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The Bell-Kochen-Specker theorem establishes the impossibility of a noncontextual hidden variable model of
quantum theory, or equivalently, that quantum theory is contextual. In this paper, an operational definition of
contextuality is introduced which generalizes the standard notion in three ways:sid it applies to arbitrary
operational theories rather than just quantum theory,sii d it applies to arbitrary experimental procedures rather
than just sharp measurements, andsiii d it applies to a broad class of ontological models of quantum theory
rather than just deterministic hidden variable models. We derive three no-go theorems for ontological models,
each based on an assumption of noncontextuality for a different sort of experimental procedure; one for
preparation procedures, another for unsharp measurement proceduressthat is, measurement procedures asso-
ciated with positive-operator valued measuresd, and a third for transformation procedures. All three proofs
apply to two-dimensional Hilbert spaces, and are therefore stronger than traditional proofs of contextuality.
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I. INTRODUCTION

Traditionally, anoncontextualhidden variable model of
quantum theory is one wherein the measurement outcome
that occurs for a particular set of values of the hidden vari-
ables depends only on the Hermitian operator associated
with the measurement and not on which Hermitian operators
are measured simultaneously with it. For instance, suppose
A, B, andC are Hermitian operators such thatA andB com-
mute,A andC commute, butB andC do not commute. Then
the assumption of noncontextuality is that the value pre-
dicted to occur in a measurement ofA does not depend on
whether B or C was measured simultaneously. The Bell-
Kochen-Specker theorem shows that a hidden variable model
of quantum theory that is noncontextual in this sense is im-
possible for Hilbert spaces of dimension 3 or greaterf1–3g.

The traditional definition of noncontextuality is lacking in
several respects:sid it does not apply to an arbitrary physical
theory, but is rather specific to quantum theory;sii d it does
not apply to unsharp measurements, that is, those associated
with positive-operator valued measuressPOVMsd, nor does
it apply to preparation or transformation procedures; andsiii d
it does not apply to ontological models wherein the outcomes
of measurements are determined only probabilistically from
the complete physical state of the system under investigation,
for instance, indeterministic hidden variable models or onto-
logical models of quantum theory lacking hidden variables.
In this paper, we propose a new definition:

A noncontextual ontological model of an operational
theory is one wherein if two experimental procedures
are operationally equivalent, then they have equivalent
representations in the ontological model.
This definition will be explained in Sec. II, where we

provide a precise account of what it is for two experimental
procedures to be operationally equivalent, and describe what
is meant by an ontological model of an operational theory,
specifying in particular how different experimental proce-

duresspreparations, measurements, and transformationsd are
represented in such a model. We also explain why it is ap-
propriate to call this sort of ontological modelnoncontextual
by providing an operational definition of an experimental
context.

In Sec. III, we specialize our definition to the case of
quantum theory. We provide examples of the sorts of con-
texts that can arise for preparations, transformations, and
measurements, and describe what an assumption of noncon-
textuality for each type of procedure implies for an ontologi-
cal model of quantum theory. In the case of measurements,
we also generalize the object that is examined for context
dependence from outcomes to probabilities of outcomes, and
discuss the motivation for doing so. Further, we show how
the traditional notion of noncontextuality is subsumed as a
special case of our generalized notion when the outcomes of
sharp measurements are assumed to be uniquely determined
by the complete physical state of the system under investi-
gation.

In Secs. IV, V, and VI, we provide no-go theorems for
ontological models based on the assumption of noncontextu-
ality for preparations, unsharp measurements, and transfor-
mations, respectively. All three proofs apply to two-
dimensionals2Dd Hilbert spaces, and are therefore stronger
than traditional no-go theorems for noncontextuality, which
require Hilbert spaces of dimension 3 or greater.1 In Sec. V,
we also provide a no-go theorem for noncontextuality of
unsharp measurements based on a recent generalization of
Gleason’s theorem to 2D Hilbert spacesf5,6g. Section VII
provides a general discussion of the motivation and plausi-
bility of noncontextuality for different sorts of procedures,
and Sec. VIII investigates the connection between these dif-
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1Recent works by Cabellof4g and Buschf5g generalize the notion
of contextuality to unsharp measurements in a manner that is dif-
ferent from the proposal of this paper. From our perspective, this
work makes use of an assumption of deterministic outcomes for
unsharp measurements that cannot be justified by an assumption of
noncontextuality. This issue is discussed in Sec. VIII.
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ferent sorts of noncontextuality and the assumption that mea-
surement outcomes are uniquely determined by the complete
physical state of the system under investigation. Some con-
clusions and questions for future research are presented in
Sec. IX.

II. DEFINITIONS OF NONCONTEXTUALITY
FOR ANY OPERATIONAL THEORY

In an operational interpretation of a physical theory, the
primitive elements are preparation procedures, transforma-
tion procedures, and measurement procedures. These are un-
derstood as lists of instructions to be implemented in the
laboratory. The role of an operational theory is merely to
specify the probabilitiespsku P,T,Md of different outcomesk
that may result from a measurement procedureM given a
particular preparation procedureP, and a particular transfor-
mation procedureT. When there is no transformation proce-
dure, or when it is considered to be part of the preparation or
the measurement, we have simplypsku P,Md.

Given the rule for determining probabilities of outcomes,
one can define a notion of equivalence among experimental
procedures. Specifically, two preparation procedures are
deemed equivalent if they yield the same long-run statistics
for every possible measurement procedure, that is,P is
equivalent toP8 if

pskuP,Md = pskuP8,Md for all M . s1d

Two measurement procedures are deemed equivalent if they
yield the same long-run statistics for every possible prepara-
tion procedure, that is,M is equivalent toM8 if their out-
comes can be associated one-to-one such that

pskuP,Md = PskuP,M8d for all P. s2d

Finally, two transformation procedures are deemed equiva-
lent if they yield the same long-run statistics for every pos-
sible preparation procedure that may precede and every pos-
sible measurement procedure that may follow, that is,T is
equivalent toT8 if

pskuP,T,Md = pskuP,T8,Md for all P,M . s3d

It follows that one can distinguish two types of features of
an experimental procedure: the first type of feature is one
that is specified by specifying the equivalence class that the
procedure falls in, while the second type is one that is not.
The set of features of the second type—those that are not
specified by specifying the equivalence class—we call the
contextof the experimental procedure. Note that, by our defi-
nition of an experimental context, having knowledge of the
context does not enable one to predict the outcome of an
experiment any better than if one only knew the equivalence
class of the experimental procedure.

An example from quantum theory should clarify the no-
tion of a context. Consider the following different measure-
ment procedures for photon polarization. The first, which we
denote byM1, constitutes a piece of polaroid oriented to pass
light that is vertically polarized along theẑ axis, followed by
a photodetector. The second, which we denote byM2, con-

stitutes a birefringent crystal oriented to separate light that is
vertically polarized along theẑ axis from light that is hori-
zontally polarized along this axis, followed by a photodetec-
tor in the vertically polarized output. The third and fourth
procedures, denotedM3 andM4, are identical toM1 andM2,
respectively, except that they are defined relative to an axisn̂
that is skew to theẑ axis. It turns out that the statistics of
outcomes forM1 are the same as those forM2, for all prepa-
ration procedures, and those forM3 are the same as those for
M4. However, the statistics of outcomes for the first pair are
different from those of the second. Thus,M1 andM2 fall in
one equivalence class of measurements, andM3 andM4 fall
in another. The orientation of the polaroid or calcite crystal is
an example of the first sort of feature of an experimental
operation, one whose variation involves a variation in the
operational equivalence class of the procedure. On the other
hand, whether one uses a piece of polaroid or a birefringent
crystal to measure photon polarization is a feature of the
measurement procedure of the second type; a variation of
this feature does not change the equivalence class of the
procedure. It is therefore part of the context of the measure-
ment procedure.

To properly define a noncontextual ontological model of
an operational theory, it is not enough to have a definition of
context; we also need to specify precisely what we mean by
an ontological model. We turn to this now.

An ontological model is an attempt to offer an explanation
of the success of an operational theory by assuming that
there exist physical systems that are the subject of the ex-
periment. These systems are presumed to have attributes re-
gardless of whether they are being subjected to experimental
test, and regardless of what anyone knows about them. These
attributes describe the real state of affairs of the system. Thus
a specification of which instance of each attribute applies at a
given time we call theontic stateof the system. If the ontic
state is not completely specified after specifying the prepa-
ration procedure, then the additional variables required to
specify it are calledhidden variables. Although most onto-
logical models do involve hidden variables, this is not al-
ways the case. For instance, the ontic states may be associ-
ated one-to-one with the equivalence classes of preparation
proceduressas is the case for pure preparation procedures in
the Beltrametti-Bugajski model of quantum theoryf7gd. We
shall denote the complete set of variables in an ontological
model byl, and the space of values ofl by V.

Within an ontological model of an operational theory,
preparation procedures are preparationsof the ontic state of
the system. However, the procedure need not fix this state
uniquely; rather, it might only fix the probabilities that the
system be in different ontic states. Thus someone who knows
that a system was prepared using the preparation procedure
P describes the system by a probability densitymPsld over
the model variables.

