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We investigate theoretically and experimentally a nondestructive interferometric measurement of the state
population of an ensemble of laser-cooled and trapped atoms. This study is a step toward generation of
spseudodspin squeezing of cold atoms targeted at the improvement of the cesium clock performance beyond the
limit set by the quantum projection noise of atoms. We calculate the phase shift and the quantum noise of a
near-resonant optical probe pulse propagating through a cloud of cold133Cs atoms. We analyze the figure of
merit for a quantum nondemolitionsQNDd measurement of the collective pseudospin and show that it can be
expressed simply as a product of the ensemble optical density and the pulse-integrated rate of the spontaneous
emission caused by the off-resonant probe light. Based on this, we propose a protocol for the sequence of
operations required to generate and utilize spin squeezing for the improved atomic clock performance via a
QND measurement on the probe light. In the experimental part we demonstrate that the interferometric mea-
surement of the atomic population can reach a sensitivity of the order ofÎNat in a cloud ofNat cold atoms,
which is an important benchmark toward the experimental realization of the theoretically analyzed protocol.
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I. INTRODUCTION

The quantum features of a collective atomic magnetiza-
tion were experimentally addressed in the study of quantum
noise of a collective spin done by Alexandrov and Zapasskii
f1g. The relevance of this work was later on accentuated by
the observation of quantum-noise-limited magnetization, i.e.,
linear dependence of the atomic variance on the number of
atoms, by Sørensenet al. f2g. This quantum limit, called the
projection-noise limit, has been reached in state-of-the-art Cs
atomic clocksf3g and, by now, is the limitation toward the
improvement of the clock precision. However, the projection
noise would not be the limiting factor for clock precision if
one were able to increase the number of atoms used in the
clock operation, but this has not been possible due to the
large collisional shift in cold Cs samples.

Nevertheless, it is possible to overcome the projection-
noise limit, as has been demonstrated with the generation of
entangled and squeezed states of two ionsf4g, and the cre-
ation of spin-squeezed states in a cloud of cold excited Cs
atomsf5g. As a protocol for the generation of spin-squeezed
states, the use of a quantum nondemolitionsQNDd measure-
ment has been proposed and implemented in a vapor cell in
f6g, and the same kind of interaction was proposed inf6,7g as
a means for improving the clock performance. Another ap-

proach toward performing atomic spectroscopy below the
standard quantum limit using Bose-Einstein condensates has
been suggested inf8g.

In this paper we propose a sequence of spin rotations and
QND measurements which should allow one to overcome
the projection-noise limit for a Cs clock. The method in-
volves generation of the coherent superposition of two hy-
perfine level states, followed by a quantum nondemolition
measurement of the population difference of the two states,
and a sequence of specific spin rotations. We present the
theory of a quantum-noise-limited interferometer, with an
atomic cloud placed in one of its arms, as a device to be used
for the generation of a spin-squeezed atomic sample. We
report an experiment on nondestructive interferometric mea-
surement of the atomic population with a sensitivity ap-
proaching the quantum limit. The experimental results are
obtained with an atomic ensemble in a thermal equilibrium
of the two hyperfine ground states. Therefore, in the experi-
ment we do not measure the projection noise but rather the
atomic population fluctuations. The goal of the experimental
part is to show that a nondestructive measurement of the
atomic population with sensitivity of the order ofÎNat, cor-
responding to the projection-noise sensitivity, can be
achieved with our methods and hence the method is feasible.
A nondestructive measurement of the atomic level popula-
tion using phase-contrast imaging has been reported inf9g.

The paper is organized as follows. In the theoretical Sec.
II, we introduce the pseudospin in the Bloch sphere picture.
We proceed to derive the equations governing the interaction
of the probe field with the cesium atoms, followed by an
analysis of the noise contributions to the interferometric sig-
nal. The next two theoretical sections deal with the effects
creating and counteracting spin squeezing and we end the
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theory by illustrating qualitatively how the squeezed pseu-
dospin can be incorporated into the clock operation with the
aim of improving its precision.

In the experimental section we start out with the descrip-
tion of our setup and continue to document its operational
properties, with emphasis on the interferometer noise and
methods to suppress unwanted noise. We present the results
of a measurement of the phase shift due to the atoms in Sec.
III D, and in Sec. III E we show the results of a measurement
of the atomic population noise of our cold atoms with the
sensitivity ofÎNat. We conclude in Sec. IV and present the
outlook toward future implementations and improvements of
the experiment.

