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The Bell-Kochen-Specker theorem establishes the impossibility of a noncontextual hidden variable model of
guantum theory, or equivalently, that quantum theory is contextual. In this paper, an operational definition of
contextuality is introduced which generalizes the standard notion in three \iays:applies to arbitrary
operational theories rather than just quantum the@ryijt applies to arbitrary experimental procedures rather
than just sharp measurements, diiid it applies to a broad class of ontological models of quantum theory
rather than just deterministic hidden variable models. We derive three no-go theorems for ontological models,
each based on an assumption of noncontextuality for a different sort of experimental procedure; one for
preparation procedures, another for unsharp measurement procé&tiates, measurement procedures asso-
ciated with positive-operator valued measiyemd a third for transformation procedures. All three proofs
apply to two-dimensional Hilbert spaces, and are therefore stronger than traditional proofs of contextuality.
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[. INTRODUCTION dures(preparations, measurements, and transformatiares
represented in such a model. We also explain why it is ap-

Traditionally, anoncontextuahidden variable model of ropriate to call this sort of ontological modebncontextual

quantum theory is one wherein the measurement outco - : 9. .
that occurs for a particular set of values of the hidden vari- y providing an operational definition of an experimental
ables depends only on the Hermitian operator associate ntext. - -

with the measurement and not on which Hermitian operators " Sec. lll, we specialize our definition to the case of

are measured simultaneously with it. For instance, supposa‘antum theory. We provide examples of the sorts of con-

A, B, andC are Hermitian operators such thagandB com- texts that can arise for preparations, transformations, and

mute,A andC commute, buB andC do not commute. Then Measurements, and describe what an assumption of noncon-

the assumption of noncontextuality is that the value pretextuality for each type of procedure implies for an ontologi-
dicted to occur in a measurement Afdoes not depend on cal model of quantum theory. In the case of measurements,
whetherB or C was measured simultaneously. The Bell-we also generalize the object that is examined for context

Kochen-Specker theorem shows that a hidden variable modédependence from outcomes to probabilities of outcomes, and

of quantum theory that is noncontextual in this sense is imdiscuss the motivation for doing so. Further, we show how

possible for Hilbert spaces of dimension 3 or greafe:d]. the traditional notion of noncontextuality is subsumed as a
The traditional definition of noncontextuality is lacking in special case of our generalized notion when the outcomes of

several respectsi) it does not apply to an arbitrary physical sharp measurements are assumed to be uniquely determined

theory, but is rather specific to quantum thedfiy) it does by the complete physical state of the system under investi-
not apply to unsharp measurements, that is, those associatgaltion.

with positive-operator valued measur@®OVMs), nor does In Secs. IV, V, and VI, we provide no-go theorems for

it apply to preparation or transformation procedures; @nd  ontological models based on the assumption of noncontextu-

it does not apply to ontological models wherein the outcomesility for preparations, unsharp measurements, and transfor-

of measurements are determined only probabilistically frormmations, respectively. All three proofs apply to two-
the complete physical state of the system under investigationiimensional(2D) Hilbert spaces, and are therefore stronger
for instance, indeterministic hidden variable models or ontothan traditional no-go theorems for noncontextuality, which

logical models of quantum theory lacking hidden variablesrequire Hilbert spaces of dimension 3 or greétbrr.Sec. V,

In this paper, we propose a new definition: we also provide a no-go theorem for noncontextuality of
A noncontextual ontological model of an operational unsharp measurements based on a recent generalization of
theory is one wherein if two experimental procedures Gleason’s theorem to 2D Hilbert spadgs6]. Section VII
are operationally equivalent, then they have equivalent provides a general discussion of the motivation and plausi-
representations in the ontological model. bility of noncontextuality for different sorts of procedures,
This definition will be explained in Sec. Il, where we and Sec. VIl investigates the connection between these dif-

provide a precise account of what it is for two experimental

procedures to be operationally equivalent, and describe what;

! tb tological del of i l th Recent works by Cabellgt] and BuscH5] generalize the notion
IS meant by an ontological model or an operational theory, contextuality to unsharp measurements in a manner that is dif-

specifying in particular how different experimental proce- ferent from the proposal of this paper. From our perspective, this

work makes use of an assumption of deterministic outcomes for
unsharp measurements that cannot be justified by an assumption of
*Electronic address: rspekkens@perimeterinstitute.ca noncontextuality. This issue is discussed in Sec. VIII.
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ferent sorts of noncontextuality and the assumption that meastitutes a birefringent crystal oriented to separate light that is
surement outcomes are uniquely determined by the completeertically polarized along ;hé axis from light that is hori-
physical state of the system under investigation. Some corzontally polarized along this axis, followed by a photodetec-

clusions and questions for future research are presented tar in the vertically polarized output. The third and fourth
Sec. IX. procedures, denotéd; andM,, are identical tavl; andM,,

respectively, except that they are defined relative to anfaxis
that is skew to the axis. It turns out that the statistics of
Il. DEEINITIONS OF NONCONTEXTUALITY outcomes foiM, are the same as those fidr,, for all prepa-
FOR ANY OPERATIONAL THEORY ration procedures, and those dr are the same as those for
M,4. However, the statistics of outcomes for the first pair are
In an operational interpretation of a physical theory, thedifferent from those of the second. Thid; and M, fall in
primitive elements are preparation procedures, transformasne equivalence class of measurements, Mgand M, fall
tion procedures, and measurement procedures. These are im-another. The orientation of the polaroid or calcite crystal is
derstood as lists of instructions to be implemented in thean example of the first sort of feature of an experimental
laboratory. The role of an operational theory is merely tooperation, one whose variation involves a variation in the
specify the probabilitiep(k| P, T,M) of different outcomeg operational equivalence clas_s of the proce_dure. Or) thg other
that may result from a measurement procedMragiven a hand, whether one uses a piece of polaroid or a birefringent
particular preparation proceduRe and a particular transfor- Crystal to measure photon polarization is a feature of the
mation procedurd. When there is no transformation proce- Measurement procedure of the second type; a variation of

dure, or when it is considered to be part of the preparation ofliS feature does not change the equivalence class of the
the measurement, we have simpigk| P, M). procedure. It is therefore part of the context of the measure-

Given the rule for determining probabilities of outcomes, MeNt procedure. _
one can define a notion of equivalence among experimental 10 Properly define a noncontextual ontological model of
procedures. Specifically, two preparation procedures ar8" operational theory, it is not _enough_ to have a definition of
deemed equivalent if they yield the same long-run statistic§Ntext; we also need to specify precisely what we mean by

for every possible measurement procedure, thatPisis ~an ontological model. We turn to this now. _
equivalent toP' if An ontological model is an attempt to offer an explanation

of the success of an operational theory by assuming that
p(k|P,M) = p(k|P’,M) for all M. (1)  there exist physical systems that are the subject of the ex-

. . eriment. These systems are presumed to have attributes re-
Two measurement procedures are deemed equivalent if th

) o . ardless of whether they are being subjected to experimental
yield the same long-run statistics for every possible Prépargest and regardless of what anyone knows about them. These
tion procedure, that iSM is equivalent toM’ if their out- \

. attributes describe the real state of affairs of the system. Thus
comes can be associated one-to-one such that a specification of which instance of each attribute applies at a
p(k|P,M) = P(k|P,M") for all P. (2)  given time we call theontic stateof the system. If the ontic
) ) ~ state is not completely specified after specifying the prepa-
Finally, two transformation procedures are deemed equivaration procedure, then the additional variables required to
lent if they yield the same long-run statistics for every pos-gpecify it are callechidden variablesAlthough most onto-
sible preparation procedure that may precede and every pogygical models do involve hidden variables, this is not al-
sible measurement procedure that may follow, thafliss  ways the case. For instance, the ontic states may be associ-
equivalent toT” if ated one-to-one with the equivalence classes of preparation
_ / proceduredas is the case for pure preparation procedures in
P(KP.T.M) = p(k|P.T",M) for all P,M. ® the Beltrametti-Bugajski model of quantum thedi]). We
It follows that one can distinguish two types of features ofshall denote the complete set of variables in an ontological
an experimental procedure: the first type of feature is onenodel by\, and the space of values kfby ).
that is specified by specifying the equivalence class that the Within an ontological model of an operational theory,
procedure falls in, while the second type is one that is notpreparation procedures are preparatiohthe ontic state of
The set of features of the second type—those that are ndlhe system. However, the procedure need not fix this state
specified by specifying the equivalence class—we call thainiquely; rather, it might only fix the probabilities that the
contextof the experimental procedure. Note that, by our defi-system be in different ontic states. Thus someone who knows
nition of an experimental context, having knowledge of thethat a system was prepared using the preparation procedure
context does not enable one to predict the outcome of aP describes the system by a probability dengify(\) over
experiment any better than if one only knew the equivalencehe model variables.
class of the experimental procedure. Similarly, measurement procedures are measurenwnts
An example from quantum theory should clarify the no-the ontic state of the system. Again, these procedures need
tion of a context. Consider the following different measure-not enable one to infer the identity of the ontic state uniquely,
ment procedures for photon polarization. The first, which wenor need they even enable one to infer a set of ontic states
denote byM,, constitutes a piece of polaroid oriented to passwithin which the actual ontic state lies. Rather, they might
light that is vertically polarized along theaxis, followed by  only enable one to infer probabilities for the system to have
a photodetector. The second, which we denotéVgy con-  been in different ontic states. In this, the most general case,
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the outcome of the measurement is not uniquely determinetion of every experimental procedure deperaigy on its

by N. Only the probabilities of the different outcomes are soequivalence class and not on its context. After all, a natural
determined. Thus, for every value af one associates a way to explain the fact that a pair of preparatigneasure-
probability & «(\) which is the probability of obtaining out- ment, transformationprocedures are operationally equiva-
comek in a measuremen¥l given that the system is in the lent is to assume that they prepdmeasure, transforhthe
ontic statex. We call éy «(\) an “indicator function.? ontic state of the system in precisely the same way. We shall