Similarly, measurement procedures are measurementsof
the ontic state of the system. Again, these procedures need
not enable one to infer the identity of the ontic state uniquely,
nor need they even enable one to infer a set of ontic states
within which the actual ontic state lies. Rather, they might
only enable one to infer probabilities for the system to have
been in different ontic states. In this, the most general case,
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the outcome of the measurement is not uniquely determined
by l. Only the probabilities of the different outcomes are so
determined. Thus, for every value ofl, one associates a
probabilityjM,ksld which is the probability of obtaining out-
comek in a measurementM given that the system is in the
ontic statel. We call jM,ksld an “indicator function.”2

Finally, transformation procedures are transformationsof
the ontic state of the system. These may be stochastic tran-
sitions. Thus a transformation procedureT is represented by
a transition matrix,GTsl8 ,ld, which represents the probabil-
ity density for a transition from the ontic statel to the ontic
statel8.

Thus within an ontological model, if the preparation pro-
cedure isP, and the measurement procedure isM, then the
probability assigned to outcomek is the probability assigned
to outcomek given l, averaged over alll, weighted by the
probability ofl, that is,edlmPsldjM,ksld. If there is a trans-
formation procedureT intervening between the preparation
and measurement, and this is associated with the transition
matrix GTsl8 ,ld, then the probability of outcomek is
edl8dljM,ksl8dGTsl8 ,ldmPsld.

Summarizing, an ontological model assumes:sid every
preparation procedureP is associated with a normalized
probability density over the ontic state space,mP:V
→ f0,1g such thatemPslddl=1; sii d every measurement pro-
cedureM with outcomes labeled byk is associated with a set
of indicator functionshjM,ksldjk over the ontic states, that is,
a set of functionsjM,k:V→ f0,1g satisfyingokjM,ksld=1 for
all l; siii d every transformation procedureT is associated
with a transition matrix GT:V3V→ f0,1g such that
eGTsl8 ,lddl8=1 for all l, and sivd the predictions of the
operational theory are reproduced exactly by the model, that
is,

pskuP,T,Md =E dl8dljM,ksl8dGTsl8,ldmPsld s4d

for all P, T, andM.
In general, the representation of an experimental proce-

dure in an ontological model might depend on both its
equivalence class and its context.3 It is natural, however, to
consider the possibility of a model wherein the representa-

tion of every experimental procedure dependsonly on its
equivalence class and not on its context. After all, a natural
way to explain the fact that a pair of preparationsmeasure-
ment, transformationd procedures are operationally equiva-
lent is to assume that they preparesmeasure, transformd the
ontic state of the system in precisely the same way. We shall
call such an ontological modelnoncontextual. Any opera-
tional theory that admits such a model shall also be called
noncontextual.4 In general, if any set of procedures is repre-
sented in a context-independent way within an ontological
model, we shall say that the model isnoncontextualfor those
procedures.

It is useful to explicitly characterize the assumption of
noncontextuality for preparations, transformations, and mea-
surements. We will call an ontological modelpreparation
noncontextualif the representation of every preparation pro-
cedure is independent of context, that is, if

mPsld = mesPdsld, s5d

whereesPd is P’s equivalence class. Similarly, we will call a
model measurement noncontextualif the representation of
every measurement procedure is independent of context, that
is, if

jM,ksld = jesMd,ksld, s6d

where esMd is M’s equivalence class. Finally, a model is
called transformation noncontextualif the representation of
every transformation procedure is independent of context,
that is, if

GTsl8,ld = GesTdsl8,ld, s7d

whereesTd is T’s equivalence class. Auniversally noncon-
textualontological model is one that is noncontextual for all
experimental procedures: preparations, transformations, and
measurements.

III. DEFINITIONS OF NONCONTEXTUALITY
IN QUANTUM THEORY

We begin with a quick review of the operational approach
to quantum theory, described, for instance, in Refs.f9–12g.

An equivalence class of preparation procedures is associ-
ated with a density operatorr. This is a positive trace-1
operator over the Hilbert spaceH of the system: r
.0, Trsrd=1. Rank-1 density operators are simply projec-
tors onto rays of Hilbert space, and are calledpure.

An equivalence class of measurement procedures is asso-
ciated with a positive operator valued measuresPOVMd hEkj.
A POVM is an ordered sethEkj of positive operators that
sum to identity,okEk= I. The kth elementEk is associated
with the kth outcome. Specifically, given a preparation asso-

2Some might argue that within the framework of an ontological
model, the termmeasurementought to be reserved for a procedure
which reveals some attribute of the system under investigation.
However, we feel that it is suitable for any procedure that leads to
an update in one’s information about which instance of some at-
tribute applied, or equivalently, in one’s information about what the
ontic state of the system was prior to the procedure being imple-
mented. Note that even this weak notion of what constitutes a mea-
surement fails for some experimental procedures that lead to dis-
tinct outcomes, namely, those wherein the probabilities of the
different outcomes are independent of the ontic state. For simplicity,
however, we shall not introduce any novel terminology for this
exceptional case.

3If one allows such generality, then—perhaps contrary to a com-
mon impression—it is possible to provide an ontological model of
quantum theory. The deBroglie-Bohm theoryf8g is an example.

4This terminology allows one to use the phrase “quantum theory
is contextual” as a shorthand for “quantum theory does not admit a
noncontextual ontological model,” much as it is common to use the
phrase “quantum theory is nonlocal” in place of “quantum theory
does not admit a local ontological model.”
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ciated with a density operatorr, the probability of the out-
come k is simply TrsrEkd. It is useful to single out the
POVMs whose elements are idempotent, that is, those for
which Ek

2=Ek for all k. Since idempotent positive operators
are projectors, these POVMs are calledprojective-valued
measuressPVMsd. The associated measurements are said to
be sharp. These are the sorts of measurements that are con-
sidered in standard textbook treatments of quantum mechan-
ics. A Hermitian operator defines a PVM through the projec-
tors in its spectral resolution.

Finally, an equivalence class of transformation procedures
is associated with a completely positivesCPd mapT. A CP
mapT is a positive linear map on the space of operators over
H such thatT ^ I is a positive linear map on the space of
operators overH ^ H8, whereH8 is of arbitrary dimension,
andI is the identity map onH8. Unitary maps, familiar from
textbook treatments of quantum theory, are reversible CP
maps.

A preparation procedure associated with a non-rank-1
density operatorr can be implemented in as many ways as
there are convex decompositions ofr. Supposehspk,rkdj is a
convex decomposition ofr, that is,r=okpkrk. If one gener-
ates a random number according to the distributionpk, and
upon obtaining the numberk, one implements the prepara-
tion associated withrk, this procedure is a member of the
equivalence class of procedures associated withr. Another
way of implementing a preparation procedure that is associ-
ated withr is to implement a preparation of a purificationucl
of r on H ^ H8 sa purification ofr is any stateucl such that
TrH8uclkcu=rd. The equivalence class therefore also contains
members associated with different purifications ofr.

The assumption of preparation noncontextuality in quan-
tum theory is that the probability distribution over ontic
states that is associated with a preparation procedureP de-
pends only on the density operatorr associated withP,

mPsld = mrsld. s8d

In particular, the distribution does not depend on the particu-
lar convex decomposition ofr or on the particular purifica-
tion of r that is used in the preparation procedure.

The multiplicity of contexts for transformation procedures
parallels the multiplicity of contexts for preparation proce-
dures. Transformation procedures that are associated with
nonunitary CP maps can be obtained as a convex sum of
unitary maps in many different ways, each one of which
corresponds to a distinct transformation procedure, and can
also be obtained by implementing a unitary map on a larger
system that incorporates the system of interestf13g.

The assumption of transformation noncontextuality in
quantum theory is that the transition matrix that is associated
with a given transformation procedureT depends only on the
CP mapT associated withT,

GTsl8,ld = GT sl8,ld. s9d

It does not, for instance, depend on the particular convex
sum of unitaries or the particular unitary on a larger system
by which the transformation was implemented.

In the case of quantum measurements, there are also many
sorts of contexts. For instance, every fine-graining of a non-
maximally informative measurementsi.e., a measurement as-
sociated with a POVM at least one element of which is not
rank 1d provides a different context. Suppose the POVMhFjj
is a fine-graining ofhEkj, which is to say that there is a
partitioning of the outcomesj into sets Sk such thatEk
=o jPSk

Fj. By implementing a measurement associated with
the POVM hFjj, then discarding all information aboutj ex-
cept the setSk to which it belongs, one implements a mea-
surement in the equivalence class associated with the POVM
hEkj.

Despite the fact that the independence of representation
on fine-graining is traditionally the full extent of the assump-
tion of noncontextuality for measurementssas we will show
belowd, it is not difficult to see that there are many other
sorts of contexts. For instance, there is a context for every
convex decomposition of a nonmaximal measurement. A
convex decomposition of a POVMhEkj is defined as a prob-
ability distribution hpaj and a set of POVMs,hFaj where
Fa=hFk

aj, such thatEk=oapaFk
a. By samplinga from the

distribution hpaj, then implementing the measurement asso-
ciated with the POVMhFk

aj, and registering only the out-
come of this measurement, one implements a measurement
in the equivalence class associated with the POVMhEkj.
There is also a context for every way of obtaining a POVM
by coupling to an ancilla and measuring a PVM on the com-
posite of system+ancillaf14g.

