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Information-theoretic entropy measures are useful tools for quantifying the spreading of quantum states in
phase space. In the present paper, we compare the time evolution of the joint entropy for three simple quantum
systems:sid a free Gaussian wave packet,sii d a wave packet in a monochromatic electromagnetic field, andsiii d
a wave packet tunneling through ad barrier. As initial condition maximal classical states are used, which
minimize the Heisenberg uncertainty and the entropy. It is found that, in all three cases, the joint entropy
increases in time.
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I. INTRODUCTION

The transition between quantum and classical behavior of
physical systems has been in the center of intensive research
during the past decadessfor reviews, seef1–4gd. New theo-
retical insights were complemented by modern experiments,
which have impressively confirmed quantum phenomena
such as the superposition of statesf5,6g or the existence of
Schrödinger cat statesf7,8g. Thus, considerable progress has
been achieved in the conceptual understanding of measure-
ment processesf9–11g and decoherence phenomenassee,
e.g., Zureket al. f12–14gd.

In order to characterize the intrinsic evolution of quantum
states, different information-theoretic entropy measures have
been discussed in the literature for both open and closed
quantum systemsf1,3,15–21g. Among the best known ex-
amples are the von Neumann entropy, the Wehrl entropy, and
the joint entropy, introduced by Leipnikf16g. As discussed
by Anastopoulos and Halliwellf19g, the von Neumann en-
tropy is particularly useful for studying environmentally in-
duced effects in open quantum systems, because it is con-
stant for unitary evolutions of pure states as typical of closed
systems. In contrast, Wehrl entropyf19,20g and joint entropy
f16,21g can also be used to quantify the loss of information,
associated with temporally evolving pure quantum states
f22g.

The objective of this paper is to explicitly illustrate this
fact by calculating the joint entropy for analytically tractable
quantum models. More precisely, we will compare the joint
entropy for the following three examples:sid the simplest
free Gaussian wave packet casef22g, sii d the evolution of
Gaussian wave packets in the presence of oscillating external
fields, andsiii d the tunneling of a Gaussian wave packet
through ad barrier.

Before discussing these examples in Sec. III, we shall
briefly review essential definitions and entropy concepts in
the next part.

II. BASIC DEFINITIONS

Consider a classicalsnonquantumd system withd=DN de-
grees of freedom, whereN is the particle number andD the

number of spatial dimensions. Further, letfst ,x,pd
= fst ,x1, . . . ,xd,p1, . . . ,pdd denote the non-negative, time-
dependent phase-space density function of this system. As-
suming thatf has been normalized to unity,

E dx dpfst,x,pd = 1,

the relatedsdimensionlessd Gibbs-Shannon entropy is de-
fined by

Sstd = −
1

N!
E dx dpf lnshdfd, s1d

whereh=2p" is the Planck constant.sIf boundaries are not
specified, then it is assumed throughout that integrals range
from −` to +`.d

If one is interested in generalizing the classical entropy
definition s1d to quantum systems, then the main problem
consists in finding an appropriate quantum counterpart for
the classical phase-space densityf. Different approaches to
this problem, which have become widely accepted nowa-
days, go back to alternative proposals made by von Neu-
mann, Wehrl, and Leipnikf16g, respectively. To briefly illus-
trate the underlying ideas, let us consider a mixed quantum
system described by the normalized density matrixsin
position-space representationd

rst,x,x8d = o
a

wacast,xdca
* st,x8d, o

a

wa = 1.

For example, in the case of the canonical equilibrium en-
semble with temperatureT, one usually assumes classical
probabilities

wa =
exps− ea/kBTd

oa
exps− ea/kBTd

, s2d

wherekB is the Boltzmann constant andea denotes the en-
ergy eigenvalues with normalized eigenfunctionsca. In gen-
eral, according to von Neumann’s definition, the quantum
analog of Eq.s1d reads*Electronic address: dunkel@physik.hu-berlin.de
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SNstd = − Spsr ln rd. s3d

A peculiar feature, which follows directly from definition
s3d, is that, in the case of isolated systems, the von Neumann
entropy SNstd is time independent for arbitrary nonequilib-
rium initial conditions—similar to the Gibbs entropy of clas-
sical isolated systemsf23g.

In particular, for pure quantum states withwa=0 for all
but onea, the von Neumann entropy vanishes identically—
i.e.,SNstd;0 for all timest. Consequently, the von Neumann
entropy is useful, if one aims to quantify the specific gain
and loss of information associated with environmental ef-
fects schange of theẇa’sd, but at the same time,SNstd does
not capture the additionalintrinsic variation of information,
as it already appears for temporally evolving pure quantum
statesssee examples discussed in Sec. IIId. For instance, one
possibility to obtain a time-dependent quantum entropy is to
consider a coarse-grained version of the density matrixr
f23g.