II. THEORETICAL DESCRIPTION

A. Pseudospin in the Bloch sphere representation

Let us first introduce the two-level-atom formalism to de-
scribe the hyperfine ground levels of cesium. Considering a
two-level atomk with the statesu3l and u4l, the density ma-
trix elements arer̂i j

k = uilk j uk si , j =3,4d. Note that in atomic
clocks the two levels are them=0 magnetic sublevels but in
much of the discussion below the magnetic state of the two-
levels is not important. Such a two level atom can be de-
scribed in terms of a spin one-half system with the pseu-
dospin operators defined by

ĵ x
k =

1

2
sr̂43

k + r̂34
k d,

ĵ y
k =

− i

2
sr̂43

k − r̂34
k d,

ĵ z
k =

1

2
sr̂44

k − r̂33
k d, s1d

where ĵ x
k, ĵ y

k, and ĵ z
k are the projections of the angular momen-

tum operatorĵ k on thex, y, andz axes, respectively.
For an ensemble ofNat atoms, we define the collective

angular momentum operators byĵ x=okĵx
k for the x compo-

nent, and similarly for the other ones. These operators satisfy
the angular momentum algebraf ĵ i , ĵ jg= i«i jl ĵ l, where «i jl is
the Levi-Cività tensor, and are useful for illustrating the evo-
lution of the atomic quantum state using the Bloch sphere
representation. This representation is obtained by plotting a
vector whosex, y, andz components are given by the mean
values of ĵ x, ĵ y, and ĵ z, respectively. From this picture, the
conservation ofk ĵl2=k ĵ xl2+k ĵ yl2+k ĵ zl2, which is equivalent
to the conservation of the number of atoms, is represented as
a trajectory ofk ĵl on the surface of a sphere. The population
difference between the two atomic levels is then given by the
projection of ĵ on the polar axiss ĵ zd, whereas the projection
onto the sphere’s equatorial plane gives information on the
coherent superposition of the two atomic statesu3l and u4l.

B. Atomic phase shift

The initial step is to investigate how an atomic pseu-
dospin can influence the phase of an optical probe field near

resonance on a transition between the hyperfine ground
states and an excited state. To this end, we start by writing
the complex index of refraction imposed on off-resonant
light by a sample of cold multilevel atoms. We consider the
alkali-metalD transitionJ→J8 between states having total
electronic angular momentaJ andJ8. The index of refraction
is given byf10g

nD − 1 =
l3

8p2s2J + 1d 3 o
F,F8

NFs2F8 + 1d

3H J F I

F8 J8 1
J2

g
DFF8 + ig

DFF8
2 + g2

, s2d

whereI andF are the nuclear and total atomic ground-state
angular momenta, respectively, and the primed quantum
numbers refer to the excited states. We have also introduced
NF for the atomic density in the level with angular momen-
tum F, DFF8=vFF8−v for the detuning of the probe light
from the F→F8 transition, the atomic linewidthg, and fi-
nally the wavelengthl, assumed to be common for all tran-
sitions making up the consideredD line. Equations2d is valid
for a polarized probe interacting with a currently experimen-
tally realizable unpolarized atomic ground state so that the
population density in the ground-state magnetic sublevel
uF ,mFl is NF,mF

=NF / s2F+1d, and we have assumed detun-
ings small enough to haveuDFF8u!v. For the cesiumD2 line
sJ8=3/2d of relevance in our experiment, we haveF
=h3,4j and F8=h2,3,4,5j, as shown on Fig. 1sad. As we
will see, the phase shift associated with the index of refrac-
tion s2d carries the relevant information about thez compo-
nent of the pseudospin, and can be measured using an inter-
ferometer as depicted in Fig. 2

Equation s2d is linked to the pseudospin, when we de-
scribe the population of the two hyperfine ground states in
terms of the pseudospin componentĵ z.

If we consider the situation where both hyperfine ground
states are close to being equally populatedsN3=N4d, then in

the pseudospin language we will havek ĵ zl=0, and let us say

only k ĵ xl= j with a nonzero mean value. In the Bloch sphere
representation, this situation corresponds to a vector in the
equatorial plane as in Fig. 3sbd. In this situation, the atomic
variance of ĵ z is the same as that ofĵ y and equal toNat/4
f11,12g. This can be depicted on the Bloch spherefFig. 3sbdg
by an uncertainty disk at the tip of, and perpendicular to the
mean value of, the angular momentum vector. It is well
known f6,7g that by performing a QND measurement ofĵ z
this quantity can acquire a value more well defined than that
corresponding to an ensemble of independent atoms and thus
spin squeezing of the pseudospin vector can be achieved.

