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Frequency up- and down-conversions in two-mode cavity quantum electrodynamics
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In this Brief Report we present a scheme for the implementation of frequency up- and down-conversion
operations in two-mode cavity quantum electrodynant@gD). This protocol for engineering bilinear two-
mode interactions could enlarge perspectives for quantum-information manipulation and also be employed for
fundamental tests of quantum theory in cavity QED. As an application we show how to generate a two-mode
squeezed state in cavity QEfEhe original entangled state of Einstein, Podolsky, and Rosen
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Parametric frequency conversion has been a major ingreA configuration as sketched in Fig(al The ground(|g))
dient in quantum optics. Employed in the generation ofand excited(|e)) states are coupled through an auxiliary
squeezed and two-photon states of light to test submgre excited level|i)). The cavity microwave modes of fre-

Poissonian statistidsl] and Bell's inequalitie$2], paramet- . : .
o down—conversicg(F]’DC) has been qconstaftl] rrc)aexamined quenciesw, and w, enable both dipole-allowed transitions
y |g)« i) and |e)« i), with coupling constants\, and \y,

since the work by Louiselét al. [3]. Sub-Poissonian statis- . L = )

tics, one of the characteristics of squeezed light, has deeIS?SpeCt'Vely’ and detunmg_“"_“’g_f’a_wi_we_wb' Fi-
ened our understanding of the properties of radiaigrand ~ "21¥: @ classical field of frequencyo=we=wy—J, disper-

its interaction with mattef4]. It has provided an unequivocal S\l driving the dipole-forbidden atomic transitig) — |€)
signature of the quantum nature of light, disputed since th&/ith coupling constant}, leads to the desired interaction
discovery of the photoelectric effect, and has continued t@etween the modes, and w,. This dipole-forbidden transi-
motivate fundamental works up to the preséﬁ]:_ Apart tion can be induced by app|ylng a SUff|C|ent|y Strong electric
from fundamental phenomena, the potential application of

PDC in technology is also striking, ranging from improve- |l> (a)
ments in the signal-to-noise ratio in optical communication AI
[6] to the possibility of measuring gravitational waves >\
through squeezed field3].

The combination of simplicity and comprehensiveness ex- @, A,
hibited by the frequency-conversion mechanisms applied in ¢
some of the recent proposals of quantum-information theory w, A
[8] has motivated the goal of the present Brief Report: the e /'
implementation of the frequency up- and down-conversion
operations in two-mode cavity quantum electrodynamics
(QED). With this protocol to engineer two-mode interac- /
tions, it would be possible to map into cavity QED some of |g>
the proposals for quantum logical processing originally de-
signed for traveling fields. This protocol may be useful for §T X le) b)
scalable quantum computation and communication proposal:
[9], besides enlarging such perspectives, it may also be em
ployed for fundamental tests of quantum thefit@. y

The parametric frequency-conversion operations are ac A I f i)
complished through the dispersive interactions of the cavity
modes with a single three-level-driven atom injected into the =~ @,
cavity, which works as a nonlinear medium. Although con- A
siderable space has been devoted in the literature to the in ’
teraction between a three-level atom and two cavity modes
[12], the issue of tailoring the bilinear Hamiltonians of
frequency-conversion processes in cavity QED has not beel l¢)
addressed.

We envisage working with Rydberg atoms in the micro-  FIG. 1. Energy diagram of a three-level atom in tag A con-
wave regime. Starting with parametric up-converdiB/C),  figuration to obtain the PUC process aiwi ladder configuration to
the energy diagram of the Rydberg three-level atom is in th@btain the PDC process.
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field. The Hamiltonian that describes this system, in the in?H;=fiy,a'a+#Ay,b'b+x(&e7 *ab’+ ¢ €%a'b),
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where  x,

teraction picture within the rotating-wave approximation and=|\,|?/A (¢=a,b) stand for the shift factors of the two
in a rotating frame{through the unitary transformation cavity-mode frequencies, whi@zﬂxa)\;/Az is the effective

exg-iAt(oeet+ g1}, is given by
H = i(\ja0ig + Npbaie + Q€7 Mg+ H.C) = il (0get o)
(1)

with a' (a) andb' (b) standing for the creatiofannihilation
operators of the quantized cavity modes, whitg= |K)(l|
(k,1=g,e,i) defines the atomic transition operators.

