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Time-dependent entropy of simple quantum model systems
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Information-theoretic entropy measures are useful tools for quantifying the spreading of quantum states in
phase space. In the present paper, we compare the time evolution of the joint entropy for three simple quantum
systems(i) a free Gaussian wave packéi) a wave packet in a monochromatic electromagnetic field (@nd
a wave packet tunneling through &barrier. As initial condition maximal classical states are used, which
minimize the Heisenberg uncertainty and the entropy. It is found that, in all three cases, the joint entropy
increases in time.

DOI: 10.1103/PhysRevA.71.052102 PACS nuntber03.65.Ta, 03.67%a, 05.30-d, 03.65.Xp

I. INTRODUCTION number of spatial dimensions. Further, Idtt,x,p)

The transition between quantum and classical behavior 6f f(t: X1, ... X4, P1, ... ,pg) denote the non-negative, time-
physical systems has been in the center of intensive resear€igpendent phase-space density function of this system. As-
during the past decadé®r reviews, se¢1-4]). New theo-  suming thatf has been normalized to unity,
retical insights were complemented by modern experiments,
which have impressively confirmed quantum phenomena
such as the superposition of stafésg] or the existence of de dpf(t,x,p) =1,

Schrodinger cat stat¢3,8]. Thus, considerable progress has

been achieved in the conceptual understanding of measuriye related(dimensionless Gibbs-Shannon entropy is de-
ment processe§9-11] and decoherence phenome(see, fined by

e.g., Zureket al.[12-14).

In order to characterize the intrinsic evolution of quantum 1
states, different information-theoretic entropy measures have Sty =-— f dx dpf In(h%f), (1)
been discussed in the literature for both open and closed N!
guantum system§l,3,15-21. Among the best known ex- i _
amples are the von Neumann entropy, the Wehrl entropy, anfnereh=27 is the Planck constan(lf boundaries are not
the joint entropy, introduced by LeipnikL6]. As discussed specified, then it is assumed throughout that integrals range
by Anastopoulos and Halliwe[l19], the von Neumann en- from —< to +.) , » _
tropy is particularly useful for studying environmentally in-  !f One is interested in generalizing the classical entropy
duced effects in open quantum systems, because it is cof€finition (1) to quantum systems, then the main problem
stant for unitary evolutions of pure states as typical of close§°NSiSts in finding an appropriate quantum counterpart for
systems. In contrast, Wehrl entrof#9,20 and joint entropy thg classical pha;e—space denéltylefe.rent approaches to
[16,21] can also be used to quantify the loss of information,thiS problem, which have become widely accepted nowa-

associated with temporally evolving pure quantum state§@ys, go back to alternative proposals made by von Neu-
[22]. mann, Wehrl, and Leipnikl6], respectively. To briefly illus-

trate the underlying ideas, let us consider a mixed quantum
system described by the normalized density maifiix
position-space representatjon

The objective of this paper is to explicitly illustrate this
fact by calculating the joint entropy for analytically tractable
guantum models. More precisely, we will compare the joint
entropy for the following three example§) the simplest .
free Gaussian wave packet cd@?), (ii) the evolution of p(tx,X') = 2 Wil (60 (LX), 2w, =1.
Gaussian wave packets in the presence of oscillating external @ @

fields, and(iii) the tunneling of a Gaussian wave packetF le. in th f th ical ilibri
through as barrier. or example, in the case of the canonical equilibrium en-

Before discussing these examples in Sec. Ill, we Shal§emble with temperatur@, one usually assumes classical

briefly review essential definitions and entropy concepts irPrObab'l't'eS

h t .
the next part  expl- e JkeT) ,
II. BASIC DEFINITIONS War = 2 exp(- € /kBT), 2
Consider a classicahonquantumsystem withd=DN de- ‘
grees of freedom, whel is the particle number and the  \yherekg is the Boltzmann constant ang, denotes the en-
ergy eigenvalues with normalized eigenfunctiahs In gen-

eral, according to von Neumann’s definition, the quantum
*Electronic address: dunkel@physik.hu-berlin.de analog of Eq.(1) reads
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S\(t)=-Sppinp). (3) called Wehrl' entropySW(t). The properties ofS,(t) h{:lve .
. . . _ been extensively studied by Anastopoulos and Halliwell in
A p_ecuhar _feature, Whlch follows directly from definition the context of quantum Brownian moti¢9,20. Neverthe-
(3), is that, in the case of isolated systems, the von Neumanjaqs - ne should emphasize that, by construction, the Wehrl
entropy Sy(t) is time independent for arbitrary nonequilib- entropy contains an additional free paramefey or o).
rium initial conditions—similar to the Gibbs entropy of clas- ;g implies thatS,(t) cannot represent a “fundamentarl)" en-
sical isolated systenf23]. tropy definition for quantum systems.