In our case, the QND measurement will be performed by
monitoring the optical phase shift of the off-resonant probe
interacting with our Cs atoms on theD2 line. This phase shift
is given byfD=k0l RehnD−1j, wherel is the physical length
of our atomic sample andk0 is the optical wave number.
Using Eq.s2d, we find
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fD =
f0

2 3s1 + bd o
F8=3

5

s2F8 + 1d5
1

2
4

7

2

F8
3

2
16

2

gD4F8

D4F8
2 + g2

+ s1 − bd o
F8=2

4

s2F8 + 1d5
1

2
3

7

2

F8
3

2
16

2

gD3F8

D3F8
2 + g24 ,

s3d

wheref0=l2lN /2p and we have introduced the parametri-
zationN3=Ns1−bd /2 andN4=Ns1+bd /2, N being the over-

all atomic density andb=sN4−N3d /N=k ĵ zl / j .
Using the hyperfine splittings listed in Fig. 1sad and in-

serting the relevant values for the 6J symbols, we find by
solving Eq. s3d a zero phase shift of the probe atD0/2p
=4312 MHz relative to theF=4→F8=5 transition. At this
detuning the phase shifts from the two ground-state transi-
tions to the excited-state hyperfine manifold cancel for equal
populationssb=0d, as is illustrated in Fig. 1sbd. Therefore, at

D0 any excursions ofb will result in an optical phase shift
proportional tob and hence information can be obtained
about the collective atomic pseudospinĵ z and, in particular,
the quantum fluctuations of this observablef13g. Since the
latter are manifestly quantum features of the collective
atomic pseudospin observable, a nondestructive measure-
ment with the sensitivity at the level of atomic quantum fluc-
tuations will fix k ĵ zl to the recorded value at the expense of

measurement-induced back-action noise in the orthogonalĵ y
observable. The state determination will, among other things,
be limited by the accuracy of the measurement and hence it
is important, for the estimation of the degree of spin squeez-
ing achievable, to evaluate the limiting noise sources of our
phase measurement. Also relevant to our study of spin
squeezing is the degree to which the probe excites transitions
in the atomic medium. Obviously, such excitations will par-
tially cancel the effect of the QND measurement and there-
fore, it may impose limitations on the achievable degree of
spin squeezing.

C. Calculation of the signal-to-noise ratio for quantum-noise-
limited interferometry

For the monitoring of the atomic phase shift, we consider
the experimental situation illustrated in Fig. 2, where a
Mach-Zehnder interferometer is placed around the atomic
sample. After the interaction with the atoms the transmission
of the interferometer arm ish and the mode overlap at the
second beam splitter isÎV. The operator corresponding to

the input probe field is designated byâ=a1̂+sx̂+ iŷd /2,
wherea is its real mean value andx̂ andŷ are the fluctuating
quadrature components. The input photon flux is thenF

=a2. Similarly, we introduce the vacuum fieldsb̂k=sx̂k

+ iŷkd /2 with k=1–4, mixing via the loss processes. At the
final beamsplitter we must consider two orthogonal spatial
modes due to the nonperfect mode overlap. Clearly, these
modes cannot interfere optically but they will, however, add
coherently in the detector photocurrents. For the photon

FIG. 1. sColor onlined sad Diagram of the Cs hyperfine levels included in theD2 line. sbd Theoretically evaluated phase shift of the probe
as a function of the detuningD45 from the 6S1/2sF=4d→6P3/2sF8=5d transition.

FIG. 2. sColor onlined The Mach-Zehnder interferometer with
loss sources and associated input fields indicated. The atoms are
considered to be in the upper arm.
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fluxes impinging on the two detectors we arrive at

