
Laser line shape and spectral density of frequency noise

G. M. Stéphan,1 T. T. Tam,2 S. Blin,1 P. Besnard,1 and M. Têtu3
1Laboratoire d’Optronique associé au Centre National de la Recherche Scientifique, ENSSAT,

6 rue Kerampont, 22305 Lannion Cedex, France
2College of Applied Science and Technology, Vietnam National University, Hanoi (VNUH), 144 Xuan Thuy str., Building E3, Caugiay,

Hanoi, Vietnam
3DiCOS Technologies, Boul. du Parc Technologique, Bureau 200, Québec, Canada G1K 7P4

sReceived 30 June 2004; published 11 April 2005d

Published experimental results show that single-mode laser light is characterized in the microwave range by
a frequency noise which essentially includes a white part and a 1/f sflickerd part. We theoretically show that
the spectral densitysthe line shaped which is compatible with these results is a Voigt profile whose Lorentzian
part or homogeneous component is linked to the white noise and the Gaussian part to the 1/f noise. We
measure semiconductor laser line profiles and verify that they can be fit with Voigt functions. It is also verified
that the width of the Lorentzian part varies like 1/P whereP is the laser power while the width of the Gaussian
part is more of a constant. Finally, we theoretically show from first principles that laser line shapes are also
described by Voigt functions where the Lorentzian part is the laser Airy function and the Gaussian part
originates from population noise.
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I. INTRODUCTION

Direct measurements of the power spectral density of fre-
quency noise essentially characterize lasers having high
spectral purities used in metrology or in optical telecommu-
nication. They show that the main contributions in single-
mode semiconductor lasers arise from white noise and 1/f
noisesflicker noised f1–3g. A flicker noise has also been mea-
suredf4,5g in the intensity fluctuations of a semiconductor
laser and has been the subject of many studiesf6–9g. A cor-
relation was experimentally shownf10g to exist between this
noise and frequency fluctuations in the optical emission. This
correlation was theoretically understoodf11–13g always in a
semiconductor laser from the coupling between the index of
refractionn and the fluctuations of the charge carriersN due
to spontaneous emission.

Beside this 1/f noise due to charge carriers, the frequency
white noise due to spontaneous emission is well known to be
the primary origin of the laser linewidthf14g: It has been
theoretically modeled in the Langevin equations of the laser
as a timed-correlated term, analogous to the random Brown-
ian collision term in the motion equations of a particle in a
gas. A comprehensive review of the understanding of laser
spectra is given in Ref.f15g.

However, while the laser linewidth has been the subject of
many studies, the laser line shape was generally assumed to
be described by a Lorentzian profile. The aim of our work is
essentially to demonstrate that a Voigt profile is better
adapted.

For this purpose, the relation between frequency noise
and laser spectrum is described in Sec. II. We show and
verify that the line shape, or the spectral distribution, of a
single-mode laser which is compatible with both the white
and flicker noises can essentially be described by a Voigt
function. Many authors have already intuitively guessed that
the laser line shape can be fit by a Voigt profilef16,17g and
even described it by a convolution between a Lorentzian and
a Gaussianf18g, which is a Voigt function. However, no

definite proof has been given up to now. In the following we
first link the spectral density of the laser light to the noise
spectrum: The white noise gives birth to the Lorentzian part
and the 1/f noise is responsible for the Gaussian part. Then
we verify that the Voigt function gives a nice fit to experi-
mentally measured line shapes for a diode laser. The fit pa-
rameters areG, the half width at half maximumsHWHMd of
the Lorentzian, ands2, the variance of the Gaussian. Our
experimental results show thatG follows a 1/P law, whereP
is the laser power, whiles2 has a slower variation. We find
the relation between the optical parametersG ands2 and the
noise coefficientsh0 andh−1. It follows that a measurement
of h0 and h−1 will allow one to characterize a laser line,
which is otherwise difficult to measure directly from inter-
ference effects, especially for a laser used in metrology.

In Sec. III, we make the connection between the homoge-
neous laser line, which is described by the Airy function of
the laserf19–21g, and its inhomogeneous properties, which
are included in the Gaussian distribution of the resonance
frequency. Among its properties, this Airy function allows
one to describe both the Fabry-Perot interferometer or the
laser in a continuous way, when the gain is increased across
the oscillation threshold.

