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Laser line shape and spectral density of frequency noise
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Published experimental results show that single-mode laser light is characterized in the microwave range by
a frequency noise which essentially includes a white part andf dffidker) part. We theoretically show that
the spectral densitfthe line shapewhich is compatible with these results is a Voigt profile whose Lorentzian
part or homogeneous component is linked to the white noise and the Gaussian part td tiwsg/ We
measure semiconductor laser line profiles and verify that they can be fit with Voigt functions. It is also verified
that the width of the Lorentzian part varies likePLwhereP is the laser power while the width of the Gaussian
part is more of a constant. Finally, we theoretically show from first principles that laser line shapes are also
described by Voigt functions where the Lorentzian part is the laser Airy function and the Gaussian part
originates from population noise.
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I. INTRODUCTION definite proof has been given up to now. In the following we

Direct measurements of the power spectral density of frefirst link the spectral density of the laser light to the noise
quency noise essentially characterize lasers having highPectrum: The white noise gives birth to the Lorentzian part
spectral purities used in metrology or in optical telecommu-and th? 1f noise is re_zspon5|b_le for the Gayssan part. Th_en
nication. They show that the main contributions in single-We Verify that the Voigt function gives a nice fit to experi-
mode semiconductor lasers arise from white noise arfd 1/mentally measured line shapes for a diode laser. The fit pa-
noise(flicker nois@ [1-3]. A flicker noise has also been mea- fameters aré&', the half width at half maximunHWHM) of
sured[4,5] in the intensity fluctuations of a semiconductor the Lorentzian, ands?, the variance of the Gaussian. Our
laser and has been the subject of many stui@es]. A cor- _experlmental results show thBtfollows a 1/P _Iav_v, WhereP_
relation was experimentally showi0] to exist between this 1S the laser power, while” has a slower variation. We find
noise and frequency fluctuations in the optical emission. Thighe relation between the optical parametérando” and the
correlation was theoretically understofid—13 always in a  hoise coeﬁ|C|ent.sho andh_,. It follows that a measurement
semiconductor laser from the coupling between the index off ho and h_, will allow one to characterize a laser line,
refractionn and the fluctuations of the charge carridrslue which is otherwise difficult to measure directly from inter-
to spontaneous emission. ference effects, especially for a laser used in metrology.

Beside this 1f noise due to charge carriers, the frequency N Sec. lll, we make the connection between the homoge-
white noise due to spontaneous emission is well known to b8€ous laser line, which is described by the Airy function of
the primary origin of the laser linewidtfil4]: It has been the laser{19-21], and its inhomogeneous properties, which
theoretically modeled in the Langevin equations of the lase@r® included in the Gaussian distribution of the resonance
as a times-correlated term, analogous to the random Brown-frequency. Among its properties, this Airy function allows
ian collision term in the motion equations of a particle in a®ne to describe both the Fabry-Perot interferometer or the
gas. A comprehensive review of the understanding of lasé@Ser in a continuous way, when the gain is increased across
spectra is given in Ref15]. the os_C|IIat|on threshold. _ . .

However, while the laser linewidth has been the subject of During the course of this calculation, Lamb’s solution for
many studies, the laser line shape was generally assumed #¢ laser intensity, Henry's factor, the role of the spontaneous
be described by a Lorentzian profile. The aim of our work is€Mission, and “technical” or electronic noises naturally ap-
essentially to demonstrate that a Voigt profile is bettePear. Itis thus believed that this synthesis gives a clear un-
adapted. derstanding of the single-mode laser line shape.