d̂1
†d̂1 =

1

4
f1 + h − 2ÎhV cossf̃dgâ†â + Hâ†F i

4
f1 − h

− 2iÎhV sinsf̃dgb̂1 −
1

2
Î1 − h

2
sÎVe−if̃ − Îhdb̂2

−
i

2
Îhs1 − Vd

2
b̂3 +

1

2
Î1 − V

2
e−if̃b̂4G + H.c.J ,

s4d

d̂2
†d̂2 =

1

4
f1 + h + 2ÎhV cossf̃dgâ†â + Hâ†F i

4
f1 − h

+ 2iÎhV sinsf̃dgb̂1 +
1

2
Î1 − h

2
sÎVe−if̃ + Îhdb̂2

+
i

2
Îhs1 − Vd

2
b̂3 −

1

2
Î1 − V

2
e−if̃b̂4G + H.c.J ,

s5d

where the phase difference f̃=2pferefnsLddL
−eprobensLddLg /l is 2p /l times the difference of the inter-
ferometer arms’ optical path lengths, i.e., the integral of the
index of refraction over the respective arm. From this expres-
sion of f̃ it is clear that the phase can shift because of a
change in either the path length or the index of refraction in
one of the arms, or because of a shift of the wavelength of
the probe. Moreover, in theprobe arm the atoms can change
the index of refraction and induce a phase shiftfD, so that
we write f̃=f+fD for the total phase shift. The last contri-
bution provides the monitoring of the atoms, while the first
three add noise to the measurement.

Now, we find the mean photocurrent difference to be

kî−l = kd̂1
†d̂1l − kd̂2

†d̂2l = a2ÎhV cossf̃d, s6d

in units of elementary charge. The visibility of our interfer-
ence fringe is found from the single-detector photocurrent
and is given by

V =
kd̂1

†d̂1lf̃=p − kd̂1
†d̂1lf̃=0

kd̂1
†d̂1lf̃=p + kd̂1

†d̂1lf̃=0

=
2ÎhV

1 + h
. s7d

In the symmetric case, whereh=1, this reduces toV=ÎV as
expected.

The fluctuating part ofı̂− is now calculated by linearizing

around the mean valuedı̂−= ı̂−−kı̂−l, and remembering that
only â†â has nonzero mean. As a result we find

dî−
a

= − ÎhVfcossf̃dx̂ + sinsf̃dx̂1g −ÎVs1 − hd
2

fcossf̃dx̂2

+ sinsf̃dŷ2g −Îhs1 − Vd
2

ŷ3 −Î1 − V

2
fcossf̃dx̂4

+ sinsf̃dŷ4g. s8d

All the field operators in Eq.s8d are uncorrelated and
consequently for a coherent-state input all operators contrib-
ute with 2B, whereB is the bandwidth of our measurement
f14g. From this, we findsdi−dcoh

2 =Ba2s1+hd, which is just
2B times the total photon fluxF transmitted through the
interferometer.

Let us assume that there are no atoms in the probe arm so
that fD=0. To be sensitive to small phase shifts, we use a
second laser far away from the atomic resonance to lock the
interferometer at the side of the interference fringe. With this
procedure applied to the system, we set the residual phasef
equal tops1/2+md with m=0, ±1, . . .,which has the follow-
ing consequences. Even if our input state is not coherent, or
in other words, we are probing the atoms using a noisy laser,
wewill find the amplitudenoise of the probe laserfthe first
term in Eq. s8dg to be considerably suppressed due to the
balanced detection. However, the laserphasenoise will re-
main important. We model this noise as an excess noise of
the vacuum inputsx̂1 and ŷ2, interfering with the probe and
contributing with a variances1+Nd relative to the vacuum-
state noise, whileŷ3, x̂4, andŷ4 still are at the vacuum noise
level.

Considering now the presence of atoms, their contribution
to the phase noise is denotedsdfDd2, which like the laser
phase noise is normalized to the probe vacuum noise level.
Incorporating these values into Eq.s8d and taking into ac-
count the transmission of the interferometer, we arrive at

sdi−d2

F
= 2B + VFFN + S h

1 + h
D2

sdfDd2Gcos2sfDd, s9d

again in units of quantum noise of the transmitted probe and
for the casef̃=ps1/2+md+fD.

The excess noiseN can be suppressed by operating the
interferometer in the white-light position since

N =
dv2

sdv2dq
sk0DLd2, s10d

whereDL is the optical path difference between the two arms
of the interferometer,dv2 is the laser frequency noise, and
sdv2dq=v0

2/a2 is the quantum level of the frequency noise.
We can also straightforward by generalize Eq.s9d to de-

tectors with less than unity quantum efficiencye. In this case
we get

sdi−d2

eF
= 2B + eVFFN + S h

1 + h
D2

sdfDd2Gcos2sfDd.

s11d

Having addressed the optical-noise contributions we will
now turn to consider the atomic imprint on the probe phase
noise.

D. Spin squeezing

In the context of spin squeezing a high ratio of atomic-
spin noise to optical quantum noise is desired. Intuitively this
is clear because a higher signal-to-noise yields more knowl-
edge of the atomic-spin observable; hence it becomes better
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defined and a higher degree of squeezing of that observable
is achieved.