In particnkj]lar, for pure quantum states _W:hYZ_O for allll As already pointed out in the Introduction, the objective
but onea, the von Neumann entropy vanishes identically— ¢ w6 present paper is to focus on the loss of information,

.., §y(t)=0 for all imest. Consequently, the von Neumann associated with the quantum evolution of pure states. Ac-

entropy is useful, if one aims to quantify the specific gaincoding to the above discussion, neither the von Neumann
and loss of information associated with environmental Ef'entropyS\, (which is constant for pure stajesor the Wehrl
fects (change of the{v_a’s),l bqt at the same tlmes\,(t) d(_)es entropy S, (which contains an additional arbitrary param-
not capture the additionahtrinsic variation of information,  etey provides satisfactory information-theoretic measures for
as it already appears for temporally evolving pure quantumpis purpose. Therefore, we shall pursue below another ap-
states(see examples discussed in Seg. IHor instance, one proach, which goes back to Leipn{i6] and can be de-
possibility to obtain a time-dependent quantum entropy is tGcriped as follows: Consider a normalized quantum state
consider a coarse-grained version of the density matrix #(t,x) governed by the Schrédinger equation
[23].

An alternative description of the evolution of quantum L0y~ ~ B,
systems, leading to another quantum entropy definition, is 'hE =Hy¢, H ‘_Env +U(tX). (6)
based on Wigner functiong24,25. Given the matrix ele- . _ . _
mentsp(t,x,x’) of the statistical operator, the correspondingAccording to the Born interpretatiofi28], the functions
Wigner function is defined by |y, x)|2 and|y(t, p)|?, where

dy dryli _ ipx/f
fW(t,X'p):f ()zlﬂ'ﬁ)d p<t,x—§,x+§). (4) ,/,(t,p):f((j;(e—plp(t,x), (7)

'7Tﬁ)d/2
In analogy to the classical distribution functibnthe Wigner  give the quantum probability densities for position and mo-
function fW can be used to calculate quantum corrections fOIi'nentum coordinates, respective|y_ |_e|pn|k proposed to con-

classical thermodynamical quantitiedin the high-  sider the product functiofjoint distribution for pure states
temperature limjt In the limit caseh— 0, the Wigner func-

tion converges to the classical distribution function. For pure f5(t,x,p) = |¢(t,x)|2|¢~p(t,p)|2 =0. (8)

states withp=y", the Wigner function can be represented ) . )
through the wave function in the form Similar to the Wigner functior,y, also the functiorf; char-

N, acterizes the evolution of quantum states in phase space,
) :J dy €M lﬂ(t - X)zp*(t X+X> even though it contains less information thgp Inserting
" @mh)d "\7" 2 o) Eq. (8) into Eq.(1) yields the joint entropysy(t) for the pure
statey(t,x), which can equivalently be rewritten in the form

By integrating f,y over x or p, respectively, the quantum

probability densities are regained. Moreover, one can recon- 5 5 ~ i )

struct the pure quantum stagefrom fy; i.e., the quantum  Si(t) == | dX{g(tx)[*In[y(t,x)[* = | dp|y(t,p)| In[yAt,p)]

system is completely described by its Wigner function

[8,26]. - In h. 9)
Hoyvever, as well k”OW!’" due the noncommutativity 0fln the next section, the quantitg(t) is studied for three

coordinates and momenta in quantum theory, the fundtjpn _.

) . . simple model systems.

in general takes negative values. In order to obtain a non-

negative function, Husimi proposed to convoldijgwith the

Gaussian kernel IIl. JOINT ENTROPY FOR ONE-DIMENSIONAL MODEL

_ p')z] SYSTEMS

2
20'p

o1 (x=x)* (p
Gx.p:x'.p') = (2m0y0;)" exp[— 202 As recently discussed if22], the joint entropySy(t) pro-
) ) ) § ) vides a useful time-dependent measure for the intrinsic infor-
If the_uncertalnty relatlor_rrgoxzﬁ_/z is fulfilled, then the  mation loss of temporally evolving, pure quantum states
resulting convoluted Husimi function (e.g., for the simplest case of frekdimensional Gaussian
wave packets it was shown th&f(t) grows monotonously
fH(t,X,P)=JdX’ dp'G(x,p;x",p ) fw(t,x’,p’) (5  for t>0). Furthermore, it was proposed [22] that this
“quantum trend,” driven by Heisenberg’s uncertainty prin-
is non-negativg 27]. Choosingo,, and oy such thatopoy,  ciple, could be a rather universal property of pure quantum
=7/2 holds and replacing the classical distribution function systems. Here we shall pursue this idea further by also con-
in Eq. (1) by the Husimi functionf,;, one obtains the so- sidering the influence of external potentials on the evolution
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of initially maximal classical state@VIACS'’s).
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system. Since Eqs(12) and (13) are equivalent for free

In Sec. lll A we briefly review some essential results dis-Gaussian wave packets, the joint entropy contains the same

cussed i 22], restricting ourselves to the cade 1. Subse-

amount of information as the uncertainty relation; for more

quently, the investigation will be extended to Schrodingercomplicated problems, this will not be the case anymore,

problems with nonvanishing external potentigBecs. Il B
and 11l C).

