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Power spectrum of coherent Rayleigh-Brillouin scattering in carbon dioxide
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We show in this note that, in the coherent Rayleigh-Brillouin scattei@®RBS experimen{X. Pan, M. N.
Shneider, and R. B. Miles, Phys. Rev.@9, 033814(2004], the vibrational modes of the GOnolecules are
frozen. When the gas dynamic parameters are chosen accordingly, the model predicts a line shape that matches
with the experimental data. Fitting the theoretical curve to the CRBS data represents a method to measure the
speed of high-frequency sound, bulk viscosity, and the rotational relaxation time of molecular gases.
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In this note, we report a further study on the £€@herent As described if1], in a CRBS experiment, two counter-
Rayleigh-Brillouin scattering CRBS power spectrum. We propagating pump laser beams, polarized in the same direc-
realize that, in the experimental conditions, the Gfbra-  tion, are focused and crossed at their foci. They form an
tional modes are frozen. When the gas parameters are apprioterference pattern and generate a wavelike density pertur-
priately chosen for this physical condition, our mode[i}  bation in the gas. A probe beam is then coherently scattered
correctly predicts the speed of sound and matches the CRB#om the perturbation and forms the CRBS signal. The ob-
power spectrum of CO served power spectrum of CRBS in €@ shown in Fig. 1
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FIG. 1. (Color) Coherent Rayleigh-Brillouin scattering in carbon dioxideTat292 K. The thin curves are the experimental data; the
thick curves are the theoretical line shape. The theoretical curves are calculatedyyrsthg5s,.
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with the same set of data as appearedlih (The vertical Phase velocity (m/s)
axis is rescaled to match the present model curve at the cen- 100 200 300 400 500 600

o

ter of the line shapgThese data were taken aygarameter : " 182 s |

of approximately the ratio between the scattering wavelength 1.21 3
and the mean free path, varying from 0.44 to 3.54. At high 1 ] n/m=0.25
pressures, the Brillouin peaks are distinctive; their positions 07 \ - = = n/n=1

are related to the speed of sound. At temperalw@92 K,
the measured speed of sound in £®v=280+5 m/s.

The measured speed of sound agrees almost exactly with
the high-frequency asymptotic value given[&]. Reference
[2] shows that the speed of sound increases with the fre-
quency and tends to an asymptotic value of 282 m/s at
10° Hz due to the freezing of the vibrational modes. In our
CRBS experiments, the frequency is on the order of 1 GHz;
therefore, the vibrational modes are frozen. Under this physi-
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cal condition, we should choose the heat capacity ratio
:cp/cU:1..4 and the internal hgat capacii;ytzll.o. o Frequency difference (GHz)
Following the same reasoning, the bulk viscosity is given
by n,=p76r/(3+r)3, wherer=2 is the number of rotational FIG. 2. Computed coherent Rayleigh-Brillouin scattering line

degrees of freedom angd is the rotational relaxation time shape in CQ@ with different bulk to shear viscosity ratios gt
[3]. The best agreement between the experimental CRBS3.54.

data and the theory is obtained when we chogge 0.25,
where 7 is the shear viscosity. This yields the rotational re-
laxation timer, ~9.3X 10710 s, about three times the colli-

sional time.(This result coincides with the transport coeffi- turbative waves generated in the CRBS experiment, the vi-
cient measurements in thin capillaries in £& 300 K[4])  prational modes of COmolecules are virtually frozen. As a
In [1]., we usednbjloo(.);y, which is only for onv-frequen(;y result the effective heat capacity ratyg=1.4 and the bulk
conditions where vibrational modes couple with translatlonak,iscosity is about 1/4 of the shear viscosity. This explains
modes. the observed CRBS power spectrum and speed of sound. The
In Fig. 1, we plot the theoretical curve together with the theoretical model described j] is therefore valid for CQ
experimental data, using=1.4, ¢;,,=1.0, shear viscosityy  We also note that the CRBS data can be used to measure the
=14.6x10°° Pas, bulk viscosityy,=0.257, and heat con- gas’s bulk viscosity, a useful parameter in many cases. In
ductivity A=(1/4)(9y-5)7c, (Euken relation[3]), where,  Fig. 2, the model line shapes with different valuessgfare
with vibrational modes frozerg,=(1+3/2R, andR is the  compared fory=3.54. We see that the model line shape is
gas constant. We conclude that the kinetic model developesensitive to the value of bulk viscosity. It would be interest-
in [1] can well explain the observed CRBS power spectruning to perform CRBS experiments in high-temperature mo-
of CO,. However, in[1], the choices of Cgs gas-dynamic lecular gases where the vibrational modes couple with the
parametersy, Ci., and\) corresponded to the case that thetranslational and rotational modes.

vibrational modes are not frozen; consequently, the model
curve did not match the experimental data.
In conclusion, we find that in the gigahertz frequency per-
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