Assuming that we have a white-light interferometer, the
noise contributions of relevance here are the quantum fluc-
tuationssdidp

2 of the phase of the probe pulse and the elec-
tronic noisesdide

2 of our photodetectors. The probe pulse is
characterized by the durationt and the photon numberFt.
Since a highly coherent laser is being used to generate the
pulse, we assume it to be Fourier limitedf14g, 2pBt=1, and
then

sdidp
2 = 2B

eFh

2
=

eFh

2pt
, s12d

where we have used the photon flux detected from the probe
arm hF /2 as reference for the shot-noise level.

The electronic noise can be described by the noise-
equivalent powerPe, so that

sdide
2 = sPel/hcd2/2pt, s13d

h being Planck’s constant.
If we ignore the electronic noisefsdide

2! sdidp
2g which is

only relevant when feedback schemes are involved, we find
that the signal-to-noise ratio of the measurement is given by

k2 = eV
2h

s1 + hd2pFtsdfDd2cos2sfDd, s14d

which is related to the degree of spin squeezingf15g, as
described below.

The atomic contribution to the phase noise is computed
from Eq.s3d. We assume that the atoms initially are prepared
in a coherent spin state for whichsdbdcoh

2 =kd ĵ z
2lcoh/ j2=Nat

−1,
whereNat is the number of atoms within the probe volume.
Hence, we find that

sdfDd2 = Sl2DsDd
4pA

D2

Nat, s15d

whereA is the probe beam cross-sectional area found from
the probe beam waistw0 aspw0

2/2 and we have defined the
detuning function

DsDd = o
F8=3

5

s2F8 + 1d5
1

2
4

7

2

F8
3

2
16

2

gD4F8

D4F8
2 + g2

− o
F8=2

4

s2F8 + 1d5
1

2
3

7

2

F8
3

2
16

2

gD3F8

D3F8
2 + g2

. s16d

Finally, we find the ratio of the phase noise from the at-
oms to the quantum phase noise to be

k2 = Sl2DsDd
4A

D2 2h

s1 + hd2

eVNatFt

p
cos2sfDd. s17d

For our pulsed measurement we integrateî− over the pulse
duration and analyze the statistics of collections of pulses.
This sets an upper limit to the frequency of the fluctuations
that can be observed at approximatelyt−1. The lower limit is
simply set by the time over which we collect the integrated
pulses. Since the atomic noise spectrum is not white, we
stress that Eq.s17d is only valid in as much as we match our
pulse spectrum to cover the atomic noise spectrum.

With respect to the spin squeezing, we will be using the
following definition taken fromf16g:

j = sdbd2Nat = kd ĵ z
2lNat/ j

2, s18d

wherej=1 for a coherent state,j,1 for a squeezed state,
and j=` for a thermal state. This is not the only way to
define the spin-squeezing parameter, but this definition char-
acterizes the quality of the state in a spectroscopic measure-
ment, i.e., it is a measure for the increased sensitivity to
rotation in the squeezed direction on the Bloch spheref16g.

The degree of spin squeezing can be shownf15,17g to be
related tok through

j =
1

1 + k2 , s19d

and thus the squeezing imprinted by the measurement onto
the z component of the spin is

sd jzdsq
2 = jsd jzdcoh

2 =
1

4

Nat

1 + k2 , s20d

so that, in order to perform a good QND measurement and
hence to achieve a high degree of spin squeezing, we must
havek large compared to unity. It is natural therefore to call
k the figure of merit of the QND interaction. Below we show
how k can be expressed via easily accessible experimental
parameters. It is important to note that as long as the spon-
taneous emission rate over a pulse is negligible the minimal-
uncertainty state will be preserved by the phase-shift mea-
surementf7,18,19g, and in this case the variance of the
conjugate spin component will becomesd j ydsq

2 = 1
4Nats1+k2d.

So far, we have ignored the electronic noise in the above
calculations. It is, however, important if feedback schemes
should be applied in order either to enhance the spin squeez-
ing f20g, or if we wish, to rotate the mean spin direction
according to our measurement with the goal of obtaining a
specific spin-squeezed state. The latter is relevant if the spin
state should be employed in, e.g., atomic clocks, where the
Bloch vector in the equatorial plane is desiredf21g.

