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We discuss a family of quasidistributionsss-ordered Wigner functions of Agarwal and WolffPhys. Rev. D
2, 2161 s1970d; Phys. Rev. D2, 2187 s1970d; Phys. Rev. D2, 2206 s1970dgd and its connection to the
so-called phase space representation of the Schrödinger equation. It turns out that although Wigner functions
satisfy the Schrödinger equation in phase space, they have a completely different interpretation.
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I. INTRODUCTION

Since the pioneering work of Wignerf1g, generalized
phase-space techniques have found useful applications in
various branches of physicsf2–5g. The main idea of this
approach is to represent the density operatorr̂ as a function
squasidistributiond over the classical phase spacesq,pd. This
function fully characterized the quantum state and enables
one to express the quantum-mechanical expectations as av-
erages of classical observables over the classical phase
space. Moreover, it is the Wigner function that is directly
related to the measurement. Then quantum tomographic
methodsf6,7g enable one to reconstruct the quantum state
from the experimental data. Recently, the Wigner function
was also applied to study quantum entanglement and related
issues for continuous systemsssee, e.g.,f8–11gd.

The Wigner functionf1g is only one particular example of
such a quasidistribution. An especially important rolese.g.,
in quantum opticsd is played by the family of functions in-
troduced by Cahill and Glauberf12g containing as the
Wigner function, the Glauber-SudarshanP-function f13,14g,
and the HusimiQ-function f15g. In this paper we analyze
another lesser-known family introduced by Agarwal and
Wolf f16g. Actually, all these quasidistributions correspond to
the particular quantization procedure, that is, different order-
ing of q̂ and p̂ or, equivalently, different ordering of creation
â† and â annihilation operators, respectively.

The procedure of representing quantum states by quasid-
istributions in phase-space is closely related to the phase
space formulation of quantum mechanics based on the non-
commutative product known as Moyal productf17,18g or
more generally as a star productf19g ssee f20,21g for the
compact formulation of the standard quantum mechanics in
terms of the Moyal productd.

There is another phase-space representation of quantum
mechanics based on the works of Torres-Vega and Frederic
f22,23g ssee alsof24gd. In this approach thespured quantum
state is represented by the wave functioncsGd, whereG rep-
resents a point in phase space. It turns out thatcsGd satisfies
so called Schrödinger equation in phase space. The quantity
ucsGdu2 is, therefore, treated as a probability distribution in
phase space. This procedure was applied to study simple
quantum systemsf25–27g. In a recent paper Liet al. f28g
found a general method of solving Schrödinger equation in
phase space.

The aim of the present paper is to relate the standard
phase-space approach based on quasidistributions functions
to that of Torres-Vega and FredericsTFd. We show that one
can easily produce the whole family of Schrödinger equation
in phase space, which is closely related to the family of
s-ordered Wigner functionsWs of Agarwal and Wolff16g;
that is,Ws are particular solutions of this family of equations.
Now, according to the standard approachWs defines the qua-
sidistribution in phase space, whereas the TF approach im-
plies that ucsu2, where cs=2p" Ws, is a strued probability
distribution si.e., ucsu2ù0 and eucsu2dG=1d. It should be
stressed, that Schrödinger equation in phase space has an
infinite number of solutions. It is a price one pays for using
csGd instead ofwsqd. Each particular solution gives rise to
the particular phase-space representation of ordinary wave
function wsqd in position representation.

The paper is organized as follows. In Sec. II we present
general approach to phase-space representation of the wave
function and followingf28g we discuss the general solution
for Schrödinger equation in phase space. Section III intro-
duces the wholes family of equations together with the fam-
ily of solutions. Then, after recalling the formulas for star
products in Sec. IV, we show thats-ordered Wigner functions
do solve the family of Schrödinger equations. We end with
some conclusions in Sec. VI.

II. SCHRÖDINGER EQUATION IN PHASE SPACE

There is no a unique way to represent a quantum state as
a wave functionc=csGd, whereG represents a point in a
classical phasesq,pd. In the standard approach one usually
uses a coordinatewsqd or momentumw̃spd representations,
respectively. To pass fromwsqd to csGd one has to invent an
integral transformation

csGd =E KsG;q8dwsq8ddq8, s1d

whereKsG ;q8d denotes the integral kernel. FunctionscsGd
defined by the above formula form a proper subspaceHK of
the Hilbert spaceL2sR2d. The unitarity of transformation
L2sRd{wsqd→csGdPHK requires
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E K̄sG;q8dKsG;q9ddG = dsq8 − q9d, s2d

where dG denotes a measure on the phase space. Clearly,
there is a huge freedom in choosingK. Performing the fol-
lowing “gauge transformation”

KsG;qd → eif sGdKsG;qd, s3d

with fsGd being an arbitrary real function, one obtains a new
kernel still satisfyings2d.