Finally, transformation procedures are transformatiohs call such an ontological modeioncontextual Any opera-
the ontic state of the system. These may be stochastic trational theory that admits such a model shall also be called
sitions. Thus a transformation procediTrés represented by noncontextuaf In general, if any set of procedures is repre-
a transition matrixI't(\",\), which represents the probabil- sented in a context-independent way within an ontological
ity density for a transition from the ontic staketo the ontic ~ model, we shall say that the modelniencontextuafor those
state)’. procedures.

Thus within an ontological model, if the preparation pro- It is useful to explicitly characterize the assumption of
cedure isP, and the measurement procedurdVisthen the  noncontextuality for preparations, transformations, and mea-
probability assigned to outconieis the probability assigned surements. We will call an ontological modpteparation
to outcomek given \, averaged over alk, weighted by the noncontextualf the representation of every preparation pro-
probability of\, that is, fd\ up(N) &y (N). If there is a trans-  cedure is independent of context, that is, if
formation procedurd intervening between the preparation -
and measSrement, and this is gssociated with ptheptransition Hp(N) = pegp)(N), (5)
matrix I't(\",\), then the probability of outcomé is  wheree(P) is P’'s equivalence class. Similarly, we will call a
JAN AN &y AT (N M) up(N). model measurement noncontextuidlthe representation of

Summarizing, an ontological model assumég:every  every measurement procedure is independent of context, that
preparation procedur® is associated with a normalized is, if
probability density over the ontic state spacgp:Q)

—1[0,1] such that/ up(\)d\=1; (ii) every measurement pro- EmiN) = Eem (N, (6)

ce(_iur_eM with out_comes labeled byis assopiated with a s_et where e(M) is M’s equivalence class. Finally, a model is
of indicator functiongéy (M)} over the ontic states, thatis, ¢5jiedtransformation noncontextua the representation of

a set of functiongy : 2 — [0, 1] satisfying=éy (M) =1for  eyery transformation procedure is independent of context,
all \; (iii) every transformation procedur is associated that s, if

with a transition matrix I't: QX Q—[0,1] such that

JT+(\",M)d\'=1 for all A, and (iv) the predictions of the F+(N'N) =Tegry(N)N), (7)
operational theory are reproduced exactly by the model, the\lltv

is heree(T) is T's equivalence class. Mniversally noncon-

textualontological model is one that is noncontextual for all
experimental procedures: preparations, transformations, and
p(k|PrTiM):fd)\/d)\gM,k()\,)FTO\,-)\)MP()\) (4  measurements.

for all P, T, andM.
In general, the representation of an experimental proce- IIl. DEFINITIONS OF NONCONTEXTUALITY
dure in an ontological model might depend on both its IN QUANTUM THEORY

equivalence class and its contéxt. is natural, however, to We begin with a quick review of the operational approach

consider the possibility of a model wherein the representag, quantum theory, described, for instance, in RE9s12].
An equivalence class of preparation procedures is associ-

2Some might argue that within the framework of an ontologicalated with a density operatgs. This is a positive trace-1
model, the termmeasuremendught to be reserved for a procedure operator over the Hilbert spacé( of the system:p
which reveals some attribute of the system under investigation>0, Tr(p)=1. Rank-1 density operators are simply projec-
However, we feel that it is suitable for any procedure that leads tdors onto rays of Hilbert space, and are caltede
an update in one’s information about which instance of some at- An equivalence class of measurement procedures is asso-
tribute applied, or equivalently, in one’s information about what theciated with a positive operator valued measi®#®VM) {E,}.
ontic state of the system was prior to the procedure being impleA POVM is an ordered sefE,} of positive operators that
mented. Note that even this weak notion of what constitutes a measym to identity,>,E,=1. The kth elementE, is associated

surement fails for some experimental procedures that lead to diSgith the kth outcome. Specifically, given a preparation asso-
tinct outcomes, namely, those wherein the probabilities of the

different outcomes are independent of the ontic state. For simplicity;
however, we shall not introduce any novel terminology for this “This terminology allows one to use the phrase “quantum theory
exceptional case. is contextual” as a shorthand for “quantum theory does not admit a

3f one allows such generality, then—perhaps contrary to a comnoncontextual ontological model,” much as it is common to use the
mon impression—it is possible to provide an ontological model ofphrase “quantum theory is nonlocal” in place of “quantum theory
guantum theory. The deBroglie-Bohm thedB] is an example. does not admit a local ontological model.”
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ciated with a density operatgr, the probability of the out- In the case of quantum measurements, there are also many
comek is simply TrpE,). It is useful to single out the sorts of contexts. For instance, every fine-graining of a non-
POVMs whose elements are idempotent, that is, those famaximally informative measuremefite., a measurement as-
which E2=E, for all k. Since idempotent positive operators sociated with a POVM at least one element of which is not
are projectors, these POVMs are callptbjective-valued rank 1) provides a different context. Suppose the POYA}
measuresPVMs). The associated measurements are said tis a fine-graining of{E,}, which is to say that there is a
be sharp These are the sorts of measurements that are comartitioning of the outcomeg into setsS, such thatE,
sidered in standard textbook treatments of quantum mechamzjeSKFj. By implementing a measurement associated with
ics. A Hermitian operator defines a PVM through the projec-the POVM({F;}, then discarding all information abojitex-
tors in its spectral resolution. cept the seB, to which it belongs, one implements a mea-
Finally, an equivalence class of transformation proceduregurement in the equivalence class associated with the POVM
is associated with a completely positi€P) map7. ACP  (E}.
map7is a positive linear map on the space of operators over pespite the fact that the independence of representation
H such that7®7 is a positive linear map on the space of on fine-graining is traditionally the full extent of the assump-
operators ovet{ ® H', where’H' is of arbitrary dimension, tion of noncontextuality for measuremertts we will show
andZ is the identity map ori’. Unitary maps, familiar from  pejow), it is not difficult to see that there are many other
textbook treatments of quantum theory, are reversible CRorts of contexts. For instance, there is a context for every
maps. convex decomposition of a nonmaximal measurement. A
A preparation procedure associated with a non-rank-konvex decomposition of a POVNE,} is defined as a prob-
density operatop can be implemented in as many ways asapjlity distribution {p,} and a set of POVMs{F,} where
there are convex q§compositions;of8uppose{(pk,pk)} is a F,={F2, such thatE,=3,p,F¢. By samplinga from the
convex decomposition gf, that is,p=2ppi. If One gener-  gistripution{p,}, then implementing the measurement asso-
ates a ran_d(_)m number accordmg_ to the distribuppgnand  iated with the POVM{FS}, and registering only the out-
upon obtal_nmg th_e numt_)ek, one |mple_ments the prepara- e of this measurement, one implements a measurement
tion associated wittpy, this procedure is a member of the ;o equivalence class associated with the POYE.
equivalence class of procedures associated witAnother There is also a context for every way of obtaining a POVM
way of implementing a preparation procedure that is associby coupling to an ancilla and measuring a PVM on the com-
ated withp is to implement a preparation of a purificatigh posite of system+ancilliL4]
of ponH®H' (a purification ofp is any statey) such that The assumption of méasurement noncontextuality in
Tryo[)(¢1=p). The equivalence class therefore also Contain%wantum theory is that the set of indicator functions repre-

members associated with different purificationspof senting a measuremeht depends only on the POVNE,}
The assumption of preparation noncontextuality in quan-qqqciated witiv

tum theory is that the probability distribution over ontic
states that is associated with a preparation proceBute- Emk(N) = &y k(M) (10

pends only on the density operatorassociated withP, . o
In addition to admitting new sorts of contexts for mea-

p(N) = 1, (V). (8) surements, our generalized notion of measurement contextu-
r ality involves a slight revision ofvhat it is that depends on

