standard sefcomputational basis se{p00),...,/111))
Eij| #)il4);=|w)i|#);. The logical X" operation is given by through a transformation we will denot&y;, and which can
[11] be read off directly from Eq(14):

1 .. .
Eij = E(l + 0 O'J'), (15)
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—_ 1 1 - ~
© 0 = 0-= 0 0 O 0o
V2 V2 - o
O = 12302
. 1 1 - leak 1,0
- 0 O = 0 -—= 0 O0mF 312,12 332,172
V2 V2 000" Qo (20)
2 1 .
0 _E - _6 0 - _E 0 0O O0- The nonzero, off-diagonal blocks ar&x[2(1/2)+1])
- v v m X ([2(3/2)+1])=4X 4 matrices, whileOp, is 8X8. It is
u@=1lo o 0 1 0 i_ _2 0 then clear that we can construct an operator basis for the
dis™ | ] J6 J6 V6 U leakage errors using the DFS basis as follows:
0 0 0 0 0 0 -~ o~ o~ -~ o~ o~
1 1 1 X® 0, ®0; orY® O, ® Oy, (21
= &= 0 —&= 0 0 0 =~ = === ~ . : :
V3 V3 V3 whereO,, O;e{l,X,Y,Z}, i.e., eachQ;, i=\,u is a Pauli
0 0 1 0 1 1 0 matrix, or the identity matrix, in the DFS basis. The rolexof
NE V3 3 andY (which act on the] facton is to put the 4x 4 matrix
0 O 0 0 0 0 0o 1 0, ® O; on the off-diagonal, as in Eq20).
(19) Similarly, a logical operator takes the form
Circuits for implementing logic gates on the 3-qubit DFS ~ 045" | O
were given in Refs[11,40,42. Here we take a different ap- Oogic =| G112 g |
proach. Rather than examining the DFS in the physical basis, 1,0
as in Refs[11,40,43, we examine the DFS in the DFS basis (22

where the code and the effects of logical operators and lea

age errors are more transparent. This DFS basis will be de

noted with a tilde. This distinguishes a set of operators acting ( 1)
1

lfa nonzero 4 4 block) and, e.g., the logicalr, appears as

on the code from the physical gating operators. The two sets G, =
of operators are related by the DFS transformation

UdeOUde O. In the DFS-basis operators take the form

(23)

Thus the logical basis elements for the 3-qubit DFS code are

01/2 12 01/2 12 01/2 302 represented simply by
0=\ 21| grin| g | I U
010 7| 01 O aX:E(I+Z)®X®I,
~3/2,1/2 3/2 12 | 332,312
00,0 0 00,0 (19)
J1,J o l~ ~ o~ o~
whereO 11 22 is a(2J;+1) X (2J,+1)-dimensional block cou- a=-(1+2)eYel,

pling |J;,\,) states with|J,,\,) states. In the DFS basis,

states are represented, using the notation of Sec. IV A, as

vectors of the form(ag,Bo, a1, B1, Y-3i2: Y-1/2: Ys2: Y312)", I P

where thea, 3 coefficients belong to th@=1/2 subsystems, o= 5(| +2)®Z|l. (24)

and where they coefficients belong to thé=3/2 subspace.
The advantage of the DFS basis is this: In the DFS-basi

every operator can be decomposed into a tensor product

the formO ®OA®OJ, where each operator acts on the cor-
respondmg quantum number in a stalen, w).

Ij‘pe factor(l +Z)/2 in these tensor products acts as a projec-
tion onto the code space. Therefore these operations act as
ordinary Pauli matrices o6, or the Q —1, block of the code
and are canonical operators in our sefrsate that they also
preserve theu factors of|0,), |1,)). As we have seen in the
previous section, these can be implemented using Heisenberg
In [37], leakage errors betwedh and C+ were treated. exchange interactions between qubits. Tausnonical LEO
Here we will carry this analysis further and investigate theis experimentally available in systems which use Heisenberg
types of errors which may arise according to the algebrai€xchange operations for gating and are encoded in the
decomposition and their effect on the code. Note that thé-qubit DFS
matrices in Eq(7) are 8x 8 matrices. Out of these, ony The DFS logical stateg¥,)=al0,)+b|1.) are, by con-
andF represent leakage processes, so that there are a totalgjfuction, invariant under collective errors. Thennormal-
32 independent such errors. In the DFS-basis these leakaiged generators of collective errors a8 =20{, a=X,y,z
errors between thel=1/2 and J=3/2 subspaces have a To express these operators in the DFS basis, we transform by
simple representation. In terms of H49) they appear as Ugts

