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We discuss how the apparently objective probabilities predicted by quantum mechanics can be treated in the
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I. INTRODUCTION

Probability plays a central role throughout human affairs,
and so everyone has an intuitive idea of what it is. Moreover,
because of the extreme generality and widespread use of the
concept of probability, it cannot be easily defined in terms of
anything more basic. For example, the dictionary that I have
in my office,Webster’s Ninth New Collegiate, says thatprob-
ability is “the state or quality of being probable;” that to be
probable is to be “supported by evidence strong enough to
establish presumption but not proof;” and thatpresumptionis
“the ground, reason, or evidence lending probability to a
belief.” This is clearly unhelpful to anyone who does not
already know what probability is.

In mathematics and physics, we are often faced with a
concept that is both simple enough to be clearly understood,
and fundamental enough to resist definition; for example, a
straight linein Euclidean geometry. To make progress, we do
not attempt to devise ever clearer definitions, but instead
formulate axioms that our understood but undefined objects
are postulated to obey. Then, using codified rules of logical
inference, we prove theorems that follow from the axioms.

It is instructive to treat probability as one of these primi-
tive concepts. Dispensing, then, with any attempt at defini-
tion, we say that theprobability that astatementis true is a
real number between zero and one. A statement may be true
or false; if we know it to be true, we assign it a probability of
one, and if we know it to be false, we assign it a probability
of zero. If we do not know whether it is true or false, we
assign it a probability between zero and one.

There is typically no definitive way to make this assign-
ment. Different people couldsand often dod assign different
numerical values to the probability that some particular state-
ment s“the stock price of Microsoft will be higher one year
from now”d is true. In this sense, probability issubjective.
This point of view isBayesian.

Probability also enters quantum mechanics, in a seem-
ingly more fundamental way. For example, given a wave
function csx,td for a particle in one dimension, the rules of
quantum mechanicsswhich are apparently laws of natured
tell us that we must assign a probabilityucsx,tdu2dx to the
statement “at timet, the particle is betweenx and x+dx.”

Different people do not appear to have a choice about this
assignment. In this sense, quantum probability appears to be
objective.

The goal of this paper is to understand how the apparently
objective probabilities of quantum mechanics can be fit into
the Bayesian framework, which allows different people to
make different probability assignments. This issue has been
addressed by Caves, Fuchs, and Schackf1g, and our results
are in broad agreement with theirs. However, we emphasize
a somewhat different approach to certain issues that we will
explain as we go along.

In Sec. II, in order to fix the notation and key concepts,
we briefly review the axioms and basic theorems of probabil-
ity theory. In Sec. III, we introduce the notion of a probabil-
ity of a probability, and explain how it can be applied to
experimental data to turn an originally subjective probability
into an increasingly objective one, in the sense that all but
strongly biased observers agree with the final probability as-
signment. In Sec. IV, we apply this formalism to the prob-
abilities of quantum mechanics. In Sec. V, we discuss when
and why it is preferable to assign probabilities to possible
density matrices for a quantum system, rather than assigning
a particular density matrix. In Sec. VI, we discuss the con-
struction of noninformative prior distributions for density
matrices. We summarize and conclude in Sec. VII.

II. AXIOMS OF PROBABILITY

The statements to which we may assign probabilities must
obey a logical calculus. Some key definitionssin which “iff”
is short for “if and only if”d:

S=a statement;
V=a statement known to be true;
0” =a statement known to be false;

S̄=a statement that is true iffS is false;
S1∨S2=a statement that is true iff eitherS1 or S2 is true;
S1∧S2=a statement that is true iff bothS1 andS2 are true;
S1 andS2 aremutually exclusiveiff S1∧S2=0” ;
S1, . . . ,Sn are acomplete setiff S1∨ . . .∨Sn=V andSi ∧Sj

=0” for i Þ j .
Elementary logical relationships among statements in-

clude S∨ S̄=V, S∧ S̄=0” , S∧V=S, S1∧ sS2∨S3d
=sS1∧S2d∨ sS1∧S3d, etc.

