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Subjective and objective probabilities in quantum mechanics
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We discuss how the apparently objective probabilities predicted by quantum mechanics can be treated in the
framework of Bayesian probability theory, in which all probabilities are subjective. Our results are in accord
with earlier work by Caves, Fuchs, and Schack, but our approach and emphasis are different. We also discuss
the problem of choosing a noninformative prior for a density matrix.
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[. INTRODUCTION Different people do not appear to have a choice about this
assignment. In this sense, quantum probability appears to be

Probability plays a central role throughout human aﬁa'rs’objective

and so everyone has an intuitive idea of what it is. Moreover, The goal of this paper is to understand how the apparently

becaus;e (;f thebeg'_clr_(tam_? gener;all;ty and_lwgalefgprza_d ;JSG of t %jective probabilities of quantum mechanics can be fit into
concept of probability, 1t cannot be easily detined in terms oly, Bayesian framework, which allows different people to

; . . - fnake different probability assignments. This issue has been
in my office, Webster’s Ninth New Collegiatsays thaprob- addressed by Cpaves, Fuychs, zgnd Schagkand our results

ab'll')tyb'ls ‘_‘thte sgat? or qua}[hté/ gf bel_r(;g proba}[ble;” that tohb(;: are in broad agreement with theirs. However, we emphasize
probableis to be “supported by €vi "ence Strong enougn 1o, somewhat different approach to certain issues that we will
establish presumption but not proof;” and tphagsumptions

N ; ; . explain as we go along.

th? ground, reason, or evidence lending probability to a In Sec. I, in order to fix the notation and key concepts,

blel|efa 'ths IS Eletarly gngﬁlpfgl to anyone who does not e briefly review the axioms and basic theorems of probabil-

artlaa y tEOW V\t/ a prcc; ahl Iy 1S. ften faced with ity theory. In Sec. Ill, we introduce the notion of a probabil-
N mathematics and physics, we are often taced wi y of a probability, and explain how it can be applied to

cogc]?ptdthat 'SthOth S'mﬂlet enoqgth(jtof_bgt_clgalfly undersfoo xperimental data to turn an originally subjective probability
and fundamental énough to resist detinition, for example, gy, o increasingly objective one, in the sense that all but

Str?'ggt I|net|ntEljch|Qean geomtlatry. To dm?k.?. progrssts,_wi do, trongly biased observers agree with the final probability as-
not attempt to devise ever ciearer detinitions, but nstea ignment. In Sec. IV, we apply this formalism to the prob-

formulate axioms that our understood but undefined ObJeCtEbilities of quantum mechanics. In Sec. V, we discuss when
are postulated to obey. Then, using codified rules of logica nd why it is preferable to assign probabilities to possible

inference, we prove theorems that follow from the axioms. density matrices for a quantum system, rather than assigning

. Itis Instructive to treat probablllty as one of these primi- 5 particular density matrix. In Sec. VI, we discuss the con-
tive concepts. Dispensing, then, with any attempt at defini-

i that therobability that astat s true | struction of noninformative prior distributions for density
lon, we say that th@robability that astatements rue s a - - ya4ices. We summarize and conclude in Sec. VL.

real number between zero and one. A statement may be true

or false; |f_we know it to be true, we assignita probab|llty Qf Il AXIOMS OF PROBABILITY

one, and if we know it to be false, we assign it a probability

of zero. If we do not know whether it is true or false, we  The statements to which we may assign probabilities must

assign it a probability between zero and one. obey a logical calculus. Some key definitidirs which “iff”
There is typically no definitive way to make this assign-is short for “if and only if"):
ment. Different people coul¢and often do assign different S=a statement;

numerical values to the probability that some particular state- ()=a statement known to be true;
ment (“the stock price of Microsoft will be higher one year  0=a statement known to be false;
from now”) is true. In this sense, probability mubjective S=a statement that is true i is false:
This point of view isBayesian S,0S,=a statement that is true iff eith&; or S, is true;

Probability also enters quantum mechanics, in a seem- g [1S,=3 statement that is true iff bo®) andS, are true;
ingly more fundamental way. For example, given a wave g andsS, aremutually exclusivéff S;0S,=0;
function ¢(x,t) for a particle in one dimension, the rules of g s are acomplete seiff S;0...05,=Q andS 0s
quantum mechanicévhich are apparently laws of natyre =q for i #j.
tell us that we must assign a probabilfiy(x, )| *dx to the Elementary logical relationships among statements in-
statement “at time, the particle is betweer and x+dx.” clude SOS=Q, SO0S=0, SO0=S S,0(S,0S)