Considering the Heisenberg equations of motion for th
transition operatorsr; and o, we can compare the time
scales of the transitions induced by the cavity modes. If the
dispersive transitions induced by the quantized fields are suf-

ficiently detuned, i.e.A>|\g|,|\p|,|2|, we obtain the adia-
batic solutions for the transition operatosg, and oj. by
settingdo;y/dt=do;./dt=0, given by

A2 A, At
oo~ (e oo N
QN _ QN
- _Zae_léta.TO'ge‘l' _zbe_léth(O'ii - O'ee):| , (Za)
A A
A? Na s Mooy
Tie=\ 2 2)| T2 2 Toet P (0~ 0ed
A, QN
+ Azae'ataT(a'ii —0gg) ~ A—zbe'&bT(reg} . (2b)

Inserting these adiabatic solutions fay, and o, into Eq.
(1), the following Hamiltonian is obtainedassumingA?
+02=A?):

PRSY DNRLLY ig BE L
- A Oee A Ogg

(NP be|2)>
2A2

+ h(|7\a|2 + |)\b|2)
A

Tjj +fLQ<1
—iot h 2,1 2t
X(e"%0ge+ H-C-)+K[(|)\a| a'a+ \|b'b)ay;
2,1 2t A 2,1 2|1t
- |)\a| a'aogg— |)\b| b'boee| - F(|)\a| aa+t |)\b| b'b)

H ﬁ *
X (6" g+ H.c) - K()\a)\babToeg+ H.c)

X0
+ F()\a)\be 1%ab + H.c) (o5 — Tgg~ Ted -

)

The state vector associated with Hamiltoni&®), in
the interaction picture, can be written a$¥(t))

=3 g 0l )| @ (1)), Where|d,(t)=1,,® (£ W(1)) and &, is

e

coupling parameter between these modes. The subscript
indicates the atomic subspalte The TD Schrodinger equa-
tions for subspacd|g),|e)}, which follow from Eq. (3),
couple the fundamental and excited atomic states. Therefore,
when we prepare the initial state of the atom in the auxiliary
level |i), the dynamics of the atom-field dispersive interac-
tions, governed by the effective Hamiltonid, results in
cavity modes with shifted frequencies which are coupled in
identical fashion to running waves crossing a nonlinear crys-
tal, as in PUC.

Performing a unitary transformation on the Schrddinger
equation for|®;(t)), through the operator ekpit(y,a'a

+x,0'0)], we obtain the  Hamiltonian X
=fi(£able (Pxaxlt+ £ qafhd (P xa-w)t) | At this point we ob-
serve that the choice af=(|\y|?—[\4?)/A, the detuning as-
sociated with the classical driving field, leads to the simpli-
fied form

H, =h(&ab' + £a'b), (4)

where the up-conversion process for the effective frequen-
cies is such thab=(w,* xa) — (wp* xp)- It should be noted
that the degenerate up-conversion process is the equivalent
of a beam-splitter operation, which has been generally re-
quired for quantum logical purposg3].

Next, to engineer the parametric down-conversiebC)
process, we consider the atomic levels in the ladder configu-
ration, as shown in Fig.(b), where the ground and excited
states are coupled through an intermediate level. The cavity
microwave modes, and w, are tuned to the vicinity of the
dipole-allowed transitiongg) < |i) and |e)« |i) with cou-
pling constants\, and \,, respectively, and detuning=
—(wj— 04— w,) = we— 0~ wp. The desired interaction between
the modesw, andwy, is accomplished by dispersively driving
the dipole-forbidden atomic transitidg) < |€) with a classi-
cal field of frequencywy=we—wy—45 and coupling constant
Q). The Hamiltonian to engineer the PDC, within the
rotating-wave approximation, is given by=Hy+V, where

H0=hwaaTa+ ﬁwbbTb+ E ﬁng'gg, (53)
€=g,e|i
V=fi()\aaa'ig + )\be'ei+QeintO'ge+ HC) (Sb)

Applying the transformation expAt(oec+ 0gg) ] to H and fol-
lowing the steps leading from E¢l)—(3) (considering as in
the PUC caseA> |\,|,J\y,|2]), we obtain the effective
Hamiltonian(in the interaction picture