The assumption of measurement noncontextuality in
quantum theory is that the set of indicator functions repre-
senting a measurementM depends only on the POVMhEkj
associated withM,

jM,ksld = jhEkj,ksld. s10d

In addition to admitting new sorts of contexts for mea-
surements, our generalized notion of measurement contextu-
ality involves a slight revision ofwhat it is that depends on
the measurement context.

In the past, measurement contextuality has only been con-
sidered within the framework of deterministic hidden vari-
able theories, and the question of interest has been whether
or not the measurement outcome for a given ontic state of the
system depends on the context of the measurement. How-
ever, forobjectively indeterministicontological models, it is
clear that the natural question to ask is whether theprobabili-
ties of different outcomes for a given ontic state of the sys-
tem depend on the context. This is analogous to Bell’sf15g
generalization of the notion of locality from measurement
outcomes being causally independent of parameter settings at
spacelike separation to theprobabilitiesof measurement out-
comes being causally independent of parameter settings at
spacelike separation.5 This distinction was introduced by
Bell in order to cleanly separate the notion of locality from

5More specifically, Bellf15g defined a theory to belocally deter-
ministic if the variables in space-time region I are determined by the
variables in a space-time region that fully closes the backward light
cone of I, andlocally causal if the probability distribution over

R. W. SPEKKENS PHYSICAL REVIEW A71, 052108s2005d

052108-4



the notion of determinism. Similarly, our generalized defini-
tion allows one to cleanly separate the notion of measure-
ment noncontextuality from the notion of determinism.

Once the question is posed, it is somewhat obvious that if
there is to be any notion of measurement contextuality within
objectively indeterministic ontological models, the appropri-
ate quantities to examine for context dependence are the
probabilitiesof different outcomes for a given ontic state of
the system. A less obvious feature of our generalized notion
of measurement contextuality is that the probabilities of out-
comes are the appropriate quantities to examine for context
dependence even inobjectively deterministicontological
models. The key is that the latter sort of model may still
exhibit an epistemicindeterminism, wherein knowledge of
the equivalence class of the measurement together with the
ontic state of the system under investigation does not
uniquely fix the outcome. To explain this properly, we need
to consider some of the details of the mathematical represen-
tation of these measurements.

The distinction between the ontic state of the system de-
termining the outcome and determining only the probabilities
of different outcomes is captured mathematically within an
ontological model by the sorts of indicator functions one
uses to represent measurements. The former case is repre-
sented by an indicator function that isidempotent, that is,
one for whichxsld2=xsld fwe shall denote idempotent in-
dicator functions byxsld rather thanjsldg. Such functions
are necessarily equal to 1 in some region of the ontic state
space and 0 elsewhere. By virtue of the fact that a set of
indicator functions must satisfyokxksld=1, if all the indica-
tor functions are idempotent, then they must be nonoverlap-
ping, that is,xksldxk8sld=0 for kÞk8. Thus for every value
of l, only a single indicator function in the sethxksldj re-
ceives the value 1 while the others receive the value 0. Since
the value of thekth indicator function at a givenl specifies
the probability of thekth outcome given the ontic statel, the
outcome of the measurement is determined for all ontic
states if and only if the latter is represented by a set of idem-
potent indicator functions.

We shall call the assumption that a particular measure-
ment is represented by a set of idempotent indicator func-
tions the assumption ofoutcome determinismfor that mea-
surement.

Now note that even within an objectively deterministic
ontological model, measurements may fail to exhibit out-
come determinism: specifying the ontic state of the system
under investigation together with the equivalence class of the
measurement procedure may be insufficient to uniquely fix
the outcome. The outcome might only be fixed uniquely by
supplementary features of the measurement procedure
swhich constitute part of the context of the measurement by
our definitiond, such as microscopic degrees of freedom of
the apparatus. Because the indicator function for a measure-

ment specifies the dependence of the outcome on the ontic
state of the system under investigation, and not the depen-
dence of the outcome on the ontic state of any systems that
make up the measurement apparatus or the environment,
such a measurement must be represented by a nonidempotent
set of indicator functions. Nonetheless, it may still be the
case that for each equivalence class of measurements, all the
elements of the class are represented by thesamenonidem-
potent set of indicator functions, andthis is all that is re-
quired for the measurements to be deemed noncontextual by
our definition.

As an example, consider a classical system and a classical
measurement device that generates an outcome by rolling
one of several differently weighted dice, with the choice of
the dice being determined by the ontic state of the system.
Two such devices are only found to be operationally equiva-
lent if all of the dice of one are weighted in the same way as
those of the other. Thus every device in the equivalence class
is represented by the same set of indicator functions, and
consequently one has measurement noncontextuality by our
definition. The underlying ontological modelsclassical me-
chanicsd is objectively deterministic, but in order to predict
the outcome of a particular measurement, one must supple-
ment the ontic state of the system by the precise initial con-
figuration of the dice and their environment, features that
form part of the context of the measurement. Thus although
the outcome of the measurement clearly depends on the con-
text, we take this to be a failure of outcome determinism
rather than a failure of measurement noncontextuality.6

Thus it is really the notion ofoutcome determinism, rather
than the notion of determinism, which we seek to cleanly
separate from the notion of measurement noncontextuality
through our generalized definition. This makes our definition
of measurement noncontextuality revisionist insofar as the
traditional definition implicitly incorporated the assumption
of outcome determinism, while ours does not. This suggested
revision in terminology is motivated by the idea that what is
crucial to the notion of a noncontextual ontological model is
that it reproduces the equivalence class structure of the op-
erational theory.

It is worth noting that, given the additional assumption of
outcome determinism, one can recover the traditional defini-
tion of measurement noncontextuality as a special case of
our definition. Specifically, if one considers only sharp mea-
surements and one represents these by sets of idempotent
functionssi.e., one assumes outcome determinism for these
measurementsd, then the assumption of the independence of
the representation of a measurement on the fine-graining of
the PVM with which it is implemented is just the traditional
notion of noncontextualitysdescribed in the Introductiond.
This can be seen as follows. Specifying whether a Hermitian
operatorA is measured together withB or with C is equiva-
lent to specifying a fine-graining of the PVMhPkj that is

values for a variable in space-time region I are determined by a
specification of the values of all the variables in the backward light
cone of I s“determined” in the sense that further conditioning on
variables in the region outside the backward light cone would not
change the probability distributiond.

6By our definition, any classical theory is necessarily noncontex-
tual for all experimental procedures. This highlights another virtue
of our particular definition: contextuality, in all of its manifesta-
tions, is found to be a nonclassical phenomenon. For an opposing
perspective, see Ref.f16g.
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defined by the spectral resolution ofA; the simultaneous
eigenspaces ofA andB define one such fine-graining, while
the simultaneous eigenspaces ofA and C define another.
Specifying the eigenvalue assigned to an operatorA for ev-
ery value ofl is equivalent to specifying a set of idempotent
indicator functions; the values ofl in the support of the
function associated with outcomek are simply those that
assign thekth eigenvalue toA. Clearly then, assuming that
the value assigned toA is independent of whetherA is mea-
sured together withB or C is equivalent to assuming that the
set of idempotent indicator functions associated with the
PVM hPkj is independent of the fine-graining by which it
was implemented.

No-go theorems based on the traditional definition of non-
contextuality apply only in Hilbert spaces of dimensionality
3 or greater. Moreover, one cannot extend such proofs to 2D
Hilbert spaces because there are no fine-grainings of non-
trivial PVM measurements in a 2D Hilbert space, and fine-
graining is the only notion of context that is recognized tra-
ditionally. However, by appealing to preparations,
transformations, and unsharp measurements, which admit
many contexts even in a 2D Hilbert space, proofs of contex-
tuality can be achieved here as well. From this perspective,
the restriction of previous proofs of contextuality to 3D Hil-
bert spaces was an artifact of a limited notion of a context.

Among the new proofs of contextuality that we shall
present, the proof of preparation contextuality is the sim-
plest, and so we begin with this case.

IV. PROOF OF PREPARATION CONTEXTUALITY
IN TWO DIMENSIONS

There are two features of the representation of preparation
procedures in an ontological model that are central to our
proof. The first concerns distinguishability, and the second
convex combination.

Feature 1. If two preparation procedures,P and P8 are
distinguishable with certainty in a single-shot measurement,
then their associated probability distributions,msld and
m8sld, are nonoverlapping, that is,

msldm8sld = 0 for all l. s11d

This feature can be understood as follows. Suppose one
wishes to perform a measurement that discriminates, with
certainty, between two probability distributions. In other
words, one wishes to perform a measurement that allows one
to retrodict, with certainty, which distribution applied. This is
only possible if the distributions to be discriminated are non-
overlapping. The reason is that if the two distributions over-
lapped in some region of the space of ontic states, then
whenever the actual ontic state was in that regionsand it will
sometimes be in that region, because the region is assigned
nonzero probability by both distributionsd, no measurement
would be able to distinguish with certainty whether the sys-
tem had been prepared using one or the other distribution,
since the actual ontic state is consistent with both. Thus if,
within an operational theory, a pair of preparation procedures
are distinguishable with certainty, then the only way an on-
tological model of the theory can account for this fact is by

associating these procedures with nonoverlapping distribu-
tion functions.