During the course of this calculation, Lamb’s solution for
the laser intensity, Henry’s factor, the role of the spontaneous
emission, and “technical” or electronic noises naturally ap-
pear. It is thus believed that this synthesis gives a clear un-
derstanding of the single-mode laser line shape.

II. BROADBAND FREQUENCY NOISE AND LASER
SPECTRAL DENSITY

A. Noise coefficients and laser Voigt spectrum

In this paper, we do not give any experimental result on
the laser frequency noisessee Ref.f3g d but we want to make
a clear connection between it and the optical spectrum. This
is why we schematically describe both experiments in Fig. 1
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on noise and optical spectra and give some details on the
measured quantities below.

The power density of frequency noise of a single-mode
laser is measured in the standard experiment described in
Fig. 1sad: A Mach-Zehnder interferometer splits the field into
two parts which are directed into two different arms. A time
delaytd is introduced with an optical fiber coil in one arm.
The recombined field at the output is a function of timet and
td. For a fixed value oftd, the interferometer is used as a
phase-amplitude convertor and the fringe system fluctuates
in position and amplitude with time. The amplitude-
converted phase noise is larger than the laser intensity noise
which can be neglected in this kind of experiment. The larger
td is, the larger is the phase fluctuation.td has to be opti-
mized to have a comfortable signal, however in the limits of
a linear approximation for a sine functionsthe fringe func-
tion around a zerod. The optical signal is detected by a fast
detector which delivers a currentist ,tdd which is propor-
tional to the intensity of the field.

The output current of the detectorsAd in Fig. 1sad is writ-
ten as

ist,tdd = i1 + i2 + 2Îi1i2 cosfv0td + fst + tdd − fstdg, s1d

wherei1 and i2 are the currents detected by the photodiodes
sBd and sCd in arms 1 and 2 as shown in Fig. 1sad. i1 and i2
can also be detected directly by the detectorsAd simply by
successively cutting out arms 1 and 2 of the interferometer.
The time average ofist ,tdd corresponds to the interferogram.
The amplitude noises ini1 and i2 are supposed to be
negligible.1 v0 is the central angular frequency of the field
andfstd is the random phase.2 The signalist ,tdd wheretd is
kept fixed is sent into a spectrum analyzer which delivers as

its output the spectral power of current noiseS̃isfd. This
quantity is linked to the spectral power of the frequency
noise of the fieldSdnsfd through the relationf3g

S̃isfd = si1 + i2d2dsfd + 16i1i2Sdnsfd
sin2spftdd

f2 . s2d

Here f is the Fourier frequency whose range generally ex-
tends from 10 kHz to 20 GHz. Whenf !1/td, one notes that
the second term has the asymptotic value 16i1i2sptdd2Sdnsfd.
The coefficient 16i1i2sptdd2 is a scale factor; it has to be
experimentally measured. We give some definitions and
steps of the calculation in Appendix A.

The optical spectrum of the field is denoted byIEsvd
=ẼsvdẼ*svd, wherev is the optical angular frequency and

Ẽsvd the frequency component of the field. Figure 1sbd
shows a sketch of the experiment which allowed us to mea-
sureIEsvd where the spectrometer is a scanning Fabry-Perot
interferometer.

The relation betweenSdnsfd and IEsvd is written f16,22g

IEsvd = E0
2E

0

`

cosfsv0 − vdtg

3HexpF− 4E
0

`

Sdnsfd
sin2spftd

f2 dfGJdt. s3d

Again, some steps of the calculation are given in Appendix
A.

The noise spectrumSdnsfd can generally be represented in
a polynomial form in which the constant termh0 swhite
noised and theh−1/ f term are the main contributions.