An alternative description of the evolution of quantum
systems, leading to another quantum entropy definition, is
based on Wigner functionsf24,25g. Given the matrix ele-
mentsrst ,x,x8d of the statistical operator, the corresponding
Wigner function is defined by

fWst,x,pd =E dy eipy/"

s2p"dd rSt,x −
y

2
,x +

y

2
D . s4d

In analogy to the classical distribution functionf, the Wigner
function fW can be used to calculate quantum corrections for
classical thermodynamical quantitiessin the high-
temperature limitd. In the limit caseh→0, the Wigner func-
tion converges to the classical distribution function. For pure
states withr=cc* , the Wigner function can be represented
through the wave function in the form

fWst,x,pd =E dy eipy/"

s2p"dd cSt,x −
y

2
Dc*St,x +

y

2
D .

By integrating fW over x or p, respectively, the quantum
probability densities are regained. Moreover, one can recon-
struct the pure quantum statec from fW; i.e., the quantum
system is completely described by its Wigner function
f8,26g.

However, as well known, due the noncommutativity of
coordinates and momenta in quantum theory, the functionfW
in general takes negative values. In order to obtain a non-
negative function, Husimi proposed to convolutefW with the
Gaussian kernel

Gsx,p;x8,p8d =
1

s2pspsxdd expF−
sx − x8d2

2sx
2 −

sp − p8d2

2sp
2 G .

If the uncertainty relationspsxù" /2 is fulfilled, then the
resulting convoluted Husimi function

fHst,x,pd =E dx8 dp8Gsx,p;x8,p8dfWst,x8,p8d s5d

is non-negativef27g. Choosingsp and sx such thatspsx
=" /2 holds and replacing the classical distribution functionf
in Eq. s1d by the Husimi functionfH, one obtains the so-

called Wehrl entropySWstd. The properties ofSWstd have
been extensively studied by Anastopoulos and Halliwell in
the context of quantum Brownian motionf19,20g. Neverthe-
less, one should emphasize that, by construction, the Wehrl
entropy contains an additional free parameterssx or spd.
This implies thatSWstd cannot represent a “fundamental” en-
tropy definition for quantum systems.

As already pointed out in the Introduction, the objective
of the present paper is to focus on the loss of information,
associated with the quantum evolution of pure states. Ac-
cording to the above discussion, neither the von Neumann
entropySN swhich is constant for pure statesd nor the Wehrl
entropy SW swhich contains an additional arbitrary param-
eterd provides satisfactory information-theoretic measures for
this purpose. Therefore, we shall pursue below another ap-
proach, which goes back to Leipnikf16g and can be de-
scribed as follows: Consider a normalized quantum state
cst ,xd governed by the Schrödinger equation

i"
]c

]t
= Ĥc, Ĥ = −

"2

2m
¹2 + Ust,xd. s6d

According to the Born interpretationf28g, the functions

ucst ,xdu2 and uc̃st ,pdu2, where

c̃st,pd =E dx e−ipx/"

s2p"dd/2 cst,xd, s7d

give the quantum probability densities for position and mo-
mentum coordinates, respectively. Leipnik proposed to con-
sider the product functionsjoint distribution for pure statesd

fJst,x,pd = ucst,xdu2uc̃st,pdu2 ù 0. s8d

Similar to the Wigner functionfW, also the functionfJ char-
acterizes the evolution of quantum states in phase space,
even though it contains less information thanfW. Inserting
Eq. s8d into Eq.s1d yields the joint entropySJstd for the pure
statecst ,xd, which can equivalently be rewritten in the form

SJstd = −E dxucst,xdu2 lnucst,xdu2 −E dpuc̃st,pdu2 lnuc̃st,pdu2

− ln hd. s9d

In the next section, the quantitySJstd is studied for three
simple model systems.

III. JOINT ENTROPY FOR ONE-DIMENSIONAL MODEL
SYSTEMS

As recently discussed inf22g, the joint entropySJstd pro-
vides a useful time-dependent measure for the intrinsic infor-
mation loss of temporally evolving, pure quantum states
se.g., for the simplest case of freed-dimensional Gaussian
wave packets it was shown thatSJstd grows monotonously
for t.0d. Furthermore, it was proposed inf22g that this
“quantum trend,” driven by Heisenberg’s uncertainty prin-
ciple, could be a rather universal property of pure quantum
systems. Here we shall pursue this idea further by also con-
sidering the influence of external potentials on the evolution
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of initially maximal classical statessMACS’sd.
In Sec. III A we briefly review some essential results dis-

cussed inf22g, restricting ourselves to the cased=1. Subse-
quently, the investigation will be extended to Schrödinger
problems with nonvanishing external potentialssSecs. III B
and III Cd.