=(5,09) 0(S,0Sy), etc.
Denoting the probability assigned to a statemé&nas
*Electronic mail: mark@physics.ucsb.edu P(9), we can state the first three axioms of probability.
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Axiom 1: P(S) is a nonnegative real number. cisions depend not only on the probabilities they assign to

Axiom 2: P(S)=1 iff Sis known to be true. various altgrnatiyes, but also on the degree of confidence that

Axiom 3: If S, and S, are mutually exclusive, then they have in their own probability assignmefdg. This de-
P(S,0S,)=P(S) +P(S)). gree of confidence can be quantified and treated as a prob-

From these axioms, and the logical calculus of statement&Pility of a probability. _
we can derive some simple lemmas: To illustrate how we will use the concept, consider the

following problem. Suppose that we have a situation with

Lemma 1:P(S)=1-P(S). exactly two possible outcome$or example, a coin flip
Lemma 2:P(§)<1. Call the two outcomed\ and B. In the terminology of the
Lemma 3:P(S)=0 iff Sis known to be false. logical calculusAOB= andAB=0, so thatA andB are a
Lemma 4:P(S,0S,) =P(S) +P(S,) - P(S,0S,). complete set. The probability axioms then requP€A)
We omit the proofs, which are straightforward. +P(B)=1, but do not tell us anything about eithB(A) or
We will also need the notion of aonditional statement P(B) alone.

S)|S.. S| S, is a statement if and only B, is true; otherwise, In the absence of any other information, we invoke

S,|S, is not a statement, and cannot be assigned a probabil-aplace’s principle of insufficient reasoralso called the

ity. Given thatS, is true, the statemer8,|S, is true if and  principle of indifferencg when we have no cause to prefer
only if S, is true. The probability tha&,|S, is true is then one statement over another, we assign them equal probabili-
specified by ties. Thus we are instructed to choch(eA):P(B)zé. While

Axiom 4: P(S,|S) =P(S,0S,)/ P(S)). this assignment is logically sound, we clearly cannot have a
Note that, if P(S;)=0, thenS;=0 by Lemma 3, and so 9great deal of confidence in it; typically, we are prepared to
both sides of Axiom 4 are undefined: the right side becaus@Pandon it as soon as we get some more information.
we have divided by zero, and the left side becaB$@ is not Another(and, we argue, bettestrategy is to retreat from
a statement. the responsibility of assigning a particular value®@), and
Another concept we will need is that afidependence instead assign a probabilify(H) to the statementi= “the
between statements. Two statements are said indepen-  value of P(A) is betweerh andh+dh.” Here dhiis infinitesi-
dentif the knowledge that one of them is true tells us nothingmal, and G<h=1. ThenP(H) takes the fornp(h)dh, where
about whether or not the other one is true. Thu§;itndS,  p(h) is a nonnegative function that we must choose, normal-
are independent, we should have(S,|S,)=P(S;) and ized byfép(h)dhzl. We might choose(h)=1, for example.
P(S;|S) =P(S,). Using these relations and Axiom 4, we get Now suppose we get more information abdutand B.
a result that can be used as the definition of independenceSuppose that the situation that produces either B as an
S, and S, are independentif and only if P(S00S,)  outcome can be recreated repeatd@lych repetition will be
=P(S)P(S)). called atrial), and that the outcomes of the different trials are
Note, that independence is a property of probability as{we believe independent. Suppose that the result of the first
signments, rather than the statements themselves. Thu¥,trials isN, A's andNg B's, in a particular order. What can

people can disagree on whether or not two statements akge say now?
independent. The formula we need is

Bayes’ theoremP(H|D)=P(D|H)P(H)/P(D)
Bayes’ theorem follows immediately from Axiom 4; since
lIl. PROBABILITIES OF PROBABILITIES HOD is the same asDOH, we have P(H|D)P(D)

What limitations, if any, should be placed on the nature of~"(HOD)=P(D|H)P(H). While H and D can be any al-
statements to which we are allowed to assign probabilities?Ced statements, the letters are intended to denote “hypoth-