The second feature of an ontological model that is critical
to our proof is the manner in which convex combinations of
preparation procedures are represented. Suppose that the
preparation proceduresP andP8 are represented by distribu-
tions msld and m8sld. Now suppose that a bit is generated
uniformly at random from the distributionp, 1−p, and the
value of the bit is used to determine whetherP or P8 is
implemented, after which the bit is forgotten. This effective
procedure, which we callP9, must be represented within the
ontological model by a distributionm9sld satisfying

m9sld = pmsld + s1 − pdm8sld. s12d

The reason is as follows. The probability that the ontic state
of the system isl given procedureP9, is simply the sum of
the probability that it isl given procedureP and the prob-
ability that it is l given procedureP8, weighted by the re-
spective probabilities ofP andP8 given P9.

Thus we have the following.
Feature 2. A convex combination of preparation proce-

dures is represented within an ontological model by a convex
sum of the associated probability distributions.

With these facts in hand, we now proceed with the proof.
Consider a set of six pure preparations, denotedPa, PA,

Pb, PB, Pc, andPC, corresponding to the normalized Hilbert
space vectors,

ca = s1,0d,

cA = s0,1d,

cb = s1/2,Î3/2d,

cB = sÎ3/2,− 1/2d,

cc = s1/2,−Î3/2d,

cC = sÎ3/2,1/2d, s13d

or, equivalently, the rank 1 density operators,

sa = S1 0

0 0
D ,

sA = S0 0

0 1
D ,

sb =1
1

4

1

4
Î3

1

4
Î3

3

4
2 ,

sB =1
3

4
−

1

4
Î3

−
1

4
Î3

1

4
2 ,
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sc =1
1

4
−

1

4
Î3

−
1

4
Î3

3

4
2 ,

sC =1
3

4

1

4
Î3

1

4
Î3

1

4
2 . s14d

One can easily verify the following orthogonality conditions:

sasA = 0, s15d

sbsB = 0, s16d

scsC = 0. s17d

Now consider the preparation procedure wherein one of
Pa or PA is implemented, with the choice being made uni-
formly at randomsfor instance, by flipping a fair coind, and
with no record being made of the choice. Denote this proce-
dure byPaA. Define proceduresPbB andPcC similarly. Con-
sider also the preparation procedure wherein one ofPa, Pb,
or Pc is implemented, again, with equal probabilities for
each, and without recording the choice. We denote this by
Pabc. The procedurePABC is defined similarly.

These procedures are represented in the quantum formal-
ism by the appropriate convex sums of the density operators
in Eq. s14d. It turns out that all of these convex sums yield
the same rank-2 density operator, namely,

I/2 =1
1

2
0

0
1

2
2 , s18d

commonly referred to as the “completely mixed state.” Spe-
cifically,

I/2 =
1

2
sa +

1

2
sA s19d

=
1

2
sb +

1

2
sB s20d

=
1

2
sc +

1

2
sC s21d

=
1

3
sa +

1

3
sb +

1

3
sc s22d

=
1

3
sA +

1

3
sB +

1

3
sC. s23d

In Fig. 1, we present the Bloch ball representation of the
seven density operators defined above. This provides a

graphical synopsis of the relevant orthogonality relations and
convex structure.

Within an ontological model of operational quantum
theory, each preparation procedurePx is associated with a
probability distributionmxsld. Now note that if two density
operators,s and s8, are orthogonal in the vector space of
operators, that is,ss8=0, then the associated preparation
procedures can be distinguished with certainty in a single-
shot measurementsfor instance, for preparations associated
with orthogonal Hilbert space vectors, one simply imple-
ments the measurement associated with an orthogonal basis
that includes these vectorsd. By feature 1 of ontological mod-
els sdescribed aboved, distinguishable procedures are repre-
sented by nonoverlapping distributions. Thus from Eqs.
s15d–s17d we can infer that

masldmAsld = 0, s24d

mbsldmBsld = 0, s25d

mcsldmCsld = 0. s26d

Furthermore, in any ontological model a convex combi-
nation of preparation procedures is represented by a convex
sum of the associated probability distributionssfeature 2
aboved. Thus if the proceduresPaA,PbB,… ,PABC are repre-
sented by distributionsmaAsld ,mbBsld ,… ,mABCsld, the man-
ner in which these procedures are obtained by convex com-
bination ofPa,Pb,… ,PC implies that

maAsld =
1

2
masld +

1

2
mAsld, s27d

mbBsld =
1

2
mbsld +

1

2
mBsld, s28d

mcCsld =
1

2
mcsld +

1

2
mCsld, s29d

FIG. 1. The Bloch ball representation of the six pure states and
the five convex decompositions of the completely mixed state used
in the proof of preparation contextuality. Each convex decomposi-
tion is represented by a convex polytope whose vertices represent
the elements of the decompositionf17g. The two-element decom-
positions in our example are represented by line segments, and the
three-element decompositions by equilateral triangles.
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mabcsld =
1

3
masld +

1

3
mbsld +

1

3
mcsld, s30d

mABCsld =
1

3
mAsld +

1

3
mBsld +

1

3
mCsld. s31d

The assumption of a preparation noncontextual ontologi-
cal model is that the distribution associated with a prepara-
tion procedure depends only on the operational equivalence
class of that procedure, and thus only on the density operator
associated with that procedure. Since the procedures
PaA,PbB,… ,PABC are all represented byI /2, they must all be
represented by the same distribution in a preparation noncon-
textual ontological model. Thus we requiremaA=mbB=¯

=mABC. Denoting this distribution bynsld, we have simply

nsld =
1

2
masld +

1

2
mAsld s32d

=
1

2
mbsld +

1

2
mBsld s33d

=
1

2
mcsld +

1

2
mCsld s34d

=
1

3
masld +

1

3
mbsld +

1

3
mcsld s35d

=
1

3
mAsld +

1

3
mBsld +

1

3
mCsld. s36d

We now show that there is no set of distributions satisfy-
ing Eqs.s24d–s26d and Eqs.s32d–s36d. Consider the values
of the various probability densities at a fixed value ofl. We
denote these simply asma,mA,… ,mC. We show that the only
solution to all the constraints, for a fixedl, is
ma,mA,… ,mC=0, which we call the all-zero solution.

To satisfy Eqs.s24d–s26d, one of the pairma andmA must
be zero, as must be one of the pairmb andmB and one of the
pair mc andmC. In all, there are eight possible assignments of
zeroes that satisfy Eqs.s24d–s26d. We consider each of these
in turn.

If we havema,mb,mc=0 then by Eq.s35d we haven=0,
and by Eqs.s32d–s34d, we conclude thatmA,mB,mC=0, so
that we have the all-zero solution. If, instead we have
ma,mb,mC=0 then by combining Eq.s34d and Eq.s35d we
find 1

2mc= 1
3mc, for which the only solution ismc=0. But this

gets us back to the first case, and the all-zero solution. Every
other case yields the all-zero solution by virtue of the sym-
metry of the problem under rotations by multiples of 60° in
the Bloch sphere representation.

The above argument did not depend onl, and thus for all
l the only solution is the all-zero solution. Consequently, the
only set of distributions that satisfy Eqs.s24d–s26d and Eqs.
s32d–s36d is the set of uniformly zero distributions,
masld ,mAsld ,… ,mCsld=0. But such distributions are not
probability distributions since they are not normalized to 1.
This concludes the proof.

V. PROOFS OF CONTEXTUALITY FOR UNSHARP
MEASUREMENTS IN TWO DIMENSIONS

Proofs of measurement contextuality have usually arisen
only in the context ofsharp measurements, that is, those
associated with PVMs,7 and outcome determinism has been
assumed for such measurements. We shall make the same
assumption here for sharp measurements, but we shall be
considering unsharp measurements as well, that is, those as-
sociated with POVMs, and for these, outcome determinism
will not be assumed. It is important to note that the “proofs
of contextuality” presented in the next two subsections are
contingent on the assumption of outcome determinism for
sharp measurements. The status of this assumption will be
revisited in Sec. VIII, where we will clarify what, precisely,
has been proven.

A. A proof based on a finite set of measurements

Consider three binary-outcome measurements,Ma, Mb,
and Mc, associated respectively with PVMshPa,PAj,
hPb,PBj, and hPc,PCj, where Pa projects onto the ray
spanned byca, PA projects onto the ray spanned bycA, and
so forth, with the vectorscx being those that are defined in
Eq. s13d.8

By the definition of a PVM, we have

Pa + PA = I , s37d

Pb + PB = I , s38d

Pc + PC = I , s39d

and

PaPA = 0, s40d

PbPB = 0, s41d

PcPC = 0. s42d

Given the assumption of outcome determinism for sharp
measurements, the representations ofMa, Mb, andMc in an
ontological model are the sets of idempotent indicator func-
tions hxasld ,xAsldj, hxbsld ,xBsldj, and hxcsld ,xCsldj, re-
spectively. By definition, these must satisfy

xasld + xAsld = 1, s43d

xbsld + xBsld = 1, s44d

7Exceptions are Refs.f4,5,16,18g.
8Note thatPa=sa, PA=sA, etc., wheresx is defined in Eq.s14d.