In particular, the distribution does not depend on the particuth® measurement context. _
lar convex decomposition gf or on the particular purifica- !N the past, measurement contextuality has only been con-
tion of p that is used in the preparation procedure. sidered W|_th|n the frameworl_< of de_termlmstlc hidden vari-
The multiplicity of contexts for transformation procedures @Pl€ theories, and the question of interest has been whether
parallels the multiplicity of contexts for preparation proce-©r not the measurement outcome for a given ontic state of the
dures. Transformation procedures that are associated wiffyStem depends on the context of the measurement. How-
nonunitary CP maps can be obtained as a convex sum &Ver, forobjectively mdeter_mlnlstlontplog|cal models, .|t' is
unitary maps in many different ways, each one of which‘?'eaf thgt the natural question to ask is Whethermimsbablll-
corresponds to a distinct transformation procedure, and ca#s Of different outcomes for a given ontic state of the sys-

also be obtained by implementing a unitary map on a largefem depend on the context. This is analogous to BEIIS
system that incorporates the system of intef&s. generalization of the notion of locality from measurement

The assumption of transformation noncontextuality in@Utcomes being causally independent of parameter settings at
quantum theory is that the transition matrix that is associate§Pacelike separation to tipeobabilitiesof measurement out-

with a given transformation procedufedepends only on the C€Oomes being causally independent of parameter settings at
CP mapT associated witiT spacelike separatlcﬁw.Thls distinction was introduced by

Bell in order to cleanly separate the notion of locality from
It M) =T7(N,N). 9
. ) ®More specifically, Bel[15] defined a theory to bically deter-
It does not, for instance, depend on the particular convexinisticif the variables in space-time region | are determined by the

sum of unitaries or the particular unitary on a larger systenvariables in a space-time region that fully closes the backward light
by which the transformation was implemented. cone of I, andlocally causalif the probability distribution over
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the notion of determinism. Similarly, our generalized defini-ment specifies the dependence of the outcome on the ontic
tion allows one to cleanly separate the notion of measurestate of the system under investigation, and not the depen-
ment noncontextuality from the notion of determinism. dence of the outcome on the ontic state of any systems that
Once the question is posed, it is somewhat obvious that iinake up the measurement apparatus or the environment,
there is to be any notion of measurement contextuality withirsuch a measurement must be represented by a nonidempotent
objectively indeterministic ontological models, the appropri-set of indicator functions. Nonetheless, it may still be the
ate quantities to examine for context dependence are thgase that for each equivalence class of measurements, all the
probabilities of different outcomes for a given ontic state of elements of the class are represented bystraenonidem-
the system. A less obvious feature of our generalized notiopotent set of indicator functions, artlis is all that is re-
of measurement contextuality is that the probabilities of out-quired for the measurements to be deemed noncontextual by
comes are the appropriate quantities to examine for contexjur definition.
dependence even iobjectively deterministicontological As an example, consider a classical system and a classical
models. The key is that the latter sort of model may stillmeasurement device that generates an outcome by rolling
exhibit an epistemicindeterminism, wherein knowledge of one of several differently weighted dice, with the choice of
the equivalence class of the measurement together with th@e dice being determined by the ontic state of the system.
ontic state of the system under investigation does noftwo such devices are only found to be operationally equiva-
uniquely fix the outcome. To explain this properly, we needient if all of the dice of one are weighted in the same way as
to consider some of the details of the mathematical represefihose of the other. Thus every device in the equivalence class
tation of these measurements. is represented by the same set of indicator functions, and
The distinction between the ontic state of the system deconsequently one has measurement noncontextuality by our
termining the outcome and determining only the probabilitiesdefinition. The underlying ontological modétlassical me-
of different outcomes is captured mathematically within anchanics is objectively deterministic, but in order to predict
ontological model by the sorts of indicator functions onethe outcome of a particular measurement, one must supple-
uses to represent measurements. The former case is repfgent the ontic state of the system by the precise initial con-
sented by an indicator function that idempotentthat is,  figuration of the dice and their environment, features that
one for whichx(\)?=x(\) [we shall denote idempotent in- form part of the context of the measurement. Thus although
dicator functions byy(\) rather thanf(\)]. Such functions  the outcome of the measurement clearly depends on the con-
are necessarily equal to 1 in some region of the ontic statext, we take this to be a failure of outcome determinism
space and O elsewhere. By virtue of the fact that a set ofather than a failure of measurement noncontextu%lity.
indicator functions must satisfy, x(\) =1, if all the indica- Thus it is really the notion obutcome determinismmather
tor functions are idempotent, then they must be nonoverlapthan the notion of determinism, which we seek to cleanly
ping, that is,x(\)xiw(N\)=0 for k#k’. Thus for every value separate from the notion of measurement noncontextuality
of \, only a single indicator function in the sét(\)} re-  through our generalized definition. This makes our definition
ceives the value 1 while the others receive the value 0. Sincef measurement noncontextuality revisionist insofar as the
the value of thekth indicator function at a given specifies  traditional definition implicitly incorporated the assumption
the probability of thekth outcome given the ontic stakgthe  Of outcome determinism, while ours does not. This suggested
outcome of the measurement is determined for all ontigevision in terminology is motivated by the idea that what is
states if and only if the latter is represented by a set of idemerucial to the notion of a noncontextual ontological model is
potent indicator functions. that it reproduces the equivalence class structure of the op-
We shall call the assumption that a particular measureerational theory.
ment is represented by a set of idempotent indicator func- It is worth noting that, given the additional assumption of
tions the assumption afutcome determinisrfor that mea- outcome determinism, one can recover the traditional defini-
surement. tion of measurement noncontextuality as a special case of
Now note that even within an objectively deterministic our definition. Specifically, if one considers only sharp mea-
ontological model, measurements may fail to exhibit out-surements and one represents these by sets of idempotent
come determinism: specifying the ontic state of the systenfunctions(i.e., one assumes outcome determinism for these
under investigation together with the equivalence class of theyeasurementsthen the assumption of the independence of
measurement procedure may be insufficient to uniquely fixhe representation of a measurement on the fine-graining of
the outcome. The outcome might only be fixed uniquely bythe PVM with which it is implemented is just the traditional
supplementary features of the measurement procedufeotion of noncontextualitydescribed in the Introduction
(which constitute part of the context of the measurement byrhis can be seen as follows. Specifying whether a Hermitian
our definition, such as microscopic degrees of freedom ofoperatorA is measured together witd or with C is equiva-
the apparatus. Because the indicator function for a measuréent to specifying a fine-graining of the PVKIL,} that is

values for a variable in space-time region | are determined by a °By our definition, any classical theory is necessarily noncontex-
specification of the values of all the variables in the backward lighttual for all experimental procedures. This highlights another virtue
cone of | (“determined” in the sense that further conditioning on of our particular definition: contextuality, in all of its manifesta-
variables in the region outside the backward light cone would notions, is found to be a nonclassical phenomenon. For an opposing
change the probability distribution perspective, see Rf16].
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defined by the spectral resolution &f the simultaneous associating these procedures with nonoverlapping distribu-
eigenspaces ok andB define one such fine-graining, while tion functions.
the simultaneous eigenspaces Afand C define another. The second feature of an ontological model that is critical
Specifying the eigenvalue assigned to an operatéor ev-  to our proof is the manner in which convex combinations of
ery value of\ is equivalent to specifying a set of idempotent preparation procedures are represented. Suppose that the
indicator functions; the values of in the support of the preparation procedurddandP’ are represented by distribu-
function associated with outconie are simply those that tions w(\) and w’(N). Now suppose that a bit is generated
assign thekth eigenvalue toA. Clearly then, assuming that uniformly at random from the distributiop, 1—p, and the
the value assigned & is independent of whethex is mea-  value of the bit is used to determine whetHeror P’ is
sured together witl or C is equivalent to assuming that the implemented, after which the bit is forgotten. This effective
set of idempotent indicator functions associated with theprocedure, which we caP”, must be represented within the
PVM {II} is independent of the fine-graining by which it ontological model by a distributiop”(\) satisfying
was implemented. pon ,

No-go theorems based on the traditional definition of non- w'(N) =pu(h) + (1 =p)u’(N). (12

contextuality apply only in Hilbert spaces of dimensionality The reason is as follows. The probability that the ontic state
3 or greater. Moreover, one cannot extend such proofs to 2igf the system is\ given procedureé®”, is simply the sum of
Hilbert spaces because there are no fine-grainings of noRhe probability that it is\ given procedurd® and the prob-
trivial PVM measurements in a 2D Hilbert space, and fine-apility that it is A given procedure®’, weighted by the re-
graining is the only notion of context that is recognized tra-spective probabilities oP and P’ given P".

ditionally. However, by appealing to preparations, Thus we have the following.

transformations, and unsharp measurements, which admit Feature 2 A convex combination of preparation proce-
many contexts even in a 2D Hilbert space, proofs of conteXdures is represented within an ontological model by a convex
tuality can be achieved here as well. From this perspectivesum of the associated probability distributions.

the restriction of previous proofs of contextuality to 3D Hil-  Wwjth these facts in hand, we now proceed with the proof.
bert spaces was an artifact of a limited notion of a context.  Consider a set of six pure preparations, dendtgdP,,

Among the new proofs of contextuality that we shall p, Py, P, andPc, corresponding to the normalized Hilbert
present, the proof of preparation contextuality is the sim-space vectors,

plest, and so we begin with this case.