There are various schools of thougRtequentistsassign ~ €SiS” and “data.” Bayes’ theorem tells us that, given a hy-
probabilities only torandom variables a highly restricted POthesisH to which we have somehow assignedpgor
class of statements that we shall not attempt to elucidatd’robability XH) (whether by the principle of indifference, or
Bayesiansallow a wide range of statements, including state-Ry any other meansand we know(or can computethe
ments about the future such as “when this coin is flipped ifikelihoodof P(D|H) getting a particular set of dafa given
will come up heads,” statements about the past such as “{hat the hypothesisi is true, then we can compute tpes-
rained here yesterday,” and timeless statements such as “tkgfior probability PH|D) that the hypothesigd is true,
value of Newton’s constant is between 6.6 and 6_7given the datdD that we have obtained. Furthermore, if we
X 107 m3/kg 2" Some level of precision is typically in- have a complete set of hypothedgs then we can express
sisted on, so that, for examp|e’ “red is good" m|ght be re_P(D) in terms of the associated likelihoods and prior prob—
jected as too vague. abilities:  starting with D=D0OQ=D0O(H,;0OH,0...)

A major thesis of this paper is that the class of allowed=(DOH;) (D 0OH,) O..., and noting thaD [0H; and D 0H;
statements should include statements about the probabilitiege mutually exclusive wher j, we have:
of other statements. Some Bayesiéfios example, de Finetti
[2]) reject this concept as n%eaningless. Iﬂowever, it has P(D) =2 P(D OH)) = X P(D|H)P(H)), (1)
found some acceptance and utility in decision theory, where ' '
it is sometimes called aecond order probabilitysee, e.g., where the first equality follows from Axiom 3, and the sec-
[3]. In particular, it is an experimental fact that people’s de-ond from Axiom 4.
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To apply these results to the case at hand, recall that ounents is said to bexchangeableThen, thede Finetti rep-
hypothesis iH= “P(A) is betweerh andh+dh.” We have resentation theorerf¥] states that, given an exchangeable set
assigned this hypothesis a prior probabilyH)=p(h)dh.  of probability assignments for all possible strings of out-
The dataD is a string ofN, A's andNg B's, in a particular  comes, the probability of getting a specific stridgof N
order; each of theN=N,+Ng outcomes is assumed to be outcomes that includes exactiy A’'s andNg B’s can always
independent of all the others. Using the definition of inde-be written in the form
pendence, we see that the likelihood is

1
P(D|H) = P(A)NAP(B)Ne = hNa(1 — h)Ne. 2) P(D) = f hNA(1 —h)"ep(h)dh, (7)
0

Applying Bayes’ theorem, we get the posterior probability
wherep(h) is a unigue non-negative function that obeys the

P(HID) = P(D)*h"™(1 ~h)™ep(h)dh, 3 normalization conditionfdhp(h)=1, and is the same for
where every stringD. Note that Eq(7) is exactly the same as Eq.
1 (4). Thus an exchangeable probability assignment to se-
P(D) = J hNa(1 - h)Nep(h)dh. (4) quences of outcomes can be characterized by a funption
0 that can bgas we have segmronsistently treated as a prob-

ability of a probability. But those who find this notion unpal-

If the number of trialN is large, and if the prior probability ; o
p(h) has been chosen to be a slowly varying function, thenatable are free to think op(h) as specifying a measure, a

the-posterior probabiitP(H|D) has a sharp peak at 93 0 BEo B8 SN SRR iy bu
=he,p=Na/N, the fraction of trials that resulted in outcome h

. . : : =y ave little information, it can be more constructive to abjure,
A. (-j”[\]|e W'dtlh of this ;()je&(_lls'fprqtﬁ)]ortl;\)lnal t?\l . if bOtTI Na  and instead assign a probability to a range of possible values
andNg are farge, an IT-either Na or Ng IS Sma (or _of the needed prior probability. This probability of a prob-
zero. Thus, after a large number of trials, we can be confi

o ) “ability can then be updated with Bayes' theorem as more
_dent that the probaplht?(A) _that the next outcome will ba _information comes in.
is close to the fraction of trials that have already resulted in
A. The only people who will not be convinced of this are

those whose choice of prior probabilipth) is strongly bi- IV. PROBABILITY IN QUANTUM MECHANICS

ased against the value=he,, Thus, the valughe,, for the Suppose we are given a qubit: a quantum system with a
probability h is becomingobjective in the sense that almost ,4_dimension Hilbert spacéWe will use the language ap-

all observers agree on it. Furthermore, those who do ngtqphriate to a spin-one-half particle to describe We are
agree can be identified priori by noting that their prior ;qred to make a guess for its quantum state.