A. Free motion

For U=0 andd=1 the Schrédinger equatidié) has the
normalized Gaussian wave packet solutigsee, e.g.,

[29,30)
1/4 g (kgx=BG) (X—vgt)?
viltx) = <27T> \sa+|,8t p{_4(a+i,8t)

where g=#/(2m) and Va is the initial width of the wave
packet. The solutiof10) yields

(p(t)) = po=fiky, Ap(t)

], (10)

=hl(2\a),

X)) =vt=pot/m, AX(t) =Va+ %Y.  (11)

[Here, as usual, the standard deviation of an observalide
defined by AA(t)=(A%(t))—(A(t))?, where(-) denotes the
expectation with respect t@..] From Egs.(11) one finds
immediately the time- dependent uncertainty relafi2|

22
AX(DAP() = = \/ N
o? 2

This implies that at timé=0 the solution(10) is a MACS,
since only then does the left-hand sidi¢1S) equal the RHS
in Eq. (12). Using EQgs.(10), (7), and(9), a straightforward
calculation of the joint entropy givdR2]

e 2t2
SS(t;dzl):In{E\/l+Ba—2]

wheree=2.7182...

(12

(13

finds, correspondingly,
Si(t;d=D) =D Si(t;d=1).

It is worthwhile to note that Eq13) is in agreement with
the following general inequality for the joint entropy:

is the Euler number. For completeness,
we mention that for &-dimensional free wave packet one

because in general far>0 the wave functions will essen-
tially deviate from the initial Gaussian shape.

Although the above free wave packet example is rather
simple, it is helpful to elucidate some general properties of
the joint entropy. For more complicated problems with non-
vanishing potential&J(t,x), an exact calculation of the joint
entropy becomes more difficult or in most cases—especially
in two or three spatial dimensions—even impossible. There-
fore, when including external fields in the remainder, we
continue to concentrate on analytically tractable problems
with d=1. The results will be compared with those just dis-
cussed for one-dimensional free wave packet.

B. Oscillating external fields

As slightly more complicated examples, which are still
exactly solvable, we next consider the time-periodic poten-
tials

US(t,X) = GEgx sin(Q1), (153

UC(t,x) = gEpx cogOt). (15b)

These potentials describe, in the dipole approximaft&i,
the interaction between a quantum particle with electric
chargeq and an oscillating, monochromatic electric field
with amplitudeE, and frequency). Analytic solutions of the
corresponding relativistic quantum wave equations were first
discussed by Gordof82] and Volkov [33] about 70 years
ago. Recently, however, this problem has reattracted consid-
erable theoretical intere§84—3§. Here we will use results
for the corresponding Schrédinger equati@, as derived
by Rau and Unnikrishnaf84].

Before discussing the solutions, it is useful to transform to
rescaled dimensionless quantities

1/2 p
R
mQ -1/4
= v00=( ) v

Formally, this corresponds to fixing characteristic units such
that A=m=Q=q=1. Dropping for convenience the primes

Sy(t) = |n<9>, (14)  again, the rescaled Schrodinger equatiéntakes the sim-
2 plified form
originally derived by Leipnik [16] for arbitrary one- N1
dimensional one-particle wave functions. Another important it Eﬁlﬂ‘* Use(t, )¢, (16)
feature of the resultl3) is the monotonous increase of joint
entropy in time. IM22] it was suggested that this is a generalwhere the rescaled potentials read
property of quantum systems. Below we will demonstrate s _ ;
that, at least asymptotically, this property also holds for more UA(tX) = Boxsint, (173
complicated quantum systems. US(t,%) = Egx COst. (17b)

Furthermore, according to Eqdl.2) and(13), the MACS

property is not conserved in time; the logarithmic divergence First, let us considetUs from Eq. (17a. According to
of the joint entropy reflects a permanent loss of information formula (19) of Ref. [34], the time-dependent fundamental
representing an intrinsic property of the evolving quantumsolution of Eq.(16) is given by
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1 3 1 1
Pp(t,x) = exp{— iES(g sin 2t - sint + Zt)}exp{— iIEgx(1 Bp(t,x) = exp[— iES(— s sin 2t + Zt)]exd— iEgx sint

2 2
- cost) —iEgp(sint - t)]exp[ i ( pX— %tﬂ . (18) —iEgp(cost - 1)]exp{i (px— %t) ] (23)

From this solution, one can construct special solutions vianstead of Eq(18). Substituting indices by c in Eq. (19),
superpositioning. As in the previous example, we would likeone then obtains
to consider solutions which are MAC states at initial time