In the literature there are several well-known examples of
such a transform. Perhaps the most famous is the Bargmann
sor Bargmann-Segald transform defined byf29,30g

KBsz;qd = p−1/4exph− 1
2sz2 + q2d + Î2zqj , s4d

where z is a complex number, i.e., one usesR2>C. The
corresponding spaceHB of entire functionscszd equipped
with the following inner product

kc1uc2lB =E c1
*szdc2szddmszd, s5d

wheredmszd=p−1e−uzu2d2z, is known as the Bargmann-Segal
representation of the Hilbert space.

A closely related kernel is connected to the coherent states
representationf31g

KCSsq,p;q8d = kGuq8l, s6d

where

kGuq8l = sl2pd−1/4expH−
sq8 − qd2

2l2 −
ip

"
sq8 − qdJ , s7d

with uGl denoting the standard Glauber coherent state corre-
sponding to

G = sl−1q + il"−1pd/Î2. s8d

The parameterl is a natural length scale defined by the mass
and frequency of the oscillator, i.e.,l=Î" /mv. The corre-
sponding Hilbert spaceHCS carries the following inner prod-
uct:

kc1uc2lCS=E c1
*sGdc2sGddG, s9d

with

dG =
dqdp

2p"
. s10d

From now on we shall use the dimensionless conventions10d
for dG. Note that in this conventioncsGd is dimensionless,
whereas the kernelKsG :q8d has the same dimension as the
wave function in the position representationwsqd.

Actually, Eq. s6d was a starting point in constructing
phase-space representation of quantum mechanics of Torres-
Vega and Frederickf22,23g. They showed that ifwsqd satis-
fies the standard Schrödinger equation

i"
]

]t
wsq,td = F−

"2

2m

]2

]q2 + VsqdGwsq,td, s11d

thencsGd obtained fromwsqd via KCSsG ;qd satisfies the fol-
lowing Schrödinger equation in phase space

i"
]

]t
csG,td = F−

"2

2m

]2

]q2 + VSq + i"
]

]p
DGcsG,td. s12d

Actually, performing the gauge transformationc8sq,pd
=e−ipq/2"csq,pd one finds a more symmetric formula

i"
]

]t
c8sG,td = F 1

2m
P̂2 + VsQ̂dGc8sG,td, s13d

where

Q̂ =
q

2
+ i"

]

]p
, s14d

P̂ =
p

2
− i"

]

]q
,

satisfy fQ̂, P̂g= i" and, therefore, they define phase-space
representation of position and momentum. This particular
representation corresponds to the gauge-transformed coher-
ent states kernele−ipq/2"KCSsq,p;q8d. Note that Eq.s14d give
a highly reducible representation of the commutation rela-
tion. To compensate this reducibility, admissible wave func-
tions csGd have to satisfy certain supplementary condition.
Following Harrimanf24g, this condition is given by

S1

l
DQ̂ −

il

"
DP̂DcsGd = 0, s15d

whereDQ̂=Q̂−q, DP̂= P̂−p. Let us note thats15d may be
regarded as a defining condition for the Hilbert spaceHK.
Clearly, there are square-integrable functions of two real
variables that do not satisfy this condition; that is,HK is a
proper subspace ofL2sR2d. In the case of Bargmann kernel
s4d, such a condition restricts the space of square-integrable
functions to the class of entire functions on the complex
plane.