For this purpose, the relation between frequency noise
and laser spectrum is described in Sec. Il. We show and 1I. BROADBAND FREQUENCY NOISE AND LASER
verify that the line shape, or the spectral distribution, of a SPECTRAL DENSITY
single-mode laser which is compatible with both the white
and flicker noises can essentially be described by a Voigt
function. Many authors have already intuitively guessed that In this paper, we do not give any experimental result on
the laser line shape can be fit by a Voigt profilé,17 and  the laser frequency noigeee Ref[3]) but we want to make
even described it by a convolution between a Lorentzian and clear connection between it and the optical spectrum. This
a Gaussiar[18], which is a Voigt function. However, no is why we schematically describe both experiments in Fig. 1

A. Noise coefficients and laser Voigt spectrum
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Taser ing |— Fabry-Perot | oy % Here f is the Fourier frequency whose range generally ex
di lm e oo P tends from 10 kHz to 20 GHz. When< 1/74, one notes that
amplifier Scope the second term has the asymptotic valugi}6mrry)?Ss,(f).
—optonal * The coefficient 1Bi,(77y)? is a scale factor; it has to be

_ ) experimentally measured. We give some definitions and
FIG. 1. (a) A practical Mach-Zehnder interferometer for the steps of the calculation in Appendix A.

measurement of field noise properties. The fourth arms of the opti- T optical spectrum of the field is denoted hyw)
cal couplers are not showgp.is the dephasotb) Optical spectrum =~ ~ = ~, . i
analyzer based on a Fabry-Perot interferometer. =E(w)E (w), wherew is the optical angular frequency and

E(w) the frequency component of the field. Figuréb)l

on noise and optical spectra and give some details on thghows a sketch of the experiment which allowed us to mea-
measured quantities below. surelg(w) where the spectrometer is a scanning Fabry-Perot

The power density of frequency noise of a singIe-modémefferomet_er- . .
laser is measured in the standard experiment described in The relation betwees;,(f) andlg(w) is written[16,22
Fig. 1(a): A Mach-Zehnder interferometer splits the field into .
two parts which are directed into two different arms. A time | e(w) = B2
delay 74 is introduced with an optical fiber coil in one arm. B\~ %o
The recombined field at the output is a function of titrend

: - i ” Sir?(orf
74. For a fixed value ofry, the interferometer is used as a X{exp{—4f s,.(f) [ ]E;T T)dfi|}d7'. 3)
0

cog(wg— w)7]
0

phase-amplitude convertor and the fringe system fluctuates
in position and amplitude with time. The amplitude-

converted phase noise is Iarger than the laser intensity nOi%ain, some steps of the calculation are given in Appendix
which can be neglected in this kind of experiment. The largei_

74 IS, the larger is the phase fluctuatior. has to be opti- The noise spectrurB,,(f) can generally be represented in
mized to have a comfortable signal, however in the limits ofy polynomial form in which the constant tertg (white

a linear approximation for a sine functidthe fringe func-  nojisg and theh_,/f term are the main contributions.

tion around a zerp The optical signal is detected by a fast  \when Eq.(3) is applied to the white noise cass,(f)

Qetector Whigh de!ivers a CL_Jrrem(tt,rd) which is propor- =h,, and a Lorentzian function is obtained:
tional to the intensity of the field.
The output current of the detect@k) in Fig. 1(a) is writ- Eé 1
ten as le(w) = — c.c. (4)

- 4
2 i((l)_(,()o) +27T2ho

i(t,7g) =iy +ip+ 2Vigip cowory+ p(t+79) = d(D], (1) The relation betweed”, the HWHM of the line, and the

. . . white noise coefficienhy is thus
wherei, andi, are the currents detected by the photodiodes

(B) and(C) in arms 1 and 2 as shown in Fig(al i; andi, T = 27h,. (5)
can also be detected directly by the deted®) simply by

successively cutting out arms 1 and 2 of the interferometeiereT is expressed in rad/s. When E@) is applied to the
The time average dft, 7y) corresponds to the interferogram. flicker noise caseSs,(f)=h_,/f, one obtains

The amplitude noises in; and i, are supposed to be

negligible! wyg is the central angular frequency of the field *
and ¢(t) is the random phaeThe signali(t, 7q) wherer is le(w) = ng
kept fixed is sent into a spectrum analyzer which delivers as

cog (wg— ) 7]
0

? sinf(wfr
- X3 exp| - 4h_1j %df dr. (6)
It follows that we are not considering any effect of the population 0 f
relaxation resonance for example. Such effects are not preponderant
and can be added easily in a more complete theory. The problem here is that the integide [5[sir?(wrf7)/f3]df