. . . 1/4 —apz—ion sint
— e 0
=0. This can be achieved by setting AL, X) = (ﬂ) ——
1/4 2 Va+it/2
o —alp - 2
PA(t,X) = (ﬁ) fdp PP g3t x),  (19) " exp{— [x+ Eqt — cost) — 2iap0]2}
4 +it/2)
where the parametgp, determines the initial momentum. ]
The integral(19) can be calculated analytically, yielding > eXp|:— iE‘z’(t_ cost sint)]. (24)
a 1/4e—ap§—iE0x(l—cost)
tX)=\—| —F—— This gi the densiti
PA(t,x) (277) e is gives the densities
) [ 2u }1/2
ol _ 2 Ct -
< exol - [x+ Eq(t sm.t) 2iapo] [y C(t,x)| a2t D)
da+it/2)
s (1 exty 2a[x - pot + Eo(1 - cost) ]
X exp{— iE%[Zt + <Zcost - 1>sint} } (20) 4a? + 2 ’
1/2
From this solution one finds the two normalized quantum T 2_ (_“) )2
- o t, = -2 -py+ E t)<],
probability densities [#4(t.p) e expl=2a(p = po+ Bo sin)]
2 12 (25)
|t x)|? = % .
w(4ac +t°) yielding
» _ 2a[x— pet + Eq(t = sint)]? (X(t)) = pot = Eq + E, cost,
ex 4a” + 12 ' )
(p(t)) = po—~ Eg sint, (26)

~ 2a |2 while, for the standard deviations, Eq&2b) are regained.
WAL= (?) exp(~ 2a[p = po + Eg(1 ~ cosh I3 In summary, if identical MACS initial conditions are con-
(21) sidered, then—compared with the free wave packet case—
the presence of the monochromatic oscillating fields is nei-
Obviously, each of the two densities in H81) corresponds ther reflected by the uncertainty relation nor by the joint
to a Gaussian with oscillating mean value. More preciselyentropy (in spite of the fact that the joint probability func-

we find tions f$® and ' are different.
(X(t)) = (po — Eg)t + Ep sint, C. Tunneling through a é-peak potential
As third example, consider the Schrédinger equati®n
(p(t)) = (py — Ep) + Ey cost, (228 with d=1 and time-independent potential
and, furthermore, U(x) =Upd(x), Uy>0, (27)
1 2\1/2 1 corresponding to an infinitely high and infinitely thin barrier
AX(t):§(4a+—> , Ap(t)=—+=.  (22b  at x=0. Similar to before, we take as initial condition a
@ Na Gaussian MACS
Thus, after reinstating quantitids m, ), andq one arrives 1 \v4 . (X = Xg)2
at exactly the same uncertainty relation as found earlier for #0,x) = <—) exp| ikox - a2 | (28)
the free particle; see E@L2). Moreover, by explicitly calcu- @
lating the joint entropy on the basis of ER1), one can where it is further assumed that
c ot . N
show thatsﬁ’ (t) comudeg with the free-particle reSLGIIS).' X(O)) =%, < 0,
It comes as no surprise that an analogous result is ob-
tained, if one consider&)® from Eq. (17b). According to _
formulas(22) and (23) in [34], for Eq. (17b) one must use (p(0)) =ik > 0, (293
the fundamental solution and
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' " A 0.3 y i
06 [ (a)1=0.0 . "exact” —— | vexact" ——
a : approximate o 025 | (@t=30 approximate -
s 05+ Po=5, k=—1 .\_'8 : Po=5, k=—1
5 047 5 027}
5 03t T 015}
(NI
% 02} AN
= o1 | % 0.05 r
0 : : : : : 0 . .
oM s 0 5108 45 10 5 0 5 10 15
x [units of 0. x Tunits of o'
' vexact" — 0.3 . . .
06 1 (b) t=1.0 H e_xact e rexact" ——
a : approximate o 025 | (e) t=4.0 approximate
T 057 Po=5, k=—1 :'cs ' Pg=5, k=—1
ks L . 2 ¢
2 0.4 5 0
5 03} S 015}
o
T 02 S 01y
Z 01t = 005}
0 ' : : : ol AN
5 10 5 0 ”25 10 15 20 15 10 -5 0 5 10 15 20
x [units of o'l x lunits of a2
I ' . vexactr —— |
- 081 (o)t=2.0 approximate -
"_zs 05 r Py=5, k=—1
; 0.4 |
5 03}
o
= 02
Z 01t
0 L . i . .
-5 -10 -5 0 5 10 15
x lunits of o'"3)

FIG. 1. Tunneling of a MAC state through the potential bartiéx)=U,5(x): Evolution of the spatial probability density(t,x)|? for
“large” initial momentump,. Solid lines correspond to the “exact” soluti@dl) and dashed lines to the approximate resd®. Timet is

measured in units=ma/# andx in units o, whereya deter_mines the initial width of the wave packet. The remaining parameter values are
Xo=-10,ky=po/%=5, andUy=1 with units given by[xo]=Ve, [Ko]=1/Va, and[Ug]=AVa/ 7.