D. Decomposition of the algebra
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S -2 I T2, e s ot e v o ot
B Sy, = = + X+ 2= (T - 2K+ —=(1 - 25X
S =(1+21Y+\3(1 - 21Y + (1 -2)XY + (1 - 2)¥X, V30 V10 V30
(26 - g(T—Z)W, (31)
S,=(1+21z+(-201z2+(-2ZI=Tz+({ -2)Zl. _ .
@) S,= =~ (1 +2IX+ (1~ ZjiX, (32)

This may appear to be a less convenient form than the form
of the operators in the physical basis, but in fact the interpre-

~ 1l ~ ~~ 1 (3~ ~ o~
tation is quite simple. For example, consider the tgim S,=—=(+2)l ——\/;(I Z)IX + :(I Z)XX.

~ 2y 2 5
+Z)IX appearing irSy; in the DFS basis it is represented by ! K (33
d \ The result is three additional orthonormal basis elements
X /, (29) which all act trivially on the DFS.

The same procedure can be used for the colledfieeror
e., it corresponds to an identical action on the tivol/2  [Eq. (26)] to obtain the following set of trivially acting er-
subsystems, which is the signature of a collective error. Ofors:

course, the term§+2)ﬁ, (T+2)T2 have a similar interpre- 1 - 1 - 1 o e
tation. The remaining terms appearing in E(5)—(27) are Sy, = ?O( +IY+——=(=2)IY+——=( - 2)XY
all projections on the orthogonal subspage, since they ‘ “
contain the facto(T—z). Thus they do not cause any errors
on the DFS.

These observations facilitate the completion of the basis.
Consider next the basis for operations on the orthogonal sub- VBr e 1m e
spaceC* which are analogous to the logical operation<Con Sy, =~ ?(I +2)1Y + E(I -2, (35
These can be determined from the &&t) by simply replac-
ing the projectofl +Z) by (1-2). However, in order to keep 1 o e - 2
all basis elements linearly independent, in particular orthogo- S, =- —r (1+ IY— = \/7(| DY + —=( )xy
nal to S,, we must modifyo; : P 2\5 5

— (36)

Some of the lack of symmetry can be remedied by a different
choice for theSQ4) matrix. However, no significant simpli-
fication is obtained. Thédiagona) collectiveZ error may be
e completed by finding the remaining elements in the set of
o, =212~ (1-2)Zl. (29 eight diagonal elements which span the subspace of diagonal
elements of the algebréhe Cartan subalgebraWe now
Thoose elements to complete the basis, including this set. We
start with the following diagonal matrices

We now complete the 64 element orthogonal basis for the
algebra[69]. Consider first the collectivX error, Eq.(25).
The following four elements, appearing By, and whose

interpretation as errors that either leave the DFS invariant or ”Z“l’z Zﬁ, (37)
annihilate it was discussed above, span a 4-dimensional sub-
space of the algebra: which clearly also act as collective errors. Counting indicates

there are 14 remaining basis elements. These can be taken to
(1 + 21X, (1 = 21X, (1 - 2)XX,(1 = 2)YY. (300 be