The mean valué( ) =(i(t, 75)) with respect to time allows one to is not convergent. The physical way to solve it is to notice
find the optical spectrum through the Wiener-Kintchin theorem. ThethatJ is a function of timer and that the minimum frequency
measurement df(7y) is an easy task when the coherence length iswhich can be observed during this time is710One thus
not too large. This is not the case of metrological lasers. obtains)=(77)?0.022 561 which gives the Gaussian function
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le(w) = B3~ eloo™ 0%, (7)
(o
The variances? is linked toh_, by the relation
o?=3.56_,. (8)

When Eq. (3) is applied to the mixed case5;,(f)=hg
+h_,/f, one obtains

=
le(w) = —OJ o) Tm(0m274 1 ¢ . (9)

2 0

This result can be manipulated to give -150 -100 -50 0 50 100 150
_ Frequency (MHz)
V7

le(w) = ES:K(X,Y), (10)

whereK(X,Y) is the Voigt function[23] defined by
K(x Y) - XJW det (11) (b)
T a) L (X =12+ Y2

Here,X=(w—-wp)/ o, Y=I"/ o, andt=c7/2+iX+Y, with the
same relation betwedn andh,, o, andh_; as before. Equa- —

50 Frequency (MHz)

tion (10) allows us to compute the spectrum frédmpandh_, -50

which are obtained from noise measurements. One original-

ity of this article rests on formulél0), its subsequent experi- { Normalized
mental verification, and its demonstration from first prin- | spectral
ciples. § deusily

B. Experimental test

©
In order to check the validity of the \Voigt formula to
describe the line shape, we have measured the spectrum of ¢
standard single-mode distributed feedbdB#¥B) semicon-
ductor laset used in telecommunications at 1.58. The
experimental setup is schematically described in Fif).1 T
The laser temperature is stabilized. The Fabry-Perot spec-
trometer has a sweep time of 9 ms and its feedback into the
laser is kept as weak as possilfle107). Its bandpass is FIG. 2. Three examples of the line profile measuredTat
3.5 MHz and its free spectral range is 300 MHz. These char=31 °C, using the mounting in Fig(l). The experimental result is
acteristics add to the uncertainty of the measurements whicie noisy line in gray; the theoretical fit is the black solid line. In

_ Frequency (MHz)

-75 =50 =25 0 25 50 75

essentially arises from the . hoise. (@), the full width at half maximum is FWHM=108 MHz, and the
measured line profiles and theoretical Voigt profiles. being 300 MHz, the measured profile results from the sum of the

The success in such fits for various values of the injection’i9t function vV and the wingsw of the neighboring orders as

current(and also for different laser temperatuFeled us to  ndicated in the figure. Irib), FWHM=45 MHz andP=835 uW.
make several runs in order to draw curves like those repre! (¢ FWHM=40 MHz andP=1.55 mw.

sented in Fig. 3 which shows the variation of the fit param-

etersI” and o versus the laser powdt for a fixed tempera- tal points in Fig. 3 show thdt varies like 1P in agreement
ture. We have verified thatr slightly increases with With already known theory. It shows also thatdisplays a
temperature; however, the variation was too small to be reslower decrease with the intensity, also in agreement with
ally significant as compared to the uncertainty of our meafreviously known behavidrl5].

surements. In our first verification of the validity of the de-

scription of laser lines by a Voigt function, the agreement

between theory and experiment is satisfying: The experimen-  1ll. DESCRIPTION OF THE LASER SPECTRUM

Starting from frequency noise measurements, we have
*The laser is a massive InP/InGaAsP buried double-computed the laser line and found that a Voigt function is
heterostructure distributed feedback laser. compatible with the simultaneous white and flicker noises.
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\ The optical Airy function is easily calculated for a Fabry-
1