’;ba = (11 0)1
IV. PROOF OF PREPARATION CONTEXTUALITY = (0,1)
IN TWO DIMENSIONS ¥a=0,1),
There are two features of the representation of preparation W = (1/2,\5/2),
procedures in an ontological model that are central to our
proof. The first concerns distinguishability, and the second e = (\5/2 -12

convex combination.

Feature 1 If two preparation procedure® and P’ are
distinguishable with certainty in a single-shot measurement,
then their associated probability distributiong(\) and

o= (1/12,-43/2),

w'(\), are nonoverlapping, that is, Yc=(N3/2,1/2, (13
w0V’ (V) =0 for all \. (11) or, equivalently, the rank 1 density operators,
This feature can be understood as follows. Suppose one o= (1 0)1
wishes to perform a measurement that discriminates, with 00

certainty, between two probability distributions. In other

words, one wishes to perform a measurement that allows one (0 O
to retrodict, with certainty, which distribution applied. This is A=\ 1/
only possible if the distributions to be discriminated are non-

overlapping. The reason is that if the two distributions over- 1 1~
lapped in some region of the space of ontic states, then - Z\s“S
whenever the actual ontic state was in that redamd it will op= ’
sometimes be in that region, because the region is assigned 1 & 3
nonzero probability by both distributionsno measurement v 4

would be able to distinguish with certainty whether the sys-
tem had been prepared using one or the other distribution,

3 1 ”—
since the actual ontic state is consistent with both. Thus if, 2 - Z\B
within an operational theory, a pair of preparation procedures o= ,
are distinguishable with certainty, then the only way an on- _ }\5 1
tological model of the theory can account for this fact is by 4 4

052108-6



CONTEXTUALITY FOR PREPARATIONS.... PHYSICAL REVIEW A 71, 052108(2005

Wi

S
I
e el NS
I
Alw BIE
=
wi
N
N

| W
EN N
=
wil

oc= . (14) .

1 1
4'° 4

N
'—\
Q
RS

One can easily verify the following orthogonality conditions:
y fy 9 9 y FIG. 1. The Bloch ball representation of the six pure states and

0,00=0, (15) the five convex decompositions of the completely mixed state used
in the proof of preparation contextuality. Each convex decomposi-
0,05 =0, (16) tion is represented by a convex polytope whose vertices represent

the elements of the decompositiph7]. The two-element decom-
B positions in our example are represented by line segments, and the
ococ=0. (17) three-element decompositions by equilateral triangles.

Now consider the preparation procedure wherein one of
P, or P, is implemented, with the choice being made uni-graphical synopsis of the relevant orthogonality relations and
formly at random(for instance, by flipping a fair cojpand  convex structure.
with no record being made of the choice. Denote this proce- Within an ontological model of operational quantum
dure byP,,. Define procedureB,z and P. similarly. Con-  theory, each preparation procedu?g is associated with a
sider also the preparation procedure wherein onBfP,,  probability distributionu,(\). Now note that if two density
or P, is implemented, again, with equal probabilities for operators,c and ¢’, are orthogonal in the vector space of
each, and without recording the choice. We denote this byperators, that isgo’=0, then the associated preparation
Paoe The procedurdagc is defined similarly. procedures can be distinguished with certainty in a single-
These procedures are represented in the quantum formahot measuremertfor instance, for preparations associated
ism by the appropriate convex sums of the density operatorwith orthogonal Hilbert space vectors, one simply imple-
in Eq. (14). It turns out that all of these convex sums yield ments the measurement associated with an orthogonal basis

the same rank-2 density operator, namely, that includes these vectgr8y feature 1 of ontological mod-
1 els (described above distinguishable procedures are repre-
0 sented by nonoverlapping distributions. Thus from Egs.
2 X
12 = a (18) (15—(17) we can infer that
0 7 ma(N) ua(N) =0, (24
commonly referred to as the “completely mixed state.” Spe- (M) ug(N) =0, (25)
cifically,
1 1 pc(N) puc(N) =0. (26)
172 _Eaa+ EUA (19 Furthermore, in any ontological model a convex combi-
nation of preparation procedures is represented by a convex
1 1 sum of the associated probability distributioffeature 2
=50 % 508 (20)  above. Thus if the procedureB,a, Pyg, ..., Pagc are repre-

sented by distributiong a(\) , wpg(N), ..., agc(N), the man-

1 1 ner in which these procedures are obtained by convex com-

=g+ =o¢ (21) bination of P,, Py, ..., Pc implies that
2 2
1 1
1 Haa(N) = E/“La()\) + EMA()\)a (27)
=§O'a+§0'b+ 50’6 (22
1 1
1 1 1 pp(N) = Eﬂb()\) + E,U«B()\), (28)
:§O'A+ §O'B+§(Tc. (23)
In Fig. 1, we present the Bloch ball representation of the \) = 1 \) + 1 A 29
seven density operators defined above. This provides a #ecM) 2'%( ) 2’%( ), (29)
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1 1 1 V. PROOFS OF CONTEXTUALITY FOR UNSHARP
Mapd\) = éﬂa()\) + gﬂb(k) + gﬂc()\), (30) MEASUREMENTS IN TWO DIMENSIONS

Proofs of measurement contextuality have usually arisen
1 1 1 only in the context ofsharp measurements, that is, those
Hapc(N) = 5'“/\()\) * 5“5()‘) * 5“0()‘)' (3D associated with PVM&and outcome determinism has been
assumed for such measurements. We shall make the same
The assumption of a preparation noncontextual ontologiassumption here for sharp measurements, but we shall be
cal model is that the distribution associated with a preparaconsidering unsharp measurements as We", that iS, those as-
tion procedure depends only on the operational equivalencgociated with POVMs, and for these, outcome determinism
class of that procedure, and thus only on the density operatqyi| not be assumed. It is important to note that the “proofs
associated with that procedure. Since the proceduregf contextuality” presented in the next two subsections are
Paa, Pog, ..., Papc are all represented Hy2, they must allbe  contingent on the assumption of outcome determinism for
represented by the same distribution in a preparation NonCoRharp measurements. The status of this assumption will be

textual ontological model. Thus we requifga=uss="""  revisited in Sec. VIII, where we will clarify what, precisely,
=uagc Denoting this distribution by(\), we have simply  has been proven.

1 1
v(\) = Eﬂa()\) + EMA()\) (32 A. A proof based on a finite set of measurements

Consider three binary-outcome measuremehtsg, My,
1 1 and M., associated respectively with PVMS§I,, 14},
ZE"‘b()‘)"’E“BO‘) (33 {I1,,11g}, and {II.,IIc}, where II, projects onto the ray
spanned by}, 11, projects onto the ray spanned By, and
1 1 so forth, with the vectorg, being those that are defined in
=) + S pcN) (34  Eq.(13)°
By the definition of a PVM, we have

1 1 1 I, +T,=1, (37
== paN) *+ SN + SN (35) an A
3 3 3
O, + g =1, (38)
= A+ a0 + V). (36)
_Blu’A 3/"LB 3lu‘C . HC+HC: |, (39)
We now show that there is no set of distributions satisfy-and
ing Egs.(24)—(26) and Egs.(32)—(36). Consider the values
of the various probability densities at a fixed valuexoiWe I, =0, (40)
denote these simply as,, ua; ..., uc. We show that the only
solution to all the constraints, for a fixed\, is MMyl =0, (42)
Has as -+ mc=0, which we call the all-zero solution.
To satisfy Eqs(24)—(26), one of the paip, and u, must T.I.=0. (42)

be zero, as must be one of the pajyand ug and one of the

pair u. anduc. In all, there are eight possible assignments of ~ Given the assumption of outcome determinism for sharp

zeroes that satisfy Eq&24)—(26). We consider each of these measurements, the representationd/gf My, andM, in an

in turn. ontological model are the sets of idempotent indicator func-
If we have u,, up, =0 then by Eq(35) we haver=0,  tions {xa(\),xa(M} {xo(M\), xg(M)}, and {x.(\), xc(M)}, re-

and by Egs.32—(34), we conclude thajua, ug, uc=0, S0  spectively. By definition, these must satisfy

that we have the all-zero solution. If, instead we have

ta» o, wc=0 then by combining Eq(34) and Eq.(35) we Xa(\) + xa(M) =1, (43)
find %,uczé,uc, for which the only solution ig.=0. But this
gets us back to the first case, and the all-zero solution. Every Xo(\) + xg(\) =1, (44)

other case yields the all-zero solution by virtue of the sym-
metry of the problem under rotations by multiples of 60° in "Exceptions are Ref§4,5,16,18.
the Bloch sphere represe'ntatlon. 8Note thatll,=o,, [1a=0p, etc., whereo, is defined in Eq(14).