When Eq.s3d is applied to the white noise case,Sdnsfd
=h0, and a Lorentzian function is obtained:

IEsvd =
E0

2

2

1

isv − v0d + 2p2h0
+ c.c. s4d

The relation betweenG, the HWHM of the line, and the
white noise coefficienth0 is thus

G = 2p2h0. s5d

HereG is expressed in rad/s. When Eq.s3d is applied to the
flicker noise case,Sdnsfd=h−1/ f, one obtains

IEsvd = E0
2E

0

`

cosfsv0 − vdtg

3HexpF− 4h−1E
0

` sin2spftd
f3 dfGJdt. s6d

The problem here is that the integralJ=e0
`fsin2spftd / f3gdf

is not convergent. The physical way to solve it is to notice
thatJ is a function of timet and that the minimum frequency
which can be observed during this time is 1/t. One thus
obtainsJ=sptd20.022 561 which gives the Gaussian function

1It follows that we are not considering any effect of the population
relaxation resonance for example. Such effects are not preponderant
and can be added easily in a more complete theory.

2The mean valueīstdd=kist ,tddl with respect to time allows one to
find the optical spectrum through the Wiener-Kintchin theorem. The

measurement ofīstdd is an easy task when the coherence length is
not too large. This is not the case of metrological lasers.

FIG. 1. sad A practical Mach-Zehnder interferometer for the
measurement of field noise properties. The fourth arms of the opti-
cal couplers are not shown.f is the dephasor.sbd Optical spectrum
analyzer based on a Fabry-Perot interferometer.
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IEsvd = E0
2
Îp

s
e−sv0 − vd2/s2

. s7d

The variances2 is linked toh−1 by the relation

s2 = 3.56h−1. s8d

When Eq. s3d is applied to the mixed case,Sdnsfd=h0

+h−1/ f, one obtains

IEsvd =
E0

2

2
E

0

`

eisv0−vdt−Gt−sst/2d2dt + c.c. s9d

This result can be manipulated to give

IEsvd = E0
2
Îp

s
KsX,Yd, s10d

whereKsX,Yd is the Voigt functionf23g defined by

KsX,Yd =
Y

p
E

−`

` e−t2dt

sX − td2 + Y2 . s11d

Here,X=sv−v0d /s, Y=G /s, and t=st /2+iX+Y, with the
same relation betweenG andh0, s, andh−1 as before. Equa-
tion s10d allows us to compute the spectrum fromh0 andh−1
which are obtained from noise measurements. One original-
ity of this article rests on formulas10d, its subsequent experi-
mental verification, and its demonstration from first prin-
ciples.

B. Experimental test

In order to check the validity of the Voigt formula to
describe the line shape, we have measured the spectrum of a
standard single-mode distributed feedbacksDFBd semicon-
ductor laser3 used in telecommunications at 1.55mm. The
experimental setup is schematically described in Fig. 1sbd.
The laser temperature is stabilized. The Fabry-Perot spec-
trometer has a sweep time of 9 ms and its feedback into the
laser is kept as weak as possibles,10−7d. Its bandpass is
3.5 MHz and its free spectral range is 300 MHz. These char-
acteristics add to the uncertainty of the measurements which
essentially arises from the 1/f noise.

Figure 2 shows examples of a comparison between three
measured line profiles and theoretical Voigt profiles.

The success in such fits for various values of the injection
currentsand also for different laser temperatureTd led us to
make several runs in order to draw curves like those repre-
sented in Fig. 3 which shows the variation of the fit param-
etersG ands versus the laser powerP for a fixed tempera-
ture. We have verified thats slightly increases with
temperature; however, the variation was too small to be re-
ally significant as compared to the uncertainty of our mea-
surements. In our first verification of the validity of the de-
scription of laser lines by a Voigt function, the agreement
between theory and experiment is satisfying: The experimen-

tal points in Fig. 3 show thatG varies like 1/P in agreement
with already known theory. It shows also thats displays a
slower decrease with the intensity, also in agreement with
previously known behaviorf15g.

III. DESCRIPTION OF THE LASER SPECTRUM

Starting from frequency noise measurements, we have
computed the laser line and found that a Voigt function is
compatible with the simultaneous white and flicker noises.

3The laser is a massive InP/ InGaAsP buried double-
heterostructure distributed feedback laser.