AT, o (MHzZ) Perot interferometer or a Fabry-Perot laser. It can also be
“ Y obtained for DFB laserésee Appendix Band has the same
\ basic structure. In the following, we will thus use the simple
5 formula (12).
o “Q In the single-mode case, the spectrum is centered around
\ the resonance angular frequengy, which is given from¢
\ =Q27T by
20— } } 1 f}\
ﬂ\d‘sﬁfg + i wy= Q27 & (14
N T Q++ g+ ° 2n(we)t”
Um.m H'l:‘-o--ﬁ-().g The associated spectral density is
0 N O G N S O ™ ~ |hée|2
0 01 02 03 04 05 06 07 08 09 1 13 12 153 |((z)) = — — - . (15)
Laser power (mW) (1 -9+ 4679 sird(h/2)

FIG. 3. Fit parameterf (ovalg ando (crossesin MHz vs the  If one considers the line shape of a single-mode laser around
laser powerP in mW. The variation ofo is not regular, whilel'  the central resonance frequeney,remains very small and
follows thea/P curve, witha=8.7 mW MHz. HereT=22 °C. For  the approximation 4 sfii¢p/ 2) = ¢* can be used. In this case,

T=31°C, we founda=11 mW MHz. expressior(15) leads to the Lorentzian shape
We have then experimentally tested the formula and found a ~  As? 1
. . . . ; . | = — , (16)
nice agreement with the line shapes and this Voigt profile. It 40026 9IT2 + (w0 — wyp)?
g

remains now to find also that this Voigt function can be
found from the electromagnetism of the laser. This is dongyhere the half width at half maximu is
below, where we show that the homogeneous part, the
Lorentzian, is in fact the laser Airy function and the inhomo- c 1-eltto
ian, origi i T= = on (17)
geneous part, the Gaussian, originates from the noise of the 20n. e"L+0)2
resonance frequency. g

andng is the group index aroundy. In the stationary re-
A. Laser Airy function gime, the saturating intensitycan be easily computed for a

In the frequency domain, the laser field is tlesponseof Lorentzian line[19,20:

the device, the laser, to its sources. These sources are the o 12
spontaneous emission and the pumping process. It has al- | :dew/ZW |Se| 1
ready been demonstratd@0,21 that applying Maxwell 4¢%n 2 eraor”
equations and boundary conditions to a frequency compo-

nent of the field gives the laser transfer function, or the laseNote thatl does not depend on the frequency. We will con-

(18)

Airy function: form to the usage and introduce the saturation intengiiy
order to work with a normalized quanti®=I/1. I is such

- ”Se that the gaig=gy/(1+I/1y) is divided by 2 when =l
E= T tagis (12) When the laser is far from the threshoRlis very close to

the powerP, which is obtained when the saturated ggin

~ , =gy/ (1+P) compensates exactly for los9és =g,/L—1 can
E represents a component at frequengyf the laser field be termed Lamb’s solutionin that case, the equaligy=L,

and$, the effective source at that ffequer(‘aIPLp'ified SPON- where P, =0, defines the oscillation threshold of the laser.
taneous emissignThe loss term is written as-. The active Anyway, even when the laser is close to the threshold, the

medium is represented bﬁ including the dispersion and gain g is very close to the lossds and the approximation
gain. ¢ being the laser length, the exponential term is splite’-*9=1 holds everywhere but in the expressionel=*9

into its real and imaginary partg2f(=e 26 (2f (=gt =L-g. _ o .
in order to explicitly show the gaimy and the cumulated Using Eq.(18), the approximated linewidtfL7) is related
round trip phasep: to the saturating powep:
b=28€ = 20ntlc, (13) ¢ [SP
N=—— P — . 1
2¢n, o= (2tny?2ls P (9

wheren is the refraction index. The saturated quantities such

asB have been averaged with respect to the saturating interit is inversely proportional td.
sity. When the source term is expressed as
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12 _ Yo = an = an
IS —K—1+P, (20) g A1+P' n nl+Bl+P' (25
whereK is a constant, one can easily comp&eThe result The angular frequency at resonan@ways for the single
is mode laseris written, for a given value oN [see Eq(14)],
Q-L 1 \/ ,. cK _ c
P= + ~ L)%+ ——Lgo. 21 wo(N) = Q2 ) (26)
oL oL (%-L) tngls Y% (21 2¢n(N)