The above a_rgur_nent did not depen_d)qrand thus for all This follows from the fact that the rank-1 density operator associ-
A the only solution is the all-zero solution. Consequently, the;ieq with a vector is simply the projector onto the ray spanned by
only set of distributions that satisfy Eq@4)—(26) and Egs.  that vector. It follows that Eqs(37)~(39) and Egs.(40~(42) are
(32—36) is the set of uniformly zero distributions, equivalent to Eqs(19~(21) and Egs.(15)~(17), respectively. We
ta(N), ma(N), ..., uc(N)=0. But such distributions are not yse a distinct notation for the same mathematical operators to re-
probability distributions since they are not normalized to 1.mind the reader of the fact that in this section they represent mea-
This concludes the proof. surement outcomes rather than preparation procedures.
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XcN) + xc(N) =1, (45 dicator functions as the measuremat It follows that the
set of functions(50) must be equal to the set of functions

and (52). However, this constraint is inconsistent with the con-
Xa\)xa(\) =0, (46)  straints(43)—(48). To satisfy Eqs.(43)—(48) it is necessary
that for every value of\, one of y,(\) and ya(\) must be
Xo(M)xs(\) =0, (47) equal to 0 and the other equal to 1. The same is tryg @f)
and yg(\) and of x.(\) andxc(\). The eight possible assign-
XM xc(\) =0. (48) ments of values to these six quantities leave the set of func-

tions (50) with the values{0,1}, {1,0}, {2,3}, or {3,5} but

Now consider choosing one &fl,, My, and M. at ran- 11 ;
qnever{3,7}. This concludes the proof.

dom, with probability 1/3 for each, implementing the chose
measurement, and only registering whether the fsstall
letter) or the secondcapital lettef outcome occurred. Call
the effective measurement procedure that resultst is as-
sociated with the POVM The impossibility of noncontextuality for unsharp mea-
{1 1 1 1 1 1 } surements and outcome determinism for sharp measurements
I+ =T+ =T, =M+ =g + =11 (. (49 can also be established in a 2D Hilbert space by making
3 3 3 73 3 3 appeal to a recent Gleason-like derivation of the quantum
In an ontological model, a convex combination of mea-Probability rule by Buscli5] and by Cavest al. [6]. This
surements procedures is represented by an element-wise cof€neralized Gleason's theorem” starts from the assumption
vex sum of the associated sets of indicator functiosthe ~ that there exists a probability measure that assigns a unique
same reason that an ontological model has feature 2 of Se@robability w(E) to every positive operatoE such that
IV). ThusM is represented by the set of indicator functionsW(l)=1, and whenever a set of positive operators forms a
resolution of identity,>,E, =1, the associated probabilities

{}Xa()\) + le()\) + EXC()\)-EXA()\) + EXB()\) + lXc()\)}- sum to 1,2 w(E)=1. From these assumptions, it is proven
3 3 3 3 3 3 that the measure must satisfyE)=Tr(pE) for some density
(50)  operatorp [5,6].
Recall that the values of a set of indicator functions

B. A proof based on the 2D version of Gleason’s theorem

Note that the POVM49) is equal tJ {&(\)} at a particular value of form a probability distribu-
1 1 tion overk. In a measurement noncontextual theory, every
5'5' : (51)  positive operatoE is represented by a unique indicator func-

tion &(\), with the identity operator being represented by

But it is clear from this way of writing the POVM that the the unit function. Moreover, whenever a set of positive op-
measurement has a random outcome regardless of the pregaators forms a resolution of identi§, E,=1, the associated
ration procedure, since flir%l):% regardless ofp. It then indicator functions sum to the unit functio&e (\)=1.
follows that the equivalence class of measurement procefhus the set of all indicator functions for a given valuenof
dures that containdl also contains the “measurement” pro- in an ontological model satisfy the assumptions of the set of
cedureM that completely ignores the system and just flips aprobability measures in the generalized Gleason’s theorem. It
fair coin to determine the outcome. Now consider how thefollows therefore that for every value afin the ontological

measuremen¥ is represented in the ontological model. Be_r_nodel, there is a density operatgs, such thaté:(\)
cause the outcome does not depend on the system at aII,‘itTr(PxE)-

follows that regardless of the value ®f there is a probabil- If in addition to measurement noncontextuality, one as-
ity of 1/2 for each outcome, so it is represented by the set ofumes outcome determinism for sharp measurements, then
indicator functions every projector is represented by a unique idempotent indi-
11 cator functiony(\), and by the generalized Gleason’s theo-
{_,_}, (52) rem,
22
xu(\) = Tr(p,I1). (53

where each element should be thought of as a uniform func- )
110 Suppose thatll=|#){¢{, and consider a\ such that

tion over of heights. ! : ot "
By the assumption of measurement noncontextuality, th&n(M)=1. In this case, Eq(53) implies thatp, =|y)(;. But

measuremenil must be represented by the same set of infhen for some other projectoll’=[y')(y’|, where 0
<|{y|¥')?<1, we have for this value oh that yp(\)

=Tr(pI1")=|(|¢")> and consequently €@y (\)<1,

®This fact is also captured by Eq®2) and (23).
OThis fact can also be established by noting that the equivalence
class includes the measuremémt, obtained fromM by permuting  measurement noncontextuality implies that sikeand M’ are in
the two outcomesgbecause such a permutation does not change théhe same equivalence class, they must be represented by the same
statistics of outcomes The ontological representations bf and set of indicator functions. Thus we require thgt\)=£&(\). But
M’ are {&(N), &N} and {£(N), €1(M)}. Now, the assumption of since&i(N) +&(N)=1, it follows that&; (M) =&(N)=1/2 for all \.
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which implies thaty (\) is not idempotent. Thus the as- with a unique transition matrix on the space of ontic states.
sumption of noncontextuality for unsharp measurements anBuppose that we denote the transition matrix associated with
outcome determinism for sharp measurements yields a cor by I', and the transition matrix associated wih by I',.

tradiction in a 2D Hilbert space.

Because a convex sum of transformation procedures is rep-

This no-go theorem is related to the no-go theorem of theéesented in an ontological model by a convex sum of the
previous section in the same way that the no-go thegdgdm associated transition matrices, E¢s6)—(60) imply

that is obtained from the standard Gleason’s thedr&a is

related to the original Kochen-Specker theor¢®j. The F=Ero+lrw (61)
former derive a contradiction using the full set of measure- 2 2
ments, while the latter only make use of a finite set.
1 1
VI. PROOF OF TRANSFORMATION =5 mat Slams (62
CONTEXTUALITY IN TWO DIMENSIONS
Consider a set of six transformation procedures, denoted —}F N EF 63
T Trizs Tomzs Trs Tama, Tsmae Where the procedurg, corre- T o 2ml3T 57 5al3 (63
sponds to the CP map
— T 1 1 1
To(p) = Uy pUy.0, (54) :§F0 + §F2w/3 + §F4w/3 (64)
and where
0 0 1 1 1
2 _ain2 =TI 3+, +=Is.. 65
cos; —siny gt glat Jlsms (65
Uyg= (55 )
. Note that7, and 7,,,. take any rank-1 density operator
sin- cos— e .
2 2 lying in the z-x plane of the Bloch sphere to a pair of or-

is the unitary operator describing a rotation Bybout the
y axis in the Bloch sphere. Consider also the CP mapat

thogonal density operators. Since these are distinguishable
with certainty, it follows from feature 1 of ontological mod-
els (see Sec. Y that the transition matricek, and Iy,

takes all points in the Bloch sphere and projects them ontqy, st take any distributiop,(\) associated with such a den-

the § axis. There are many ways of implementifigas a
convex sum of transformations, specifically,

7= }T + }’T (56)

20t
1 1

:ETfn'/B + 57:117/3 (57)
1 1

:EITZW/S} + 57—577/3 (58)
1 1 1

= §To + 5727/3 + 5747#3 (59

—ET + 1T + 17’ (60)

- 3 I3 3 T 3 57/3+

These identities can be explained as follows. The maan

sity operator to disjoint distributions, that is,

fd)\,Fe()\a)\l)ﬂx()\,)fd}\,F0+w()\u)\,)ﬂx()\,):0-
(66)

Now consider how our seven transition matrices affect
the distribution u,(\) associated with the density
operator o,, defined in Eq.(14) (recall thato, is repre-
sented on the Bloch sphere by the vector pointing along
the Zz axis. We obtain seven distinct distribu-
tions, which we denote uyN\)=[fd\’ T'y(A,N")ua(N),
for 0=0,7/3,2m!3,7,47/3,57/3, and (N)
= [d\' T(A,N)ua(N'). By virtue of Egs.(61)—(65) and Eq.
(66), these seven distributions satisfy Eq82)—(36) and
Egs. (24)—(26) where a,A,b,B,c,C are associated wittd
=0,m,2m/3,5713,4w/3,7/3, respectively. But EQgs.
(32—(36) and Eqs.(24)—(26) cannot be satisfied simulta-
neously, so we have arrived at a contradictibn.

be achieved by performing with probability 1/2 a rotation in  VII. IS THE ASSUMPTION OF NONCONTEXTUALITY

the Bloch sphere about theaxis by 8 and with probability
1/2 a rotation by#+ . Taking 6=0,7/3, and 27/3 yields

Egs.(56)—58). The map7 can also be achieved by perform-

ing a rotation abouy by 6, by 6+27/3 or by 6+4/3 with
equal probabilities. Taking=0 and«/3 yields Eqs(59) and

NATURAL?