This follows from the fact that the rank-1 density operator associ-
ated with a vector is simply the projector onto the ray spanned by
that vector. It follows that Eqs.s37d–s39d and Eqs.s40d–s42d are
equivalent to Eqs.s19d–s21d and Eqs.s15d–s17d, respectively. We
use a distinct notation for the same mathematical operators to re-
mind the reader of the fact that in this section they represent mea-
surement outcomes rather than preparation procedures.
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xcsld + xCsld = 1, s45d

and

xasldxAsld = 0, s46d

xbsldxBsld = 0, s47d

xcsldxCsld = 0. s48d

Now consider choosing one ofMa, Mb, and Mc at ran-
dom, with probability 1/3 for each, implementing the chosen
measurement, and only registering whether the firstssmall
letterd or the secondscapital letterd outcome occurred. Call
the effective measurement procedure that resultsM. It is as-
sociated with the POVM

H1

3
Pa +

1

3
Pb +

1

3
Pc,

1

3
PA +

1

3
PB +

1

3
PCJ . s49d

In an ontological model, a convex combination of mea-
surements procedures is represented by an element-wise con-
vex sum of the associated sets of indicator functionssfor the
same reason that an ontological model has feature 2 of Sec.
IV d. ThusM is represented by the set of indicator functions

H1

3
xasld +

1

3
xbsld +

1

3
xcsld,

1

3
xAsld +

1

3
xBsld +

1

3
xCsldJ .

s50d

Note that the POVMs49d is equal to9

H1

2
I,

1

2
IJ . s51d

But it is clear from this way of writing the POVM that the
measurement has a random outcome regardless of the prepa-
ration procedure, since Trsr 1

2Id= 1
2 regardless ofr. It then

follows that the equivalence class of measurement proce-
dures that containsM also contains the “measurement” pro-

cedureM̃ that completely ignores the system and just flips a
fair coin to determine the outcome. Now consider how the

measurementM̃ is represented in the ontological model. Be-
cause the outcome does not depend on the system at all, it
follows that regardless of the value ofl, there is a probabil-
ity of 1/2 for each outcome, so it is represented by the set of
indicator functions

H1

2
,
1

2
J , s52d

where each element should be thought of as a uniform func-
tion overl of height 1

2.10

By the assumption of measurement noncontextuality, the
measurementM must be represented by the same set of in-

dicator functions as the measurementM̃. It follows that the
set of functionss50d must be equal to the set of functions
s52d. However, this constraint is inconsistent with the con-
straintss43d–s48d. To satisfy Eqs.s43d–s48d it is necessary
that for every value ofl, one of xasld and xAsld must be
equal to 0 and the other equal to 1. The same is true ofxbsld
andxBsld and ofxcsld andxCsld. The eight possible assign-
ments of values to these six quantities leave the set of func-
tions s50d with the valuesh0,1j , h1,0j , h 2

3 , 1
3
j, or h 1

3 , 2
3
j but

neverh 1
2 , 1

2
j. This concludes the proof.

B. A proof based on the 2D version of Gleason’s theorem

The impossibility of noncontextuality for unsharp mea-
surements and outcome determinism for sharp measurements
can also be established in a 2D Hilbert space by making
appeal to a recent Gleason-like derivation of the quantum
probability rule by Buschf5g and by Caveset al. f6g. This
“generalized Gleason’s theorem” starts from the assumption
that there exists a probability measure that assigns a unique
probability wsEd to every positive operatorE such that
wsId=1, and whenever a set of positive operators forms a
resolution of identity,okEk= I, the associated probabilities
sum to 1,okwsEkd=1. From these assumptions, it is proven
that the measure must satisfywsEd=TrsrEd for some density
operatorr f5,6g.

Recall that the values of a set of indicator functions
hjksldj at a particular value ofl form a probability distribu-
tion over k. In a measurement noncontextual theory, every
positive operatorE is represented by a unique indicator func-
tion jEsld, with the identity operator being represented by
the unit function. Moreover, whenever a set of positive op-
erators forms a resolution of identity,okEk= I, the associated
indicator functions sum to the unit function,okjEk

sld=1.
Thus the set of all indicator functions for a given value ofl
in an ontological model satisfy the assumptions of the set of
probability measures in the generalized Gleason’s theorem. It
follows therefore that for every value ofl in the ontological
model, there is a density operatorrl such that jEsld
=TrsrlEd.

If in addition to measurement noncontextuality, one as-
sumes outcome determinism for sharp measurements, then
every projector is represented by a unique idempotent indi-
cator functionxPsld, and by the generalized Gleason’s theo-
rem,

xPsld = TrsrlPd. s53d

Suppose thatP= uclkcu, and consider al such that
xPsld=1. In this case, Eq.s53d implies thatrl= uclkcu. But
then for some other projectorP8= uc8lkc8u, where 0
, ukc uc8lu2,1, we have for this value ofl that xP8sld
=TrsrlP8d= ukc uc8lu2 and consequently 0,xP8sld,1,9This fact is also captured by Eqs.s22d and s23d.

10This fact can also be established by noting that the equivalence
class includes the measurementM8, obtained fromM by permuting
the two outcomessbecause such a permutation does not change the
statistics of outcomesd. The ontological representations ofM and
M8 are hj1sld ,j2sldj and hj2sld ,j1sldj. Now, the assumption of

measurement noncontextuality implies that sinceM and M8 are in
the same equivalence class, they must be represented by the same
set of indicator functions. Thus we require thatj1sld=j2sld. But
sincej1sld+j2sld=1, it follows thatj1sld=j2sld=1/2 for all l.
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which implies thatxP8sld is not idempotent. Thus the as-
sumption of noncontextuality for unsharp measurements and
outcome determinism for sharp measurements yields a con-
tradiction in a 2D Hilbert space.

This no-go theorem is related to the no-go theorem of the
previous section in the same way that the no-go theoremf1g
that is obtained from the standard Gleason’s theoremf19g is
related to the original Kochen-Specker theoremf2g. The
former derive a contradiction using the full set of measure-
ments, while the latter only make use of a finite set.

VI. PROOF OF TRANSFORMATION
CONTEXTUALITY IN TWO DIMENSIONS

Consider a set of six transformation procedures, denoted
T0,Tp/3,T2p/3,Tp ,T4p/3,T5p/3, where the procedureTu corre-
sponds to the CP map

Tu srd = Uy,u rUy,u
† , s54d

and where

Uy,u =1cos
u

2
− sin

u

2

sin
u

2
cos

u

2
2 s55d

is the unitary operator describing a rotation byu about the
y axis in the Bloch sphere. Consider also the CP mapT that
takes all points in the Bloch sphere and projects them onto
the ŷ axis. There are many ways of implementingT as a
convex sum of transformations, specifically,

T =
1

2
T0 +

1

2
Tp s56d

=
1

2
Tp/3 +

1

2
T4p/3 s57d

=
1

2
T2p/3 +

1

2
T5p/3 s58d

=
1

3
T0 +

1

3
T2p/3 +

1

3
T4p/3 s59d

=
1

3
Tp/3 +

1

3
Tp +

1

3
T5p/3. s60d

These identities can be explained as follows. The mapT can
be achieved by performing with probability 1/2 a rotation in
the Bloch sphere about they axis byu and with probability
1/2 a rotation byu+p. Taking u=0,p /3, and 2p /3 yields
Eqs.s56d–s58d. The mapT can also be achieved by perform-
ing a rotation abouty by u, by u+2p /3 or by u+4p /3 with
equal probabilities. Takingu=0 andp /3 yields Eqs.s59d and
s60d. A rigorous proof of these statements is provided in the
Appendix.

By the assumption of transformation noncontextuality
each of the seven CP maps we have considered is associated

with a unique transition matrix on the space of ontic states.
Suppose that we denote the transition matrix associated with
T by G, and the transition matrix associated withTu by Gu.
Because a convex sum of transformation procedures is rep-
resented in an ontological model by a convex sum of the
associated transition matrices, Eqs.s56d–s60d imply

G =
1

2
G0 +

1

2
Gp s61d

=
1

2
Gp/3 +

1

2
G4p/3 s62d

=
1

2
G2p/3 +

1

2
G5p/3 s63d

=
1

3
G0 +

1

3
G2p/3 +

1

3
G4p/3 s64d

=
1

3
Gp/3 +

1

3
Gp +

1

3
G5p/3. s65d

Note thatTu and Tu+p take any rank-1 density operator
lying in the z-x plane of the Bloch sphere to a pair of or-
thogonal density operators. Since these are distinguishable
with certainty, it follows from feature 1 of ontological mod-
els ssee Sec. IVd that the transition matricesGu and Gu+p

must take any distributionmxsld associated with such a den-
sity operator to disjoint distributions, that is,

E dl8 Gusl,l8dmxsl8d E dl8 Gu+psl,l8dmxsl8d = 0.

s66d

Now consider how our seven transition matrices affect
the distribution masld associated with the density
operatorsa, defined in Eq.s14d srecall that sa is repre-
sented on the Bloch sphere by the vector pointing along
the ẑ axisd. We obtain seven distinct distribu-
tions, which we denote musld;edl8 Gusl ,l8dmasl8d,
for u=0,p /3 ,2p /3 ,p ,4p /3 ,5p /3, and msld
;edl8 Gsl ,l8dmasl8d. By virtue of Eqs.s61d–s65d and Eq.
s66d, these seven distributions satisfy Eqs.s32d–s36d and
Eqs. s24d–s26d where a,A,b,B,c,C are associated withu
=0,p ,2p /3 ,5p /3 ,4p /3 ,p /3, respectively. But Eqs.
s32d–s36d and Eqs.s24d–s26d cannot be satisfied simulta-
neously, so we have arrived at a contradiction.11

VII. IS THE ASSUMPTION OF NONCONTEXTUALITY
NATURAL?

An important question is whether the assumption of non-
contextuality for preparations, transformations, and unsharp

11It should be noted that the above argument is equivalent to a
proof of preparation contextuality in four dimensions if one makes
use of the Jamiolkowski isomorphism between density operators in
a 4D space and CP maps in a 2D spacef20g.
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measurements isas well motivatedas this same assumption
for sharp measurements, to which the notion is usually re-
stricted. To answer this, one must consider the motivation for
the latter, which seems to be one of ontological economy: be
wary of introducing differences in the ontological explana-
tions of empirical phenomena where there are no differences
in the phenomena themselves. Einstein’s equivalence prin-
ciple is an example of a fruitful application of this principle.
If this is indeed the motivation, then it clearly also applies to
our generalized notions of noncontextuality. Specifically, if
one believes that equivalent statistics suggest equivalent on-
tological representations for sharp measurements, why
should one not believe this for preparations, transformations,
and unsharp measurements as well? Thus, barring an alter-
native motivation for the traditional notion of noncontextu-
ality, it seems that an ontological model that respects the
statistical equivalence class structure of preparations, trans-
formations, and unsharp measurements is as wellsor badlyd
motivated as an ontological model that respects the statistical
equivalence class structure of sharp measurements.

