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In this Brief Report we present a scheme for the implementation of frequency up- and down-conversion
operations in two-mode cavity quantum electrodynamicssQEDd. This protocol for engineering bilinear two-
mode interactions could enlarge perspectives for quantum-information manipulation and also be employed for
fundamental tests of quantum theory in cavity QED. As an application we show how to generate a two-mode
squeezed state in cavity QEDsthe original entangled state of Einstein, Podolsky, and Rosend.
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Parametric frequency conversion has been a major ingre-
dient in quantum optics. Employed in the generation of
squeezed and two-photon states of light to test sub-
Poissonian statisticsf1g and Bell’s inequalitiesf2g, paramet-
ric down-conversionsPDCd has been constantly reexamined
since the work by Louisellet al. f3g. Sub-Poissonian statis-
tics, one of the characteristics of squeezed light, has deep-
ened our understanding of the properties of radiationf1g and
its interaction with matterf4g. It has provided an unequivocal
signature of the quantum nature of light, disputed since the
discovery of the photoelectric effect, and has continued to
motivate fundamental works up to the presentf5g. Apart
from fundamental phenomena, the potential application of
PDC in technology is also striking, ranging from improve-
ments in the signal-to-noise ratio in optical communication
f6g to the possibility of measuring gravitational waves
through squeezed fieldsf7g.

The combination of simplicity and comprehensiveness ex-
hibited by the frequency-conversion mechanisms applied in
some of the recent proposals of quantum-information theory
f8g has motivated the goal of the present Brief Report: the
implementation of the frequency up- and down-conversion
operations in two-mode cavity quantum electrodynamics
sQEDd. With this protocol to engineer two-mode interac-
tions, it would be possible to map into cavity QED some of
the proposals for quantum logical processing originally de-
signed for traveling fields. This protocol may be useful for
scalable quantum computation and communication proposals
f9g, besides enlarging such perspectives, it may also be em-
ployed for fundamental tests of quantum theoryf10g.

The parametric frequency-conversion operations are ac-
complished through the dispersive interactions of the cavity
modes with a single three-level-driven atom injected into the
cavity, which works as a nonlinear medium. Although con-
siderable space has been devoted in the literature to the in-
teraction between a three-level atom and two cavity modes
f12g, the issue of tailoring the bilinear Hamiltonians of
frequency-conversion processes in cavity QED has not been
addressed.

We envisage working with Rydberg atoms in the micro-
wave regime. Starting with parametric up-conversionsPUCd,
the energy diagram of the Rydberg three-level atom is in the

L configuration as sketched in Fig. 1sad. The groundsugld
and excitedsueld states are coupled through an auxiliary
more excited levelsuild. The cavity microwave modes of fre-
quenciesva and vb enable both dipole-allowed transitions
ugl↔ uil and uel↔ uil, with coupling constantsla and lb,
respectively, and detuningD=vi −vg−va=vi −ve−vb. Fi-
nally, a classical field of frequencyv0=ve−vg−d, disper-
sively driving the dipole-forbidden atomic transitionugl↔ uel
with coupling constantV, leads to the desired interaction
between the modesva andvb. This dipole-forbidden transi-
tion can be induced by applying a sufficiently strong electric

FIG. 1. Energy diagram of a three-level atom in thesad L con-
figuration to obtain the PUC process andsbd ladder configuration to
obtain the PDC process.
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field. The Hamiltonian that describes this system, in the in-
teraction picture within the rotating-wave approximation and
in a rotating framehthrough the unitary transformation
expf−iDtssee+sggdgj, is given by

H = "slaasig + lbbsie + Ve−idtsge+ H.c.d − "Dssee+ sggd
s1d

with a† sad andb† sbd standing for the creationsannihilationd
operators of the quantized cavity modes, whileskl;uklkl u
sk, l =g,e, id defines the atomic transition operators.