probabilities are strong functions bf . _ Without further information, the best we can do is invoke

_ Those who reject the notion of a probability of a probabil- i rinciple of indifference. In the case of a finite set of
ity, but who accept the practical utility of this analysis qssiple outcomes, this principle is based on the permutation
(which was originally carried out by Laplakéave two 0p-  gymmetry of the outcomes; we choose the unique probability
tions. Option one is to declare thatis not actually a prob- ysgignment that is invariant under this symmetry. The quan-
ability; it is rather alimiting frequencyor a propensityor & 1, ‘analog of the permutation of outcomes is the unitary
chance Option two is to declare thatth)dhis not actually @ = gymmetry of rotations in Hilbert space. The only quantum

probability; it is ameasureor agenerating function state that is invariant under this symmetry is the fully mixed
Let us explore option two in more detail. Rather thandensity matrix

assigning a second-order probabilityHe “P(A) is between
h andh+dh,” we assign a probability tevery finite sequence
of outcomes; that is, we choose values #¢A), P(B), p= 5'- (8)
P(AB), P(BA), P(AAA), P(AAB), and so on, for strings of
arbitrarily many outcomes. We assume that all possiblérhus we are instructed to choose E8).as the quantum state
strings of N outcomes form a complete set. Our probability of the system. While this assignment is logically sound, we
assignments must of course satisfy the probability axioms, solearly cannot have a great deal of confidence in it; typically,
that, for exampleP(A)+P(B)=1. We also insist that the as- we are prepared to abandon it as soon as we get some more
signments besymmetri¢that is, independent of the ordering information.
of the outcomes, so that, for example, Another(and, we argue, bettestrategy is to retreat from
_ _ the responsibility of assigning a particular stdfmre or
P(AAB) = P(ABA) = P(BAA). ) mixed to the system, and instead assign a probabiitil)
Furthermore, the assignments for stringdNafutcomes must to the statemenH= “the quantum state of the system is a
be consistent with those fdt+1 outcomes; this means that, density matrix within a volumeép centered om,” wherep is
for any particular string oN outcomesS: a particular 2<2 hermitian matrix with non-negative eigen-
_ values that sum to one, amtp is a suitable differential vol-
P(S =P(SA +P(SB. ) ume element in the space of such matrices. We can param-
A set of probability assignments that satisfies these requirestrize p with three real numbers, y, andz via
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P=5 (9) more, those who do not agree can be identifiepriori by
noting that their prior probabilities are strong functionspof

where x>+y?+7°=r?<1. We then takedp=dV, wheredV We can of course orient our Stern-Gerlach apparatus

=(3/4m)dxdydzis the normalized volume elemerfidV=1.  along different axes. If we choose tkexis or they axis, the

P(H) takes the formp(p)dV, wherep(p) is a non-negative relevant predictions of quantum mechanics are

function that we must choose, normalized pp(p)dv=1. 1 1

We might choose(p)=1, for example. Ploy= +1p) =Tr=(1 +o)p==(1 +x), (15)

Now suppose we get some more information about the 2 2
quantum state of the system. Suppose that the procedure that
prepares the quantum state of the particle can be recreated
repeatedlyeach repetition of this will be calledtaal ), and
that the outcomes of measurements performed on each pre-
pared system ar@ve believe independent. Suppose that we 1 1
have access to a Stern—Gerlach apparatus that allows us to Ploy=+1p)=Tr-(1+oy)p=_(1+y), (17)
measure whether the spin #s or — along an axis of our 2 2
choice. We choose theaxis. Suppose that the result of the
first N trials isN, +'s andN_ —’s. What can we say now?

Given a density matrixp, parametrized by Eq(9), the

rules of quantum mechanics tell us that the probability that a )
measurement of the spin along thexis will yield +1 is For each trial, we can choose whether to measyrer,, or
o,. (We could also choose to measure along any other)axis.