A ol h(Nal + o)
Hzﬁ(A+ Aaz Ugg+ﬁ A+T Uee_aTo'ii

the unitary operator of cavity modes represented in a conve-
nient basis. Using the orthogonality of the atomic states in
|W(t)) and Eq.(3) we obtain the uncoupled time-dependent
(TD) Schrodinger equations for the atomic subspggéin

the interaction pictung i%(d/dbt)|d;(t))="H;|P;(t)), with

_NaP AP

A2 )(e‘i‘*oge+ H.c)

+ hQ(l
fi
+ K[_ (|)\a|2aTa+ |)\b|2bTb)Uii + |)\a|2aTa0'gg
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ot Q) ot et i entanglement used in the EPR argument against the uncer-
+|\p|*b'boee] - F(|7\a| a'a+ |\|b'b)(€"%oge+ H.C)  tainty principle[11]. In order to estimate the “quality” of the
prepared EPR stai@), we compute, in this state, the mean

% 7Q s values [16] (AX)2=((x,—x,)2=€7247/2 and (Ap)2={(p,
+ y (Rapaboeg+ H.C) =75 (\ahpe"ab+ H.c) +pp)2) =€ 24772, wherex,=(8+8")/2 andpz==i(8-B")/2
(B=a,b) are the field quadratures. We obtain the result
X(0ee™ 0ji + 0gg). (6)  (Ax)2+(Ap)2=e247 which goes to zero for the ideal EPR

Next, expanding the state vector of the system as in th&tate(|&r—c) and to unity for an entirely separable state
PUC case and preparing the initial state of the atom in thé16]. Therefore, the expression £22/47 can be used to esti-
auxiliary level, we obtain the uncoupled time-dependentmate the quality of the prepared std8 with present-day
Schrédinger equations for the atomic subspéige with cavity QED parameters. For specific cavity modes and
Hi=—hxaa-fixb b+h(ée %ab+ £ dda'bl), where ¢& atomic system, the interaction paramétér can be adjusted
=ON\/A? is the effective coupling parameter between'" accordance with the coupling strengih{calculated from

these modes. Therefore, when we prepare the initial state 6'?"3 par_amete@, Na, Ay, andA) and the Interaction time.
the atom in the auxiliary level, the dynamics of the atom-~1ssuming typical values for the parameters involved, arising

field dispersive interactions leads to shifted cavity modesI:rorn Rydberg states where the intermediate sfitean (n

which are coupled in identical fashion as in PDC. Perform-~ 1/Pai2 level, is nearly halfway betweejg), an (n_l)sl_/f
level, and|e), annS;,, level, we getjA |~ |\, ~7Xx10° s

ing the unitary transformation, epp(y,a'a+x,b'b)], _ , _
btai h iitoni %/~ (£eriOxammwitgh [17]. With these values and assuming the detunifig
we obtain the Hamiltonian 7;=7(¢e a ~10’s! (note that A~14\,, [18]) and the coupling

+¢xawlal). The choiced=(Ng|?+[Nyl?)/A leads to strength) ~ 7 X 10° 571, we obtain|& ~3.4x 10° s™%. For an
the simplified form[where the down-conversion process for 5iom-field interaction time about~ 2 X 10~ s, we get the

the effective frequencies satisfieg=(wa=xa) +(wp=xv)] interaction parametef¢|r~ 0.68, close to the valu€0.69
~ .t achieved for building the EPR state for unconditional quan-
Hi=f(éab+ & a'bh). (7)  tum teleportation in the running-wave domajih9]. The

value |7~ 0.68 leads to 1e72é7~0.74, and we note that
increasing moderately the interaction time#e 6x 107 s
(|§7~2) the quality of the prepared state increases to 1
-e2é7-0.98. Regarding the degenerate PDC prodess
=wy) [15], for an atom-field interaction time about~2

104 s we get the squeezing factor2|&r~1.36, such

at the variance in the squeezed quadrature turns to be

We obtain from Hamiltoniang3) and (6), by switching
off the classical amplification procesapart from diagonal
termg, the interactionsf({ab'oegt+("a'baye) [13] and
f(kaboegt k"a’bloge) [14], respectively. The coupling pa-
rameters reaq,”:ﬁ)\a)\;/A and k=#aN\,/A. With these in-
teractions it is straightforward to prepare the Bell basis statet%f|

for the cavity ‘modes [|\P§b>:(|la0b>i|Oalb>)/\§2’|q)§b> e2/4~1.6x 1072, representing a squeezing up to 98kdr