To find a set of operators which are mutually orthogonal and (1-2%xz, (1-2Yz, (0-2)ZX,
orthogonal toS,, we use the following procedure. First we
normalize the collectiveX error (with an overall factor of TSI 0SS
1/46). We then require that the set of mutually orthogonal (1=2zv, (=222, (38)
operatorg30) be taken from the set of orthogonal basis ele-which act to annihilate the DFS; and

ments, to another set of orthogonal elements. The appropriate

mapping is an element &Q(4) since it maps four orthonor- (I+2XX, (1+2XY, (1+2)XZ,
mal vectors to four orthonormal vectors. Therefore, form an o
SQ(4) matrix whose first column elements are aly®/ and (I1+2)YX, (+2YY, (+2)YZ,
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(T +E)2§<, (T +2)2§’ (~| +2)22 (39) iqentified the action of these operators on the code, we may
discuss their significance in a more practical setting. We will

which act nontrivially on the DFS in that they mix the  next decompose the errors that are seen as obstacles to build-
factors of|0,), |1,). ing practical solid state quantum computing systems and dis-

One may verify that we have enumerated 64 basis eleeuss the effect of these errors in terms of the complete set of
ments, with the property that they are trace orthogonal andperations on the code space.
therefore span the space of three-qubit operators. These were
chosen compatible with the appropriate subspaces of the
three-qubit DFS. The advantage of explicitly listing a com- F. Errors in quantum-dot qubits

plete set of basis elements is that we may now classify the A dominant type of error in solid-state quantum dot quan-
operators and their actions on the code space. tum computing architectures arises from spin-orbit interac-
tions [70]. Spin-orbit interactions couple charge degrees of
freedom associated with the orbital wave functions to the
spin degrees of freedom used to store and manipulate infor-
In this subsection we classify the different types of opera-mation. Since charge often interacts much more strongly
tors in terms of how they affect the three-qubit DFS codewith the environmen{71], spin-orbit interactions give rise to
We will then discuss the effect of asymmetric exchange opédecoherence in these devices.
erations on this code in the next subsection. There are several ways in which to treat the gating errors
As stated previously63], we will not consider the errors which arise due to anisotropic exchange interactions. One
of type (38) or (29) as elements of the algebra which would way is to treat them with a QECC, which, as stated in the
cause irrevocable loss of informatignote, however, that Introduction, requires a substantial qubit overhead. A second
one could in principle remove them by symmetrizing with way is to use shaped puls¢g2]. A third way is to use
respect toC*). In addition, we have previously classified dressed qubit§73]. Alternatively the spin-orbit interaction
basis elements E24) as logical operations which give rise can also be used to construct a universal gatg&&75.
to logical errors when they are contained in the error algebraere we assume the form of spin-orbit interactions which
The elements of the form E1) are a basis for the leakage give rise to errors which are of the same form as the asym-
type errors, while terms of the form Eq&4), (26), and(27), metric, or anisotropic exchange. However, we treat these as
are collective operations and will not affect the DFS encodediecoheringcausing information logsrather than unitary er-
states. The two diagonal elemei(®) do not cause leakage rors.
and do not add anything beyond logical type errors. The Consider a bilinear coupling in the physical basis of the

E. Classification of errors

remaining operations need to be interpreted. form
After some consideration, it is clear that tBg, S, op-
i i 2) _ af _«o a
erators are actually elements of the stabilizer subgroup. For a HE = 2 _2 gifoiol © B, (41)
DFS this is defined agl1] < ap=lay.z)
- « Wheregi‘}"g is a rank-2 tensor. The symmetrization procedure
D(v) = eXP[E V(S =1 @M, |, (400 of [34], that prepares collective decoherence conditions, ap-

plies only to linear coupling, so will not work in this case. In
where the elements of the vect@rv,, are complex numbers, this case we ”;USt consider the possibility of leakage. The
A h «, o 1 -
the S, come from the set which generates the collective errofiinéar termg;“o; of can be decomposed inf®) a scalar

algebraA (we can includeHs as S) and M, is a matrix go;-oj, which is proportional to the Heisenberg exchange

which only mixes noncode indices. Thus the linear combina®Perator and thus has the effect of logical errgys(ii) a