Then, if the outcomes includd,, measurements af, with
the resulto,= +1, etc., the posterior probability becomes

1(1+z X— iy> p(p) is strongly biased against the valaez,,, Further-

X+iy 1-z

1 1
Ploy=-1p)=Tro(1-op=2(1-x),  (16)

1 1
P(oy=- 1|p)=Tr§(1—0'y)p=§(l—y)- (18)

Plo,= +1p) =Tr (14 0)p=5(1+2, (10

whereo, is a Pauli matrix, and the probability that this mea-
surement will yield -1 is

Ny N_y
P(H|D) = P(D)‘l[%(l +x)} E(l —x)]

1 1 1 N, 1 N_
Plo,==p) =T (A -op=(1-2. (1D x{5(1+y)} Y[Eu—y)} y

Now we use Bayes’ theorem. Our hypothesigis “the 1 Niz| 1 N
quantum state is within a volunt centered op.” We have X [5(1 + Z)} {5(1 _Z)] p(p)dp, (19)
assigned this hypothesis a prior probabilPyH)=p(p)dp.
The dataD is a string ofN, +'s andN_ —’s, in a particular Where P(D) is given by the obvious integral. Clearly the
order; each of theN=N,+N_ outcomes is assumed to be discussion in the preceding paragraph is simply triplicated,
independent of all the others. Using the definition of inde-and, when the number of trials is large, we have determined

pendence, we see that the likelihood is the entire density matrix to the satisfaction of all but strongly
N N biased observers. Our subjective probabilities of probabilities
P(D[H) =[P(a, = + 1|p)]™[P(a,= - 1|p)]™- have led us to an objective conclusion about quantum prob-
1 Ni[ 1 N_ abilities.
= [5(1 +Z)} {5(1 —Z)} : (12 In [1], Caveset al. arrived at an essentially identical re-

sult. The main difference in their analysis is that they re-
Applying Bayes’ theorem, we get the posterior probability gardedp(p)dp as a measure rather than a probability. This
1 N 1 N approach required them to prove, first, a quantum version of
P(H|D) = p(D)—l{_(l +z)} [_(1 —z)} p(p)dp, the de Finetti theorerfb], and, second, that Bayes’ theorem
2 2 can be applied tp(p)dp [6]. Both steps become unnecessary
(13 if we treatp(p)dp as, fundamentally, a probability.

where
V. PROBABILITIES FOR DENSITY MATRICES VS

N, N_
P(D):f |:%(1 +Z):| |:%(1—Z):| p(p)dp (14) DENSITY MATRICES

If we assign an impure density matrix to a quantum
When the number of trialbl is large, and the prior probabil- system, does this not already take into account our ignorance
ity p(p) is a slowly varying function, the posterior probabil- about it? Why is it preferable to assign, instead, a probability
ity P(H|D) has a sharp peak atzq,,=(N.~N_)/N. Thus,  p(p)dp to the set of possible density matrices?
after a large number of trials in which we measugewe can It depends on the nature of our ignorance. Suppose, for
be confident of the value of the parametein the density example, the system is the spin of an electron plucked from
matrix of the system. The only people who will not be con-the air. Then we expect that E¢B) will describe it, in the
vinced of this are those whose choice of prior probabilitysense that if we do repeated trigfgucking a new electron
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each time, and measuring its spin along an axis of ou a,< /2, 0< az=< m; then the normalized Haar measure is

choicg, we will find that Xeyp= (Nix=N_)/(Nyy+N_y), dU=7"?sin(2a,)da;da,das. This construction is extended

Yexpi= (Nsy=N_y)/(N.y+N_y), and z,,=(N,,~N_)/(N,, toallnin[7].

+N_,) all tend to zero. Suppose we know that the state of the quantum system is
Suppose instead that the spin is prepared by a technicigsure. Then we can s@;=8,6;;, and parametrize via U.

who (with the aid of a Stern—Gerlach devjqauts it in either ~ Then it is natural to choos#p=dU andp(p)=1, because this

a pure state withr,=+1, or a pure state witlr,=+1, and is the only choice that is invariant under unitary rotations in

each time decides which choice to make by flipping a coirHilbert space.

that we believe is fair. In this case the appropriate density Now consider the more general case where we do not

matrix is have information about the purity of the system’s quantum

state. Following 8], we define the volume element via

1] 1 111 1/3 1
p:§|:§(1+0'z):|+5|:5(1+0'x):|::1<1 1)- (20) dp = dUdF, (22)

Comparing with Eq(9), we see that we now we eXPOGh wheredU is the normalized Haar measure fdr and