This expression correctly describes the laser intensity. It cafhereQ is an integer. The value aby(N) around the refer-
be tested around the threshold, especially for semiconduct@ncewy(N) is obtained from a Taylor expansion:

lasers and for high-loss fiber lasers. Note that when the spon- on
taneous emission is neglect@d=0), it gives backP,. wo(N) = wp(N) — szi__ - wo(ﬁ)ll - __} _
26 2(N) n(N)
B. Population fluctuations and the Voigt function 27

The homogeneous part of the line shape is described b , N
the laser Airy function as shown above. This line is centere fet us nqtedthat a (;11|ffe|renae?(N) .S’%(N) Ofbthe. szsze order
around the central frequeney,. Now this function has been 0 magmt.u 'e as the laser linewidth is obtained for a very
calculated for a single value o, the population difference. Small variation ofon/n(N) due to the large value @@. For
It should be recalled that is a random variable with differ- instance, ifwg(N)=10"rad/s, a variationsn/n(N) =108

ent realizations in the frequency domain, each realizatioQ)my leads td wo(N) - wo(N)]/2r=10 MHz. It is thus neces-
having a _statistical weight or a probabili@(N?. It follows _ sary to be very cautious in playing with approximations.
that the line shape results from a convolution of the Airy | 5rder to obtain the variatiodn of the index of refrac-

function and the probability function corresponding to eachjon, whenN varies. one write§see Eq(19)]
of these realizations oN. These fluctuations introduce a '

noise on every physical quantity in the laggain, linewidth, B B C|§;e|2
for instance but the stronger effect occurs on the position of n=ng+_-g=n+ | L-_~——1. (28)
) . A A 2¢n,2IP
the resonance frequenay,: For each value oN, the Airy g
function is centered around,=wy(N) with the probability It follows that the index variatiorvn is related to the
P(N). This probability is essentially Gaussian, which corre-yariation SN=N-N of N aroundN by
sponds to the intrinsic electronic fl hoise and also to the _
different causes of technical noisgs. _ Bd { c/S,? ]5N og
The spectral profil¢16) is then averaged over the differ- AdN[ 2¢n2I P : (29)

ent probabilities oiN:
We are now in position to introduce Henry’'s factor

(7 SR PeNdeN) [13,25,26
@(N»N - f_x 4€2nse—L+g 1—‘2 + [w _ wO(N)]gi 5

=y (30)

where SN=N-N andN is the most probable value.
Let us note that the laser intensity corresponding to th@nd another factor, which is also characteristic of the ampli-
averaged valud€y(N))y remains the samas the intensity fying medium,

before in Eq.(18), simply becausé”(5N) is a normalized ~ o

i ittty | d| o
probability. The saturating intensity is thus only due to the a=—| ———|, (31
homogeneous part of the laser line. In order to see Abw dN[ 2¢ng2IsP

acts onwg(N), let us first write the gairg and the refraction
index n of the medium under the compact form

in order to write the formula

oN=-aya' ON. (32
g=AN, n=n;+BN, (23 _
Let us note that a neglect of the spontaneous emig§idh
whereA, B, andn, are constants. _ leads toa’ =0, or a zero variation of the refraction index.
Now we assume the simple expression for the saturategs is pecaus® becomesP, which clamps the saturated
population(for a homogeneous mediym populationN/(1+P,) from the relationg=L in this case.
N One thus obtains
N= T+p +nTD (24) B e
wo(N) = wo(N) = wo(N) n(No)éN' (33