1. Evolution of the spatial density

>1 (29b)

‘L‘ _|x
Ax(0) Va If the condition(29b) is satisfied, then one finds the fol-
lowing integral representation for the related time-dependent
hold. The condition§298 mean that the maximum of wave solution (see the Appendix for details of the calculation
packet approaches the barrier from the left, while @9b
states that, at time=0, the particle idalmos} surely local- e
ized on the left-hand side of the barrier. For fixed initial a * 2 .

I alko ~ )2l (KgK)xo-i Bt
position xo<0 and initial momentunpy=%ky,>0, the time Ylt,x) = (2773> J_xdke o~ gllloriove
of the collision with the barrier can be defined as
k
X -
[ k-ik

2K
k—-ik

exp(ikx) + O (= x)

sin(kx) |.
_ |Xo| _m|Xo‘

=l Mol 30
pgm ik (30

(31

As we shall see below, the quantitycan be used to identify Here ©(x) denotes the unit-step function, defined in Eq.
peculiarities in the entropy curve(t). (A28), and the parameter
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06 ' nexact” —— | 0.2 f ' ' - vexactr —— ]
- (a)t=0.0 approximate - — (d) t=15.0 approximate -
. 057 =1, k=—1 - =1, k=—
s 05 Po=1, K s 015 | Po=1, k=—1
Z 041 Z
5 o3 5 01
o o
=< 02 <
£ £ 0.05
2 01 =
0 L . . . . L 0 At ) e,
20 16 .10 5 0 5 10 15 20 30 20 -10 0 10 20 30
x lunits of o2 x units of &3]
02f = T 7 vexactr —— | oql 7 rexactt —— |
R (b) t=5.0 approximate - - (e) 1=20.0 approximate -
- - — - =1, k=—1
'S 015 | s Potix= s 0.08 | Po
5 ) 5
(2] (2]
2 = 006 ¢
5 o1t 5
R o 004
< 005 <
o = 002
20 15 10 5 0 5 10 15 20 40 -30 -20 10 O 10 20 30 40
x units of &3] x units of a4
"exacth ——
o« 025} (c)t=10.0 approximate -
- Po=1, k=—1
2 o2 °
=]
2
€ 015 ¢
2
= 0.1
X
3 005
0

20 -15 110 -5 0 5 10 15 20
1/2]

x [units of o
FIG. 2. Tunneling through thé barrier for “moderate” initial momenturpy=1 (units and all other parameters are chosen as in Fig. 1

Here the transmissiottunneling probability approximately equals the reflection probability. As a consequence>frthe joint entropy
is much larger than in the case of “large” and “small” initial momenta; compare Fig. 4.

mUs o \YA 1 \12 kot
= t,X =\ . .
“ h? Yo(tX) (277) <a+lﬂt> ko—ix
(X = Xo)? + i akd Bt ,
characterizes the height of the barrier. Unfortunately, because X exp - Aatipy Ko +iO(=X)
of the prefactors
XX + 2i akoX
Xk[exl<— ﬂ) - 1]} (32
k 2K atipt

(k) = K—ir' (k) = K ix'
Figures 1-3 show the evolution of the spatial probability

density |y(t,x)|? for three different choices of the quotient
the integral(31) cannot be solved exactly. With regard to k./|«|, characterizing the ratio between initial momentum

subsequentnumerical calculations of the joint entropy, it and barrier height. In each diagram solid lines were numeri-
turns out as useful to make an additional approximation bytally calculated using the “exact” solutig¢81), while dashed
replacing in Eq.(31) the k-dependent functions, (k) with  lines correspond to the approximate solutigg from Eq.

the constants,,,(ko). These approximations are reasonable(32). As one can deduce from these figureg,provides in-

for sufficently large parameter valuesin the Gaussian ex- deed a useful approximation of the more exact solu8i).
ponential of the integral31), and one then obtains the ap- Moreover, one observes that the deviation between B4s.
proximate solution and(32) decreases fdt,> |«|; e.g., fork,/|«| =5 (see Fig. 1,
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06t .. nexact” —— | 0.2 f "exact” —— 1
— (a)t=0.0 approximate - - (d) t=20.0 dpproximate -
- 5t =0.5, k=—1 - =0.5, K=—
s 0.5 P=0.5, x S o015 P=0.5, k=—1
Z 0.4t Z
5 03 5 01y
o o
*< 0.2 =<
= < 0.05
2 041 =
20 15 10 -5 0 5 10 15 20 30 20 -10 0 10 20 30
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02f "exact" —— 1 exacth ——
— (b) t=5.0 dpproximate - — 0.07 (e) t=40.0 dpproximate -
& ~0.5. 1o B Pg=0.5, k=—1
s o045 | Pg=0.5, K=—1 " 0.06
kS S 0.05
2] 2
S o1} 5§ 004
o o 0.03
S 0.05 X 0.02
ES ES
= = 001
0 X X \ X X X 0 L DAY J | - T
20 -15 110 5 0 5 10 15 20 60 -40 -20 0 20 40 60
x [units of o2 x [units of o2
02f vexacth —— 1
- (c) t=10.0 ‘.approximate
s 015 i Po=0.5, xk=—1
ks}
2]
5 o1
o
<
< 0.05
=
20 -15 .10 5 0 5 10 15 20

x [units of o2

FIG. 3. Tunneling through thé barrier for “small” initial momentunpy=0.5 (units and all other parameters are chosen as in Figs. 1 and
2). Here the reflection probability is much larger than the tunneling probability. Moreover, one can see that the deviation of the approximate

solution (32) from the “exact” solution(31) becomes more significant, if the initial momentum is small compared to the effective barrier
height «|.