Recently, the following stationary Schrödinger equation

F 1

2m
Sp

2
− i"

]

]q
D2

+ VSq

2
+ i"

]

]p
DGcsGd = EcsGd,

s16d

was postulated inf28g. Now, csGd denotes an arbitrary
phase-space representation; that is, the integral kernel
KsG ;qd in s1d is not specified. The general solution ofs16d
reads as followsfEq. s11d in f28gd:

csGd = e−iqp/2"E gsydwsq + yde−si/"dpydy, s17d

wheregsyd is an arbitrary nonzero function andwsqd is the
eigenfunction of the Schrödinger equation in coordinate rep-
resentation corresponding to the eigenvalueE. Note that the
function gsyd uniquely defines an integral kernelKg by
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Kgsq,p;q8d = e−ipsq8−q/2d/"gsq8 − qd. s18d

Note that

E K̄sG;q8dKsG;q9ddG = dsq8 − q9d E g*sq8 − qdgsq9 − qddq,

s19d

and hence unitarity conditions2d implies

E ugsydu2dy= 1. s20d

In particular, the following Gaussian:

gsyd = spl2d−1/4e−y2/2l2
s21d

does satisfy s20d and one finds for the corresponding
Kgsq,p;q8d=e−ipq/2"KCSsq,p;q8d.

III. A FAMILY OF THE SCHRÖDINGER EQUATION IN
PHASE SPACE

Let us observe that the representations14d may be gener-
alized to the whole family of representations. It is convenient
to scale phase-space variablessq,pd→ s2q,2pd and to intro-
duce

Q̂s = q + s1 − sd
i"

2

]

]p
, s22d

P̂s = p − s1 + sd
i"

2

]

]q
,

with sPR. One can easily verify thatfQ̂s, P̂sg= i".
In analogy tos16d let us postulate the following family of

Schrödinger equations:

F 1

2m
Sp − s1 + sd

i"

2

]

]q
D2

+ VSq + s1 − sd
i"

2

]

]p
DG 3 cssGd

= EcssGd. s23d

To solve this equation assume that forsÞ−1

cssq,pd = expH− 2i

"

pq

1 + s
Jfssq,pd. s24d

One obtains the following equation forfs:

F−
"

2m

s1 + sd2

4

]2

]q2 + VS 2q

s+ 1
+ s1 − sd

i"

2

]

]p
DG 3 fssq,pd

= Efssq,pd. s25d

Now we expand the potentialV as a Taylor’s series about
fi"s1−sd /2g] /]p for given q and use the partial Fourier
transform

fssq,pd =E xssq,yde−ipy/". s26d

Further more, multiplying both sides ofs25d by
exph−ipy8 /"j and integrating overp, one obtains

F−
"2

2m

s1 + sd2

4

]2

]q2 + VS 2

s+ 1
q +

1 − s

2
yDGxssq,yd

= Exssq,yd, s27d

which defines the standard Schrödinger equation in thej
representation

j =
2

s+ 1
q +

1 − s

2
y. s28d

Therefore, the general solution ofs27d reads as follows:

xssq,yd = gssydwsjd, s29d

where gs=gssyd is an arbitrary nonzero function andwsjd
satisfies

F−
"2

2m

]2

]j2 + VsjdGwsjd = Ewsjd. s30d

Finally, the general solution ofs24d has the following form:

cssq,pd = expH−
2i

"

pq

s+ 1
J E dy e−ipy/" 3 gssydwS 2

s+ 1
q

+
1 − s

2
yD . s31d

Clearly, for eachgssyd it defines a family of kernelsKg
s

cssq,pd =E Kg
ssq,p;q8dwsq8ddq8, s32d

given by

Kg
ssq,p;q8d =

2

1 − s
gsS 2q8

1 − s
−

4q

1 − s2D
3 expS−

2i

1 − s

psq8 − qd
"

D . s33d

Again, the requirement of unitaritys2d implies the following
condition for the functiongsssÞ−1d :

E ugssydu2dy=
2

u1 + su
. s34d

Note that fors=1 the formula for the kernel considerably
simplifies

Kg
s=1sq,p;q8d = e−ipq/"g̃spddsq − q8d, s35d

whereg̃ stands for the Fourier transform ofg. In this case the
ave functionwsqd has the following phase-space representa-
tion

csq,pd = e−ipq/"g̃spdwsqd. s36d

IV. STAR PRODUCT

Now we show that the family of Eqs.s23d is closely re-
lated to the family of quasidistributions function in phase
space.
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To describe all quantum phenomena in phase space, we
have to determine a relationship between operators and func-
tions on the classical phase space. This correspondence is of
course not unique. The most famous is based on the Wigner–
Weyl transformFWW: if fsq,pd is a phase-space function

then one defines the corresponding operatorF̂

F̂ = FWWsfd,

by

F̂ =E dsE dt f̃ss,tdeissq̂+tp̂d, s37d

where f̃ denotes the Fourier transform off

f̃st,sd =
1

2p
E dsE dt fsq,pde−issq+tpd. s38d

The inverse transform, i.e.,F̂→ f, is defined as follows:

fsq,pd =E dyKq −
1

2
yuF̂uq +

1

2
yLeipy/". s39d

If F̂ corresponds to a density operatorr̂ then its inverse
Wigner-Weyl transform recovers celebrated Wigner function
W=FWW