Considering the Heisenberg equations of motion for the
transition operatorssig and sei, we can compare the time
scales of the transitions induced by the cavity modes. If the
dispersive transitions induced by the quantized fields are suf-
ficiently detuned, i.e.,D@ ulau,ulbu,uVu, we obtain the adia-
batic solutions for the transition operatorssig and sie by
settingdsig /dt=dsie/dt=0, given by

sig . S D2

D2 + V2DFla
*

D
a†ssii − sggd −

lb
*

D
b†seg

−
Vla

*

D2 e−idta†sge+
Vlb

*

D2 e−idtb†ssii − seedG , s2ad

sie . S D2

D2 + V2DF−
la

*

D
a†sge+

lb
*

D
b†ssii − seed

+
Vla

*

D2 eidta†ssii − sggd −
Vlb

*

D2 eidtb†segG . s2bd

Inserting these adiabatic solutions forsig and sie into Eq.
s1d, the following Hamiltonian is obtainedsassumingD2

+V2<D2d:

H . − "SD +
ulbu2

D
Dsee− "SD +

ulau2

D
Dsgg

+ "
sulau2 + ulbu2d

D
sii + "VS1 −

sulau2 + ulbu2d
2D2 D

3se−idtsge+ H.c.d +
"

D
fsulau2a†a + ulbu2b†bdsii

− ulau2a†asgg − ulbu2b†bseeg −
"V

D2 sulau2a†a + ulbu2b†bd

3se−idtsge+ H.c.d −
"

D
slalb

*ab†seg+ H.c.d

+
"V

D2 slalb
*e−idtab† + H.c.dssii − sgg − seed. s3d

The state vector associated with Hamiltonians3d, in
the interaction picture, can be written asuCstdl
=o,=g,e,iu, luF,stdl, whereuF,stdl=1̂ab^ k, uCstdl and 1̂ab is
the unitary operator of cavity modes represented in a conve-
nient basis. Using the orthogonality of the atomic states in
uCstdl and Eq.s3d we obtain the uncoupled time-dependent
sTDd Schrödinger equations for the atomic subspaceuil sin
the interaction pictured, i"sd/dtduFistdl=HiuFistdl, with

Hi ="xaa
†a+"xbb

†b+"sje−idtab†+j*eidta†bd, where x,

= ul,u2/D s,=a,bd stand for the shift factors of the two
cavity-mode frequencies, whilej=Vlalb

* /D2 is the effective
coupling parameter between these modes. The subscripti
indicates the atomic subspaceuil. The TD Schrödinger equa-
tions for subspacehugl , uelj, which follow from Eq. s3d,
couple the fundamental and excited atomic states. Therefore,
when we prepare the initial state of the atom in the auxiliary
level uil, the dynamics of the atom-field dispersive interac-
tions, governed by the effective HamiltonianHi, results in
cavity modes with shifted frequencies which are coupled in
identical fashion to running waves crossing a nonlinear crys-
tal, as in PUC.

Performing a unitary transformation on the Schrödinger
equation for uFistdl, through the operator expf−itsxaa

†a

+xbb
†bdg, we obtain the Hamiltonian H̃i

="sjab†e−isd+xa−xbdt+j*a†beisd+xa−xbdtd. At this point we ob-
serve that the choice ofd=sulbu2− ulau2d /D, the detuning as-
sociated with the classical driving field, leads to the simpli-
fied form

H̃i = "sjab† + j*a†bd, s4d

where the up-conversion process for the effective frequen-
cies is such thatv0=sva+xad−svb+xbd. It should be noted
that the degenerate up-conversion process is the equivalent
of a beam-splitter operation, which has been generally re-
quired for quantum logical purposesf8g.

Next, to engineer the parametric down-conversionsPDCd
process, we consider the atomic levels in the ladder configu-
ration, as shown in Fig. 1sbd, where the ground and excited
states are coupled through an intermediate level. The cavity
microwave modesva andvb are tuned to the vicinity of the
dipole-allowed transitionsugl↔ uil and uel↔ uil with cou-
pling constantsla and lb, respectively, and detuningD=
−svi −vg−vad=ve−vi −vb. The desired interaction between
the modesva andvb is accomplished by dispersively driving
the dipole-forbidden atomic transitionugl↔ uel with a classi-
cal field of frequencyv0=ve−vg−d and coupling constant
V. The Hamiltonian to engineer the PDC, within the
rotating-wave approximation, is given byH=H0+V, where