tions that are used in the sum that is in the argument of thEnk-1 tensor
exponential, will span the space of the primitives in the col- > e,
lective errors, and thé&,, S are included in these linear B (ai X 0y); (42)
combinations. Another way in which to see that these operafii) a mixed rank tensor
tors do not affect the code space is by acting with them on oL
the code. The terms iS,, and S, of the form (1+Z2)x (@i W(a;- %) (43
where thex is any operat(')r, are the only ones which act onwhich cannot couple the tw=1/2 states to each other, but
the code spac@vith no effec}, the others act on the orthogo- can couple them t&=3/2 states causing leakage. Thus we
nal complement*. Thus these operations do not affect thesee that theS=3/2 subspace acts as a source for leakage
code and are thus elements of the stabilizer. [from (ii) and (iii )], and that there is also the possibility of
The remaining erroré39) are products of elements of the (noncollective errors[from (ii)] which do not have the same
logical operations and the collective operations. In this caseffect on the|0,), |1,) states and therefore cause logical er-
the operator has the fornd A’ which is a product of an rors. Clearly, higher-order interactiorHsgg with n>2 can
operator which does nothing to the co@e stabilizer ele- cause similar leakage and logical errors. We also note that
men) and a logical error. the scalar coupling can be included as a special case of the
Now that the complete set of basis elements spanning thiype (iii ) errors. This is the way in which it will arise in our
three-qubit DFS has been explicitly represented, and we hawalculations.
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We will now examine the error@t2) and(43) in the basis - ﬁyé Vb’é
for encoded operations and thus identify their effect on the X(1+2)2l + ===
code space. To be specific, the errors in E¢8) and (43
will be transformed into the tilde basis, which acts on the ~
code space, by« E U, whereE, is either of the forn(42) x(1-2)ZY + A - A+ 271 -2)22Z
or (43). We will then decompose these operations in the DFS .

(tilde) basis of Sec. IV D. L _ _ S

Let us first consider errors of the for@2). We will con- " 3( N~ 7Y Dl (45)

sider only the errors on physical qubits one and two and

1
neglect leakage errors of the ty(&l). After omitting these Te(rjms 1}2723 gct od abnd thus h]:ave nho effect on the
two types of errors, the remaining errors are of the form ¢0de. Term 10 is a combination of exchange operations
which does not affect the code subspace. Terms 3,4,5,6 act

on the code space. They act either as a logical éteom 6

or as a logical error composed with a collective error. The
logical errors must be treated using other methods. In this
Assuming that we can remove leakage errors using an apprease, we see that all errors other than term 6 give rise to
priate LEO, our goal is to analyze the remaining errors to segygical Y errors. To remove all errors in the system, we have
how they affect the encoded qubits. different choices which could be good alternatives depending

Note first that in Eq(44) we are examining errors caused ypon the physical system. First, we could eliminate the errors
by interactions between qubits one and two. If only errorsysing more decoupling pulses. Second, we could choose a
between qubits one and two are present, there exists an igystem where the term 6 is negligible. This would enable
herent asymmetry in the noise, thus we would not expect @omplete elimination of the errors with one other decoupling
DFS to protect against this type of error. However, it turnspulse. Third, if term 6 is negligible, we could treat the
out that the basis elementgrimitives) here are the same as errors with the concatenation of the DFS with a QECC. The
those found in the interactions between qubits two and thregequired QECC would use only three qubits to encode one.
and in QUbitS one and three. Cancellation or partial cancella- Let us assume that we can introduce another decoup”ng
tion of this type of error will occur when the interactions pu|Se to eliminate the |og|cﬂ error (term 6 so that we 0n|y
between pairs of qubits combine to form only stabilizer op-have logicalY errors present in our computation. This could
erations, a situation which could be achieved throughpe accomplished, for example, by implementing an extra
material/environment engineering or by dynamical decou-z/2-logicalX rotation in half the LEO time. To eliminate the
pling symmetrization with respect to the code space. HergemainingY errors, we concatenate the DFS with a QECC
we will only consider the asymmetric case of a pair of qubits[28] by encoding the DFS-protected logical qubits into a
(qubits 1 and 2 QECC which is protected againgterrors. We may describe