A. Free motion

For U;0 andd=1 the Schrödinger equations6d has the
normalized Gaussian wave packet solutionssee, e.g.,
f29,30gd

c fst,xd = S a

2p
D1/4eisk0x−bk0

2td

Îa + ibt
expF−

sx − v0td2

4sa + ibtdG , s10d

where b=" / s2md and Îa is the initial width of the wave
packet. The solutions10d yields

kpstdl = p0 = "k0, Dpstd = "/s2Îad,

kxstdl = v0t = p0t/m, Dxstd = Îa + b2t2/a. s11d

fHere, as usual, the standard deviation of an observableA is
defined byDAstd=ÎkA2stdl−kAstdl2, where k·l denotes the
expectation with respect toc.g From Eqs.s11d one finds
immediately the time- dependent uncertainty relationf29g

DxstdDpstd =
"

2
Î1 +

b2t2

a2 ù
"

2
. s12d

This implies that at timet=0 the solutions10d is a MACS,
since only then does the left-hand sidesLHSd equal the RHS
in Eq. s12d. Using Eqs.s10d, s7d, and s9d, a straightforward
calculation of the joint entropy givesf22g

SJ
fst;d = 1d = lnF e

2
Î1 +

b2t2

a2 G , s13d

wheree=2.7182. . . is the Euler number. For completeness,
we mention that for aD-dimensional free wave packet one
finds, correspondingly,

SJ
fst;d = Dd = D SJ

fst;d = 1d.

It is worthwhile to note that Eq.s13d is in agreement with
the following general inequality for the joint entropy:

SJstd ù lnSe

2
D , s14d

originally derived by Leipnik f16g for arbitrary one-
dimensional one-particle wave functions. Another important
feature of the results13d is the monotonous increase of joint
entropy in time. Inf22g it was suggested that this is a general
property of quantum systems. Below we will demonstrate
that, at least asymptotically, this property also holds for more
complicated quantum systems.

Furthermore, according to Eqs.s12d and s13d, the MACS
property is not conserved in time; the logarithmic divergence
of the joint entropy reflects a permanent loss of information,
representing an intrinsic property of the evolving quantum

system. Since Eqs.s12d and s13d are equivalent for free
Gaussian wave packets, the joint entropy contains the same
amount of information as the uncertainty relation; for more
complicated problems, this will not be the case anymore,
because in general fort.0 the wave functions will essen-
tially deviate from the initial Gaussian shape.

Although the above free wave packet example is rather
simple, it is helpful to elucidate some general properties of
the joint entropy. For more complicated problems with non-
vanishing potentialsUst ,xd, an exact calculation of the joint
entropy becomes more difficult or in most cases—especially
in two or three spatial dimensions—even impossible. There-
fore, when including external fields in the remainder, we
continue to concentrate on analytically tractable problems
with d=1. The results will be compared with those just dis-
cussed for one-dimensional free wave packet.

B. Oscillating external fields

As slightly more complicated examples, which are still
exactly solvable, we next consider the time-periodic poten-
tials

Usst,xd = qE0x sinsVtd, s15ad

Ucst,xd = qE0x cossVtd. s15bd

These potentials describe, in the dipole approximationf31g,
the interaction between a quantum particle with electric
chargeq and an oscillating, monochromatic electric field
with amplitudeE0 and frequencyV. Analytic solutions of the
corresponding relativistic quantum wave equations were first
discussed by Gordonf32g and Volkov f33g about 70 years
ago. Recently, however, this problem has reattracted consid-
erable theoretical interestf34–38g. Here we will use results
for the corresponding Schrödinger equations6d, as derived
by Rau and Unnikrishnanf34g.

Before discussing the solutions, it is useful to transform to
rescaled dimensionless quantities

x8 = xSmV

"
D1/2

, p8 =
p

sMV"d1/2, t8 = Vt,

E08 =
qE0

sMV3"d1/2, c8st8,x8d = SmV

"
D−1/4

cst,xd.