This of course leaves open the question of whetherany
assumption of noncontextuality is natural. The answer seems
to depend on one’s interpretational bent. John Bell, for in-
stance, thought that contextuality was not at all surprising,12

whereas David Mermin has characterized it as a mystery in
need of explanation.13

In order to defend the view that measurement contextual-
ity is indeed mysterious within the framework of an onto-
logical model, we show that the reasons for thinking so are
very similar to the reasons for thinking that nonlocality is
mysterious. Disregarding classical prejudice, nonlocality is
not an unreasonable assumption. However, if the universe is
fundamentally nonseparable or is such that causal influences
can propagate faster than the speed of light, then why should
it also be the case that one cannot use these effects to achieve
superluminal signalling? Given the presence of nonlocality at
the ontological level, it seems almost conspiratorial that one
cannot make use of this nonlocality for signalling. Similarly,
it is certainly not unreasonable for the statistics of experi-
mental outcomes for a given ontic state to depend on details
of the experimental procedure. But assuming this to be the
case, it is very surprising that when one considers any valid
probability distribution over the ontic statessthat is, any dis-
tribution that characterizes what someone who knows only
the preparation procedure knows about the ontic stated, the
weighted average over the statistics of outcomes doesnot
depend on the details of the experimental procedure. Again,
this seems almost conspiratorial. This analogy suggests that
removing the appearance of conspiracy from contextuality
may well be on a par with reconciling Bell’s theorem and
relativity as a guide for progress in the search for a wholly

satisfactory realist interpretation of quantum theory.
It is likely that the notion of preparation noncontextuality

will also seem natural to some and unnatural to others. To
shed some light on the diversity of reactions, it is useful to
distinguish two different types of ontological model of quan-
tum theory. Specifically, we distinguish what we call the
epistemic viewand theontic viewof quantum statesf22g.

The epistemic view of quantum states asserts that a den-
sity operator represents nothing more than an agent’s knowl-
edge about the ontic state of the system. Specifically, it rep-
resents the knowledge of someone who knows only the
preparation procedure. In this view, the ontic state of a sys-
tem does not fix the density operator that is used to describe
it. Distinct nonorthogonal density operatorssincluding the
pure casesd are represented by overlapping probability distri-
butions within this view and are thus consistent with a single
ontic state. By contrast, the ontic view of quantum states
asserts that the density operator itself represents an attribute
of the system, and consequently that two distinct density
operators represent mutually exclusive physical states of af-
fairs and are therefore represented in the ontological model
by nonoverlappingsi.e., disjointd probability distributions.

To be precise, for a setS of density operatorssassumed to
contain some nonorthogonal elementsd, an ontological model
adopts an ontic view ofS if all distinct elements ofS are
represented by disjoint distributions, that is,

r Þ r8 implies mrsldmr8sld = 0 for all r,r8 P S, s67d

whereas an ontological model adopts an epistemic view ofS
if only orthogonal elements ofS are represented by disjoint
distributions

mrsldmr8sld = 0 only if rr8 = 0, for all r,r8 P S. s68d

In other words, in an epistemic view ofS, being orthogonal
is a necessary condition for a pair of quantum states to be
represented by disjoint distributionssthe argument presented
at the beginning of Sec. IV shows that orthogonality is a
sufficient condition for disjointness, regardless of whether
one adopts an ontic or an epistemic viewd.

We now show that an ontic view of the set of pure quan-
tum states rules out the possibility of preparation noncontex-
tuality trivially . Our purpose here is to show that an implicit
commitment to such a view can lead to the impression that
the assumption of preparation noncontextuality is unnatural.

Consider the four preparation proceduresPa, PA, Pb, and
PB from Sec. IV, represented in quantum theory by the Hil-
bert space vectorsca, cA, cb, andcB, respectively. An ontic
view of pure quantum states implies that not only are the
orthogonal states associated with disjoint distributions,

masldmAsld = 0, s69d

mbsldmBsld = 0, s70d

but also nonorthogonalstates are associated with disjoint
distributions,

masldmbsld = 0, s71d

mAsldmbsld = 0, s72d

12Bell states: “The result of an observation may reasonably de-
pend not only on the state of the systemsincluding hidden vari-
ablesd but also on the complete disposition of the apparatus”f1g.

13Mermin states: “if one is attempting a hidden variable model at
all, it seems not unreasonable to expect the model to provide the
obvious explanation for this striking insensitivity of the distribution
to changes in the experimental arrangement—namely, that the hid-
den variables are noncontextual”f21g.
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masldmBsld = 0, s73d

mAsldmBsld = 0. s74d

It is then clear that the preparation proceduresPaA andPbB,
obtained, respectively, by implementingPa and PA with
equal probability, orPb and PB with equal probability, are
represented by distributionsmaA and mbB fdefined in Eqs.
s27d and s28dg that are also disjoint,

maAsldmbBsld = 0. s75d

However, since these two procedures are represented by the
same density operator, namelyI /2, they must be represented
by the same distribution in a preparation noncontextual
model. Thus an ontic view of quantum states trivially pre-
cludes the possibility of preparation noncontextuality.

Since our manner of speaking about pure quantum states
typically favors the ontic view of the latter, it also tends to
make the assumption of preparation noncontextuality seem
implausible. The very term “quantum state” already predis-
poses one to thinking of the density operator as representing
the physical state of affairs rather than an agent’s knowledge.
For instance, in the context of photon polarization, the mul-
tiplicity of convex decompositions of the completely mixed
state is sometimes summarized as follows: “an equal mixture
of states of horizontal and vertical polarization is statistically
indistinguishable from an equal mixture of states of left and
right circular polarization.” Implicit in this sort of language
is the assumption that the four different states of polarization
aremutually exclusivestates of affairs and are therefore ontic
states. Indeed, this way of putting things compels us to ques-
tion sin vaind whether there is not really some measurement
thatcould tell these two cases apart. However, it is wrong to
take this as an argument against the “naturalness” of prepa-
ration noncontextuality because this impression can be attrib-
uted entirely to the language that is used to describe the
phenomenon.

If one is to take the epistemic view seriously, as one
should in an investigation of the possibility of an ontological
model of quantum theory, then this sort of language must be
avoided, and the assumption of preparation noncontextuality
is a priori very plausible. Indeed, in light of the arguments
that have recently been made in favor of the epistemic view
of quantum statesf22–25g and the fact that one can repro-
duce qualitatively many quantum phenomena in noncontex-
tual theoriesf22,26–28g, the impossibility of a preparation
noncontextual ontological model appears all the more shock-
ing to the devoted realist.

VIII. THE ISSUE OF OUTCOME DETERMINISM

In our proof of contextuality for unsharp measurements,
we assumed outcome determinism for sharp measurements
but we assumed outcomeindeterminismfor unsharp mea-
surements. This amounts to representing all and only those
POVMs with idempotent elements by sets of indicator func-
tions that are idempotent. Although this seems like a natural
assumption to make, two alternative assumptions might seem
a priori worth considering:sid that both sharp and unsharp

measurements are outcome-deterministic, orsii d that both are
outcome-indeterministic.

We begin by considering the first alternative, that outcome
determinism also holds forunsharpmeasurements. It turns
out that this is trivially inconsistent with assuming measure-
ment noncontextuality. Consider a measurement procedure
M associated with the POVMhI /2 ,I /2j. As argued in Sec. V,
the assumption of measurement noncontextuality implies
that M must be represented in an ontological model by the
set of indicator functionsh1/2,1/2j which arenot idempo-
tent, and thusM cannot be outcome deterministic. Recent
results by Cabellof4g and Buschf5g also rule out the possi-
bility of a hidden variable model that is measurement non-
contextual and outcome deterministic for unsharp measure-
ments. However, these proofs are unnecessarily complex
since a consideration of the POVMhI /2 ,I /2j yields the re-
sult immediately.