Denoting the probability assigned to a statementS as
PsSd, we can state the first three axioms of probability.*Electronic mail: mark@physics.ucsb.edu
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Axiom 1: PsSd is a nonnegative real number.
Axiom 2: PsSd=1 iff S is known to be true.
Axiom 3: If S1 and S2 are mutually exclusive, then

PsS1∨S2d=PsS1d+PsS2d.
From these axioms, and the logical calculus of statements,

we can derive some simple lemmas:

Lemma 1:PsS̄d=1−PsSd.
Lemma 2:PsSdø1.
Lemma 3:PsSd=0 iff S is known to be false.
Lemma 4:PsS1∧S2d=PsS1d+PsS2d−PsS1∨S2d.
We omit the proofs, which are straightforward.
We will also need the notion of aconditional statement

S2uS1. S2uS1 is a statement if and only ifS1 is true; otherwise,
S2uS1 is not a statement, and cannot be assigned a probabil-
ity. Given thatS1 is true, the statementS2uS1 is true if and
only if S2 is true. The probability thatS2uS1 is true is then
specified by

Axiom 4: PsS2uS1d=PsS1∧S2d /PsS1d.
Note that, if PsS1d=0, thenS1=0” by Lemma 3, and so

both sides of Axiom 4 are undefined: the right side because
we have divided by zero, and the left side becauseS2u0” is not
a statement.

Another concept we will need is that ofindependence
between statements. Two statements are said to beindepen-
dentif the knowledge that one of them is true tells us nothing
about whether or not the other one is true. Thus, ifS1 andS2
are independent, we should havePsS1uS2d=PsS1d and
PsS2uS1d=PsS2d. Using these relations and Axiom 4, we get
a result that can be used as the definition of independence,

S1 and S2 are independentif and only if PsS1∧S2d
=PsS1dPsS2d.

Note, that independence is a property of probability as-
signments, rather than the statements themselves. Thus,
people can disagree on whether or not two statements are
independent.

III. PROBABILITIES OF PROBABILITIES

What limitations, if any, should be placed on the nature of
statements to which we are allowed to assign probabilities?

There are various schools of thought.Frequentistsassign
probabilities only torandom variables, a highly restricted
class of statements that we shall not attempt to elucidate.
Bayesiansallow a wide range of statements, including state-
ments about the future such as “when this coin is flipped it
will come up heads,” statements about the past such as “it
rained here yesterday,” and timeless statements such as “the
value of Newton’s constant is between 6.6 and 6.7
310−11 m3/kg s2.” Some level of precision is typically in-
sisted on, so that, for example, “red is good” might be re-
jected as too vague.

A major thesis of this paper is that the class of allowed
statements should include statements about the probabilities
of other statements. Some Bayesianssfor example, de Finetti
f2gd reject this concept as meaningless. However, it has
found some acceptance and utility in decision theory, where
it is sometimes called asecond order probability; see, e.g.,
f3g. In particular, it is an experimental fact that people’s de-

cisions depend not only on the probabilities they assign to
various alternatives, but also on the degree of confidence that
they have in their own probability assignmentsf3g. This de-
gree of confidence can be quantified and treated as a prob-
ability of a probability.

To illustrate how we will use the concept, consider the
following problem. Suppose that we have a situation with
exactly two possible outcomessfor example, a coin flipd.
Call the two outcomesA and B. In the terminology of the
logical calculus,A∨B=V andA∧B=0” , so thatA andB are a
complete set. The probability axioms then requirePsAd
+PsBd=1, but do not tell us anything about eitherPsAd or
PsBd alone.

In the absence of any other information, we invoke
Laplace’s principle of insufficient reasonsalso called the
principle of indifferenced: when we have no cause to prefer
one statement over another, we assign them equal probabili-
ties. Thus we are instructed to choosePsAd=PsBd= 1

2. While
this assignment is logically sound, we clearly cannot have a
great deal of confidence in it; typically, we are prepared to
abandon it as soon as we get some more information.

Anothersand, we argue, betterd strategy is to retreat from
the responsibility of assigning a particular value toPsAd, and
instead assign a probabilityPsHd to the statementH= “the
value ofPsAd is betweenh andh+dh.” Here dh is infinitesi-
mal, and 0øhø1. ThenPsHd takes the formpshddh, where
pshd is a nonnegative function that we must choose, normal-
ized bye0

1pshddh=1. We might choosepshd=1, for example.
Now suppose we get more information aboutA and B.

Suppose that the situation that produces eitherA or B as an
outcome can be recreated repeatedlyseach repetition will be
called atrial d, and that the outcomes of the different trials are
swe believed independent. Suppose that the result of the first
N trials isNA A’s andNB B’s, in a particular order. What can
we say now?