Formally, this corresponds to fixing characteristic units such
that "=m=V=q=1. Dropping for convenience the primes
again, the rescaled Schrödinger equations6d takes the sim-
plified form

i
]c

]t
= −

1

2

]2

]x2c + Us/cst,xdc, s16d

where the rescaled potentials read

Usst,xd = E0x sin t, s17ad

Ucst,xd = E0x cost. s17bd

First, let us considerUs from Eq. s17ad. According to
formula s19d of Ref. f34g, the time-dependent fundamental
solution of Eq.s16d is given by

TIME-DEPENDENT ENTROPY OF SIMPLE QUANTUM… PHYSICAL REVIEW A 71, 052102s2005d

052102-3



fp
sst,xd = expF− iE0

2S1

8
sin 2t − sin t +

3

4
tDGexpf− iE0xs1

− costd − iE0pssin t − tdgexpFiSpx−
p2

2
tDG . s18d

From this solution, one can construct special solutions via
superpositioning. As in the previous example, we would like
to consider solutions which are MAC states at initial timet
=0. This can be achieved by setting

csst,xd = S a

2p3D1/4E dp e−asp − p0d2fp
sst,xd, s19d

where the parameterp0 determines the initial momentum.
The integrals19d can be calculated analytically, yielding

csst,xd = S a

2p
D1/4e−ap0

2−iE0xs1−costd

Îa + it/2

3 expH−
fx + E0st − sin td − 2iap0g2

4sa + it/2d J
3 expH− iE0

2F3

4
t + S1

4
cost − 1Dsin tGJ . s20d

From this solution one finds the two normalized quantum
probability densities

ucsst,xdu2 = F 2a

ps4a2 + t2dG1/2

3expH−
2afx − p0t + E0st − sin tdg2

4a2 + t2
J ,

uc̃sst,pdu2 = S2a

p
D1/2

exph− 2afp − p0 + E0s1 − costdg2j.

s21d

Obviously, each of the two densities in Eq.s21d corresponds
to a Gaussian with oscillating mean value. More precisely,
we find

kxstdl = sp0 − E0dt + E0 sin t,

kpstdl = sp0 − E0d + E0 cost, s22ad

and, furthermore,

Dxstd =
1

2
S4a +

t2

a
D1/2

, Dpstd =
1

2Îa
. s22bd

Thus, after reinstating quantities", m, V, andq one arrives
at exactly the same uncertainty relation as found earlier for
the free particle; see Eq.s12d. Moreover, by explicitly calcu-
lating the joint entropy on the basis of Eq.s21d, one can
show thatSJ

s/cstd coincides with the free-particle results13d.
It comes as no surprise that an analogous result is ob-

tained, if one considersUc from Eq. s17bd. According to
formulass22d and s23d in f34g, for Eq. s17bd one must use
the fundamental solution

fp
cst,xd = expF− iE0

2S−
1

8
sin 2t +

1

4
tDGexpf− iE0x sin t

− iE0pscost − 1dgexpFiSpx−
p2

2
tDG s23d

instead of Eq.s18d. Substituting indicess by c in Eq. s19d,
one then obtains

ccst,xd = S a

2p
D1/4e−ap0

2−iE0x sin t

Îa + it/2

3 expH−
fx + E0st − costd − 2iap0g2

4sa + it/2d J
3 expF−

i

4
E0

2st − cost sin tdG . s24d

This gives the densities

uc cst,xdu2 = F 2a

ps4a2 + t2dG1/2

expH−
2afx − p0t + E0s1 − costdg2

4a2 + t2
J ,

uc̃ cst,pdu2 = S2a

p
D1/2

expf− 2asp − p0 + E0 sin td2g,

s25d

yielding

kxstdl = p0t − E0 + E0 cost,

kpstdl = p0 − E0 sin t, s26d

while, for the standard deviations, Eqs.s22bd are regained.
In summary, if identical MACS initial conditions are con-

sidered, then—compared with the free wave packet case—
the presence of the monochromatic oscillating fields is nei-
ther reflected by the uncertainty relation nor by the joint
entropy sin spite of the fact that the joint probability func-
tions fJ

c/s and fJ
f are differentd.

C. Tunneling through a d-peak potential

As third example, consider the Schrödinger equations6d
with d=1 and time-independent potential

Usxd = U0dsxd, U0 . 0, s27d

corresponding to an infinitely high and infinitely thin barrier
at x=0. Similar to before, we take as initial condition a
Gaussian MACS

cs0,xd = S 1

2pa
D1/4

expFik0x −
sx − x0d2

4a2 G , s28d

where it is further assumed that

kxs0dl = x0 , 0,

kps0dl = "k0 . 0, s29ad

and
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U x0

Dxs0d
U = U x0

Îa
U @ 1 s29bd

hold. The conditionss29ad mean that the maximum of wave
packet approaches the barrier from the left, while Eq.s29bd
states that, at timet=0, the particle issalmostd surely local-
ized on the left-hand side of the barrier. For fixed initial
position x0,0 and initial momentump0="k0.0, the time
of the collision with the barrier can be defined as

tc =
ux0u

p0/m
=

mux0u
"k0

. s30d

As we shall see below, the quantitytc can be used to identify
peculiarities in the entropy curvesSJstd.