How should we interpret the errors in E¢4)? Consider  this briefly as follows. We use the state consisting of three
the first term. Examining the logical errors, we see that theogical (DFS) qubit states to construct the following nine-
error present in Eq(44) is proportlonal tooySy less those qubit code(nine physical qubits
terms which are of the forrfi =Z)**. Thus it is a logical Y _
multiplied by a collectiveX error less those errors which act ) =2a/0.0.0) +b[1,1,1,).
only onC*. The other terms are also proportional to a logicalSuppose that a logicaf error occurs on one of the logical
Y operation. This indicates that we may protect against all otjubits, say the second. Then, in terms of the encoded DFS
the remaining errors with the concatenation of this DFS by atates, the logical qubit undergoes the following transforma-
QECC which protects against logic#l errors. This can be tion:
accomplished by using a 3-to-1 QECC encoding. This ma . .
well bep a signif>i/cant gdvantagerver a pure QgECC giver}: ¥ =200.0) +b|1, 1, 1) — ~ial0.1,0,) +ib[1,0,1,).
available resources in solid-state implementations of quan- (46)
tum computing.

Now we examine errors of the for(d3). Here, as before,
we will analyze only the effect of this type of error on physi-
cal qubits one and two. We will also again omit the leakage
errors which are of the forrt21). The remaining 10 terms of
the DFS transformed errofd3) are

2\3 2\3

715[3;20 +Z2)YX + Bl + 2)YY + Bl + 2)YZ]. (44)

Detecting errors on this logical state may be accomplished
by detecting differences between any two pair of DFS en-
coded gubits according to the stabilizer formalighh Alter-
natively, the original Shor codée ] which protects against
errors (or equivalentlyZ errorg on physical qubits may be
modified for our purposes by simply changing local bases on
each logical qubit to describe the formalism in terms ofYhe

R I T e e O 7
2V3 2V3 errors. (Every operator and state would be rotated 42
about theZ axis in the logical basisThe advantage of such
L N+ 7‘{7;)“ ST+ VWZ( VIVE(I v a concatenation is described i28]. The fidelity is effec-
2\3 tively decoupled from the error rate on logical qubits and

i depends only on the strength of the perturbation which
N2t "% _ causes the asymmetries in the system-bath interaction and
T LB 2\3 “(1+2VZ+ ( NPV~ Are~ N disturbs the DFS encoding. We should note that, whereas our

052301-9



BYRD et al. PHYSICAL REVIEW A 71, 052301(2005

formalism to this point is valid for any Heisenberg exchange )
based quantum computing scheme, this final readout and cor-  T1-1=[1 -1 = TE(|110]> -[1110),
rection of the error on the QECC encoded qubit will depend v
upon the details of the system.

Physical implementations will dictate which combination =11 = r(|0100 12000
of decoupling pulses, materials engineering, or a QECC is a 11 '
valid option for the elimination of remaining errors after

leakage has been removed. 1
=[10)= (/0110 +|010D - |1010 - |1001)),
V. LEOs AND THE 4-QUBIT DFS 2

The four qubit DFS encodes one logical qubit using a
subspace of four physical qubits. It protects a single logical 1 =1-1= r |011]> |101D). (49)
qubit from collective errors of any typéit-flip, phase-flip,
or both. It has been shown that the exchange interaction i
sufficient for implementing a universal set of gating opera-
tions on this system while preserving the DE%,4(0. In this
section we will answer the following questioni4) Is there a Q,,=122) =]0000,
LEO available in solid-state implementations using the
4—qubit DFS, which relies on the exchange interacti(®)? 1
Is there a canonical set of such gaté8PAfter leakage is Q1 =]10)= §(|1000 +]0100 + (0010 + |000D),
removed, can we completely remove all errors in asymmetric
exchange, and if so, how?

1
A. The four-qubit DFS Q20: |1 - 1) = \_r |110Q + |1010 + |100]> + |0110

+|0102 + |0011),

She spin-2 representation is given by the following set of
states(a quintuplet

The four-qubit DFS contains two singlet states for the
representative qubit, three triplets and a spin 2, or quintuplet.
The singlet states, which represent the logical zero and one

of the DFS encoded qubit are given by Q. =2-1= E(|011]> +]1013 + |110D +|1110),

=10 = (10101 +]1010 -[0110 - [1003)  (47)
Q-2=[2-2 =[1111). (50

and We will refer to this set of states as the set of DFS states
1 with the logical elements comprising and the other states
S'=|1p) = ==(2/0011 + 21100 - 0110 - 100D (T and Q state$ comprisingC*. In the latter part of this
vi2 section we will again use a DFS basis for the operators and a
-|0101) - |1010), (48)  transformationUg to change from the computational basis

set of states and operators to the DFS sets. Let us now dis-

where as before, =|1/2©|-1/2®|1/2) ¢ s5 |0gical operations on the DFS.