The formula we need is
Bayes’ theorem:PsH uDd=PsD uHdPsHd /PsDd
Bayes’ theorem follows immediately from Axiom 4; since

H∧D is the same asD∧H, we have PsH uDdPsDd
=PsH∧Dd=PsD uHdPsHd. While H and D can be any al-
lowed statements, the letters are intended to denote “hypoth-
esis” and “data.” Bayes’ theorem tells us that, given a hy-
pothesisH to which we have somehow assigned aprior
probability PsHd swhether by the principle of indifference, or
by any other meansd, and we knowsor can computed the
likelihoodof PsD uHd getting a particular set of dataD given
that the hypothesisH is true, then we can compute thepos-
terior probability PsH uDd that the hypothesisH is true,
given the dataD that we have obtained. Furthermore, if we
have a complete set of hypothesesHi, then we can express
PsDd in terms of the associated likelihoods and prior prob-
abilities: starting with D=D∧V=D∧ sH1∨H2∨ . . .d
=sD∧H1d∨ sD∧H2d∨ . . ., and noting thatD∧Hi and D∧Hj

are mutually exclusive wheni Þ j , we have:

PsDd = o
i

PsD ∧ Hid = o
i

PsDuHidPsHid, s1d

where the first equality follows from Axiom 3, and the sec-
ond from Axiom 4.
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To apply these results to the case at hand, recall that our
hypothesis isH= “PsAd is betweenh and h+dh.” We have
assigned this hypothesis a prior probabilityPsHd=pshddh.
The dataD is a string ofNA A’s andNB B’s, in a particular
order; each of theN=NA+NB outcomes is assumed to be
independent of all the others. Using the definition of inde-
pendence, we see that the likelihood is

PsDuHd = PsAdNAPsBdNB = hNAs1 − hdNB. s2d

Applying Bayes’ theorem, we get the posterior probability

PsHuDd = PsDd−1hNAs1 − hdNBpshddh, s3d

where

PsDd =E
0

1

hNAs1 − hdNBpshddh. s4d

If the number of trialsN is large, and if the prior probability
pshd has been chosen to be a slowly varying function, then
the posterior probabilityPsH uDd has a sharp peak ath
=hexp;NA/N, the fraction of trials that resulted in outcome
A. The width of this peak is proportional toN−1/2 if both NA
andNB are large, and toN−1 if either NA or NB is small sor
zerod. Thus, after a large number of trials, we can be confi-
dent that the probabilityPsAd that the next outcome will beA
is close to the fraction of trials that have already resulted in
A. The only people who will not be convinced of this are
those whose choice of prior probabilitypshd is strongly bi-
ased against the valueh=hexp. Thus, the valuehexp for the
probability h is becomingobjective, in the sense that almost
all observers agree on it. Furthermore, those who do not
agree can be identifieda priori by noting that their prior
probabilities are strong functions ofh.

Those who reject the notion of a probability of a probabil-
ity, but who accept the practical utility of this analysis
swhich was originally carried out by Laplaced, have two op-
tions. Option one is to declare thath is not actually a prob-
ability; it is rather alimiting frequencyor a propensityor a
chance. Option two is to declare thatpshddh is not actually a
probability; it is ameasureor a generating function.

Let us explore option two in more detail. Rather than
assigning a second-order probability toH= “PsAd is between
h andh+dh,” we assign a probability toevery finite sequence
of outcomes; that is, we choose values forPsAd, PsBd,
PsABd, PsBAd, PsAAAd, PsAABd, and so on, for strings of
arbitrarily many outcomes. We assume that all possible
strings ofN outcomes form a complete set. Our probability
assignments must of course satisfy the probability axioms, so
that, for example,PsAd+PsBd=1. We also insist that the as-
signments besymmetric; that is, independent of the ordering
of the outcomes, so that, for example,

PsAABd = PsABAd = PsBAAd. s5d

Furthermore, the assignments for strings ofN outcomes must
be consistent with those forN+1 outcomes; this means that,
for any particular string ofN outcomesS:

PsSd = PsSAd + PsSBd. s6d

A set of probability assignments that satisfies these require-

ments is said to beexchangeable. Then, thede Finetti rep-
resentation theoremf4g states that, given an exchangeable set
of probability assignments for all possible strings of out-
comes, the probability of getting a specific stringD of N
outcomes that includes exactlyNA A’s andNB B’s can always
be written in the form

PsDd =E
0

1

hNAs1 − hdNBpshddh, s7d

wherepshd is a unique non-negative function that obeys the
normalization conditione0

1dhpshd=1, and is the same for
every stringD. Note that Eq.s7d is exactly the same as Eq.
s4d. Thus an exchangeable probability assignment to se-
quences of outcomes can be characterized by a functionpshd
that can besas we have seend consistently treated as a prob-
ability of a probability. But those who find this notion unpal-
atable are free to think ofpshd as specifying a measure, a
generating function, or a similar euphemism.