FIG. 2. Three examples of the line profile measured atT
.31 °C, using the mounting in Fig. 1sbd. The experimental result is
the noisy line in gray; the theoretical fit is the black solid line. In
sad, the full width at half maximum is FWHM=108 MHz, and the
laser power isP=307mW. The Fabry-Perot free spectral range
being 300 MHz, the measured profile results from the sum of the
Voigt function V and the wingsW of the neighboring orders as
indicated in the figure. Insbd, FWHM=45 MHz andP=835mW.
In scd, FWHM=40 MHz andP=1.55 mW.
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We have then experimentally tested the formula and found a
nice agreement with the line shapes and this Voigt profile. It
remains now to find also that this Voigt function can be
found from the electromagnetism of the laser. This is done
below, where we show that the homogeneous part, the
Lorentzian, is in fact the laser Airy function and the inhomo-
geneous part, the Gaussian, originates from the noise of the
resonance frequency.

A. Laser Airy function

In the frequency domain, the laser field is theresponseof
the device, the laser, to its sources. These sources are the
spontaneous emission and the pumping process. It has al-
ready been demonstratedf20,21g that applying Maxwell
equations and boundary conditions to a frequency compo-
nent of the field gives the laser transfer function, or the laser
Airy function:

Ẽ =
S̃e

1 − e−L+ge−if . s12d

Ẽ represents a component at frequencyv of the laser field

andS̃e the effective source at that frequencysamplified spon-
taneous emissiond. The loss term is written ase−L. The active

medium is represented byb̄ including the dispersion and
gain. , being the laser length, the exponential term is split

into its real and imaginary parts,e−2ib̄,=e−2ib̄r,e2b̄i,=e−ifeg

in order to explicitly show the gaing and the cumulated
round trip phasef:

f = 2b̄r, = 2vn,/c, s13d

wheren is the refraction index. The saturated quantities such

asb̄ have been averaged with respect to the saturating inten-
sity.

The optical Airy function is easily calculated for a Fabry-
Perot interferometer or a Fabry-Perot laser. It can also be
obtained for DFB lasersssee Appendix Bd and has the same
basic structure. In the following, we will thus use the simple
formula s12d.

In the single-mode case, the spectrum is centered around
the resonance angular frequencyv0, which is given fromf
=Q2p by

v0 = Q2p
c

2nsv0d,
. s14d

The associated spectral density is

Ĩsvd =
uS̃eu2

s1 − e−L+gd2 + 4e−L+g sin2sf/2d
. s15d

If one considers the line shape of a single-mode laser around
the central resonance frequency,f remains very small and
the approximation 4 sin2sf /2d.f2 can be used. In this case,
expressions15d leads to the Lorentzian shape

Ĩ =
c2uS̃eu2

4,2ng
2e−L+g

1

G2 + sv − v0d2 , s16d

where the half width at half maximumG is

G =
c

2,ng

1 − e−L+g

es−L+gd/2 , s17d

and ng is the group index aroundv0. In the stationary re-
gime, the saturating intensityI can be easily computed for a
Lorentzian linef19,20g:

I =E Ĩdv/2p =
c2uS̃eu2

4,2ng
2e−L+g

1

2G
. s18d

Note thatI does not depend on the frequency. We will con-
form to the usage and introduce the saturation intensityIs in
order to work with a normalized quantityP= I / Is. Is is such
that the gaing=g0/ s1+I / Isd is divided by 2 whenI = Is.

When the laser is far from the threshold,P is very close to
the powerPL which is obtained when the saturated gaing
=g0/ s1+Pd compensates exactly for lossessPL=g0/L−1 can
be termed Lamb’s solutiond. In that case, the equalityg0=L,
where PL=0, defines the oscillation threshold of the laser.
Anyway, even when the laser is close to the threshold, the
gain g is very close to the lossesL and the approximation
e−L+g.1 holds everywhere but in the expression 1−e−L+g

.L−g.
Using Eq.s18d, the approximated linewidths17d is related

to the saturating powerP:

G .
c

2,ng
sL − gd =

c2

s2,ngd22Is

uS̃eu2

P
. s19d

It is inversely proportional toP.
When the source term is expressed as

FIG. 3. Fit parametersG sovalsd ands scrossesd in MHz vs the
laser powerP in mW. The variation ofs is not regular, whileG
follows thea/P curve, witha.8.7 mW MHz. HereT.22 °C. For
T.31 °C, we founda.11 mW MHz.
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uS̃eu2 = K
g0

1 + P
, s20d

whereK is a constant, one can easily computeP. The result
is

P =
g0 − L

2L
+

1

2L
Îsg0 − Ld2 +

cK

,ngIs
Lg0. s21d

This expression correctly describes the laser intensity. It can
be tested around the threshold, especially for semiconductor
lasers and for high-loss fiber lasers. Note that when the spon-
taneous emission is neglectedsK=0d, it gives backPL.