the dashed and solid lines are nearly indistinguishable. ~ ( a )1/4ei<Po—p>Xo/ﬁ
VotP =\ 2] o Tk
2. Joint entropy y exp{_ alp- p0)2 + ipzﬁt}
In order to calculate the joint entrog$s(t) via Eg. (9), h?

one requires the Fourier-transformed wave functzN'ytﬁn p).
For the wavey(t,x) from Eq. (31) it is difficult to find an

explicit formula for (t,p). Hence, it is also rather difficult
to calculateS)(t) from the integral representatigBl). How-
ever, as we have seen in the preceding section, the approxi-
mate solutiony, from Eq.(31) provides a useful estimate of
the true solution. Therefore, instead of Eg§1), we will re-
strict ourselves below to considering the joint entropy for thewhere Erfx) denotes the error function, defined in Eq.
approximate solutiori32). (A17), and the abbreviations

For yy(t,x) from Eq. (32) the related momentum wave
function ;(t,p) can be easily calculated from E(), and
one finds

X {Zpo +ihk[Erf(y.) — 1]

2i 4
o] 229 ) gl

(33

fixo + 2ppt + 2ia(py — p)
2h\a + iBt ,

y-(t,p) =
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maximum for the three non-solid curves in Fig. 4—i.e.,
dt? boodt

41 UX=Ugd(x)

<0.

Syt

(iv) For t>t; the curve for py=1," corresponding to a
moderate initial momentum value, clearly dominates the
other curves. Roughly speaking, this can be explained by the
fact that for moderate initial momenta the tunneling prob-
0 o 5 10 15 20 25 30 35 40 ability apprommately (_aquals the .reflectlon probabllﬁcpm—

. pare Fig. 2, thus leading to maximum uncertainty.
t [units of 1] . .
(v) Each of the shown curves increases monotonously in

FIG. 4. MACS tunneling through the barriddys(x): time-  time. However, the appearance of the plateaulike regaon
dependent Jomt entropy for different initial momentg=7ko, rOW) at low initial momenta seems to indicate that confine-
where[ky]=1/Va. The curves were obtained by numerical integra- ment effects due to interactions or external potentials might
tion of Eq. (9) for the approximate solutiof82). Parameter values also lead to a temporary decrease of the joint entropy on
and units were chosen as in Figs. 1-3; i.e., we havegset10 and short time scales. Of course, in such a scenario, Leipnik’s
Uo=1, where[xo]=Va, [Ug]=fival/r and r=ma/#i. For compari-  inequality (14) constitutes a lower bound f@(t).
son, we also plotted the joint entrogy3) for the spreading of free
wave packetsolid ling). The three nonsolid curves exhibit locally
maximal slopes in the vicinity of the collision timg=|xo|/ po. Also IV. SUMMARY
note the appearance of the plateaulike redamow) for small ini-
tial momenta.

We have studied the joint entropy for explicit time-
dependent solutions of three simple one-dimensional
Schrédinger problemdi) the spreading of a free Gaussian
Xo = 2pBt+2ia(py+ p) wave packet(ii) the motion of a wave packet in a mono-

2h\a+ipt chromatic electromagnetic field, ariii) the tunneling of a
wave packet through abarrier. The second example can be
considered as an open quantum system, because in this case

have been introduced. On the basis of formul@8 and the Hamiltonian is explicitely time dependent. In contrast,
(33), it is now straightforward to numerically calculate the examplegi) and(iii) correspond to closed systems. As initial
related joint entropyss(t) from Eq.(9). In Fig. 4, one can see conditions maximal classical states have been used. MACS's
examples of entropy curves, based on the same parametainimize the Heisenberg uncertainty as well as the joint en-
values as used in Figs. 1-3. Analogous to preceding diaropy. A quantum system that has been in a MACS at time
grams, the representation in Flg 4 refers to the characteristic=0 inevitably evolves into a non-MACS at times 0. This

unit system defined byn=#=\a=1, where\« is the initial  intrinsic property of quantum systems is, e.g., reflected by a
width of the wave packet. For example, we simply ha/e monotonous increase of the joint entropy. Most likely, this
=1/2, k=-U,, etc., in these units. Furthermore, the relatedquantum trend also manifests itself for other type of initial
unit time readsr=ma/7% and the collision timé,, defined in  wave packets and external potentials, as well as in many-
Eq. (30), reduces td.=|xo|/ po. particle systems.