1. Evolution of the spatial density

If the conditions29bd is satisfied, then one finds the fol-
lowing integral representation for the related time-dependent
solution ssee the Appendix for details of the calculationd:

cst,xd . S a

2p3D1/4E
−`

`

d ke−ask0 − kd2eisk0−kdx0−ibk2t

3 F k

k − ik
expsikxd + Qs− xd

2k

k − ik
sinskxdG .

s31d

Here Qsxd denotes the unit-step function, defined in Eq.
sA28d, and the parameter

FIG. 1. Tunneling of a MAC state through the potential barrierUsxd=U0dsxd: Evolution of the spatial probability densityucst ,xdu2 for
“large” initial momentump0. Solid lines correspond to the “exact” solutions31d and dashed lines to the approximate results32d. Time t is
measured in unitst=ma /" andx in unitsÎa, whereÎa determines the initial width of the wave packet. The remaining parameter values are
x0=−10, k0=p0/"=5, andU0=1 with units given byfx0g=Îa, fk0g=1/Îa, andfU0g="Îa /t.
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k = −
mU0

"2

characterizes the height of the barrier. Unfortunately, because
of the prefactors

c1skd =
k

k − ik
, c2skd =

2k

k − ik
,

the integrals31d cannot be solved exactly. With regard to
subsequentsnumericald calculations of the joint entropy, it
turns out as useful to make an additional approximation by
replacing in Eq.s31d the k-dependent functionsc1/2skd with
the constantsc1/2sk0d. These approximations are reasonable
for sufficently large parameter valuesa in the Gaussian ex-
ponential of the integrals31d, and one then obtains the ap-
proximate solution

c0st,xd . S a

2p
D1/4S 1

a + ibt
D1/2 eik0x0

k0 − ik

3 expF−
sx − x0d2 + 4iak0

2bt

4sa + ibtd GHk0 + iQs− xd

3kFexpS−
x0x + 2iak0x

a + ibt
D − 1GJ . s32d

Figures 1–3 show the evolution of the spatial probability
density ucst ,xdu2 for three different choices of the quotient
k0/ uku, characterizing the ratio between initial momentum
and barrier height. In each diagram solid lines were numeri-
cally calculated using the “exact” solutions31d, while dashed
lines correspond to the approximate solutionc0 from Eq.
s32d. As one can deduce from these figures,c0 provides in-
deed a useful approximation of the more exact solutions31d.
Moreover, one observes that the deviation between Eqs.s31d
ands32d decreases fork0@ uku; e.g., fork0/ uku=5 ssee Fig. 1d,

FIG. 2. Tunneling through thed barrier for “moderate” initial momentump0=1 sunits and all other parameters are chosen as in Fig. 1d.
Here the transmissionstunnelingd probability approximately equals the reflection probability. As a consequence, fort. tc the joint entropy
is much larger than in the case of “large” and “small” initial momenta; compare Fig. 4.
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the dashed and solid lines are nearly indistinguishable.

2. Joint entropy

In order to calculate the joint entropySJstd via Eq. s9d,
one requires the Fourier-transformed wave functionc̃st ,pd.
For the wavecst ,xd from Eq. s31d it is difficult to find an

explicit formula for c̃st ,pd. Hence, it is also rather difficult
to calculateSJstd from the integral representations31d. How-
ever, as we have seen in the preceding section, the approxi-
mate solutionc0 from Eq. s31d provides a useful estimate of
the true solution. Therefore, instead of Eq.s31d, we will re-
strict ourselves below to considering the joint entropy for the
approximate solutions32d.