®|-1/2) in the standard angular momentum baSsand St
comprise the code spackfor this DFS and the remaining

states are the statesd. B. Gate operations and LEOs
The triplet states are given by Physical gates were given in Réfl1] and shown to be
1 compatible with the DFS. These are given by the exchange
Th=1D= §(|010() +|1000 - |0001) - |0010), interaction between pairs of physical qubits. The logicél “

operation is given by
1 — 1
= |10>=T§(|1100— |001D)), X:TE)(Ezs— Eia), (52)
v v

where, againE;; is the exchange operation between qubits
T, =[1-1= (|1110 +]1101) - [1011) - [0111), and j, andl, is the 2x 2 identity matrix. The logical Z”
operation is given by

1 Z=-Ey (52)
T%,=[10 = —=(|000D - 0010), _
V2 andY can be obtained from these two. However, there is a
distinct difference between this set of logical operations and
the analogous set in Sec. IV. The difference is that naturally
=]10) = =(]200D + |010 1010 -|0110), : . i . ;
10 =110 (| ) +010% -[1010 -[0110) occurring logical operations on the three-qubit DFS have ei-
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genvalue zero on the statesdn. This in not the case for the answer this question is to do the following calculation. Start

four-qubit DFS. For example, all states@n have eigenval-  wjth operations which act a%, Y andZ and have eigenvalue
ues of +1 for states i¢*, with the exception off® whose  zerg on the states ifi". These are operators in the DF%.,
states have eigenvalue -1 when acted orZby¥hese gates the tilde basis. Then use the DFS transformation to trans-
are not “canonical” in our sense and so the projection ontdorm from the DFS basis back to the physical basis to find
the code subspace is not automatic. One must either use atfre set of physical interactions necessary to perform canoni-
other set of gating operations which are projective or use theal gating operations. We now use this procedure to find such
generalized LEO of Sec. Il B. We explore each of these twoa LEO.

possibilities in the next two subsections. The DFS basis for this system has logical operations
which transform between the two one-dimensional spin-0
C. A LEO from exchange representations. These may be represented by ordinary Pauli

As noted in[37] there exist physically available opera- Matrices which act only on the>22 block. The operations
tions which are “canonical” in many circumstances, meaningVhich perform these logical operations are labelled using the
that they are projective onto the code subspace. The defin?Pn-0 index and a 0, 1 degeneracy 'nd@gﬁjkz’ which in
tion of Z given in [11] (and the previous sectipris not this case has only a single entry for each pairA,. Accord-

canonical. We therefore seek to construct a physically availi-ng to the _definition_, canonical Iogit_:a.l operations would have
able LEO. We do this using the definition of the generalizeaIhe following form in the DFS basis:
LEO given in Sec. Il B. . o Ouo
Let the (square of thetotal spin angular momentum op- 7=y 0 : (56)
erator be denote8? with eigenvalueS(S+1). Then Zaa s
where Q. IS anmXn matrix of zeros. This operation acts
4 = (E 5i)2, simultaneously as a projector onto the code subspace and a
Pauli operator on the encoded state. Now, let the DFS trans-
formation be given by the computational basis states be
given by|#.), and the DFS states be given f;o:

wherea;=(o7, 0!, 07) are the Pauli matrices acting on tik
qubit. Therefore

.. Ugrd o) = s - (57)
o 12+2>. G- _ _ o
P2 = = Then the logical operations are related to the operations in
8 the computational basis by
gives an appropriate LEO of the form given in Ef). This il s = Ugrol o), (58)

can be seen as follows. On ti$=0 (singled subspaces the . _ _ o )
operator gives zero. On ti&= 1 subspaces the operator gives Where o is the canonical logical operation in the logical