The second alternative is that both sharp and unsharp
measurements are outcome-indeterministic. This is the more
significant alternative, because it constitutes the weakest as-
sumption and consequently the most general framework for
an ontological model. Indeed, unless the assumption of out-
come determinism can itself be justified by the assumption of
noncontextuality, it is inappropriate to call any no-go theo-
rem that makes use of this assumption a proof of contextu-
ality, because in the face of a contradiction one can always
assume that the faulty assumption was that of outcome de-
terminism rather than that of measurement noncontextuality.
Thus neither the proof of Bellf1g, nor the proof of Kochen
and Speckerf3g, nor any of the proofs of these types includ-
ing those presented in Sec. V, serve to rule out the possibility
of measurement noncontextualitysin the sense in which we
have defined the termd. It turns out, however, that the as-
sumption of outcome determinism for sharp measurements
can be justified by an assumption ofpreparationnoncontex-
tuality, as we shall presently demonstrate. Given this infer-
ence, the old proofs are vindicated insofar as they remain
proofs of the impossibility ofuniversal noncontextuality
snoncontextuality for all experimental proceduresd.

It should be noted that Toner, Bacon, and Ben-Orf18g
have considered a third alternative, namely, that outcome de-
terminism holds for just those POVMs with elements that are
not repeatable, that is, elements that cannot appear twice in a
single POVM, and have obtained a nontrivial no-go theorem.
Bacciagaluppif16g has considered a similar alternative and
obtained a similar result. Although this is a much weaker
assumption than the first alternative, the resulting theorems
are still not proofs of the impossibility of universal noncon-
textuality, according to our definition, since the assumption
of outcome determinism for these special POVMs has not
been justified by an assumption of universal noncontextual-
ity. In contrast, outcome determinism for all sharp measure-
ments can be so justified. We turn now to the proof of this
statement.

A. Preparation noncontextuality implies outcome
determinism for sharp measurements

Consider a rank-1 PVMhPkj. Thinking of each of the
elements as a rank-1 density operator,rk=Pk, we obtain an
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orthogonal set of rank-1 density operatorshrkj. We denote
the density operators and projectors differently because they
are represented differently in the ontological model. The set
hrkj is represented by a set of probability densitieshmksldj,
while the PVM hPkj is represented by a set of indicator
functionshjksldj. Since therk are orthogonal, the associated
preparations are distinguishable with certainty, and thus by
feature 1 of ontological models we must have

mksldmk8sld = dk,k8. s76d

The support ofmksld, denotedVk, is the region of the ontic
state space assigned nonzero probability bymksld,

Vk = hlumksld . 0j. s77d

Equations76d then implies that

Vk ù Vk8 = 0” if k Þ k8. s78d

Now, by virtue of the fact that

TrsrkPk8d = dk,k8, s79d

we infer that

E jksldmk8sld = dk,k8. s80d

But, given Eq.s77d, this implies that

jksld = H1 for l P Vk

0 for l P øk8ÞkVk8
, s81d

or, equivalently,

jksldjk8sld = dk,k8 for l P ø jV j . s82d

So, if one can show that the union of the supports of the
mksld is the entire ontic state space, i.e.,

ø jV j = V, s83d

then Eq.s82d would imply thathjksldj is a set of idempotent
indicator functions, and consequently would establish that
our rank-1 PVM must be outcome-deterministic in the onto-
logical model.

It turns out that Eq.s83d follows from the assumption of
preparation noncontextuality. First note that the ontic state
spaceV can be defined as the set ofl that are assigned
nonzero probability bysomedensity operator

V = hlumrsld . 0 for somerj. s84d

However, since every density operatorr appears in some
convex decomposition of the completely mixed stateI /d
swhere d is the dimensionality of the Hilbert spaced, and
since preparation noncontextuality implies that there is a
unique distributionmI/dsld associated with this state, it fol-
lows thatV is simply the set ofl assigned nonzero probabil-
ity by the latter, i.e.,

V = hlumI/dsld . 0j. s85d

But given that therk form a convex decomposition ofI /d,

o
k

1

d
rk =

I

d
, s86d

it follows from preparation noncontextuality that

o
k

1

d
mksld = mI/dsld, s87d

which implies Eq.s83d.
This establishes outcome determinism for PVMs all of

whose elements are rank 1. Since an arbitrary PVM can al-
ways be obtained by coarse-graining of a rank-1 PVM, and
since coarse-graining takes idempotent functions to idempo-
tent functions,any PVM is represented by a set of idempo-
tent indicator functions. This establishes that the assumption
of outcome determinism for sharp measurements follows
from an assumption of preparation noncontextuality.

It is natural to wonder whether outcome determinism for
sharp measurements might be justified by an assumption of
measurement noncontextualitysrather than an assumption of
preparation noncontextualityd. If this were possible, then the
proofs in Sec. V would derive contradictions from measure-
ment noncontextuality alone. It turns out that this is not pos-
sible, because measurement noncontextuality on its own is
consistent with quantum theory, as we now show.

B. Achieving measurement noncontextuality
by giving up outcome determinism

Consider the following ontological model of quantum
theory, which is objectively indeterministic and adopts an
ontic view of quantum states. The ontic state spaceV is
simply taken to be the projective Hilbert space, that is, the
set of rays of Hilbert space. Thus for every rank-1 projector
uclkcu, we associate a single ontic state, which we denote by
c. Consequently, there are no hidden variables in this onto-
logical model. A preparation procedure associated with the
rank-1 density operatoruc8lkc8u is represented by a Dirac-
delta distribution

mc8scd = dsc − c8d. s88d

A preparation procedure involving a convex combination of
rank-1 density operatorshpsc8d , uc8lkc8uj is represented by
the distribution

mscd =E dc8psc8ddsc − c8d, s89d

wheredc is the unitarily invariant measure on the projective
Hilbert space. A measurement of the POVMhQkj is associ-
ated with a set of indicator functionshjQk

sldj defined by

jQk
scd = TrsQkuclkcud. s90d

These functions are clearly positive by virtue of the positiv-
ity of the Qk, and sum to unity by virtue of the fact that
okQk= I. Note also that they depend only on the POVM that
is associated with the measurement and not on how it was
implemented. One can see that this model reproduces quan-
tum theory by noting that
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E mc8scdjQk
scddc = TrsQkuc8lkc8ud. s91d

The predictions for mixed preparations are also reproduced.
This model has been discussed at length by Beltrametti

and Bugajskif7g, and captures to some extent the ontological
model that many physicists implicitly adhere to. Note that
the model is obviously preparationcontextualsince the dis-
tribution that represents a convex combination of preparation
procedures, described in Eq.s89d, depends on the particular
ensemble of pure states, and not just on the density operator
associated with the mixture. This fact comes as no surprise
since the results of Sec. IV show thatanyontological model,
deterministic or not, must be preparation contextual. More
importantly for the purposes of this section, the set of indi-
cator functions associated with any PVMhPkj are not idem-
potent. This is clear since TrsPkuclkcud is only 0 or 1 if ucl
lies in an eigenspace ofPk. It follows that the assumption of
outcome determinism for sharp measurements is explicitly
violated. However, because the set of indicator functions de-
pends only on the POVM, and not on its context, the as-
sumption of measurement noncontextuality is upheld.

IX. CONCLUSIONS

Because the traditional notion of noncontextuality only
allowed for a no-go theorem in Hilbert spaces of dimension-
ality greater than two, there have been many proposed hid-
den variable models for 2D Hilbert spaces that are purported
to be noncontextualf1,3g. These have been presented prima-
rily as pedagogical examples of what sort of model is ex-
cluded for larger-dimensional Hilbert spaces. However, by
our generalized definition of noncontextuality, all of these
models are deemedcontextualby virtue of being contextual
for preparations, transformations, and unsharp measure-
ments. This overturns the notion, suggested by the restriction
of old Bell-Kochen-Specker theorems to Hilbert spaces of
dimensionality greater than 2, that there is nothing inherently
nonclassical about a 2D Hilbert spacef29g.

In the face of this claim, a skeptic might argue that the
proofs presented here have made use of mixed preparations,
unsharp measurements, and irreversible transformationssas-
sociated, respectively, with non-rank-1 density operators,
nonprojective POVMs, and nonunitary CP mapsd, and that
these are necessarily implemented in practice through pure
preparations, sharp measurements, and reversible transfor-
mationssassociated, respectively, with rank-1 density opera-
tors, PVMs, and unitary mapsd on a larger system and there-
fore implicitly make use of a Hilbert space of dimension
greater than 2. However, this is incorrect. If one examines
carefully the proofs presented in this paper, one finds that
wherever non-rank-1 density operators, nonprojective
POVMs, or nonunitary CP maps arise, they are due to igno-
rance of which of several rank-1 density operators, PVMs, or
unitary maps in the 2D Hilbert space is appropriate, rather
than being due to the neglect of a subspace or subsystem of
a larger dimensional Hilbert space. In other words, any “an-
cillary” systems used to implement such procedures can be
treated classically, and thus do not require one to posit a
larger Hilbert space.

Our operational definition of noncontextuality has al-
lowed us to distinguish the notions of preparation, transfor-
mation, and measurement noncontextuality. Our proof of
preparation contextuality is particularly interesting as a
no-go theorem insofar as it focusses on the impossibility of
reproducing, within a particular kind of ontological model,
the convex structure of the set of quantum statesrather than
the algebraic structure of the set of quantum measurements.
It is interesting to note that wherever one finds a freedom of
decomposition in the formalism of operational quantum
theory, such as the multiplicity of convex decompositions of
a mixed quantum state or of a POVM element, the multiplic-
ity of fine-grainings of a non-rank-1 POVM, or the unitary
freedom in the operator-sum representation of a nonunitary
CP map, one can develop a proof of contextuality that is
based on this freedom.