For c0st ,xd from Eq. s32d the related momentum wave

function c̃0st ,pd can be easily calculated from Eq.s7d, and
one finds

c̃0st,pd = S a

23p"2D1/4eisp0−pdx0/"

p0 − i"k

3 expF−
asp − p0d2 + ip2bt

"2 G
3 H2p0 + i"kfErfsg−d − 1g

+ i"k expS2ipx0

"
−

4app0

"2 DfErfsg+d + 1gJ ,

s33d

where Erfsxd denotes the error function, defined in Eq.
sA17d, and the abbreviations

g−st,pd =
"x0 + 2pbt + 2iasp0 − pd

2"Îa + ibt
,

FIG. 3. Tunneling through thed barrier for “small” initial momentump0=0.5 sunits and all other parameters are chosen as in Figs. 1 and
2d. Here the reflection probability is much larger than the tunneling probability. Moreover, one can see that the deviation of the approximate
solution s32d from the “exact” solutions31d becomes more significant, if the initial momentum is small compared to the effective barrier
height uku.
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g+st,pd =
"x0 − 2pbt + 2iasp0 + pd

2"Îa + ibt

have been introduced. On the basis of formulass32d and
s33d, it is now straightforward to numerically calculate the
related joint entropySJstd from Eq.s9d. In Fig. 4, one can see
examples of entropy curves, based on the same parameter
values as used in Figs. 1–3. Analogous to preceding dia-
grams, the representation in Fig. 4 refers to the characteristic
unit system defined bym="=Îa=1, whereÎa is the initial
width of the wave packet. For example, we simply haveb
=1/2, k=−U0, etc., in these units. Furthermore, the related
unit time readst=ma /" and the collision timetc, defined in
Eq. s30d, reduces totc= ux0u /p0.

The joint entropy curvesSJstd in Fig. 4 were obtained by
numerically integrating Eq.s9d with the computer software
Mathematicaf39g. The three nonsolid lines refer to the tun-
neling through thed barrier. For comparison, we also the
plotted the joint entropys13d for the spreading of free wave
packetssolid lined. The main observations in Fig. 4 are the
following

sid For t→0, all four curves converge to the valueSJs0d
=lnse/2d=0.306. . .; compare Eq.s13d. This reflects the fact
that we have chosen special initial conditions, corresponding
to MAC states.

sii d For t, tc all three nonsolid curves in Fig. 4 run below
the solidsfree wave packetd entropy curveSL

f std. This reflects
the fact that, at the early stages of the tunneling process, the
d barrier hinders the spreading of the wave packet. In par-
ticular, for small initial momenta a plateaulike region ap-
pears, indicated by the arrowfbut it should also be kept in
mind that fork0! uku the approximate solutions32d becomes
less reliable; see Fig. 3g.

siii d At t< tc the slope of the joint entropy exhibits a local

maximum for the three non-solid curves in Fig. 4—i.e.,

Ud2SJ

dt2
U

t<tc

= 0, Ud3SJ

dt3
U

t<tc

, 0.

sivd For t. tc the curve for “p0=1,” corresponding to a
moderate initial momentum value, clearly dominates the
other curves. Roughly speaking, this can be explained by the
fact that for moderate initial momenta the tunneling prob-
ability approximately equals the reflection probabilityscom-
pare Fig. 2d, thus leading to maximum uncertainty.

svd Each of the shown curves increases monotonously in
time. However, the appearance of the plateaulike regionsar-
rowd at low initial momenta seems to indicate that confine-
ment effects due to interactions or external potentials might
also lead to a temporary decrease of the joint entropy on
short time scales. Of course, in such a scenario, Leipnik’s
inequality s14d constitutes a lower bound forSJstd.

IV. SUMMARY

We have studied the joint entropy for explicit time-
dependent solutions of three simple one-dimensional
Schrödinger problems:sid the spreading of a free Gaussian
wave packet,sii d the motion of a wave packet in a mono-
chromatic electromagnetic field, andsiii d the tunneling of a
wave packet through ad barrier. The second example can be
considered as an open quantum system, because in this case
the Hamiltonian is explicitely time dependent. In contrast,
examplessid andsiii d correspond to closed systems. As initial
conditions maximal classical states have been used. MACS’s
minimize the Heisenberg uncertainty as well as the joint en-
tropy. A quantum system that has been in a MACS at time
t=0 inevitably evolves into a non-MACS at timest.0. This
intrinsic property of quantum systems is, e.g., reflected by a
monotonous increase of the joint entropy. Most likely, this
quantum trend also manifests itself for other type of initial
wave packets and external potentials, as well as in many-
particle systems.