−1 sr̂d

Wsq,pd =
1

p"
E dykq − yur̂uq + yle2ipy/". s40d

Now, the noncommutative multiplication of operators in-
troduces the following noncommutative multiplication of
functions:

F̂1 · F̂2 = FWWsf1 ! f2d. s41d

The formula for the star product! was derived long ago by
Groenewoldf17g and Moyalf18g

f1 ! f2 = f1expH i"

2
s]Qq]Wp − ]Qp]WqdJ f2, s42d

where]Qs]Wd act on the leftsrightd side. The Moyal product is
associative

sf1 ! f2d ! f3 = f1 ! sf2 ! f3d,

but it is noncommutative

f1 ! f2 Þ f2 ! f1.

Recall, that the operatorea]x acts as a generator of transla-
tions: ea]xfsxd= fsx+ad. Therefore, the defining formulas42d
may be rewritten in the following form:

f1sq,pd ! f2sq,pd = f1Sq +
i"

2
]p,p −

i"

2
]qD f2sq,pd. s43d

Now we can make crucial observation: Equations23d for s
=0 has the following form:

H ! cs=0 = Ecs=0, s44d

whereHsq,pd is the classical Hamilton function.

It turns out that the similar structure may be established
also for sÞ0. Let us introduce the following family of
Wigner-Weyl transforms:

F̂s = FWW
s sfd

by

F̂s =E dsE dt f̃ss,tdeissq̂+tp̂de−isst/2. s45d

Clearly, fors=0 one recoverss37d. This formula enables one
to introduce the family of star products!s

Âs · B̂s = FWW
s sa!sbd, s46d

which reduces tos41d for s=0. One easily finds

a!sb = a expH i"

2
ss1 − sd]Qq]Wp − s1 + sd]Qp]WqdJb, s47d

which is equivalent to

asq,pd!sbsq,pd = aSq + s1 − sd
i"

2
]p,p − s1 + sd

i"

2
]qDbsq,pd.

s48d

Therefore, the family of Schrödinger equations in phase
spaces23d may be rewritten as follows:

H!scs = Ecs. s49d

This shows that the family of Eq.s23d, which is a direct
generalization of equations used inf22,28g is closely related
to the noncommutative structure induced by the family of
star products.

V. WIGNER FUNCTION VERSUS PHASE-SPACE WAVE
FUNCTION

Both Wigner functionWsq,pd and the wave functioncsGd
are objects defined on the classical phase space.csGd satis-
fies s44d

H ! c = Ec. s50d

What aboutW? It turns out that the stationary Wigner func-
tion is uniquely determined by the following two equations
f20g:

H ! W= W! H = EW; s51d

that is,W satisfies the same equations asc and, additionally,
it fulfills W!H=EW, which is equivalent to

F 1

2m
Sp +

i"

2
]qD2

+ VSq −
i"

2
]pDGWsq,pd = EWsq,pd.

s52d

We stressed, that there are infinite solutions ofs50d and is
only one solution ofs51d. Clearly, the Wigner function does
belong to the solutions ofs50d. Indeed, taking

gsyd = w*s− y/2d, s53d

Eq. s17d implies
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csGd =E dy e−ipy/"w*Sq −
y

2
DwSq +

y

2
D; s54d

that is, csGd=2p"W, where Wsq,pd is a Wigner function
corresponding tow. We stress that the choice forgsyd in s53d
is state dependent and not universal, i.e., it reproduces the
Wigner function for w only. Other wave functions are
mapped tocsGd, which are not related to their Wigner func-
tions.