Here N, stands for the nonsaturated valueNofNote that in
the laser regim®=P,. It follows that the saturated gain and We recover in formulag32) and (33) the usual frequency
the saturated index are written shift from the transparency to the threshold. The index dif-
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ference in Eq(32) has been measured [j@7] with a preci-  part of the laser line is represented by its Airy function which
sion of 1%. ExpressioB3) is introduced in the equation for is a Lorentzian around a resonance. This part corresponds to
the mean profile(22) where we make the approximation a single realization of the pumpii) The “inhomogeneous”
glto=1: part of the laser line is the Gauss function which describes
the random character of the pump.
YNy We have thus attained our goal in demonstrating formula
02|'ée|2Joc P(SN)d(SN) (41). The difficulty here in dealing with the Gaussian part is

=— — — — . that the origins of its variance span from the fundamental
ANy ) T2+ [w- wo(N) — wy(N) ey’ In(N)SNJ?>  properties of the pumping process to the “technical noise.” It
(34) is well known that the linewidth is enlarged by a factdr
+aﬁ) in the usual approximation of a Lorentzian line. In Eq.
Let us write now thatN follows a Gaussian probability law (41), we recover this broadening through the probabilistic

~(Nlorp)2I2 nature of the resonant optical frequency. However, in Eq.
P(N) = R (35)  (41), the factor is not as simple as before and could lead to
o2 another estimation of they, parameter. It is important to

note that the uncertainty in measurementsagfis usually
bigger than 109 15] which proves the limitations of the
usual theory.

P(N) is characterized by its varianger its second momeht
of[. One sees now th&§(N))y is the convolution of a Lorent-
zian with a Gaussian—i.e., a \Voigt profile.

In order to conform to the notation associated to the Voigt
function, let us introduce IV. CONCLUSION

SN In this paper we have first verified that a Voigt spectral
(36) profile is compatible with standard measurements of fre-
guency noise in a single-mode laser: The Lorentzian part
and corresponds to the white noise part and the Gaussian part of
- the Voigt function corresponds to the fLhoise part. The
d(6N) = oy 2dt. (37)  white noise arises from spontaneous emission and the flicker
noise arises from fluctuations of the charge carriers or the
pumping and from the “technical” noise. The formula does
not include the intensity noise. We believe that the Voigt
— (38)  profile is characteristic of any single-mode laser. It follows
n(N) that the spectrum of a metrological laser can be obtained
from the measurement of the frequency noise coefficients.
We have then experimentally verified that the Voigt pro-

If we use the abbreviation

N ’
a= wo(N)aya

and the normalized variables:

r ©-o (ﬁ) file gives a very good fit to single-mode semiconductor lines
0 ? .
Y= = X= = (39 and that the fit parametdr obeys an inverse power law
ao\2 ao\2 while the second parameter varies more slowly with the

the expression for the averaged spectral profile becomes POWer. _ _ _
In the last section, we have put together the Airy function

(;2|~se|2 1 * etdt of the laser which becomes the homogeneous part of the
V(NN = L0212 D222 rf Y2+ [X—t]2° (40) Voigt function and the Gaussian probability distribution of

Ny 2a%01Vm the resonance frequency, which is its inhomogeneous part. In

In this formula,Y is the ratio of Lorentz to Gaussian widths. this work, only stationary lasers have been considered; the

() is proportional to the Voigt functioK(X,Y) expressed in calculations are thus shorter, clearer, and more precise when

—00

its standard forn(12): they are done directly in the frequency domain. We have thus
completed a synthesis of different phenomena all related to

(;2|~se|2 \JTT the spectral characteristics of the laser field.
VNIN=—"53 K(X,Y). (41) It is clear from these results that a decrease of the laser