To summarize, if we need to assign a prior probability but
have little information, it can be more constructive to abjure,
and instead assign a probability to a range of possible values
of the needed prior probability. This probability of a prob-
ability can then be updated with Bayes’ theorem as more
information comes in.

IV. PROBABILITY IN QUANTUM MECHANICS

Suppose we are given a qubit: a quantum system with a
two-dimension Hilbert space.sWe will use the language ap-
propriate to a spin-one-half particle to describe itd. We are
asked to make a guess for its quantum state.

Without further information, the best we can do is invoke
the principle of indifference. In the case of a finite set of
possible outcomes, this principle is based on the permutation
symmetry of the outcomes; we choose the unique probability
assignment that is invariant under this symmetry. The quan-
tum analog of the permutation of outcomes is the unitary
symmetry of rotations in Hilbert space. The only quantum
state that is invariant under this symmetry is the fully mixed
density matrix

r =
1

2
I . s8d

Thus we are instructed to choose Eq.s8d as the quantum state
of the system. While this assignment is logically sound, we
clearly cannot have a great deal of confidence in it; typically,
we are prepared to abandon it as soon as we get some more
information.

Anothersand, we argue, betterd strategy is to retreat from
the responsibility of assigning a particular statespure or
mixedd to the system, and instead assign a probabilityPsHd
to the statementH= “the quantum state of the system is a
density matrix within a volumedr centered onr,” wherer is
a particular 232 hermitian matrix with non-negative eigen-
values that sum to one, anddr is a suitable differential vol-
ume element in the space of such matrices. We can param-
etrizer with three real numbersx, y, andz via
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r =
1

2
S 1 + z x− iy

x + iy 1 − z
D , s9d

where x2+y2+z2; r2ø1. We then takedr=dV, wheredV
=s3/4pddxdydzis the normalized volume element:edV=1.
PsHd takes the formpsrddV, wherepsrd is a non-negative
function that we must choose, normalized byepsrddV=1.
We might choosepsrd=1, for example.

Now suppose we get some more information about the
quantum state of the system. Suppose that the procedure that
prepares the quantum state of the particle can be recreated
repeatedlyseach repetition of this will be called atrial d, and
that the outcomes of measurements performed on each pre-
pared system areswe believed independent. Suppose that we
have access to a Stern–Gerlach apparatus that allows us to
measure whether the spin is1 or 2 along an axis of our
choice. We choose thez axis. Suppose that the result of the
first N trials is N+ 1’s andN− 2’s. What can we say now?

Given a density matrixr, parametrized by Eq.s9d, the
rules of quantum mechanics tell us that the probability that a
measurement of the spin along thez axis will yield +1 is

Pssz = + 1urd = Tr
1

2
s1 + szdr =

1

2
s1 + zd, s10d

wheresz is a Pauli matrix, and the probability that this mea-
surement will yield −1 is

Pssz = − 1urd = Tr
1

2
s1 − szdr =

1

2
s1 − zd. s11d

Now we use Bayes’ theorem. Our hypothesis isH= “the
quantum state is within a volumedr centered onr.” We have
assigned this hypothesis a prior probabilityPsHd=psrddr.
The dataD is a string ofN+ 1’s andN− 2’s, in a particular
order; each of theN=N++N− outcomes is assumed to be
independent of all the others. Using the definition of inde-
pendence, we see that the likelihood is

PsDuHd = fPssz = + 1urdgN+fPssz = − 1urdgN−

= F1

2
s1 + zdGN+F1

2
s1 − zdGN−

. s12d

Applying Bayes’ theorem, we get the posterior probability

PsHuDd = PsDd−1F1

2
s1 + zdGN+F1

2
s1 − zdGN−

psrddr,

s13d

where

PsDd =E F1

2
s1 + zdGN+F1

2
s1 − zdGN−

psrddr. s14d

When the number of trialsN is large, and the prior probabil-
ity psrd is a slowly varying function, the posterior probabil-
ity PsH uDd has a sharp peak atz=zexpt;sN+−N−d /N. Thus,
after a large number of trials in which we measuresz, we can
be confident of the value of the parameterz in the density
matrix of the system. The only people who will not be con-
vinced of this are those whose choice of prior probability

psrd is strongly biased against the valuez=zexpt. Further-
more, those who do not agree can be identifieda priori by
noting that their prior probabilities are strong functions ofr.

