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Wigner function and Schrodinger equation in phase-space representation
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We discuss a family of quasidistributiofs-ordered Wigner functions of Agarwal and WéFhys. Rev. D
2, 2161 (1970; Phys. Rev. D2, 2187 (1970; Phys. Rev. D2, 2206 (1970]) and its connection to the
so-called phase space representation of the Schrddinger equation. It turns out that although Wigner functions
satisfy the Schrédinger equation in phase space, they have a completely different interpretation.
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I. INTRODUCTION The aim of the present paper is to relate the standard
phase-space approach based on quasidistributions functions

Since the pioneering work of Wigndi], generalized to that of Torres-Vega and Fredefi€F). We show that one
phase-space techniques have found useful applications @hn easily produce the whole family of Schrédinger equation
various branches of physid2-5]. The main idea of this in phase space, which is closely related to the family of
approach is to represent the density operatas a function  s-ordered Wigner functiondV of Agarwal and Wolf[16];
(quasidistribution over the classical phase spacep). This  that is,W; are particular solutions of this family of equations.
function fully characterized the quantum state and enableSlow, according to the standard approathdefines the qua-
one to express the quantum-mechanical expectations as asdistribution in phase space, whereas the TF approach im-
erages of classical observables over the classical phagfies that|2, where =27 W, is a (true) probability
space. Moreover, it is the Wigner function that is directly distribution (i.e., |¢?=0 and [|#J2d'=1). It should be
related to the measurement. Then quantum tomographistressed, that Schrédinger equation in phase space has an
methods[6,7] enable one to reconstruct the quantum staténfinite number of solutions. It is a price one pays for using
from the experimental data. Recently, the Wigner functiony(I") instead ofe(q). Each particular solution gives rise to
was also applied to study quantum entanglement and relatefle particular phase-space representation of ordinary wave
issues for continuous syster(eee, e.g.[8-11]). function ¢(q) in position representation.

The Wigner functiori1] is only one particular example of  The paper is organized as follows. In Sec. Il we present
such a quasidistribution. An especially important rieg.,  general approach to phase-space representation of the wave
in quantum optickis played by the family of functions in- fynction and following[28] we discuss the general solution
troduced by Cahill and Glaube12] containing as the for Schrodinger equation in phase space. Section Il intro-
Wigner function, the Glauber-Sudarsh&rfunction[13,14,  duces the whols family of equations together with the fam-
and the HusimiQ-function [15]. In this paper we analyze jly of solutions. Then, after recalling the formulas for star
another lesser-known family introduced by Agarwal andproducts in Sec. IV, we show thabrdered Wigner functions

Wolf [16]. Actually, all these quasidistributions correspond togo solve the family of Schrédinger equations. We end with
the particular quantization procedure, that is, different ordersgme conclusions in Sec. VI.

ing of g andp or, equivalently, different ordering of creation
a' anda annihilation operators, respectively.

The procedure of representing quantum states by quasid- ||, SCHRODINGER EQUATION IN PHASE SPACE
istributions in phase-space is closely related to the phase
space formulation of quantum mechanics based on the non- There is no a unique way to represent a quantum state as
commutative product known as Moyal prodydi7,18 or  a wave functiony=(I'), wherel represents a point in a
more generally as a star prodJdt9] (see[20,21] for the  classical phaséq,p). In the standard approach one usually
compact formulation of the standard quantum mechanics ifises a coordinate(q) or momentuma(p) representations,

terms of t_he Moyal produgt _ respectively. To pass froma(q) to ¢(I") one has to invent an
There is another phase-space representation of quantugegral transformation

mechanics based on the works of Torres-Vega and Frederic

[22,23 (see alsd24]). In this approach thépure quantum

state is represented by the wave functi@’), wherel rep- ) o

resents a point in phase space. It turns out i{&Y satisfies I :f K(I';q")e(q)dq’, (1)
so called Schrodinger equation in phase space. The quantity