The joint entropy curve$§;(t) in Fig. 4 were obtained by In order to be able to calculate the joint entropy for the
numerically integrating Eq(9) with the computer software tunneling process throughé@peak potentialexampleiii )],
Mathematicg 39]. The three nonsolid lines refer to the tun- an approximate analytic solution of the corresponding time-
neling through thes barrier. For comparison, we also the dependent Schrodinger problem was derit&ppendiy. By
plotted the joint entropy13) for the spreading of free wave means of this solution, it could be shown that the slope of the
packet(solid line). The main observations in Fig. 4 are the corresponding joint entropy exhibits a local maximum in the
following vicinity of the collision time. Based on this observation one

(i) Fort—0, all four curves converge to the val$g0)  may conclude that, on many occasions, interactions tend to
=In(e/2)=0.306...; compare Edq13). This reflects the fact Speed-up the joint entropy increadee., the loss of phase-

that we have chosen special initial conditions, correspondin§Pace informationin quantum systems. With respect to
to MAC states. many-particle systems, an interesting question to be an-

(i) Fort<t, all three nonsolid curves in Fig. 4 run below swered in the future is whether or not such quantum trends
the solid(free wave packetentropy curves, (t). This reflects ~ are important for the relaxation to thermodynamic equilib-
the fact that, at the early stages of the tunneling process, tH&M.

S barrier hinders the spreading of the wave packet. In par-

h
7+(t,p) =

ticular, _for_ small initial momenta a plateaulike region ap- ACKNOWLEDGMENTS
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APPENDIX: SOLVING SCHRODINGER's EQUATION
FOR THE é BARRIER

1. The problem

We wish to find the time-dependent solutigtt, x) for the
one-dimensional Schrédinger problem

h2 P
ﬁ lﬂ {——mXJonﬂX)]t// Hey, (A1)

whereUy>0 and the initial condition is fixed as

12 _ (x— Xo)z}
Py(0,x) = ( N Tr)\) exp[lkox— »e | (A2)

This corresponds to the initial Gaussian probability density

1 (X —Xo)?
|44(0,%)|? = —— exp| - Z(O ] (A3)
N A
which is normalized to unity:
1 =f dx ¢ (0,X)4(0,X). (A4)
Furthermore, we have at initial tinte=0
(x(0)) EJ dx ¢ (0,X)%xy(0,X) = Xg, (A5a)

(p(0)) = - iﬁfo dx w*(o,x)%(o,x) =#ky, (A5b)

and the initial width of the wave packet reads
S A\
Ax(0) = V{(x*(0)) = (x(0))* = B (A5c)
v

The constant energy of the wave packet is given by

2 U X2
:10 + ro ex —)\—g . (AB)

4m)\2 VTN

(H(1) =

2. Superposition of eigenfunctions

E(k) = o 0. (A8c)

Note that symmetric and antisymmetric solutions are labeled
by “+” and “—,” respectively. From the matching condition

2mU0

Hi(07) = i (07) = #(0), (A9)

one finds that for the phase of the symmetric solutions

mU,

7(k) = arctar<£>, K=- YR

For k,k’>0 the solutions{¢;} satisfy the orthonormality
relations

(A10)

f dx ¢y (X) () = Sk = K'), (Alla)
f dxX ¢ (X) ¢y, (X) = (k- k'), (Al11b)
f dX ¢ (X) ., (X) = 0. (Allc)

Hence, one can expand the solutions of the time-dependent
Schrédinger problentAl) in the form

lt,x) = fo dk[a, (k) e (x) +a_(k) ¢;(X)]e—iE(k)tjh.
0

(A12)

The restriction to non-negativk values suffices here, be-
causedgi(x)=* ¢ (x) holds. Furthermore, at time=0 the
condition

(0,x) = f dk[a. (k)¢ () +a-(K) ¢ (x)]  (A13)
0

must be satisfied. Consequently, the coefficiemik) are
determined by projection onto the initial condition:

a.(k) = f dx i () (x,0). (A14)

This follows from the orthonormality relatiori&11). Using

The eigenfunctions of the related stationary Schrodingethe special initial conditiorfA2), one finds

eigenvalue problem

Hp(x) = E¢(X) (A7)
read(see, e.g., p. 147 in Ref29))
H(x¥) =+ cos{k|X| + (k)] (A8a)
_ 1
h(X) = —= sin(kx), (A8b)
N

with eigenvalues given by

(k) =b,(k) = b,(= k), (A153)

a(k) =b_(k) =b_(=k), (A15b)

where

\ 12 p[ A2 2}
b+(k)={m] ex |(k0—k)xo—5(k0—k)

x (k—iKErf{—XOH(ko_k))\ZD,

A16
i (Al6a)