We can of course orient our Stern-Gerlach apparatus
along different axes. If we choose thex axis or they axis, the
relevant predictions of quantum mechanics are

Pssx = + 1urd = Tr
1

2
s1 + sxdr =

1

2
s1 + xd, s15d

Pssx = − 1urd = Tr
1

2
s1 − sxdr =

1

2
s1 − xd, s16d

Pssy = + 1urd = Tr
1

2
s1 + sydr =

1

2
s1 + yd, s17d

Pssy = − 1urd = Tr
1

2
s1 − sydr =

1

2
s1 − yd. s18d

For each trial, we can choose whether to measuresx, sy, or
sz. sWe could also choose to measure along any other axis.d
Then, if the outcomes includeN+z measurements ofsz with
the resultsz= +1, etc., the posterior probability becomes

PsHuDd = PsDd−1F1

2
s1 + xdGN+xF1

2
s1 − xdGN−x

3F1

2
s1 + ydGN+yF1

2
s1 − ydGN−y

3F1

2
s1 + zdGN+zF1

2
s1 − zdGN−z

psrddr, s19d

where PsDd is given by the obvious integral. Clearly the
discussion in the preceding paragraph is simply triplicated,
and, when the number of trials is large, we have determined
the entire density matrix to the satisfaction of all but strongly
biased observers. Our subjective probabilities of probabilities
have led us to an objective conclusion about quantum prob-
abilities.

In f1g, Caveset al. arrived at an essentially identical re-
sult. The main difference in their analysis is that they re-
gardedpsrddr as a measure rather than a probability. This
approach required them to prove, first, a quantum version of
the de Finetti theoremf5g, and, second, that Bayes’ theorem
can be applied topsrddr f6g. Both steps become unnecessary
if we treatpsrddr as, fundamentally, a probability.

V. PROBABILITIES FOR DENSITY MATRICES VS
DENSITY MATRICES

If we assign an impure density matrixr to a quantum
system, does this not already take into account our ignorance
about it? Why is it preferable to assign, instead, a probability
psrddr to the set of possible density matrices?

It depends on the nature of our ignorance. Suppose, for
example, the system is the spin of an electron plucked from
the air. Then we expect that Eq.s8d will describe it, in the
sense that if we do repeated trialssplucking a new electron
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each time, and measuring its spin along an axis of our
choiced, we will find that xexpt;sN+x−N−xd / sN+x+N−xd,
yexpt;sN+y−N−yd / sN+y+N−yd, and zexpt;sN+z−N−zd / sN+z

+N−zd all tend to zero.
Suppose instead that the spin is prepared by a technician

who swith the aid of a Stern–Gerlach deviced puts it in either
a pure state withsz= +1, or a pure state withsx= +1, and
each time decides which choice to make by flipping a coin
that we believe is fair. In this case the appropriate density
matrix is

r =
1

2
F1

2
s1 + szdG +

1

2
F1

2
s1 + sxdG =

1

4
S3 1

1 1
D . s20d

Comparing with Eq.s9d, we see that we now we expectxexpt,
yexpt, andzexpt to approach +12, 0, and +1

2, respectively.
Now suppose that the spin is prepared by a technician

who puts it in either a pure state withsz= +1, or a pure state
with sx= +1, andmakes the same choice every time. We,
however, are not aware of what her choice is.

If forced to assign a particular density matrix, we would
have to choose Eq.s20d. However, our situation is clearly
different from what it was in the previous example. In the
present case, repeated experiments wouldnot verify Eq. s20d,
but would instead converge on eitherxexpt=0 andzexpt= +1,
or xexpt= +1 andzexpt=0. Therefore, in this case, it is more
appropriate to assign a prior probability of one-half tor
= 1

2s1+szd and a prior probability one-half tor= 1
2s1+sxd.

Then, as data come in, we can update these probability as-
signments with Bayes’ theorem, as described in Sec. IV.

Thus, it is better to choosepsrddr when it is possible that
there is something about the preparation procedure that con-
sistently prefers a particular direction in Hlibert space, but
we do not know what that direction is. Since this possibility
can rarely be ruled outa priori, we are typically better served
by choosing a prior probabilitypsrddr, rather than a particu-
lar vaue ofr itself.