B. Population fluctuations and the Voigt function

The homogeneous part of the line shape is described by
the laser Airy function as shown above. This line is centered
around the central frequencyv0. Now this function has been
calculated for a single value ofN, the population difference.
It should be recalled thatN is a random variable with differ-
ent realizations in the frequency domain, each realization
having a statistical weight or a probabilityPsNd. It follows
that the line shape results from a convolution of the Airy
function and the probability function corresponding to each
of these realizations ofN. These fluctuations introduce a
noise on every physical quantity in the lasersgain, linewidth,
for instanced but the stronger effect occurs on the position of
the resonance frequencyv0: For each value ofN, the Airy
function is centered aroundv0=v0sNd with the probability
PsNd. This probability is essentially Gaussian, which corre-
sponds to the intrinsic electronic 1/f noise and also to the
different causes of technical noisesf6g.

The spectral profiles16d is then averaged over the differ-
ent probabilities ofN:

kỹsNdlN =E
−`

` c2uS̃eu2

4,2ng
2e−L+g

PsdNddsdNd
G2 + fv − v0sNdg2 , s22d

wheredN=N−N̄ and N̄ is the most probable value.
Let us note that the laser intensity corresponding to the

averaged valuekỹsNdlN remains the sameas the intensity
before in Eq.s18d, simply becausePsdNd is a normalized
probability. The saturating intensity is thus only due to the
homogeneous part of the laser line. In order to see howdN
acts onv0sNd, let us first write the gaing and the refraction
index n of the medium under the compact form

g = AN, n = n1 + BN, s23d

whereA, B, andn1 are constants.
Now we assume the simple expression for the saturated

populationsfor a homogeneous mediumd

N =
Nns

1 + P
. s24d

HereNns stands for the nonsaturated value ofN. Note that in
the laser regimeP. PL. It follows that the saturated gain and
the saturated index are written

g = A
Nns

1 + P
, n = n1 + B

Nns

1 + P
. s25d

The angular frequency at resonancesalways for the single
mode laserd is written, for a given value ofN fsee Eq.s14dg,

v0sNd = Q2p
c

2,nsNd
, s26d

whereQ is an integer. The value ofv0sNd around the refer-

encev0sN̄d is obtained from a Taylor expansion:

v0sNd = v0sN̄d − Q2p
c

2,

dn

n2sN̄d
= v0sN̄dF1 −

dn

nsN̄d
G .

s27d

Let us note that a differencev0sNd−v0sN̄d of the same order
of magnitude as the laser linewidth is obtained for a very

small variation ofdn/nsN̄d due to the large value ofQ. For

instance, ifvQsN̄d.1015 rad/s, a variationdn/nsN̄d.10−8

only leads tofv0sNd−v0sN̄dg /2p=10 MHz. It is thus neces-
sary to be very cautious in playing with approximations.

In order to obtain the variationdn of the index of refrac-
tion whenN varies, one writesfsee Eq.s19dg

n = n1 +
B

A
g = n1 +

B

A
FL −

cuS̃eu2

2,ng2IsP
G . s28d

It follows that the index variationdn is related to the

variationdN=N−N̄ of N aroundN̄ by

dn = −
B

A

d

dN
F cuS̃eu2

2,ng2IsP
GdN. s29d

We are now in position to introduce Henry’s factor
f13,25,26g

aH =
B

A
s30d

and another factor, which is also characteristic of the ampli-
fying medium,

a8 =
d

dN
F cuS̃eu2

2,ng2IsP
G , s31d

in order to write the formula

dn = − aHa8dN. s32d

Let us note that a neglect of the spontaneous emissionuS̃eu2
leads toa8=0, or a zero variation of the refraction index.
This is becauseP becomesPL which clamps the saturated
population N/ s1+PLd from the relationg=L in this case.
One thus obtains

v0sNd − v0sN̄d = v0sN̄d
aHa8

nsN0d
dN. s33d

We recover in formulass32d and s33d the usual frequency
shift from the transparency to the threshold. The index dif-
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ference in Eq.s32d has been measured inf27g with a preci-
sion of 1%. Expressions33d is introduced in the equation for
the mean profiles22d where we make the approximation
e−L+g.1:

kỹsNdlN

=
c2uS̃eu2

4,2ng
2E

−`

` PsdNddsdNd

G2 + fv − v0sN̄d − v0sN̄daHa8/nsN̄ddNg2
.