|y(I)|? is, therefore, treated as a probability distribution in

phase space. This procedure was applied to study simpkhereK(I';q’) denotes the integral kernel. Functiostl’)
guantum systemf25-27. In a recent paper Let al. [28]  defined by the above formula form a proper subspdgeof
found a general method of solving Schrédinger equation irthe Hilbert spacel?(R?). The unitarity of transformation
phase space. L2(R) 5 ¢(q) — (T € Hy requires
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fﬁr- NK(I;q")dl = (g’ - o) 2) i p(a) = {—h—ziw >} @b, @D
;9K g)dl = 8" - ), ( Af@U=| "o T V@ | ea,
wheredI” denotes a measure on the phase space. Clearlffeny(I') obtained frome(q) via Kc4(I';g) satisfies the fol-
there is a huge freedom in choosiKg Performing the fol- lowing Schrédinger equation in phase space

lowing “gauge transformation” 2

72 P
ih%g&(F,t):{—__+V<q+iﬁaip)]w(r’t)' (12)

K(T;q) — €"MK(T;0), (€) 2miq?
with f(T') being an arbitrary real function, one obtains a newActually, performing the gauge transformatiog’(q,p)
kernel still satisfying(2). =g P¥2y(q,p) one finds a more symmetric formula
In the literature there are several well-known examples of
such a transform. Perhaps the most famous is the Bargmann ihizp’(l“,t) = |:i|52+v(é):| ¢ (T1), (13)
(or Bargmann-Segatransform defined by29,30 at 2m
Ke(z) = Hexpl- 3@ +c?) +2zf, (4 “Where
where z is a complex number, i.e., one usB8$=C. The (j: 9+iﬁi, (14)
corresponding space(g of entire functionsy(z) equipped 2 ap
with the following inner product
- d
. P= P_ ih—,
(i) = f (2 o(2Ddu(2), (5 2 4q

) _ satisfy [Q,ﬁ’]:iﬁ and, therefore, they define phase-space
wheredu(2)=7"e"4°d?, is known as the Bargmann-Segal representation of position and momentum. This particular

representation of the Hilbert space. representation corresponds to the gauge-transformed coher-
A closely related kernel is connected to the coherent statesnt states kerna %" K .4q,p;q’). Note that Eq(14) give
representatiofi31] a highly reducible representation of the commutation rela-
K o) = (Cla’ 6 tion. To compensate this reducibility, admissible wave func-
cs(a,p;d") = (g, ®) tions y(I") have to satisfy certain supplementary condition.
where Following Harriman[24], this condition is given by
" — )2 i 1 ~ N - _

Tl = (xzwrl"*exp{— L2y —q)}, ™ (ya0-a8Jum=o 4o
with |T') denoting the standard Glauber coherent state correvhere AQ=Q-q, AP=P~p. Let us note that15) may be
sponding to regarded as a defining condition for the Hilbert spéte

_ Clearly, there are square-integrable functions of two real
['=(\"lg+iNa"1p)/\2. (8) variables that do not satisfy this condition; that 1, is a

proper subspace df?(R?). In the case of Bargmann kernel

The parametex is a natural length scale defined by the massy) “g,ch a condition restricts the space of square-integrable

and fr?q“er.‘cy of the oscnlato_r, L&\ Vﬁ/f“f‘" The COIM®- " fynctions to the class of entire functions on the complex
sponding Hilbert spac( g carries the following inner prod-

. plane.
uct: Recently, the following stationary Schrodinger equation
| 1(p . )2 q .. 9
(Ynly) —f (D) p(D)dI, 9 {—(—— h—) +v<—+ ﬁ—)} ) =EyT),
lcs= | (D), ol 7l P 5t p W) =Ey(I)
with (16)

dqdp was postulated iMf28]. Now, (I") denotes an arbitrary

=—. (10 phase-space representation; that is, the integral kernel
2mh K(I';q) in (1) is not specified. The general solution @fb)

From now on we shall use the dimensionless converion  'eads as follow$Eq. (11) in [28]):

for dI'. Note that in this conventiog{(I") is dimensionless,

whereas the kerné{(I":q’) has the same dimension as the T =e_iqp/2hf 9(y)e(q +y)e mpydy, (17)

wave function in the position representatiofn).