1 and on theS=3 subspace it gives 3. Therefore the appro-basis ando is the logical operation in the computational
priate LEO is given by basis. This physical realization of the canonical operations

will be found using
R, =exp-inSY2},

UgtoiUgts= 0F. (59
which reproduces the LEO of E). ) ais7ids .' o
Now consider a modified set of logical operations: Using only the exchange operations between qubétsdj,
L Ej=1+0-0j, the canonical operations are given by
r— 2
X Xi=x+siz, (53 7= (21~ E)(2 ~Ep) - (21 ~Ex)(2 ~Ep) (60
YooY =Y+ 2, (54) and
0,=2(21 = Eg) (2l = Egp) — (21 = E13)(2l = Epy) — (21 — Epg)
Z2-272'=2+SI2. (55) X (21 - Ey) (61)
This set may be used to obtain an appropriate LEO by expoand the commutator of these two gives the third logical ele-
nentiation, e.g., ment. It is clear from this form that 4-body interactions are
B L= required to construct canonical logical operations using only
R =exp~im(Z')}. exchange operations. Although there are methods for con-

Similarly we can construct a LEO usir)_g or Y'. Since the structing these from more fundamental interactipng,77| .
o ) . o so that they may be useful for some quantum computing

opera.torS2 is comp_osed of exchange interactions, it is a|50purposes(e.g., simulations they are likely impractical for
experimentally available. BB controls due to time constraints. Alternatively, it has been
shown that these four-body interactions naturally arise in
spin-coupled quantum dots with significant effect, and it has

One may ask the question: what set of gates would b&een suggested that one might take advantage of these ef-
canonical if we use only exchange operations? One way téects when designing gating operatidirs].

D. A canonical LEO from exchange
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E. Decomposition of the algebra F. Errors in quantum-dot qubits

The detailed analysis of Sec. IV becomes much more As was done for the three-qubit DFS, we will examine
complicated for the four-qubit DFS. The set of operators forerrors corresponding to Eq#42) and (43). We will again
the Hilbert space of four qubits contaif®)?=28=256 basis suppose that the errors of the tyfi¢ are included as type
elements. This set obviously becomes prohibitively large fofiii), and that an appropriate LEO is experimentally avail-
such a detailed analysis as the number of qubits grows. Howable, so that we may neglect leakage errors. We therefore
ever, there are several key observations which summarizéecompose the four-qubit DFS transformed terms, .
our three-qubit analysis and which are quite gendfidiese  and(43), into the DFS basis elements. In this case the rep-
can also be seen from the algebraic decomposition of Se¢gesentations used for the DFS states are not completely sym-
Il B.) The operations in the DFS basis may be classified agetric in the four qubits. We must therefore consider two
follows: Logical operations, operations 6rt, collective op-  pairs of interactions, the interactions between qubits one and
erations, leakage operations, sums and/or products of one tr0, and between qubits two and three.
more of these types. Thus identifying these types will enable The error arising from Eq42) between physical qubits 1
the identification of general operations in terms of these. A@ind 2, and neglecting leakage operations and operations on
in the treatment of the 3-qubit DFS, we will assume that theC*, consists of just one term:
LEO can be implemented so that leakage errors are irrel-
evant. In this case, we need only remove logical operations 1 - - -
(this will also remove operations which are products of logi- - =AY+ A+ B+ 21 +2)(1+2)Z. (63)
cal operations and another typ&herefore our goal is to 3v2
identify logical operations and then extract those operators in
the spin-orbit coupling terms which give rise to logical type There are two different terms for the E@2) when acting
errors, whether or not they are combined with collective erbetween qubits 2 and 3:
rors.