Yexpr @N0Zeyy to @pproach %, 0, and 4, respectively. dF=(n=1)18(pg+ -+ +p,- Ddp,---dpy, (23
Now suppose that the spin is prepared by a technician ) )
who puts it in either a pure state with=+1, or a pure state 1S @ normalized measure for thg's that we will call the
with o, =+1, andmakes the same choice every tiftde, Feynman measurévbecause it appears in the evaluation of
however, are not aware of what her choice is. one-loop Feynman diagramsEquation (23) assumes that
If forced to assign a particular density matrix, we would €achp; runs from zero to one; then E(1) is an overcom-
have to choose Eq20). However, our situation is clearly Plete construction, becausé can rearrange thp's. This is
different from what it was in the previous example. In the €asily fixed by imposings;=---=p,, and multiplyingdF
present case, repeated experiments Wuutd/erify Eq. (20), by n!. However, Eq(23) as it stands is e.aS|er to er!:e and
but would instead converge on eithe,=0 andze,y=+1, think about; the overcompleteness of this constructiop of
OF Xexp= +1 andze,,=0. Therefore, in this case, it is more Causes no harm. _
appropriate to assign a prior probability of one-half go In the case n=2, we previously chosedp=dV
=1(1+0,) and a prior probability one-half tp=3(1+a,). =(3/4m)dxdydzfor the paramftrlzatlon of1 Eq9). In this
Then, as data come in, we can update these probability a§ase, the eigenvalues pfare 5(1+r) and ;(1-r), with 0
signments with Bayes’ theorem, as described in Sec. IV. <r=1. After intergrating ovetJ, dV— 3rdr, in compari-
Thus, it is better to choosg(p)dp when it is possible that son,dF=dr for this case. _ .
there is something about the preparation procedure that con- The purity of a density matriy can be parametrized by
sistently prefers a particular direction in Hlibert space, butTt p? which forn=2 is 5(1+r2). Thus, the volume measure
we do not know what that direction is. Since this possibility dV is more biased toward pure states than is the Feynman
can rarely be ruled owt priori, we are typically better served measuredF; we havedV=3(2 Tr p?~1)dF.

by choosing a prior probabilitp(p)dp, rather than a particu- In general, we can accommodate any such bias by taking
lar vaue ofp itself. p(p)dp to be of the form
p(p)dp = p(Trp?)dUdF, (24)

VI. NONINFORMATIVE PRIORS FOR DENSITY _ _ _ o _
MATRICES wherep(x) is an increasing function if we are biased towards

having a pure state. For>2, we can take to be a function
Suppose we have decided to choose a prior probabilityf Tr pk for 2<k=n. Arguments in favor of various choices
p(p)dp for the density matrixp of some quantum system. of p have been put fortfi9], but no single choice seems
How should we choose this probability? particularly compelling. Of course, once we have done
In the case where we have little or no information aboutenough experiments, our original biases become largely ir-
the quantum system, we would like to formulate the approrelevant, as we saw in Sec. IV.
priate analog of the principle of indifference. Consider a
qunit, a quantum system whose Hilbert space has dimension

n that is known to us(We will not consider the even more VII. CONCLUSIONS

general problem whene is unknown) We can always write \We have argued that, in a Bayesian framework, the nature
the density matrixwhatever it ig in the form of our ignorance about a quantum system can often be more
p=U5U 21) faithfully represented by a prior probability(p)dp over the

range of allowed density matrices, rather than by a specific
whereU is unitary with determinant one, anfiis diagonal choice of density matrix. This method is particularly appro-
with non-negative entriegy, ... ,p, that sum to one. There is priate when(1) the preparation procedure may favor a direc-
a natural measure for special unitary matrices, the Haar medion in Hilbert space, but we do not know what that direction
sure; it is invariant undelt — CU, whereC is a constant is, and(2) we can recreate the preparation procedure repeat-
special unitary matrix. In the simplest casersf2, we can edly, and perform measurements of our choice on each pre-
parametrizeU as U=€17sg@272d 373 with 0<ay<m, 0  pared system. In this case, as data come in, we use Bayes’
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theorem to updatp(p)dp. Eventually, all but strongly biased pelling rationale for any particular choice; in particular, we
observergwho can be identifiec priori by an examination must decide how biased we are towards pure states.

of their choice of prior probabilitywill be convinced of the

values of the quantum probabilities. In this way, initially sub-

jective probability assignments become more and more ob- ACKNOWLEDGMENTS
jective.
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