s34d

Let us write now thatdN follows a Gaussian probability law

PsNd =
e−sdN/s1d2/2

s1
Î2p

. s35d

PsNd is characterized by its variancesor its second momentd
s1

2. One sees now thatkỹsNdlN is the convolution of a Lorent-
zian with a Gaussian—i.e., a Voigt profile.

In order to conform to the notation associated to the Voigt
function, let us introduce

t =
dN

s1
Î2

s36d

and

dsdNd = s1
Î2dt. s37d

If we use the abbreviation

a =
v0sN̄daHa8

nsN̄d
s38d

and the normalized variables:

Y ;
G

as1
Î2

, X ;
v − v0sN̄d

as1
Î2

, s39d

the expression for the averaged spectral profile becomes

kỹsNdlN =
c2uS̃eu2

4,2ng
2

1

2a2s1
2Îp

E
−`

` e−t2dt

Y2 + fX − tg2 . s40d

In this formula,Y is the ratio of Lorentz to Gaussian widths.
kỹl is proportional to the Voigt functionKsX,Yd expressed in
its standard forms11d:

kỹsNdlN =
c2uS̃eu2

4,2ng
2

Îp

Î2as1G
KsX,Yd. s41d

A comparison between Eqs.s10d and s41d and their associ-
ated symbols allows us to make the connection between the
variance associated with population fluctuations and with the
noise coefficienth−1. However, it should be recalled that for-
mula s41d contains more physics than formulas10d which
expresses only the fact that the Voigt formula is compatible
with the simultaneous white and 1/f noises.

The Voigt function usually characterizes spectral lines
having an atomic origin; it follows that one can apply the
same terminology to the laser line:sid The “homogeneous”

part of the laser line is represented by its Airy function which
is a Lorentzian around a resonance. This part corresponds to
a single realization of the pump.sii d The “inhomogeneous”
part of the laser line is the Gauss function which describes
the random character of the pump.

We have thus attained our goal in demonstrating formula
s41d. The difficulty here in dealing with the Gaussian part is
that the origins of its variance span from the fundamental
properties of the pumping process to the “technical noise.” It
is well known that the linewidth is enlarged by a factors1
+aH

2 d in the usual approximation of a Lorentzian line. In Eq.
s41d, we recover this broadening through the probabilistic
nature of the resonant optical frequency. However, in Eq.
s41d, the factor is not as simple as before and could lead to
another estimation of theaH parameter. It is important to
note that the uncertainty in measurements ofaH is usually
bigger than 10%f15g which proves the limitations of the
usual theory.

IV. CONCLUSION

In this paper we have first verified that a Voigt spectral
profile is compatible with standard measurements of fre-
quency noise in a single-mode laser: The Lorentzian part
corresponds to the white noise part and the Gaussian part of
the Voigt function corresponds to the 1/f noise part. The
white noise arises from spontaneous emission and the flicker
noise arises from fluctuations of the charge carriers or the
pumping and from the “technical” noise. The formula does
not include the intensity noise. We believe that the Voigt
profile is characteristic of any single-mode laser. It follows
that the spectrum of a metrological laser can be obtained
from the measurement of the frequency noise coefficients.

We have then experimentally verified that the Voigt pro-
file gives a very good fit to single-mode semiconductor lines
and that the fit parameterG obeys an inverse power law
while the second parameters varies more slowly with the
power.

In the last section, we have put together the Airy function
of the laser which becomes the homogeneous part of the
Voigt function and the Gaussian probability distribution of
the resonance frequency, which is its inhomogeneous part. In
this work, only stationary lasers have been considered; the
calculations are thus shorter, clearer, and more precise when
they are done directly in the frequency domain. We have thus
completed a synthesis of different phenomena all related to
the spectral characteristics of the laser field.