H0 = "vaa
†a + "vbb

†b + o
,=g,e,i

"v,s,,, s5ad

V = "slaasig + lbbsei + Veiv0tsge+ H.c.d. s5bd

Applying the transformation expfiDtssee+sggdg to H and fol-
lowing the steps leading from Eq.s1d–s3d sconsidering as in
the PUC caseD@ ulau,ulbu,uVud, we obtain the effective
Hamiltoniansin the interaction pictured

H . "SD +
ulau2

D2 Dsgg + "SD +
ulbu2

D
Dsee−

"sulau2 + ulbu2d
D

sii

+ "VS1 −
ulau2 + ulbu2

2D2 Dse−idtsge+ H.c.d

+
"

D
f− sulau2a†a + ulbu2b†bdsii + ulau2a†asgg
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+ ulbu2b†bseeg −
"V

D2 sulau2a†a + ulbu2b†bdse−idtsge+ H.c.d

+
"

D
slalbabseg+ H.c.d −

"V

D2 slalbe
−idtab+ H.c.d

3ssee− sii + sggd. s6d

Next, expanding the state vector of the system as in the
PUC case and preparing the initial state of the atom in the
auxiliary level, we obtain the uncoupled time-dependent
Schrödinger equations for the atomic subspaceuil, with
Hi =−"xaa

†a−"xbb
†b+"sje−idtab+j*eidta†b†d, where j

=Vlalb/D2 is the effective coupling parameter between
these modes. Therefore, when we prepare the initial state of
the atom in the auxiliary level, the dynamics of the atom-
field dispersive interactions leads to shifted cavity modes
which are coupled in identical fashion as in PDC. Perform-
ing the unitary transformation, expfitsxaa

†a+xbb
†bdg,

we obtain the Hamiltonian H̃i ="sje−isd−xa−xbdtab
+j*eisd−xa−xbdta†b†d. The choiced=sulau2+ ulbu2d /D leads to
the simplified formfwhere the down-conversion process for
the effective frequencies satisfiesv0=sva−xad+svb−xbdg

H̃i = "sjab+ j*a†b†d. s7d

We obtain from Hamiltonianss3d and s6d, by switching
off the classical amplification processsapart from diagonal
termsd, the interactions "szab†seg+z*a†bsged f13g and
"skabseg+k*a†b†sged f14g, respectively. The coupling pa-
rameters readz="lalb

* /D and k="lalb/D. With these in-
teractions it is straightforward to prepare the Bell basis states
for the cavity modes fuCab

± l=su1a0bl± u0a1bld /Î2,uFab
± l

=su1a1bl± u0a0bld /Î2g, with the passage of a single atom
through the cavity. Moreover, as a by-product of the present
scheme, in the case whereva=vb sdiscussed in detail in Ref.
f15gd we get the degenerate PDC process corresponding to
the well-known interaction"fjsad2+j*sa†d2g which has been
used to generate squeezed states of light in cavity QED. We
emphasize that this degenerate down-conversion process can
be used to squeeze an arbitrary state previously prepared in
the cavity; i.e., to perform the operationSuCl in cavity QED
sS being the squeeze operatord f15g.

As another application of the present proposal, we derive
the original Einstein-Podolsky-RosensEPRd state expanded
in the position representation. Starting with the two cavity
modes in their vacuum states and applying the down-
conversion interaction Eq.s7d during the time intervalt, fol-
lowing the procedure described above, the evolved two-
mode state readssin the interaction pictured

ucstdlab = e−itsjab+j*a†b†du0,0lab = o
n=0

` ftanhsujutdgn

coshsujutd
un,nlab,

s8d

where we have adjusted the coupling constantsla and lb
such that j= i uju. This state is the two-mode squeezed
vacuum state which, in the limitujut→` sand projected into
the positional basis of modesa andbd, is exactly the original

entanglement used in the EPR argument against the uncer-
tainty principlef11g. In order to estimate the “quality” of the
prepared EPR states8d, we compute, in this state, the mean
values f16g sDxd2=ksxa−xbd2l=e−2ujut /2 and sDpd2=kspa