We have shown that one can confine all the contextuality
into the preparations and transformations if one likes, be-
cause there exist outcome-indeterministic ontological models
of quantum theory, such as the Beltrametti-Bugajski model,
that are measurement noncontextual. On the other hand, one
cannot confine all the contextuality into the measurements,
because the assumption of preparation noncontextuality
yields a contradiction on its own. In this sense, preparation
contextuality is more fundamental to quantum theory than
measurement contextuality.

The issue of noncontextuality is closely linked with the
issue of locality. Indeed, it is sometimes claimed that nonlo-
cality is an instance of measurement contextuality. If this
were the case, then proofs of nonlocality would also consti-
tute proofs of measurement contextuality, and since there
exist proofs of nonlocality that do not assume outcome de-
terminism for sharp measurements, it would appear that there
should exist proofs of measurement contextuality that do not
make this assumption either. But this would be in contradic-
tion with the claims of the previous section.

The resolution of this puzzle is that one can distinguish
two sorts of localityf30g, and it is only the failure of one of
these that implies measurement contextuality. The first no-
tion of locality, which we callseparability, is the assumption
that the ontic state of the universe is defined in terms of the
ontic states at each point of space-time. The other sort of
locality assumption, which presumes separability, we calllo-
cal causality. It is the assumption that the probability distri-
bution over values for a variable in a space-time region are
determined by the values of all the variables in the backward
light cone of this regionssee footnote in Sec. IIId. A failure
of local causality within the framework of a separable model
does indeed imply measurement contextuality. However, a
model can be nonlocal by virtue of failing to be separable,
and in this case it does not follow that the model is measure-
ment contextual. This is precisely what occurs in the
Beltrametti-Bugajski model. The variables for a composite
system are not simply the Cartesian product of the variables
of the components, since the Cartesian product of two pro-
jective Hilbert spaces is not the projective Hilbert space of
the tensor productsit fails to include the entangled statesd. In
particular, spatially separated systems are not associated with
distinct variables. Thus the Beltrametti-Bugajski model is not
separable. It is only within the context of a separable theory
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that Bell’s theorem implies measurement contextuality.
The opposite inference has also received a great deal of

attention: whether a proof of measurement contextuality can
be turned into a proof of nonlocalitysnote that the question is
only interesting if one presumes separability since otherwise
one is already acknowledging a failure of some sort of local-
ityd. The motivation for this investigation is clear since, as
Bell famously emphasized, an assumption of measurement
noncontextuality is most compelling if it can be justified by
an assumption of localityf31g. Many authors have shown
how certain no-go theorems for measurement noncontextual-
ity can be turned into no-go theorems for locality by virtue of
the fact that sometimes every assumption of measurement
noncontextuality in a Bell-Kochen-Specker theorem can be
justified by an assumption of localityf21,32g. It turns out
that the same trick can be achieved in no-go theorems for
preparation noncontextuality. Although the particular proof
of the no-go theorem presented in Sec. IV does not admit
such a justification, a proof can be found which does. This
will be presented in a separate paperf33g. The version of
Bell’s theorem that results is particularly enlightening, as it
constitutes a more direct response to the Einstein, Podolsky,
and Rosen argumentf34g compared to standard versions of
the theorem.

It should be noted that there are contexts that do not have
any representation in the formalism of operational quantum
theory. Whether one uses a piece of polaroid or a birefringent
crystal in a measurement of photon polarization is an ex-
ample of such a context. No dependence onthis sort of con-
text is implied by any of the no-go theorems we have
presented.14 Nonetheless, some hidden variable theories still
exhibit such dependence. For instance, it has been shown
that the deBroglie-Bohm interpretation has this sort of con-
text dependence for certain position measurementsf35,36g
and for certain spin measurementsf37g. Thus the deBroglie-
Bohm interpretation involves more contextuality than has
been shown to be required of an ontological model. Note that
Refs. f35–37g explicitly identify this feature of the
deBroglie-Bohm interpretation as a kind of contextuality de-
spite the fact that it does not fit into the standard definition of
contextuality presented in the Introduction. The possibility of
this type of phenomenon was in fact considered in the frame-
work of a general hidden variable theory much earlier by
Shimonyf38g, who also described it as a kind of contextu-
ality. This highlights another virtue of our generalized defi-
nition of contextuality: it accords with the intuition that a
measurement context isany feature of the measurement that
is not specified by specifying its equivalence class.

An operational definition of noncontextuality is also
likely to be useful because it allows one to investigate the
possibility of finding ways of experimentally differentiating
the set of noncontextual theories from the set of contextual
theories, much as the Bell inequalities differentiate all local

realistic theories from their alternatives. If these investiga-
tions are successful, they could shed light on the question of
how to perform experimental tests of contextuality, a subject
of much recent interestf39–41g. The question of whether an
experimental test of contextuality is evenpossiblehas been
the subject of some controversy, due to the finite precision of
real experimental proceduresf42–45g. The problem, from
the perspective of this paper, is that finite precision might
imply that in practice no two experimental procedures are
found to be operationally equivalent, in which case the as-
sumption of noncontextuality is never applicable. A possible
resolution of this finite precision loophole is to further gen-
eralize the definition of noncontextuality proposed in the in-
troduction as follows:

A noncontextual ontological model of an operational
theory is one wherein if two experimental procedures
are operationally similar, then they have similar repre-
sentations in the ontological model.
To be substantive, this proposal must be supplemented by

a quantitative measure of similarity in the space of opera-
tional procedures, and a corresponding measure in the space
of ontological representations of these procedures. Whether
this strategy can lead to an experimentally robust notion of
contextuality is a subject for future research.

Finally, given the fact that some quantum information
processing protocols, namely, protocols for communication
complexity problemsf46g, have been proven to require vio-
lations of Bell inequalities in order to outperform their clas-
sical counterparts, it is interesting to investigate whether the
power of any quantum information processing protocols
might be attributed to the contextuality of quantum theory.
There is already some evidence to this effect in the case of
random access codesf47g. We speculate that this might also
be the case for the exponential speedup of a quantum com-
puter relative to a classical computer, if such a speedup ex-
ists.
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APPENDIX: PROOF OF EQS. (56)–(60)

To demonstrate Eqs.s56d–s60d, we make use of the fact
that there is unitary freedom in the operator-sum representa-
tion of a CP mapf48g. Suppose thathWmj are a set of opera-

14If, however, one decides to treat part of the experimental appa-
ratus as a quantum system, then this sort of distinctioncould be
represented within the quantum formalism and it is then conceiv-
able that one could prove that context dependence of this type is
sometimes required.

CONTEXTUALITY FOR PREPARATIONS,… PHYSICAL REVIEW A 71, 052108s2005d

052108-15



tors scalled Kraus operatorsd appearing in an operator-sum
representation ofT, that is,

Tsrd = o
m

WmrWm
† . sA1d

Then, for any unitary matrixunm, the set of operatorshXnj
defined by

Xn = o
m

unmWm sA2d

also forms an operator-sum representation ofT. Note that we
allow Kraus operators to be zero, so that different operator-
sum representations may have different cardinality.

Equations56d implies thatT has an operator-sum repre-
sentation in terms of the set of Kraus operatorshW1, W2j
=hs1/Î2dU0, s1/Î2dUpj, since

Tsrd =
1

2
U0rU0

† +
1

2
UprUp

† . sA3d

The set of operatorshX1, X2j=hs1/Î2dUu , s1/Î2dUu+pj also
yield an operator-sum representation ofT since they can be
obtained by a unitary remixing ofhW1, W2j, via Eq. sA2d,
using the 232 unitary matrix

u =1cos
u

2
sin

u

2

− sin
u

2
cos

u

2
2 . sA4d

It follows, in particular, that the sets of Kraus operators
hs1/Î2dUp/3, s1/Î2dU4p/3j and hs1/Î2dU2p/3, s1/Î2dU5p/3j
form operator-sum representations ofT, and consequently
that Eqs.s57d and s58d hold.

Next, we show that the set of operatorshX1, X2, X3j
=hs1/Î3dUu , s1/Î3dUu+2p/3, s1/Î3dUu+4p/3j also yield an
operator-sum representation ofT. First note that the set
hW1, W2, W3j=hs1/Î2dU0, s1/Î2dUp , 0j yields the
operator-sum representation ofT associated with Eq.s56d.
The operatorshX1, X2, X3j can be obtained by a unitary re-
mixing of hW1, W2, W3j using the 333 unitary matrix

u =1
Î2

3
cos

u

2
Î2

3
sin

u

2
Î1

3

Î2

3
cosSu

2
+

2p

3
D Î2

3
sinSu

2
+

2p

3
D Î1

3

Î2

3
cosSu

2
+

4p

3
D Î2

3
sinSu

2
+

4p

3
D Î1

3

2 .

sA5d

It follows, in particular, that hs1/Î3dU0, s1/Î3dU2p/3,
s1/Î3dU4p/3j and hs1/Î3dUp/3, s1/Î3dUp , s1/Î3dU5p/3j
form operator-sum representations ofT and consequently
that Eqs.s59d and s60d hold.
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