It is clear from these results that a decrease of the laser
spectral linewidth can be obtained only by a simultaneous
and independent decrease of the noise coefficientsh0 and
h−1. h0 can be decreased using high-quality resonators while
h−1 can be decreased through mechanical, thermal, and
acoustical stability, together with a pump process as stable as
possible. In this respect, the electrical stability is fundamen-
tal. Our results confirm that the nature of the laser frequency
noise depends upon the considered frequency band:sid Es-
sentially 1/f or white in frequency measurements andsii d
Gaussian near the center of the laser line spectrum, Lorent-
zian in the aisles. They also confirm that in some interfero-
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metric experiments performed with the laser light, the result
depends upon the measurement time, in agreement with Mer-
cer f17g.

APPENDIX A

The aim of this appendix is to describe the main steps
which lead to Eqs.s2d and s3d.

1. Relation betweenSdn„i… and Sdn„f…

The laser field is written in the scalar form

Estd = E0f1 + «stdgeifv0t+fstdg. sA1d

«std is the amplitude noise which will be neglected in the
following. fstd is the phase noise which makes the instanta-
neous frequency wander around the nominal frequencyn0
=v0/ s2pd. This field is injected into the interferometer and
split into two parts inside the two arms. Both arms contain an
optical fiber of known length. One arm contains a dephasor
for fine-tuning and a polarization controller.L1 andL2 are the
optical lengths of arms 1 and 2. The path differenceL1−L2
results in a time shifttd between the recombined fieldsE1
andE2 at the interferometer output:td=sL1−L2d /c. The po-
larization controller is used to set the same polarization for
E1 andE2. The detector gives a signal which is proportional
to the intensity of the interfering fieldsE1 andE2:

istd =
KD

2
uEW 1 + EW 2u2

= i1 + i2 + 2Îi1i2 cosfv0td + fst + tdd − fstdg.

sA2d

The currentistd is then processed by an electronic spec-

trum analyzer which deliversS̃isfd, the Fourier transform of
the autocorrelation functionRistd of istd:

S̃isfd = TFourierhRistdj, sA3d

with

Ristd = kistdist + tdl. sA4d

Note that S̃isfd is also the modulus square of the Fourier
transform ofistd.

We are first looking at the relation between the power
spectral density of frequency noiseSdnsfd and the power

spectral density of the input currentS̃isfd given by the spec-
trum analyzer.

The autocorrelation functionRistd of the photocurrent
istd= i1std+ i2std is obtained by computing the mean value
over the timet of the following expression:

Ristd = si1 + i2d2 + si1 + i2dÎi1i2keifv0td+vg + e−ifv0td+vg

+ eifv0td+wg + e−ifv0td+wgl + i1i2kheifv0td+vg + e−ifv0td+vgj

3heifv0td+wg + e−ifv0td+wgjl, sA5d

with the notation

v = fst + tdd − fstd, sA6d

w = fst + t + tdd − fst + td. sA7d

The reference anglev0td is adjusted in such a way that

cosfv0td + fst + tdd − fstdg = sinffst + tdd − fstdg.

sA8d

In this case, the interferometer is used as a phase-amplitude
converter. We work also within the hypothesis of weak de-
viationsv andw. The experimental condition istd!1/G.

The frequency deviation is linked to the phase variation
during the timet by the relation

dfst,td = 2pE
t

t+t

dnst8ddt8. sA9d

The correlation function of the frequency fluctuationdnstd
is defined for a stationary process

Rdnst8,t9d = kdnst8ddnst9dl = Rdnst8 − t9d. sA10d

Note that the dimension ofRdnst8− t9 d is Hz2 or T−2.
In the course of the calculation ofRistd, the following

general identity is used:

E
a

bE
c

d

Rdnst8 − t9ddt8dt9

=E
0

sa−bd

Rdns− X − a + cddXfsb − a + d − cd/2 − Xg

+E
0

sd−cd

RdnsX − a + cddXfsb − a + d − cd/2 − Xg.

sA11d

We use also the familiar mean value for a Gaussian pro-
cess:

keifstdl = e−4p2kfstdl2/2. sA12d

After some calculations, one finds

Ristd = si1 + i2d2 − 2i1i2F− 8p2E
0

td

fRdnsX + td

+ Rdns− X + tdgftd − XgdXG . sA13d

The spectrum analyzer gives, as a result,S̃isfd, the Fourier
transform ofRistd:

S̃isfd =E
−`

`

Ristde−2ipftdt. sA14d

We will use the relation of the definition of the power spec-
tral density of frequency noisesTFourier of the frequency fluc-
tuation correlationd:
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Sdnsfd =E
−`

`

e−2ipftRdnstddt. sA15d

Note that the dimension ofSdnsfd is in Hz or T−1 fSdnsfd is
commonly expressed in Hz2/Hzg. We obtain the desired re-
sult

S̃isfd = si1 + i2d2dsfd + 16i1i2Sdnsfd
sin2spftdd

f2 .

For f Þ0,

Sdnsfd =
1

16i1i2

f2

sin2spftdd
S̃isfd. sA16d

This result links the measured quantityS̃isfd to the quantity
Sdnsfd which characterizes the frequency fluctuation of the
field. It is clear that when the anglepftd is small, the ap-
proximation sin2spftdd.spftdd2 can be used. In this casef2

disappears andSdnsfd is directly represented byS̃isfd.

2. Relation betweenSdn„f… and the optical spectrum I E„v…

We have used the relation betweenSdnsfd and the optical

spectrum IEsvd=ẼsvdẼ*svd, where v is the optical fre-

quency andẼsvd the frequency component of the field.
Let us give now the main steps which lead to this relation.

The quantities which are used are the same as before.
The strategy is the following.
sid IEsvd is linked to the temporal correlationREstd

through the Fourier transformsWiener-Khintchin theoremd:

IEsvd = ReHE
−`

`

REstde−ivtdtJ
= ReHE

−`

`

kE*stdEst + tdle−ivtdtJ . sA17d

sii d Now, for a Gaussian process,REstd can be written as

REstd = kE*stdEst + tdl = eiv0te−s2/2Ī , sA18d

where

s2 = s2std = kffst + td − fstdg2l, sA19d

and Ī is the intensity. One obtains

IEsvd = ĪE
−`

`

e−s2/2 cosfsv0 − vdtgdt. sA20d

siii d The following step is to relates2 to Rdnstd, the tem-
poral correlation ofdnstd. One obtains

s2 = 2E
0

t

st − tdRdnstddt. sA21d

sivd Finally, one remembers that the power spectral den-
sity of frequency noiseSdnsfd and the temporal correlation
Rdnstd are Fourier transforms of each other.

When the calculation is performed following these steps,
one finds the desired relations3d.

APPENDIX B

The aim of this appendix is to briefly describe the Airy
function of the DFB laser.

The method is to start from the coupled wave theoryf24g
where a frequency component of the laser field is written
with the standard notation:

Ẽszd = fA1e
−iqz + rB2e

iqzge−ib0z + s1szd

+ frA1e
−iqz + B2e

iqzgeib0z + s2szd. sB1d

Here A1, rB2, rA1, and B2 are the progressive longitudinal
slowly varying envelopes of the field,r the reflectance of the
Bragg grating,

r = 2b
q − Db

k
= −

k

2b

1

q + Db
, sB2d

with Db=br −mp /L, br being the real part of the propaga-
tion constant of the medium,L the grating period, andm an
integer which minimizesDb. One has alsob0=mp /L and

q = FDb2 −
k2

4b2G1/2

, sB3d

k being a coefficient which describes the coupling between
the transverse and longitudinal parts of the field.

The symbolss1szd ands2szd represent the local spontane-
ous emissionssource termsd. When boundary conditions are
applied, one finds

A1 =
S1

1 − r1
2e−2isq−b0d, ,

B2 =
S2

1 − r1
2e−2isq−b0d, , sB4d

wherer1 is the complex effective reflectance:

r1 =
sbext− b0 − qd + rsbext+ b0 − qdeib0,

bext+ b0 + q + rsbext− b0 + qde−ib0, . sB5d

Herebext is the propagation constant of the external medium
sif this medium is air,bext=v /cd. The source termsS1 andS2
in Eqs.sB4d depend in a complicated way on the laser struc-
ture: Their expressions are not important here. The main con-
clusion is that expressionssB4d have the same structure as
Eq. s12d.
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