As an example let us compare the solutions ofs50d and
s51d for the harmonic oscillator. Takinggsyd as in s21d one
obtains froms17d f22,24,27,28g the following formulas cor-
responding tonth energy eigenstatewnsqd:

cnsGd =
1

În!
G*nexpS−

H

2"v
D , s55d

with G given by s8d, whereas

Wnsq,pd =
s− 1dn

p"
LnS4H

"v
DexpS−

2H

"v
D , s56d

whereLn denotesnth Laguerre polynomial. Because ofuGu2
=H /"v, one has for the probability distribution of transition
from wn to the coherent stateuGl

ucnsGdu2 =
1

n!
S H

"v
Dn

exp −S H

"v
D . s57d

Clearly, both ucnu2 and Wn depends only on the oscillator
energyH and both are normalized according to

E ucnu2dG =E Wndqdp= 1. s58d

Moreover, it its easy to show

E Wn
2dqdp=

1

2p"
. s59d

Now, the family of Wigner-Weyl transformsFWW
s enables

one to introduce the following family of Wigner functions:
Ws=sFWW

s d−1sr̂d, where r̂ stands for the density operator.
One finds

Wssq,pd =
1

2p"
E dy eipy/" 3 Kq − s1 − sd

y

2
ur̂uq + s1 + sd

y

2
L ,

s60d

which reduces toWsq,pd for s=0. The familyWs was intro-
duced by Agarwal and Wolff16g. It satisfies two basic prop-
erties: it is normalized

E Wssq,pddqdp= 1,

and for any quantum observableF̂

TrsF̂r̂d =E Wssq,pdf−ssq,pddqdp,

wheref−s=sFWW
−s d−1sF̂d. Fors=0 the last formula reproduces

well known property of the Wigner function

TrsF̂r̂d =E Wsq,pdfsq,pddqdp.

Moreover,Ws provides correct quantum marginals

E dq Wssq,pd = kpur̂upl s61d

E dp Wssq,pd = kqur̂uql.

It turns out that stationarys-Wigner functionsWs are
uniquely determined by

H!sWs = Ws!sH = EWs. s62d

Equation s49d for cs has infinite number of solutions,
whereas the set of two Eqs.s62d has only one solution

cssGd =E dy e−ipy/" 3 w*Sq −
s+ 1

2
yDwSq +

1 − s

2
yD ,

s63d

i.e., cssGd=2p"Wssq,pd. Therefore,Ws is only one particu-
lar solution ofs49d. It is easy to see that taking

gssyd = w*S−
s+ 1

2
yD s64d

in s31d one obtainscssGd given by s63d. In particular fors
=1 one obtains so-called Kirkwood-Rihaczek function
Ksq,pd=Ws=1sq,pd, which, in the case of pure statew, re-
duces to

Ksq,pd = eipq/"w̃*spdwsqd. s65d

It was introduced by Kirkwoodf32g as an alternative for the
Wigner function. Then, in 1968, the same formula was redis-
covered by Rihaczekf33g in the context of signal time-
frequency distributionsssee f34g for a useful reviewd. Re-
cently, this function was analyzed and applied in various
contexts inf35–40g.

VI. DISCUSSION

Both the phase-space wave functioncsGd and s-ordered
Wigner functionWs encode the entire information about the
quantum statewsqd. Because of the basic property

E ucsGdu2dG = 1, s66d

some authors callucsGdu2 a probability distribution in phase
space. Clearly, quantum mechanics does not allow for a
genuine probability distribution inq and p! To interpret
ucsGdu2 correctly note that Eq.s1d may be rewritten as the
following inner product

csGd = kwGuwl, s67d

where
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wGsq8d = K*sG;q8d. s68d

Let us consider kernels defined bys18d. Then, due tos20d,
wGsq8d is a normalized wave function in the position repre-
sentation. Therefore,ucsGdu2 is the probability density of
transition from the statew to statewG. In particular for the
coherent state kernelKCS one hasucsGdu2= ukG uwlu2 which
defines the Husimi function for the statew.

Now, the Wigner function defined quasi-distribution such
that eW dqdp=1. Since W is a special solution of the
Schrödinger equation in phase space one has

Wwsq,pd =
1

2p"
kwGuwl, s69d

whereWw is the Wigner function corresponding tow. Equa-
tions s33d and s53d imply

wGsq8d = 2w*s2q − q8de−2ipsq8−qd/". s70d

It should be stressed that the phase formulation based on the
wave functioncsGd is restricted to pure states only, whereas
the approach based on Wigner function works perfectly for
general mixed statesr. Therefore, this approach is much
more general. Note that for mixed states one has

E W2dG ø
1

s2p"d2 , s71d

and the equality holds for pure states only. Therefore, for
general mixed statess2p"d2W2 cannot be interpreted as a
probability distribution.
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