:(|1alb>i|0aob>)”2]’ with the passage of a single atom an initial coherent state prepared in the cawvityth the pas-
through the cavity. Moreover, as a by-product of the presengage of just one atom.

scheme, in the case wheig=wj (discussed in detail in Ref. a0 510 some sensitive points in the experimental

15]) we get the degenerate PDC process corresponding t : ; ;
the wellkpown nieractnl (@ € (0] which hog peen pleTentaton of the presen scherne. The atomic detecion
used to generate squeezed states of light in cavity QED. We,hortant roles in the present scheme where only one step of
emphasize that this degene_rate down-convgrsmn Process Cafhm-field interaction is required. However, due to the
be used to squeeze an arbitrary state previously prepared i, ssian profilef(x) of the cavity fields in the transverse
the cavity; i.e., to perform the operati@W) in cavity QED  jirection, the atom-field couplings, and A, become time-

(Sbeing the squeeze ppera)t@LS]. . dependent parameters as well as the effective coupling be-
As _ar_10ther_ appl_lcanon of the present proposal, we der'v‘?ween the cavity modeg=QN A [f(X)]2/A2 [where f(x)
the original Einstein-Podolsky-RoséBPR state expanded =exp-x2/w?), X is the time-dependent atom position from

in the position representation. Starting with the two cavitythe center of the cavity, ana~0.6 cm[20] is the waist of

modes n Fhelr vacuum_states and .appl_ylng the dOerihe Gaussiah The effect of the field profile can be evaluated
conversion interaction Eq7) during the time intervat, fol-

lowing the procedure described above, the evolved twog,traightforward by using the analytical results for a time-
mode state readén the interaction pictufe dependent degenerate PDC process, demonstratE2iljn

leading to the squeezing factor (AN Ap/ A%)2[[f(x)]? dt.

) o [tank|&»)]" Considering an atom-field interaction time about-2
[f(1))qp = € 7EB0FE N0 ) =S In,Nap, X 10 s, we get the squeezing factor 0.51. To obtain the
o costi|¢|7) same value ~ 1.36 of the ideal case, we must increase mod-

(8)  erately the interaction time to~5.32X 104 s. The interac-
tion times cited above are at least one order of magnitude
where we have adjusted the coupling constagtsand Ay smaller than the decay time of the open cavities used in
such that é=i|&. This state is the two-mode squeezedcavity QED experiment$10,20. Regarding atomic decay,
vacuum state which, in the limjg|7— o (and projected into  we note that for Rydberg levels the damping effects can be
the positional basis of modesandb), is exactly the original safely neglected for typical interaction time scales.
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We note that, to characterize the entangled state ir@g. and|f)— (|i)=|f))/+2, the atomic statel$) and|f) are mea-
we can use the reconstruction technique presented in Redured with probabilitieg?, andP;. Finally, a direct measure-
<[12'2].I To employ th'sdtscl'z”'q“?) we &ave(ff):rst }%)app,')r’] thément of the two-mode Wigner function follows from
Isplacement operatdD (7, 17,) =exp—n,L "+ 5, L), wit W( X _p ;
> ; . . Tas Moy My Mp) < P—P; [22]. In the particular case of de-
€-a,t_), into the cavity modes_. Next, an ad(_j|t|onal three-leygl enerate parametric down-convention, where the resulting
atom is sent through the cavity, prepared in the superposnmﬁ'am”tonian is the squeezing operator of a single-cavity

i)+ 2 ili i
fé\a/l(t:l)(whogg /t;jr;svi\'/[:;rsecé St:\?anifa:; a|r;>al;>::ga|\g ggdnb;rg mode, the same scheme can be used to measure directly the
Ry Wigner function of any squeezed state.

couple to the cavity modes. Turning off the classical ampli-
fication field and considering the atom-field interaction time
t, we obtain from Hamiltonian(6) the evolved state We wish to express thanks for the support of FAPESP
{exfi p(@ta+b™b) ]| D)api) + | 7)apf)}/V2  where ¢  (under Contracts No. 99/11617-0 No. 00/15084-5 and No.
=Nt/ A (]\|=|Na]~|\g)). After undergoing ar/2 pulse ina  02/02633-¢ and CNPq(Instituto do Milénio de Informacéo

Ramsey zone, with phase chosen so tfRet: (|i)+|f))/y2 ~ Quantica, Brazilian research funding agencies.
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