Logical errors are those generated by logical operations 1 ~ ~ o
given in Sec. V B. In order to discern their effect on the DFS, E(VEVE + YA+ %) +2)(1+2)(1+2)Z, (64)

- N

we may transform these to the DFS basisUy OU}=0,

where the transformatiobl 4 is defined by the transforma-

tion from the computational basis states to the logiC#tS) 1 L

basis states of Sec. V A. —=(Ys+ B+ Y +2)(1 +Z2)(1 + 2)X.  (65)
The extraction of logical operations and operations which 2\6

are products of logical operations with another are readily - A rather stark difference between the three-qubit DFS and
performed withMATHEMATICA. We first note the form of - ihe four-qubit DFS is the fact that no errors of the form Eq.
logical operations when we choose an ordered logical, 0[43) contribute to logical errors on this code. We therefore
DFS, basis. The first two entries for this ordered basis ar@eaq not correct this type of error. These types of errors
00 and|1,). Logical basis elements for the algebra, whengecyr in zinc-blende type semiconductor structures which

restricted to the code subspace, have the form have a broken inversion symmetry. Knowing that removing
all leakage errors can render this type of error insignificant is
(1+2)(1+2)(1 +2)0, (62)  animportant advantage of this code.
|1

Another quite striking difference between the two codes is
. that the scalar term, errors of the fokim, are the only types
where O; e {X,Y,Z}. These observations imply that, from present. Thus if this type of error could be eliminated by
Sec. lll, B is a 2X2 matrix, C is a 14X 14 matrix,E is 2  materials engineering, no errors would be present on the en-
X 14 andE* is 14x 2. coded qubits.

It is clear from Eq(62) that on this two-dimensional sub- To correct all errors of the forms in Eq&42) and (43),
space, these operators span the space of logical operationgthout the ability to eliminate the scalar coupling, for the
As noted above, we could include products of these withifour-qubit DFS code, we may apply the same methods as in
other operations and/or include operationCon by a direct  the three-qubit casgl1) More decoupling pulses could be
sum. However, these have no effect on the code once leakag@plied to eliminate the logicaX and Z errors.(2) Another
errors have been removed, and eliminating logical elementdecoupling pulse could be used to eliminate Zitgpe errors

eliminates the other errors as well. and a three-logical-qubit QECC could be used to eliminate
The collective errors, which also have no effect on thethe X type error.

code annihilate the code elemerftbey are singlet statgs However, the important difference between the two codes

Therefore, in this case the collective errors are trivial. is that the antisymmetric term, also known as a

Having established the correspondence between the reDzyaloshinski-Moriya term, is not present after the imple-
evant parts of the argument for the three-qubit DFS and thenentation of an appropriate LEO. Therefore, if this term is a
requirements for noise-free evolution for the four-qubit DFS,dominant source of errors in a particular implementation of
we may now analyze the errors which occur on this code imquantum dot quantum computing, then the four-qubit DFS
solid-state qubits. has a distinct advantage over the three-qubit DFS.
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VI. CONCLUSIONS which is physically available in solid-state qubit implemen-

We have given methods for the implementation of leakagd@tions of quantum computing. We have shown that after
elimination operator§LEOS) which are, in many circum- leakage errors have been removed, the remaining bilinear

stances, physically available in experiments. These LEOSOUPliNgs which could give rise to errors may be treated with
eliminate a large and important class of errors; those thagither a QECC ora cycle mvolvmg e_xtrg_deqouplmg p_ulses.
would serve to destroy a subspace encoding. The methodor the four-qubit DFS there are similarities in our ability to

for producing these have shown promise in many eXperiexperimentally treat errors. However, it has two advantages

ments and here we have generalized the method for produ¥er the three-qubit DFS. First, only scalar type bilinear in-
ing such LEOs. teractions affect the code. Second, eliminating leakage errors

Symmetrization by dynamical decoupling can be per_from thg four-qubit DFS removes the_Dzyanshinski-Moriya
formed by decoupling the code from its orthogonal subspac#iteraction errors. The_se are present in many sem|conductc_)rs
or the orthogonal subspace from the code. In the first casd/hich have a broken inversion symmetry and are the main
we can, in principle, remove all errors from the code spacePart of the anisotropic exchange interaction.

While this is not true when the decoupling is performed with
respect to the orthogonal subspace, the advantage of this
method is that it does not introduce further errors if imper-
fect decoupling controls are used. D.A.L. acknowledges financial support from AFOSR
For the three- and four-qubit DFSs, we have given a(F49620-01-1-0468the Sloan Foundation, NSERC, and the
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