An important question is whether the assumption of non-
contextuality for preparations, transformations, and unsharp

(60). A rigorous proof of these statements is provided in the 4t should be noted that the above argument is equivalent to a

Appendix.

proof of preparation contextuality in four dimensions if one makes

By the assumption of transformation noncontextualityuse of the Jamiolkowski isomorphism between density operators in
each of the seven CP maps we have considered is associatedD space and CP maps in a 2D spg@.
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measurements ias well motivatedas this same assumption satisfactory realist interpretation of quantum theory.

for sharp measurements, to which the notion is usually re- It is likely that the notion of preparation noncontextuality
stricted. To answer this, one must consider the motivation fowill also seem natural to some and unnatural to others. To
the latter, which seems to be one of ontological economy: beghed some light on the diversity of reactions, it is useful to
wary of introducing differences in the ontological explana- distinguish two different types of ontological model of quan-
tions of empirical phenomena where there are no differencegim theory. Specifically, we distinguish what we call the
in the phenomena themselves. Einstein’s equivalence prinspistemic viewand theontic viewof quantum statef22].

ciple is an example of a fruitful application of this principle. " the epistemic view of quantum states asserts that a den-
If this is indeed the motivation, then it clearly also applies tosity operator represents nothing more than an agent's knowl-
our generalized notions of noncpn'textuality. Speci.fically, ifedge about the ontic state of the system. Specifically, it rep-
one believes that equivalent statistics suggest equivalent Olasents the knowledge of someone who knows only the

tological representations for sharp measurements, wh . s .
should one not believe this for preparations, transformation reparation prqcedure. In. this view, the or_mc state of a SysS
>m does not fix the density operator that is used to describe

and unsharp measurements as well? Thus, barring an alt o . > .
native motivation for the traditional notion of noncontextu- ' Distinct nonorthogonal density operatofisicluding the

ality, it seems that an ontological model that respects th®Uré casesare represented by overlapping probability distri-
statistical equivalence class structure of preparations, tran@utions within this view and are thus consistent with a single
formations, and unsharp measurements is as (eelbadly ~ Ontic state. By contrast, the ontic view of quantum states
motivated as an ontological model that respects the statistic&Sserts that the density operator itself represents an attribute
equivalence class structure of sharp measurements. of the system, and consequently that two distinct density
This of course leaves open the question of whetigy ~ OpPerators represent mutually exclusive physical states of af-
assumption of noncontextuality is natural. The answer seenfgirs and are therefore represented in the ontological model
to depend on one’s interpretational bent. John Bell, for inby nonoverlappingdi.e., disjoiny probability distributions.
stance, thought that contextuality was not at all surpriéfng, ~ To be precise, for a set of density operatorgassumed to
whereas David Mermin has characterized it as a mystery i§ontain some nonorthogonal elements ontological model
need of explanatiol® adopts an ontic view of if all distinct elements ofS are
In order to defend the view that measurement contextualtepresented by disjoint distributions, that is,
ity 'is indeed mysterious within the framework.of an onto- p# p implies (N, (\) =0 for all p,p’ € S, (67)
logical model, we show that the reasons for thinking so are
very similar to the reasons for thinking that nonlocality is whereas an ontological model adopts an epistemic vie$ of
mysterious. Disregarding classical prejudice, nonlocality isf only orthogonal elements of are represented by disjoint
not an unreasonable assumption. However, if the universe distributions
fundamentally nonseparable or is such that causal influences e, ,
can propagat)(/a faster?han the speed of light, then why should oMy (N) =0 only if pp" =0, forallp,p” e S. (68)

it also be the case that one cannot use these effects to achigyeother words, in an epistemic view & being orthogonal
superluminal signalling? Given the presence of nonlocality afs 3 necessary condition for a pair of quantum states to be
the ontological level, it seems almost conspiratorial that Ongepresented by disjoint distributiorthe argument presented
cannot make use of this nonlocality for signalling. Similarly, gt the beginning of Sec. IV shows that orthogonality is a
it is certainly not unreasonable for the statistics of experi-syfficient condition for disjointness, regardless of whether
mental outcomes for a given ontic state to depend on detailgne adopts an ontic or an epistemic vjiew

Of the eXperimental procedure. But assuming th|S to be the We now ShOW that an Ontic VieW of the set Of pure quan_
case, it is very surprising that when one considers any valigym states rules out the possibility of preparation noncontex-
probability distribution over the ontic statéhat is, any dis-  tyality trivially. Our purpose here is to show that an implicit
the preparation procedure knows about the ontic ktéte  the assumption of preparation noncontextuality is unnatural.
weighted average over the statistics of outcomes dmets Consider the four preparation procedufes P,, Py, and
depend on the details of the experimental procedure. AgairpB from Sec. IV, represented in quantum theory by the Hil-
this seems almost conspiratorial. This analogy suggests thgkt space vectorg,, ¥, ¥, andyg, respectively. An ontic
removing the appearance of conspiracy from contextualityiew of pure quantum states implies that not only are the

may well be on a par with reconciling Bell's theorem and orthogonal states associated with disjoint distributions,
relativity as a guide for progress in the search for a wholly
ma(M)ua(h) =0, (69

12Bell states: “The result of an observation may reasonably de- (M) pa(A) =0 (70)
pend not only on the state of the systémcluding hidden vari- HpiN Helh) =1
afglseﬁ) but also on the complete disposition of the apparal$” but alsononorthogonalstates are associated with disjoint
Mermin states: “if one is attempting a hidden variable model atgjstriputions,
all, it seems not unreasonable to expect the model to provide the

obvious explanation for this striking insensitivity of the distribution Ha(N) pup(N) =0, (71)
to changes in the experimental arrangement—namely, that the hid-
den variables are noncontextua?1]. paN) pp(N) =0, (72)
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maM)ug(\) =0, (73) measurements are outcome-deterministidjigpthat both are
outcome-indeterministic.
ua(N) a(\) = 0. (74) We begin by considering the first alternative, that outcome

determinism also holds faunsharpmeasurements. It turns
It is then clear that the preparation proceduPgg andPpg,  out that this is trivially inconsistent with assuming measure-
obtained, respectively, by implementirg, and P, with  ment noncontextuality. Consider a measurement procedure
equal probability, orP, and Pg with equal probability, are M associated with the POV¥I/2,1/2}. As argued in Sec. V,
represented by distributiong,a and upg [defined in Eds. the assumption of measurement noncontextuality implies
(27) and(28)] that are also disjoint, that M must be represented in an ontological model by the
_ set of indicator function$1/2,1/2 which arenot idempo-
PanM (M) = 0. (79) tent, and thudM cannot be outcome deterministic. Recent
However, since these two procedures are represented by thesults by Cabell$4] and Busch 5] also rule out the possi-
same density operator, namél2, they must be represented bility of a hidden variable model that is measurement non-
by the same distribution in a preparation noncontextuatontextual and outcome deterministic for unsharp measure-
model. Thus an ontic view of quantum states trivially pre-ments. However, these proofs are unnecessarily complex
cludes the possibility of preparation noncontextuality. since a consideration of the POVil/2,1/2} yields the re-
Since our manner of speaking about pure quantum statesult immediately.
typically favors the ontic view of the latter, it also tends to  The second alternative is that both sharp and unsharp
make the assumption of preparation noncontextuality seemeasurements are outcome-indeterministic. This is the more
implausible. The very term “quantum state” already predissignificant alternative, because it constitutes the weakest as-
poses one to thinking of the density operator as representirgumption and consequently the most general framework for
the physical state of affairs rather than an agent’s knowledgean ontological model. Indeed, unless the assumption of out-
For instance, in the context of photon polarization, the mul-come determinism can itself be justified by the assumption of
tiplicity of convex decompositions of the completely mixed noncontextuality, it is inappropriate to call any no-go theo-
state is sometimes summarized as follows: “an equal mixtureem that makes use of this assumption a proof of contextu-
of states of horizontal and vertical polarization is statisticallyality, because in the face of a contradiction one can always
indistinguishable from an equal mixture of states of left andassume that the faulty assumption was that of outcome de-
right circular polarization.” Implicit in this sort of language terminism rather than that of measurement noncontextuality.
is the assumption that the four different states of polarizatiorhus neither the proof of Be[ll], nor the proof of Kochen
aremutually exclusivetates of affairs and are therefore ontic and Speckef3], nor any of the proofs of these types includ-
states. Indeed, this way of putting things compels us to quesng those presented in Sec. V, serve to rule out the possibility
tion (in vain) whether there is not really some measuremenbf measurement noncontextualifip the sense in which we
thatcouldtell these two cases apart. However, it is wrong tohave defined the termlIt turns out, however, that the as-
take this as an argument against the “naturalness” of prepaumption of outcome determinism for sharp measurements
ration noncontextuality because this impression can be attritean be justified by an assumption mreparationnoncontex-
uted entirely to the language that is used to describe thauality, as we shall presently demonstrate. Given this infer-
phenomenon. ence, the old proofs are vindicated insofar as they remain
If one is to take the epistemic view seriously, as oneproofs of the impossibility ofuniversal noncontextuality
should in an investigation of the possibility of an ontological (noncontextuality for all experimental procedures
model of quantum theory, then this sort of language must be It should be noted that Toner, Bacon, and BenfD8]
avoided, and the assumption of preparation noncontextualityave considered a third alternative, namely, that outcome de-
is a priori very plausible. Indeed, in light of the arguments terminism holds for just those POVMs with elements that are
that have recently been made in favor of the epistemic viewot repeatable, that is, elements that cannot appear twice in a
of quantum state§22—25 and the fact that one can repro- single POVM, and have obtained a nontrivial no-go theorem.
duce qualitatively many quantum phenomena in noncontexBacciagaluppi16] has considered a similar alternative and
tual theories[22,26—-28, the impossibility of a preparation obtained a similar result. Although this is a much weaker
noncontextual ontological model appears all the more shockassumption than the first alternative, the resulting theorems
ing to the devoted realist. are still not proofs of the impossibility of universal noncon-
textuality, according to our definition, since the assumption
of outcome determinism for these special POVMs has not
been justified by an assumption of universal noncontextual-
In our proof of contextuality for unsharp measurementsjty. In contrast, outcome determinism for all sharp measure-
we assumed outcome determinism for sharp measuremer®ents can be so justified. We turn now to the proof of this
but we assumed outcomiadeterminismfor unsharp mea- Statement.
surements. This amounts to representing all and only those
POVMs with idempotent elements by sets of indicator func-
tions that are idempotent. Although this seems like a natural
assumption to make, two alternative assumptions might seem Consider a rank-1 PVMII,}. Thinking of each of the
a priori worth considering{i) that both sharp and unsharp elements as a rank-1 density operajgrII,, we obtain an