VI. NONINFORMATIVE PRIORS FOR DENSITY
MATRICES

Suppose we have decided to choose a prior probability
psrddr for the density matrixr of some quantum system.
How should we choose this probability?

In the case where we have little or no information about
the quantum system, we would like to formulate the appro-
priate analog of the principle of indifference. Consider a
qunit, a quantum system whose Hilbert space has dimension
n that is known to us.sWe will not consider the even more
general problem wheren is unknown.d We can always write
the density matrixswhatever it isd in the form

r = U−1r̃U, s21d

whereU is unitary with determinant one, andr̃ is diagonal
with non-negative entriesp1, . . . ,pn that sum to one. There is
a natural measure for special unitary matrices, the Haar mea-
sure; it is invariant underU→CU, whereC is a constant
special unitary matrix. In the simplest case ofn=2, we can
parametrizeU as U=eia1s3eia2s2eia3s3, with 0øa1øp, 0

øa2øp /2, 0øa3øp; then the normalized Haar measure is
dU=p−2 sins2a2dda1da2da3. This construction is extended
to all n in f7g.

Suppose we know that the state of the quantum system is
pure. Then we can setr̃i j =di1d j1, and parametrizer via U.
Then it is natural to choosedr=dU andpsrd=1, because this
is the only choice that is invariant under unitary rotations in
Hilbert space.

Now consider the more general case where we do not
have information about the purity of the system’s quantum
state. Followingf8g, we define the volume element via

dr ; dUdF, s22d

wheredU is the normalized Haar measure forU, and

dF = sn − 1d!dsp1 + ¯ + pn − 1ddp1 ¯ dpn, s23d

is a normalized measure for thepi’s that we will call the
Feynman measuresbecause it appears in the evaluation of
one-loop Feynman diagramsd. Equation s23d assumes that
eachpi runs from zero to one; then Eq.s21d is an overcom-
plete construction, becauseU can rearrange thepi’s. This is
easily fixed by imposingp1ù ¯ ùpn, and multiplyingdF
by n!. However, Eq.s23d as it stands is easier to write and
think about; the overcompleteness of this construction ofr
causes no harm.

In the case n=2, we previously chosedr=dV
=s3/4pddxdydzfor the parametrization of Eq.s9d. In this
case, the eigenvalues ofr are 1

2s1+rd and 1
2s1−rd, with 0

ø r ø1. After intergrating overU, dV→3r2dr, in compari-
son,dF=dr for this case.

The purity of a density matrixr can be parametrized by
Tr r2, which for n=2 is 1

2s1+r2d. Thus, the volume measure
dV is more biased toward pure states than is the Feynman
measuredF; we havedV=3s2 Tr r2−1ddF.

In general, we can accommodate any such bias by taking
psrddr to be of the form

psrddr = psTrr2ddUdF, s24d

wherepsxd is an increasing function if we are biased towards
having a pure state. Forn.2, we can takep to be a function
of Tr rk for 2økøn. Arguments in favor of various choices
of p have been put forthf9g, but no single choice seems
particularly compelling. Of course, once we have done
enough experiments, our original biases become largely ir-
relevant, as we saw in Sec. IV.

VII. CONCLUSIONS

We have argued that, in a Bayesian framework, the nature
of our ignorance about a quantum system can often be more
faithfully represented by a prior probabilitypsrddr over the
range of allowed density matrices, rather than by a specific
choice of density matrix. This method is particularly appro-
priate whens1d the preparation procedure may favor a direc-
tion in Hilbert space, but we do not know what that direction
is, ands2d we can recreate the preparation procedure repeat-
edly, and perform measurements of our choice on each pre-
pared system. In this case, as data come in, we use Bayes’
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theorem to updatepsrddr. Eventually, all but strongly biased
observersswho can be identifieda priori by an examination
of their choice of prior probabilityd will be convinced of the
values of the quantum probabilities. In this way, initially sub-
jective probability assignments become more and more ob-
jective.

In choosingpsrddr, we can use the principle of indiffer-
ence, applied to the unitary symmetry of Hilbert space, to
reduce the problem to one of choosing a probability distri-
bution for the eigenvalues ofr. There is, however, no com-

pelling rationale for any particular choice; in particular, we
must decide how biased we are towards pure states.
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