Actually, Eq. (6) was a starting point in constructing whereg(y) is an arbitrary nonzero function ang(q) is the
phase-space representation of quantum mechanics of Torrasigenfunction of the Schrodinger equation in coordinate rep-
Vega and Frederick22,23. They showed that ifp(q) satis-  resentation corresponding to the eigenvafidote that the
fies the standard Schrédinger equation function g(y) uniquely defines an integral kernig}, by

dr
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Kq(Q,p;q’) = e P 92lhg(q' —q). (19

Note that

f K(I';q")K(T;q)dl = &g’ - ) f g (@' - q)g(q’ - g)da,

(19
and hence unitarity conditio(®) implies
J lg(y)[*dy=1. (20)
In particular, the following Gaussian:
gy) = (m?) VeV’ (21)

does satisfy (20) and one finds for the corresponding

Kq(g,p;q")=€"P¥2" K o(q,p;q’).

lll. A FAMILY OF THE SCHRODINGER EQUATION IN
PHASE SPACE

Let us observe that the representati{@d) may be gener-

alized to the whole family of representations. It is convenient

to scale phase-space variablgsp) — (29, 2p) and to intro-
duce

~ ifh o
Qs—q+(1—S)E%, (22)

P= —(1+s)ﬁi
s=P 249’

with se R. One can easily verify thz{fgs, I55]:iﬁ.
In analogy to(16) let us postulate the following family of
Schrédinger equations:

1 i 9\ in 9
[_<p_(1+s)5(9_q) +V<q+(1—3)5(9—p>] X ()

2m

=Ey(T). (23
To solve this equation assume that fot -1
_ v T2 P
Ya.p) =exp — = S}sbs(q,p)- (24)

One obtains the following equation faf:

_h@r9? # (ﬁ _ @i”
2m 4 P v s+1 (d-s) 2 dp X ddap)
=E¢4q,p). (25)

Now we expand the potentidl as a Taylor’'s series about
[i7(1-s)/2]d/dp for given g and use the partial Fourier

transform

#s(a,p) = f xs(a,y)e"PYh, (26)

Further more, multiplying both sides of(25)
exp{—ipy’/#} and integrating ovep, one obtains

by
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R (1+9? P ( 2 1-s

+V| —q+— ,
om 4 &qg S+1q 2 y>:|)(s(qy)

= EXs(an)a (27)

which defines the standard Schrddinger equation in &he
representation

2 1-s

§='———q'*‘7;‘Y-

s+1 (28)

Therefore, the general solution (#7) reads as follows:

Xs(0,Y) = gy)e(é), (29

where gs=g4(y) is an arbitrary nonzero function ang(£)
satisfies

72 P
{- > wa}p(g) =Eq(8). (30

2moé?

Finally, the general solution d4) has the following form:

— _ a Pq f sipy/h ( 2
ws(q,p)—exp{ ﬁs+1} dy e’ X g(y)e o+ 1Y
1-s
5 y)- (31)

Clearly, for eachy(y) it defines a family of kernel&g

¥s(a,p) = f Kg(@.p;a")e(q)dd’, (32
given by
2 2q’ 4
Ky(@pia)= 1 —sgs( 1 ?s 1 —qsz>
_ 2 pa'- q))
X exp( - 7 : (33

Again, the requirement of unitarit§2) implies the following
condition for the functiorgy(s#-1) :

2
1+’

f |as(y)|?dy = (3%

Note that fors=1 the formula for the kernel considerably
simplifies

K3 '(a.p:a") =e™¥"G(p)sa-q"), (35

whereg stands for the Fourier transform gfIn this case the
ave functione(q) has the following phase-space representa-
tion

¥(q,p) = P¥G(p)e(q). (36)
IV. STAR PRODUCT

Now we show that the family of Eq$23) is closely re-
lated to the family of quasidistributions function in phase
space.
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To describe all quantum phenomena in phase space, we It turns out that the similar structure may be established
have to determine a relationship between operators and funedso for s#0. Let us introduce the following family of
tions on the classical phase space. This correspondence is\Wigner-Weyl transforms:
course not unique. The most famous is based on the Wigner—