VIIl. THE ISSUE OF OUTCOME DETERMINISM

A. Preparation noncontextuality implies outcome
determinism for sharp measurements
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orthogonal set of rank-1 density operatdpg}. We denote 1 I

the density operators and projectors differently because they > apk: q’ (86)
are represented differently in the ontological model. The set k

{p is represented by a set of probability densiigg(\)}, it follows from preparation noncontextuality that

while the PVM {Il,} is represented by a set of indicator

functions{§(\)}. Since thep, are orthogonal, the associated > lﬂ«k()\) = ), (87)
preparations are distinguishable with certainty, and thus by k d

f 1 of logical I h
eature 1 of ontological models we must have which implies Eq.(83).

M) pier (N) = S er - (76) This establishes outcome determinism for PVMs all of
) ) _whose elements are rank 1. Since an arbitrary PVM can al-
The support ofi()), denoted(), is the region of the ontic \yays pe obtained by coarse-graining of a rank-1 PVM, and

state space assigned nonzero probabilityh), since coarse-graining takes idempotent functions to idempo-
_ tent functions,any PVM is represented by a set of idempo-
= > 0}. - . . ) .
Q=M ™) > 0} 77 tent indicator functions. This establishes that the assumption
Equation(76) then implies that of outcome determinism for sharp measurements follows
o , from an assumption of preparation noncontextuality.
QN Qe =01if k#K. (78) It is natural to wonder whether outcome determinism for
Now, by virtue of the fact that sharp measurements might pe justified by an assumption of
measurement noncontextualigther than an assumption of
Tr(pWlly) = S (79 preparation noncontextualjtylf this were possible, then the

proofs in Sec. V would derive contradictions from measure-
ment noncontextuality alone. It turns out that this is not pos-
sible, because measurement noncontextuality on its own is

we infer that

j EON) e (N) = S (80)  consistent with quantum theory, as we now show.
But, given Eq.(77), this implies that B. Achieving measurement noncontextuality
. 1fork e O o - by giving up- outcome defermlnlsm
&M= 00w o U s (81) Consider the following ontological model of quantum
theory, which is objectively indeterministic and adopts an
or, equivalently, ontic view of quantum states. The ontic state spérés
simply taken to be the projective Hilbert space, that is, the
&N & (N) = e for X e U0 (82)  set of rays of Hilbert space. Thus for every rank-1 projector

élﬂ)(l[/L we associate a single ontic state, which we denote by
. Consequently, there are no hidden variables in this onto-
logical model. A preparation procedure associated with the
U;Q;=Q, (83) rank-1 'de.nsity operatdy’ ){y/| is represented by a Dirac-
delta distribution

So, if one can show that the union of the supports of th
m(N) is the entire ontic state space, i.e.,

then Eq.(82) would imply that{£(\)} is a set of idempotent
indicator functions, and consequently would establish that ty () = = "). (88)

our rank-1 PVM must be outcome-deterministic in the onto- . . . L
logical model. A preparation procedure involving a convex combination of

It turns out that Eq(83) follows from the assumption of rf]mk; d.EnS.'ty operatortp(y), [4/Xy/[} s represented by
preparation noncontextuality. First note that the ontic statdn€ distribution

space() can be defined as the set mfthat are assigned
nonzero probability bysomedensity operator w(yp) = J dy/'p(y")o(y— o), (89)
Q={\u,(\) >0 for somep}. (84)

wheredy is the unitarily invariant measure on the projective
However, since every density operaforappears in some Hilbert space. A measurement of the POVIR,; is associ-
convex decomposition of the completely mixed statd — ated with a set of indicator functiofgq, (\)} defined by
(whered is the dimensionality of the Hilbert spag¢eand _

since preparation noncontextuality implies that there is a ng(w)—Tr(lengbl). (90

unique distributionuq(\) associated with this state, it fol- thege functions are clearly positive by virtue of the positiv-
lows that() is simply the set of assigned nonzero probabil- ity of the Q,, and sum to unity by virtue of the fact that

ity by the latter, i.e., >Qi=1. Note also that they depend only on the POVM that
Q=I\ R 85 is associated with the measurement and not on how it was
i) ) (85 implemented. One can see that this model reproduces quan-
But given that thep, form a convex decomposition ¢fd, tum theory by noting that
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Our operational definition of noncontextuality has al-
fﬂlp'('/f)ng(';[/)d(//: Tr(QJ ¢ Xy']). (91 lowed us to distinguish the notions of preparation, transfor-
mation, and measurement noncontextuality. Our proof of
The predictions for mixed preparations are also reproduceddreparation contextuality is particularly interesting as a
This model has been discussed at length by Beltrametfl0-go theorem insofar as it focusses on the impossibility of
and Bugajsk[7], and captures to some extent the ontologicalreProducing, within a particular kind of ontological model,
model that many physicists implicitly adhere to. Note thatthe convex structure of the set of quantum statier than
the model is obviously preparati@montextualsince the dis- th_e z_ilgebral_c structure of the set of quantum measurements.
tribution that represents a convex combination of preparatioff IS Interesting to note that wherever one finds a freedom of
procedures, described in E@®9), depends on the particular decomposition in the f.°f.m.a"3m of operational quantum
ensemble of pure states, and not just on the density operatg?eqry’ such as the multiplicity of convex decompOSItlons_of
associated with the mixture. This fact comes as no surpris mixed quantum state or of a POVM element, the multiplic-

) : ity of fine-grainings of a non-rank-1 POVM, or the unitary
since the_ rgsults of Sec. IV show tranyc_)ntologmal model, freedom in the operator-sum representation of a nonunitary
deterministic or not, must be preparation contextual. Mor

) ! . vioreep map, one can develop a proof of contextuality that is
importantly for the purposes of this section, the set of indi-,5cad on this freedom.