In order to be able to calculate the joint entropy for the
tunneling process through ad peak potentialfexamplesiii dg,
an approximate analytic solution of the corresponding time-
dependent Schrödinger problem was derivedsAppendixd. By
means of this solution, it could be shown that the slope of the
corresponding joint entropy exhibits a local maximum in the
vicinity of the collision time. Based on this observation one
may conclude that, on many occasions, interactions tend to
speed-up the joint entropy increasesi.e., the loss of phase-
space informationd in quantum systems. With respect to
many-particle systems, an interesting question to be an-
swered in the future is whether or not such quantum trends
are important for the relaxation to thermodynamic equilib-
rium.
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APPENDIX: SOLVING SCHRÖDINGER’s EQUATION
FOR THE d BARRIER

1. The problem

We wish to find the time-dependent solutioncst ,xd for the
one-dimensional Schrödinger problem

i"
]

]t
c = F−

"2

2m

]2

]x2 + U0dsxdGc ; Ĥc, sA1d

whereU0.0 and the initial condition is fixed as

cs0,xd = S 1
Îpl

D1/2

expFik0x −
sx − x0d2

2l2 G . sA2d

This corresponds to the initial Gaussian probability density

ucs0,xdu2 =
1

Îpl
expF−

sx − x0d2

l2 G , sA3d

which is normalized to unity:

1 =E
−`

`

dx c*s0,xdcs0,xd. sA4d

Furthermore, we have at initial timet=0

kxs0dl ; E
−`

`

dx c*s0,xdxcs0,xd = x0, sA5ad

kps0dl ; − i"E
−`

`

dx c*s0,xd
]c

]x
s0,xd = "k0, sA5bd

and the initial width of the wave packet reads

Dxs0d ; Îkx2s0dl − kxs0dl2 =
l

Î2
. sA5cd

The constant energy of the wave packet is given by

kĤstdl =
"2k0

2

2m
+

"2

4ml2 +
U0

Îpl
expS−

x0
2

l2D . sA6d

2. Superposition of eigenfunctions

The eigenfunctions of the related stationary Schrödinger
eigenvalue problem

Ĥfsxd = Efsxd sA7d

readssee, e.g., p. 147 in Ref.f29gd

fk
+sxd =

1
Îp

cosfkuxu + hskdg, sA8ad

fk
−sxd =

1
Îp

sinskxd, sA8bd

with eigenvalues given by

Eskd =
"2k2

2m
. 0. sA8cd

Note that symmetric and antisymmetric solutions are labeled
by “1” and “2,” respectively. From the matching condition

fk8s0
+d − fk8s0

−d =
2mU0

"2 fks0d, sA9d

one finds that for the phase of the symmetric solutions

hskd = arctanSk

k
D, k = −

mU0

"2 . sA10d

For k,k8.0 the solutionshfk
±j satisfy the orthonormality

relations

E
−`

`

dx fk
+sxdfk8

+ sxd = dsk − k8d, sA11ad

E
−`

`

dx fk
−sxdfk8

− sxd = dsk − k8d, sA11bd

E
−`

`

dx fk
+sxdfk8

− sxd = 0. sA11cd

Hence, one can expand the solutions of the time-dependent
Schrödinger problemsA1d in the form

cst,xd =E
0

`

dkfa+skdfk
+sxd + a−skdfk

−sxdge−iEskdt/".

sA12d

The restriction to non-negativek values suffices here, be-
causefk

±sxd= ±f−k
± sxd holds. Furthermore, at timet=0 the

condition

cs0,xd =E
0

`

dkfa+skdfk
+sxd + a−skdfk

−sxdg sA13d

must be satisfied. Consequently, the coefficientsa±skd are
determined by projection onto the initial condition:

a±skd =E
−`

`

dx fk
±sxdcsx,0d. sA14d

This follows from the orthonormality relationssA11d. Using
the special initial conditionsA2d, one finds

a+skd = b+skd − b+s− kd, sA15ad

a−skd = b−skd − b−s− kd, sA15bd

where

b+skd ; F l

2Îpsk2 + k2d
G1/2

expFisk0 − kdx0 −
l2

2
sk0 − kd2G

3 Sk − ik ErfFx0 + isk0 − kdl2

Î2l
GD , sA16ad

and
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b−skd ; iS l

2Îp
D1/2

expFisk0 − kdx0 −
l2

2
sk0 − kd2G .

sA16bd

The error function in Eq.sA16ad is defined by

Erfszd =
2

Îp
E

0

z

dt e−t2. sA17d

EquationssA15d and sA16d further imply

a±skd = − a±s− kd. sA18d

Introducing the abbreviation

b ;
"

2m
, sA19d

the general solutionsA12d can be written as

cst,xd = I+st,xd + I−st,xd, sA20d

where

I+st,xd ; E
0

`

dk a+skdfk
+sxde−ibk2t, sA21ad

I−st,xd ; E
0

`

dk a−skdfk
−sxde−ibk2t. sA21bd

By using Eq.sA15bd and inserting the explicit expression for
fk

−sxd, we find

I−st,xd =
1

Îp
E

0

`

dkfb−skd − b−s− kdgsinskxde−ibk2t

=
1

2Îp
E

−`

`

dk fb−skd − b−s− kdgsinskxde−ibk2t

=
1

Îp
E

−`

`

dkb−skdsinskxde−ibk2t

=
sA16bd

iS l

2Îp3D1/2E
−`

`

dk sinskxd

3 expFisk0 − kdx0 −
l2

2
sk0 − kd2 − ibk2tG .