2.2 [5
4G \2a0, I spectral linewidth can be obtained only by a simultaneous
A comparison between Eq§l0) and (41) and their associ- and independent decrease of the noise coefficiggitand
ated symbols allows us to make the connection between the ;. hy can be decreased using high-quality resonators while
variance associated with population fluctuations and with théi_; can be decreased through mechanical, thermal, and
noise coefficienh_,. However, it should be recalled that for- acoustical stability, together with a pump process as stable as
mula (41) contains more physics than formu(@0) which  possible. In this respect, the electrical stability is fundamen-
expresses only the fact that the Voigt formula is compatiblgal. Our results confirm that the nature of the laser frequency
with the simultaneous white and fLhoises. noise depends upon the considered frequency b@ndEs-
The Voigt function usually characterizes spectral linessentially 1f or white in frequency measurements afiid
having an atomic origin; it follows that one can apply the Gaussian near the center of the laser line spectrum, Lorent-
same terminology to the laser lin) The “homogeneous” zian in the aisles. They also confirm that in some interfero-
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metric experiments performed with the laser light, the result v =t + 79 — P(1), (AB)
depends upon the measurement time, in agreement with Mer-
cer(17) W= G(t+ 74 7g) = L+ 7). (A7)
The reference angley7y is adjusted in such a way that
APPENDIX A
The aim of this appendix is to describe the main steps ~ CO$@o7a+ ¢(t+7g) — (O] =sin H(t+ 79) = H(V)].
which lead to Eqgs(2) and (3). (A8)
In this case, the interferometer is used as a phase-amplitude
1. Relation betweenSg,(i) and S, (f) converter. We work also within the hypothesis of weak de-
The laser field is written in the scalar form viationsv andw. The experimental condition ig;<<1/T".
, The frequency deviation is linked to the phase variation
E(t) = Eg[1 +(t)]eleot+#0], (A1)  during the timet by the relation

(t) is the amplitude noise which will be neglected in the thr

following. ¢(t) is the phase noise which makes the instanta- op(t,7) = 277f Sv(t')dt’. (A9)
neous frequency wander around the nominal frequency t

=wol (2m). This field is injected into the interferometer and  Tha correlation function of the frequency fluctuationt)
split into two parts inside the two arms. Both arms contain ang yefined for a stationary process

optical fiber of known length. One arm contains a dephasor

for fine-tuning and a polarization controllér; andL, are the Rt/ 1) = (Su(t") Su(t")) = Rs (t' —1"). (A10)
optical lengths of arms 1 and 2. The path differehgeL,

results in a time shifty between the recombined fields  Note that the dimension dRy,(t' —tr) is HZ or T2,
andE, at the interferometer outputy=(L,-L,)/c. The po- In the course of the calculation d&®(7), the following
larization controller is used to set the same polarization fogeneral identity is used:

E; andE,. The detector gives a signal which is proportional

to the intensity of the interfering fields; and E,: bfd R..(t' - t')dt'dt"
Sv -

a C

o Kpz =
i(t)= ?D|El +E,f? (a-b)
:f Rs(-X—-a+c)dX(b-a+d-c)/2-X]

=iy +ip+ 2Vigip cofworg + Bt + ) — (b)), 0

(A2) (d=c)
+J Rs;,(X—a+c)dX(b-a+d-c)/2-X].
The currenti(t) is then processed by an electronic spec- 0
trum analyzer which deliver§(f), the Fourier transform of (A11)

the autocorrelation functioR;(7) of i(t): - .
Ri(7) ®) We use also the familiar mean value for a Gaussian pro-

é(f) = Teouried RI(7)}, (A3) cess:
with <ei ¢(t)> — e"4”2<¢(t)>2/2, (Alz)

R(7) =(i®)i(t+ 7). (A4)  After some calculations, one finds

Note thaté(f) is also the modulus square of the Fourier 74
transform ofi(t). Ri(7) = (ip +ip? - 2i1i2l‘ 8772] [Rs(X+ 7)
We are first looking at the relation between the power 0
spectral density of frequency noisg,(f) and the power
spectral density of the input curre§{(f) given by the spec-
trum analyzer.
The autocorrelation functiorR(7) of the photocurrent The spectrum analyzer gives, as a reﬁﬁf,), the Fourier
i(t)=i,(t)+i,(t) is obtained by computing the mean value transform ofR(7):
over the timet of the following expression:

+Rs, (= X+ 1)][7g— X]dX] . (A13)