cator functions associated with any P¥,} are not idem- We have shown that one can confine all the contextuality
potent. This is clear since Ti|#)1) is only 0 or 1if|[/)  into the preparations and transformations if one likes, be-
lies in an eigenspace &i,. It follows that the assumption of cause there exist outcome-indeterministic ontological models
outcome determinism for sharp measurements is explicithpf quantum theory, such as the Beltrametti-Bugajski model,
violated. However, because the set of indicator functions dethat are measurement noncontextual. On the other hand, one
pends only on the POVM, and not on its context, the ascannot confine all the contextuality into the measurements,
sumption of measurement noncontextuality is upheld. because the assumption of preparation noncontextuality
yields a contradiction on its own. In this sense, preparation
IX. CONCLUSIONS contextuality is more fundamental to quantum theory than
Because the traditional notion of noncontextuality onlymeasurement contextuality.
allowed for a no-go theorem in Hilbert spaces of dimension- The issue of noncontextuality is closely linked with the
ality greater than two, there have been many proposed hidssue of locality. Indeed, it is sometimes claimed that nonlo-
den variable models for 2D Hilbert spaces that are purportedality is an instance of measurement contextuality. If this
to be noncontextudll,3]. These have been presented prima-were the case, then proofs of nonlocality would also consti-
rily as pedagogical examples of what sort of model is extute proofs of measurement contextuality, and since there
cluded for larger-dimensional Hilbert spaces. However, byexist proofs of nonlocality that do not assume outcome de-
our generalized definition of noncontextuality, all of theseterminism for sharp measurements, it would appear that there
models are deemetbntextualby virtue of being contextual should exist proofs of measurement contextuality that do not
for preparations, transformations, and unsharp measurenake this assumption either. But this would be in contradic-
ments. This overturns the notion, suggested by the restrictiotion with the claims of the previous section.
of old Bell-Kochen-Specker theorems to Hilbert spaces of The resolution of this puzzle is that one can distinguish
dimensionality greater than 2, that there is nothing inherentlywo sorts of locality{ 30], and it is only the failure of one of
nonclassical about a 2D Hilbert spa@9]. these that implies measurement contextuality. The first no-
In the face of this claim, a skeptic might argue that thetion of locality, which we calleparability is the assumption
proofs presented here have made use of mixed preparatiortbat the ontic state of the universe is defined in terms of the
unsharp measurements, and irreversible transformatamis ontic states at each point of space-time. The other sort of
sociated, respectively, with non-rank-1 density operatorslocality assumption, which presumes separability, we lcall
nonprojective POVMs, and nonunitary CP mpapsnd that cal causality It is the assumption that the probability distri-
these are necessarily implemented in practice through putdeution over values for a variable in a space-time region are
preparations, sharp measurements, and reversible transfaletermined by the values of all the variables in the backward
mations(associated, respectively, with rank-1 density operadight cone of this regior(see footnote in Sec. )l A failure
tors, PVMs, and unitary mapsen a larger system and there- of local causality within the framework of a separable model
fore implicitly make use of a Hilbert space of dimension doesindeed imply measurement contextuality. However, a
greater than 2. However, this is incorrect. If one examinesnodel can be nonlocal by virtue of failing to be separable,
carefully the proofs presented in this paper, one finds tha&nd in this case it does not follow that the model is measure-
wherever non-rank-1 density operators, nonprojectivanent contextual. This is precisely what occurs in the
POVMs, or nonunitary CP maps arise, they are due to ignoBeltrametti-Bugajski model. The variables for a composite
rance of which of several rank-1 density operators, PVMs, osystem are not simply the Cartesian product of the variables
unitary maps in the 2D Hilbert space is appropriate, ratheof the components, since the Cartesian product of two pro-
than being due to the neglect of a subspace or subsystem fefctive Hilbert spaces is not the projective Hilbert space of
a larger dimensional Hilbert space. In other words, any “anthe tensor produdit fails to include the entangled stajein
cillary” systems used to implement such procedures can bparticular, spatially separated systems are not associated with
treated classically, and thus do not require one to posit distinct variables. Thus the Beltrametti-Bugajski model is not
larger Hilbert space. separable. It is only within the context of a separable theory
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that Bell’s theorem implies measurement contextuality. realistic theories from their alternatives. If these investiga-

The opposite inference has also received a great deal ¢bns are successful, they could shed light on the question of
attention: whether a proof of measurement contextuality calmow to perform experimental tests of contextuality, a subject
be turned into a proof of nonlocalityote that the question is of much recent intere$89—41]. The question of whether an
only interesting if one presumes separability since otherwisexperimental test of contextuality is eveossiblehas been
one is already acknowledging a failure of some sort of localthe subject of some controversy, due to the finite precision of
ity). The motivation for this investigation is clear since, asreal experimental procedur¢d2—45. The problem, from
Bell famously emphasized, an assumption of measuremeithe perspective of this paper, is that finite precision might
noncontextuality is most compelling if it can be justified by imply that in practice no two experimental procedures are
an assumption of locality31]. Many authors have shown found to be operationally equivalent, in which case the as-
how certain no-go theorems for measurement noncontextuasumption of noncontextuality is never applicable. A possible
ity can be turned into no-go theorems for locality by virtue of resolution of this finite precision loophole is to further gen-
the fact that sometimes every assumption of measurementalize the definition of noncontextuality proposed in the in-
noncontextuality in a Bell-Kochen-Specker theorem can beroduction as follows:
justified by an assumption of locality21,32. It turns out A noncontextual ontological model of an operational
that the same trick can be achieved in no-go theorems for theory is one wherein if two experimental procedures
preparation noncontextuality. Although the particular proof are operationally similar, then they have similar repre-
of the no-go theorem presented in Sec. IV does not admit sentations in the ontological model.
such a justification, a proof can be found which does. This To be substantive, this proposal must be supplemented by
will be presented in a separate papdB]. The version of a quantitative measure of similarity in the space of opera-
Bell's theorem that results is particularly enlightening, as ittional procedures, and a corresponding measure in the space
constitutes a more direct response to the Einstein, Podolskgf ontological representations of these procedures. Whether
and Rosen argumef84] compared to standard versions of this strategy can lead to an experimentally robust notion of
the theorem. contextuality is a subject for future research.

It should be noted that there are contexts that do not have Finally, given the fact that some quantum information
any representation in the formalism of operational quantunprocessing protocols, namely, protocols for communication
theory. Whether one uses a piece of polaroid or a birefringentomplexity problemg$46], have been proven to require vio-
crystal in a measurement of photon polarization is an exiations of Bell inequalities in order to outperform their clas-
ample of such a context. No dependencetusa sort of con-  sical counterparts, it is interesting to investigate whether the
text is implied by any of the no-go theorems we havepower of any quantum information processing protocols
presented? Nonetheless, some hidden variable theories stilmight be attributed to the contextuality of quantum theory.
exhibit such dependence. For instance, it has been showtrhere is already some evidence to this effect in the case of
that the deBroglie-Bohm interpretation has this sort of con+tandom access codg47]. We speculate that this might also
text dependence for certain position measuremgstis36| be the case for the exponential speedup of a quantum com-
and for certain spin measuremen®3]. Thus the deBroglie- puter relative to a classical computer, if such a speedup ex-
Bohm interpretation involves more contextuality than hasists.
been shown to be required of an ontological model. Note that
Refs. [35-37 explicitly identify this feature of the
deBroglie-Bohm interpretation as a kind of contextuality de-
spite the fact that it does not fit into the standard definition of | would like to thank Terry Rudolph for having simplified
contextuality presented in the Introduction. The possibility Ofmy original proof of preparation contextuality by proposing
this type of phenomenon was in fact considered in the framethe highly symmetric example presented in Sec. IV. He also
work of a general hidden variable theory much earlier byresolved a question that was left as an open problem in a
Shimony[38], who also described it as a kind of contextu- draft of this article, namely, that of the existence of a no-go
ality. This highlights another virtue of our generalized defi-theorem for transformation noncontextuality, by providing
nition of contextuality: it accords with the intuition that a the example described in Sec. VI. | am grateful for his per-
measurement context &y feature of the measurement that mission to present the result here. | would also like to thank
is not specified by specifying its equivalence class. John Sipe, who was instrumental in developing the opera-

An operational definition of noncontextuality is also tional definition of noncontextuality, Chris Fuchs, Lucien
likely to be useful because it allows one to investigate theHardy, and Ben Toner for helpful discussions, and Guido
possibility of finding ways of experimentally differentiating Bacciagaluppi, Joseph Emerson, Jerry Finkelstein, and
the set of noncontextual theories from the set of contextuatrnesto Galvao for insightful comments on previous drafts
theories, much as the Bell inequalities differentiate all localof the paper.
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sometimes required. tion of a CP mag48]. Suppose thafw,} are a set of opera-

052108-15



R. W. SPEKKENS PHYSICAL REVIEW A71, 052108(2009

tors (called Kraus operatorg appearing in an operator-sum 0 )
representation of, that is, COSE sin >
u= . (A4)
- sin b cosg
T(p) = 2 W,pW!,. (A1) 2 2
o

It follows, in particular, that the sets of Kraus operators
_ , {(LIN2)U 3, (L/N2)Uymzt and {(1/V2)Up3, (1/V2)Us 3}
Then, for any unitary matrix,,,, the set of operatorfX,}  form operator-sum representations Bf and consequently
defined by that Egs.(57) and(58) hold.
Next, we show that the set of operatop¥;, X,, Xa}
={(1/1\3)U,, (13U 23, (1/V3)U iyt also yield an
X, = 2 U, W, (A2)  operator-sum representation Gt First note that the set
m Wy, Wy, Wat={(1/V2)U,, (1/y2)U ,, O} yields the
operator-sum representation @fassociated with Eq(56).
also forms an operator-sum representatiofi.diote thatwe ~ 1he operatorgX,, X,, Xs} can be obtained by a unitary re-
allow Kraus operators to be zero, so that different operatorMixing of {Wy, W5, W} using the 3<3 unitary matrix
sum representations may have different cardinality. 2 0 2 0 1
Equation(56) implies that7 has an operator-sum repre- \/; cos \/; sin - \/;

sentation in terms of the set of Kraus operatffg,, W,} 2

={(1/\2)Up, (1/¥2)U,}, since Le \/Ecos<g+2_w> \/ésin<g+2—w> \/1
37 \2° 3 37 \2° 3 3
J1y ute Lyt as \F 9+4_w) \ﬁsm<f+4_77> \f

(A5)

The set of operatorXy, Xo}={(1/V2)U,, (1/\2)Uy, .} also It follows, in particular, that {(1/y3)Uo, (1/\3) Uy,
yield an operator-sum representationZsince they can be (1/y3)U,.,5} and {(1/V3)U,;3, (1/\3)U., (1/\3)Us, 5}
obtained by a unitary remixing dW,, W}, via Eq.(A2),  form operator-sum representations dfand consequently
using the 2< 2 unitary matrix that Egs.(59) and(60) hold.
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