sA22d

The integralsA22d can be calculated:

I−st,xd = F l

4Îpsl2 + 2ibtd
G1/2

expSik0x0 −
l2k0

2

2
D

3 HexpF−
1

2

sx0 − x + ik0l2d2

l2 + 2ibt
G

− expF−
1

2

sx0 + x + ik0l2d2

l2 + 2ibt
GJ ,

where, in particular,

I−s0,xd = S 1

4Îpl
D1/2HexpF−

sx0 − xd2

2l2 + ik0xG
− expF−

sx0 + xd2

2l2 − ik0xGJ .

Unfortunately, because of the error function in Eq.sA16ad,
the remaining integralI+st ,xd cannot explicitly be solved.

Therefore, we shall next try to find a convenient integral
representation of the solutioncst ,xd by considering a special
limit case.

3. Limit case zx0zšl

In the following we shall consider the limit case

x0 , 0, k0 . 0, U x0

Î2l
U @ 1. sA23d

This means thatsid the wave packet approaches the barrier
from the left andsii d the spatial probability is initially con-
centrated in the regionx,0. By virtue of

lim
x→−`

Erfsx + iyd = − 1, x,y P R, sA24d

we obtain in the limit casesA23d from Eq. sA16ad

b+skd . S l

2Îp
D1/2 k + ik

Îk2 + k2
expFisk0 − kdx0 −

l2

2
sk0 − kd2G .

sA25d

Using this approximate expression, we can rewriteI+st ,xd
from Eq. sA21ad. Inserting Eq.sA15ad and the explicit ex-
pression forfk

+sxd, we find

I+st,xd =
1

Îp
E

0

`

dkfb+skd − b+s− kdge−ibk2t

3 cosFkuxu + arctanSk

k
DG ,

=
1

Îp
E

0

`

dkfb+skd − b+s− kdge−ibk2t

3 Fk cosskuxud − k sinskuxud
Îk2 + k2 G .

Since the integrand is an even function with respect tok, we
obtain

I+st,xd =
1

2Îp
E

−`

`

dkfb+skd − b+s− kdge−ibk2t

3 Fk cosskuxud − k sinskuxud
Îk2 + k2 G

=
1

Îp
E

−`

`

dk b+skde−ibk2tFk cosskuxud − k sinskuxud
Îk2 + k2 G .

Inserting Eq.sA25d for b+skd, we have
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I+st,xd . S l

2Îp3D1/2E
−`

`

dk
k + ik

k2 + k2fk cosskuxud

− k sinskuxudgexpFisk0 − kdx0 −
l2

2
sk0 − kd2 − ibk2tG .

sA26d

Combining Eqs.sA22d and sA26d we get

cst,xd . S l

2Îp3D1/2E
−`

`

dk Ask,xdexpFisk0 − kdx0 −
l2

2
sk0

− kd2 − ibk2tG ,

where

Ask,xd =
k cosskuxud − k sinskuxud

k − ik
+ i sinskxd

=
kfcosskuxud + i sinskxdg + kfsinskxd − sinskuxudg

k − ik
.

For xù0 we haveuxu=x and, thus,

Ask,xdxù0 =
k

k − ik
expsikxd,

whereas forx,0 we haveuxu=−x, yielding

Ask,xdx,0 =
k

k − ik
expsikxd +

2k

k − ik
sinskxd.

Formally, the above results can be summarized as follows:

cst,xd . S l

2Îp3D1/2E
−`

`

dk eisk0−kdx0−sl2/2dsk0 − kd2−ibk2t

3 F k

k − ik
expsikxd + Qs− xd

2k

k − ik
sinskxdG ,

sA27d

where the step functionQsxd is defined by

Qsxd ; H1, x ù 0,

0, x , 0.
J sA28d

Finally, we can reparametrize

l = Î2a,

which allows us to rewrite the solutionsA27d as

cst,xd . S a

2p3D1/4E
−`

`

dk eisk0−kdx0−ask0 − kd2−ibk2t

3 F k

k − ik
expsikxd + Qs− xd

2k

k − ik
sinskxdG ,

sA29d

wherea andb play the same role as, e.g., in Eq.s10d. Note
that in the limit casek→0, the solutionsA29d correctly re-
duces to the free-particle solutions10d.
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