+pbd2l=e−2ujut /2, wherexb=sb+b†d /2 andpb=−isb−b†d /2
sb=a,bd are the field quadratures. We obtain the result
sDxd2+sDpd2=e−2ujut which goes to zero for the ideal EPR
statesujut→`d and to unity for an entirely separable state
f16g. Therefore, the expression 1−e−2ujut can be used to esti-
mate the quality of the prepared states8d with present-day
cavity QED parameters. For specific cavity modes and
atomic system, the interaction parameterujut can be adjusted
in accordance with the coupling strengthj scalculated from
the parametersV, la, lb, andDd and the interaction timet.
Assuming typical values for the parameters involved, arising
from Rydberg states where the intermediate stateuil, an sn
−1dP3/2 level, is nearly halfway betweenugl, an sn−1dS1/2

level, anduel, an nS1/2 level, we getulau,ulbu,73105 s−1

f17g. With these values and assuming the detuningD
,107 s−1 snote that D,14la,b f18gd and the coupling
strengthV,73105 s−1, we obtainuju,3.43103 s−1. For an
atom-field interaction time aboutt,2310−4 s, we get the
interaction parameterujut,0.68, close to the values0.69d
achieved for building the EPR state for unconditional quan-
tum teleportation in the running-wave domainf19g. The
value ujut,0.68 leads to 1−e−2ujut,0.74, and we note that
increasing moderately the interaction time tot,6310−4 s
sujut,2d the quality of the prepared state increases to 1
−e−2ujut,0.98. Regarding the degenerate PDC processsva

=vbd f15g, for an atom-field interaction time aboutt,2
310−4 s we get the squeezing factorr =2ujut,1.36, such
that the variance in the squeezed quadrature turns to be
e−2r /4,1.6310−2, representing a squeezing up to 93%sfor
an initial coherent state prepared in the cavityd with the pas-
sage of just one atom.

There are some sensitive points in the experimental
implementation of the present scheme. The atomic detection
efficiency and the spread of the atomic velocity do not play
important roles in the present scheme where only one step of
atom-field interaction is required. However, due to the
Gaussian profilefsxd of the cavity fields in the transverse
direction, the atom-field couplingsla and lb become time-
dependent parameters as well as the effective coupling be-
tween the cavity modesj=Vlalbffsxdg2/D2 fwhere fsxd
=exps−x2/w2d, x is the time-dependent atom position from
the center of the cavity, andw,0.6 cmf20g is the waist of
the Gaussiang. The effect of the field profile can be evaluated
straightforward by using the analytical results for a time-
dependent degenerate PDC process, demonstrated inf21g,
leading to the squeezing factorr =sVlalb/D2d2e0

tffsxdg2 dt.
Considering an atom-field interaction time aboutt,2
310−4 s, we get the squeezing factorr ,0.51. To obtain the
same valuer ,1.36 of the ideal case, we must increase mod-
erately the interaction time tot,5.32310−4 s. The interac-
tion times cited above are at least one order of magnitude
smaller than the decay time of the open cavities used in
cavity QED experimentsf10,20g. Regarding atomic decay,
we note that for Rydberg levels the damping effects can be
safely neglected for typical interaction time scales.
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We note that, to characterize the entangled state in Eq.s8d
we can use the reconstruction technique presented in Ref.
f22g. To employ this technique we have first to apply the
displacement operatorD−1sh, ,h,

*d=exps−h,,†+h,
* , d, with

,=a,b, into the cavity modes. Next, an additional three-level
atom is sent through the cavity, prepared in the superposition
statesuil+ ufld /Î2, whereufl stands for an auxiliary Rydberg
level whose transitions to the statesugl, uil, and uel do not
couple to the cavity modes. Turning off the classical ampli-
fication field and considering the atom-field interaction time
t, we obtain from Hamiltonians6d the evolved state
hexpfifsa†a+b†bdgucstdlabuil+ ucstdlabuflj /Î2 where f
= ulu2t /D sulu= ulau,ulbud. After undergoing ap /2 pulse in a
Ramsey zone, with phase chosen so thatuil→ suil+ ufld /Î2

and ufl→ suil− ufld /Î2, the atomic statesuil and ufl are mea-
sured with probabilitiesPi andP f. Finally, a direct measure-
ment of the two-mode Wigner function follows from
Wsha,hb,ha

* ,hb
*d~P f −Pi f22g. In the particular case of de-

generate parametric down-convention, where the resulting
Hamiltonian is the squeezing operator of a single-cavity
mode, the same scheme can be used to measure directly the
Wigner function of any squeezed state.
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