R(7) = (iy +ip)? + (iy +ip)Vigi (€07 4 griloorato] S(f) = f R(ne2™dsr. (A14)
+ @leorat Wl 4 grileoratWly 4 i ({eleoato] 4 grileorgtol) -
x {@lloonstwl 4 griluorrulyy (A5) We will use the relation of the definition of the power spec-
tral density of frequency noiSE rq,ier Of the frequency fluc-
with the notation tuation correlation
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S;,(f) = f e 2™ R (Ddr. (A15) =2 f (- t)R,,(t)dt. (A21)
—o 0
Note that the dimension d,(f) is in Hz or T [S;,(f) is (iv) Finally, one remembers that the power spectral den-
commonly expressed in REHz]. We obtain the desired re- Sity of frequency noiseS;,(f) and the temporal correlation
sult Rs,(7) are Fourier transforms of each other.
2 When the calculation is performed following these steps,
Si f one finds the desired relatidB).
8= iy + 120(0) + 161,50 2 n 9. ' red relata®)
f2 APPENDIX B
For f#0, The aim of this appendix is to briefly describe the Airy
2 function of the DFB laser.
S,,(f) = —————S(f). (A16) The method is to start from the coupled wave the@4]
g 16i,i ZSInz('n'de) where a frequency component of the laser field is written

~ with the standard notation:
This result links the measured quantiyf) to the quantity - o S
S;,(f) which characterizes the frequency fluctuation of the E(2) =[Ae™% + rB¥]e 0% + 5,(2)
field. It is clear that when the angtefry is small, the ap- +[rA€79% + B,d%]ePo? + 5(2). (B1)

proximation sii(wfry) = (7f7y)? can be used. In this cagé _ o
~ Here A,, rB,, rA;, and B, are the progressive longitudinal

disappears an8,(f) is directly represented b§(f). slowly varying envelopes of the field the reflectance of the
Bragg grating,
2. Relation betweenSg,(f) and the optical spectrum|g(w) q-Ag 0 1
We have used the relation betwe8g(f) and the optical r=2p PR 28q+ A8’ (B2)

spectrum IELw)—E(w)E (w), where w is the optical fre- with A= —mm/A, g being the real part of the propaga-
quency andE(w) the frequency component of the field. tion constant of the mediund the grating period, anth an
Let us give now the main steps which lead to this relation.integer which minimizef\3. One has als@,=mm/A and
The quantities which are used are the same as before. > 112
The strategy is the following. q= [A 2 _ Lz] , (B3)
(i) lIg(w) is linked to the temporal correlatiofR:(7) 4B
through the Fourier transforitwiener-Khintchin theorem peing a coefficient which describes the coupling between
o the transverse and longitudinal parts of the field.
e e{ f Re(ne ide} The §ymbol$1(z) ands,(z) represent the local spontane-
ous emissior(source terms When boundary conditions are
applied, one finds

= Re{ f (E"(HE(t+ T)>e““"d7}. (A17) S
e Al - 1 rze 2|(q ﬁo)f’
(ii) Now, for a Gaussian procesRz(7) can be written as

- — S
Re(7) = (E'(DE(t + ) = &°0e™" ], (A18) B, = 1= a2 At (B4)
where wherer, is the complex effective reflectance:
o?=a%(n) ={[¢(t+ 1) - (O], (A19) _ (Bexi= Bo= @) + I (Bexa+ Bo— q)ePo’

1= (BS)

Bext"' :80 +q+ r(ﬂext_ BO + q)e—lﬁ()( .

Here B.y is the propagation constant of the external medium

(if this medium is air,8.,=w/c). The source termS; andS,

in Egs.(B4) depend in a complicated way on the laser struc-

ture: Their expressions are not important here. The main con-
(i) The following step is to relate? to Ry,(7), the tem-  clusion is that expressior®4) have the same structure as

poral correlation ofsv(t). One obtains Eqg. (12).

and| is the intensity. One obtains

e(w) =|_fw g cog(wg— w)7]d7. (A20)
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