and
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N \12 p[ X ( 1 )1/2{ (=X X)2 ]
bo(k) =il —=| exp i(ky—Kxq——(ko—k)?|. 1-(0,x) = —— ex +ikgx
(k) (2\,7) (ko= K)Xo > (ko= k) (0,x) PN oz Tk
(A16b) +x)2
o ) ) —-ex —(XO 2) —ikeX | (.
The error function in Eq(A16a) is defined by 2\
, Unfortunately, because of the error function in £4164a),
Erf(z) = ?f dte™ (A17)  the remaining integrdl,(t,x) cannot explicitly be solved.
Therefore, we shall next try to find a convenient integral
Equations(A15) and (A16) further imply representation of the solutiaf(t,x) by considering a special
limit case.
a.(k) = —a. (=K. (A18)
Introducing the abbreviation 3. Limit case [xo|>\
3 In the following we shall consider the limit case
=, (A19)
2m Xo
. . X <0, k>0, [=|>1. (A23)
the general solutiofA12) can be written as V2N
P(t,x) = 1,(6,%) + 1_(t,%), (A20) This means thati) the wave packet approaches the barrier
from the left and(ii) the spatial probability is initially con-
where centrated in the regior<0. By virtue of
L0 = | dabgme ™, (21 o By ==Ly el (A2
0
we obtain in the limit cas€A23) from Eq. (A16a)
* w2 12 2
I(tx) = f dka (O™ (A21b) g~ ( \ ) k+ix exp{i(ko_ 0= (- K2
0 2V VK2 + 2
By using Eq.(A15b) and inserting the explicit expression for (A25)

$(x), we find Using this approximate expression, we can rewtitg, x)

1 * . g2 from Eq. (A21a). Inserting Eq.(A15a) and the explicit ex-
I_(t,x) =—+= dk[b—(k) = b_(= k)]sin(kx)e™ A pression forg;(x), we find
\!
o0 1 ® o,
1 - —h (— i B2t
=k L dk [b_(K) = b_(~ k) Isin(kx) e A<t L=~ fo dk[b, (k) = b.(-k)Je
1 (” K
=— [ dkb_(K)sin(kx)e A X cog k|x| + arcta il
Vard
(A16b) ( )1/2 f 1 (= »
= il —= dk sin(kx =— | dk[by(k) —b,(-k)]e"
i) [ dksinod =) ddb.00=b.(=k]
A2 k cogk k
X exp{i(ko— k)Xo — — (ko — K)? - ilgkzt:| _ cosklx) — «sin(kix)) |-
2 \’kz + K
(A22) Since the integrand is an even function with resped, twe
The integral(A22) can be calculated: obtain
1/2 2
=] =y p(lkoxo— —kO) LX) =2 f dk{b, (k) = b, (- k) Je At
4 m(\? + 2i Bt) 2V
1 (X = X + K-\ 2)2 k cogk|x|) = « sin(k|x|)
% ox _1(x 2x+|.ko)\) Xl s
2 \+2ipt Vke+ &
H 2\2 1 oo} ) k k k
_ exp[_ 1%?;'@)] | L f b, g 9] KOSKN) — sk |
2 \+2ipt Vrd — Vi + 2
where, in particular, Inserting Eq.(A25) for b,(k), we have
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N \YE(T L Kktik
1 (t,X) = <ﬁ) f_w dk 2+K2[kc05(k|x|)

N k

2
— K sin(k|x|)]exp{i(k0 — k)Xo — %(ko —K)2-i ,Bth} .
(A26)

Combining Egs(A22) and (A26) we get

A 1/2 )\2
#l(t,x) = (——3> f dk A(k,x)exp[i(ko—k)xo——(kO
2y % 2

-k)?- iﬁkzt] ,
where
Ak) = K cos(k|x||() —iK sin(k|x|) +i sin(ko
—IK
_ Klcogk|x]) +i sin(kx)] + «[sin(kx) — sin(k|x|)]
- k-ik ‘

For x=0 we havelx|=x and, thus,
k .
AKX)x=0= T explikx),
k-ik

whereas foix<0 we havelx|=-x, yielding

PHYSICAL REVIEW A 71, 052102(2005

2k
k—-ik

k
AK,X)y<0 = K—ix exp(ikx) + sin(kx).

Formally, the above results can be summarized as follows:

)\ 1/2 fo»
(LX) = <_f> J dk é(ko—k)xo—(xz/z)(ko - k)2-i gkt

2\
k 2
X [k_ — explik) + O(- x)k_’;K sin(kx) |,
(A27)
where the step functiof(x) is defined by
1, x=0,
Ox) = 0 x<0 (A28)
Finally, we can reparametrize
A= \J’Z,
which allows us to rewrite the solutiai®27) as
a va e 2 2
Pt X) = (_> f dk dkokxg-alke = K)“=i gkt
270 o
k 2
X [k— iK expikx) + O (- X)k—’jx sin(kx) |,
(A29)

wherea and 8 play the same role as, e.g., in E40). Note
that in the limit casex— 0, the solution(A29) correctly re-
duces to the free-particle soluti@hO).
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