Weyl transform Fyw: if f(q,p) is a phase-space function
then one defines the corresponding operé&tor

F=Fum(f),
by
F= f do f drf(o, DT, (37
wheref denotes the Fourier transform bf
?(T,a):i f do J drf(q,p)e@r ™. (3g)

The inverse transform, i.el?,—>f, is defined as follows:

1 . 1\
f(q,p):fdy<q—§ylF|q+§y>épy’h. (39)

If F corresponds to a density operaterthen its inverse

Fs= Fa()
by
IES= f da’f drf (o, 7)ot Pgrisor2, (45)

Clearly, fors=0 one recover§37). This formula enables one
to introduce the family of star produets

A-By= Fop(axd), (46)

which reduces t@41) for s=0. One easily finds
in < s < -
ax = aexp{ S (L =97gdy = (1 +s)apaq)}b, (47)
which is equivalent to
in in
a(g,p)*¢(a,p) = a<q +(1 _S)E(?pa p-(1 +S)E(9q> b(a,p).
(48)

Wigner-Wey! transform recovers celebrated Wigner function

W= T (P)

1 _
W(a,p) = — f dy(q - y|p|a + y)e?P¥h. (40)

Now, the noncommutative multiplication of operators in-

troduces the following noncommutative multiplication of
functions:
Fi-Fo= Fuw(fr fo). (42)

The formula for the star produet was derived long ago by
Groenewold 17] and Moyal[18]

iho. ..
foxfy= flexp{lz(&qap - apaq)}fz,

whered(d) act on the leftright) side. The Moyal product is
associative

(42)

(fyxfy) % fy=1) % (fy % f3),
but it is noncommutative
fl* f2 * fz* fl'

Recall, that the operat@®x acts as a generator of transla-
tions: e¥f(x)=f(x+a). Therefore, the defining formulat2)
may be rewritten in the following form:

ih
'—aq)f2<q.p>. (43)

i%
f1(a.p) » f2(q,p) = f1<q 5P

Now we can make crucial observation: Equati@3) for s
=0 has the following form:

H l/fs=0 = E',//s:o,
whereH(q, p) is the classical Hamilton function.

(44)

Therefore, the family of Schrédinger equations in phase
space(23) may be rewritten as follows:

Hx s = Edli. (49)

This shows that the family of Eq23), which is a direct
generalization of equations used[22,2§ is closely related

to the noncommutative structure induced by the family of
star products.

V. WIGNER FUNCTION VERSUS PHASE-SPACE WAVE
FUNCTION

Both Wigner functionW(q, p) and the wave functiogi(I")
are objects defined on the classical phase sp#d®. satis-
fies (44)

Hx* =Ey. (50
What aboutW? It turns out that the stationary Wigner func-

tion is uniquely determined by the following two equations
[20]:
HxW=WxH=EW (52

that is,W satisfies the same equationsyaand, additionally,
it fulfills WxH=EW, which is equivalent to

1 i \2 i
{%(“ 'Ef?q) +V<q - 'Eo’*pﬂw(q,p) =EWaQ,p).

(52)

We stressed, that there are infinite solutiong(%d) and is
only one solution of51). Clearly, the Wigner function does

belong to the solutions db0). Indeed, taking
9(y) = ¢ (-y/2), (53)

Eq. (17) implies
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l/,([‘):fdy e‘ipy’h¢*(q—3—2/>¢(q+§); (54) Tr(ﬁﬁ)=fw(q,p)f(q,p)dqdp

that is, y(I')=27AW, where W(q,p) is a Wigner function Moreover,W;, provides correct quantum marginals
corresponding t@. We stress that the choice fgty) in (53)

is state dependent and not universal, i.e., it reproduces the Jd —inlA 61
Wigner function for ¢ only. Other wave functions are A V&(@.p) = (plplp (62)
mapped to/(I"), which are not related to their Wigner func-

tions.
As an example let us compare the solutiong%d) and fdp W,(a,p) ={q|p|q).
(51) for the harmonic oscillator. Taking(y) as in(21) one
obtains from(17) [22,24,27,28 the following formulas cor- It turns out that stationang-Wigner functionsW; are
responding tanth energy eigenstate,(q): uniquely determined by
1 . H — _
() = J_TF ”ex;{— f) , (55) Hx W= WgxH = EW. (62
v ¢ Equation (49 for ¢ has infinite number of solutions,
with I" given by (8), whereas whereas the set of two Eq&62) has only one solution
Wa(@.p) =~ ~La| o Jexp =2 — ). (56) () = J dy e'PYh x <p*(q— Ty)cp(q+ Ty),
wherelL, denotesnth Laguerre polynomial. Because (72 (63
=H/hw, one has for the probability distribution of transition i i
from g, to the coherent stat) i.e., s(I)=27W,(q, p). Therefore W; is only one particu-
1/ H\n H lar solution of(49). It is easy to see that taking
|l!fn(F)|2:E<ﬁ—) exp—<h—>. (57) [ s+1
FAe @ 9y =¢ |~y (64)
Clearly, both|¢,> and W,, depends only on the oscillator
energyH and both are normalized according to in (31) one obtainsy(I") given by (63). In particular fors
=1 one obtains so-called Kirkwood-Rihaczek function
f|,/,n|2dr:fwndqdp: 1. (58) K(q,p)=Ws4(qg,p), which, in the case of pure statg re-
duces to
Moreover, it its easy to show inq/fime
Y K(q,p) = €% (p)o(q). (65)
1 . . .
f WAdqdp= Py (59 It was introduced by Kirkwood32] as an alternative for the

Wigner function. Then, in 1968, the same formula was redis-
Now, the family of Wigner-Wey! transformgs,,, enables ~ covered by Rihaczek33] in the context of signal time-
one to introduce the following family of Wigner functions: frequency distributiongsee[34] for a useful review. Re-

W,=(Fiuw)"X(p), where p stands for the density operator. cently, this function was analyzed and applied in various
One finds contexts in[35-40.

1 _
Wya.p) =5 f dy o/t x <q -1 _5)3—2’|,3|q +(1 +s)X>, VI. DISCUSSION

2
(60) Both the phase-space wave functigfl’) and s-ordered
Wigner functionWg encode the entire information about the
which reduces t&V(q, p) for s=0. The familyW; was intro-  quantum statep(q). Because of the basic property
duced by Agarwal and Wolt16]. It satisfies two basic prop-

erties: it is normalized f |y(I)|?dI' =1, (66)

JWs(q,p)dqdp: L some authors calk/(I')|? a probability distribution in phase

space. Clearly, quantum mechanics does not allow for a

and for any quantum observatffe genuine probability distribution irg and p! To interpret
A |y(I)|? correctly note that Eq(1l) may be rewritten as the
Tr(Fp) :fws(q,p)f_s(q,p)dqdp; following inner product
¢T) = (erle), (67)

Wheref_s=(f§\,sw)‘1(|3). Fors=0 the last formula reproduces
well known property of the Wigner function where
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er(@) =K' (T';q'). (68)
Let us consider kernels defined 48). Then, due ta20),
¢or(q’) is a normalized wave function in the position repre-
sentation. Thereforey{T')|? is the probability density of
transition from the state to stateer. In particular for the
coherent state kernédcs one has|y(I')[2=|('| ¢)|?> which
defines the Husimi function for the stage

Now, the Wigner function defined quasi-distribution such
that fWdgdp=1. Since W is a special solution of the
Schrédinger equation in phase space one has

1
W(p(Ql p) = ﬁ(QDFW% (69)

whereW, is the Wigner function corresponding o Equa-
tions (33) and (53) imply

PHYSICAL REVIEW A 71, 052104(2005

or(q') = 2¢"(2q - q')g 2P, (70
It should be stressed that the phase formulation based on the
wave functiony(I) is restricted to pure states only, whereas
the approach based on Wigner function works perfectly for
general mixed statep. Therefore, this approach is much
more general. Note that for mixed states one has

f WAl < (70

1
(2mh)?’
and the equality holds for pure states only. Therefore, for
general mixed state@7#)°W? cannot be interpreted as a

probability distribution.
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