The degree of spin squeezing can be measured experi-
mentally by sending pairs of probe pulses through the atomic
sample, integrating these pulses, and storing the resulting
areasa1 anda2. The variancesda1

2=da2
2 will set the level of

the atomic quantum noise, while the variance of the pulse
differencedsa1−a2d2 will yield information about the inter-
atomic correlations created by the quantum measurement of
the first pulsef18g. If we have created a spin-squeezed en-
semble it will reveal itself via the reduced variance

dsa1 − a2d2 , da1
2 + da2

2 = 2da1
2 = 2da2

2. s21d
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The quantum nature of the atomic fluctuations can be
verified by showing thatda1

2 and da2
2 are equal and grow

linearly with Nat. From this experimental consideration it is
already clear that the sensitivity of the detection apparatus
must be large enough for theNat noise to be detected.

E. The relation between the figure of merit and atomic
decoherence

The effect counteracting the spin squeezing is the incoher-
ent transfer of atoms from the spin-squeezed state via optical
excitation and spontaneous emission to a mixed ground state.
This excitation happens with a pulse-integrated ratepe

pe =
ssDdFt

A
, s22d

where the absorption cross section for the probe isssDd
=sl2/3pdLsDd with the linewidth function given as

LsDd = o
F8=3

5

s2F8 + 1d5
1

2
4

7

2

F8
3

2
16

2

g2

D4F8
2 + g2

+ o
F8=2

4

s2F8 + 1d5
1

2
3

7

2

F8
3

2
16

2

g2

D3F8
2 + g2

. s23d

The above cross section assumes both ground states hav-
ing equal populations and we find -integrated excitation rate
is related tok through

k2 = eV
h

s1 + hd2

l2

4A

DsDd2

LsDd
cos2sfDdNatpe. s24d

To highlight the relevant physical parameters this equa-
tion can be cast into a compact form. If we assume the vis-
ibility V, quantum efficiencye, as well as the transmission of
the interferometerh all equal to 1, then in the limit of large
detuningsD@g we haveDsDd2/LsDd<1 and the dc phase
shift becomes negligible so that also cossfDd<1, and Eq.
s24d simplifies to

k2 =
p

8
a0pe, s25d

where we have introduceda0, the atomic optical density on
resonance. It is clear that, in order to achieve strong spin
squeezing we need a largea0 since we wish to keeppe small
to maintain the nondemolishing character of the measure-
ment.

Following the excitation the atoms decay spontaneously
to a spherical spin state, i.e., a state characterized by zero
expectation value of all spin componentsk ĵ il=0 si =x,y,zd.
This dissipative evolution of the atomic state leads to addi-
tional noise in the final state, resulting in less efficient spin
squeezing. For smallpe the degradation is of the order ofpe.
A detailed analysis of the spin state resulting from the QND

measurement and a certain amount of excitation is presented
in f22g.

F. Spin squeezing in clock operation

In the preceding sections we have shown how a nonde-
structive optical phase-shift measurement reduces the noise
of the atomic pseudospinz component. We will now put this
QND measurement into the context of the clock operation,
which is discussed qualitatively in the Bloch sphere repre-
sentation. More detailed accounts of the atomic clock opera-
tion in this picture can be found inf16g.

The full protocol including the standard clock sequence
can be viewed as follows. Initially we use optical pumping to
prepare the atoms in a coherent spin state withk ĵ zl=−Nat/2

and k ĵ xl=k ĵ yl=0, as shown in Fig. 3sad. This is the situation

where the atomic variances ofĵ x and ĵ y are both equal to
Nat/4 as depicted by the uncertainty disk on the Bloch sphere
fFig. 3sadg. The next step is to apply a classicalp /2 pulse
using a rf magnetic field, which corresponds to the first
p /2 pulse in the Ramsey spectroscopy sequence. This pulse
brings the angular momentum vector to the equatorial plane
as illustrated on Fig. 3sbd. For a standard atomic clock the
spin would be allowed to precess in the equatorial plane of
the Bloch spherefFig. 3scdg until the secondp /2 pulse in the
Ramsey sequence is appliedfFig. 3sddg and an atomic popu-
lation difference is detected. Instead of this, we proceed from
the state depicted on Fig. 3sbd to perform a QND measure-
ment of the population differenceĵ z using an optical field. As
argued above, this measurement reduces the uncertainty of
the operatorĵ z at the expense of an increased uncertainty of
ĵ y while preserving the minimal-uncertainty state and so the
atomic sample is prepared in a spin-squeezed state. This is
the state illustrated in Fig. 3sed.

The degradation of the spin squeezing that can be caused
by spontaneous emission will cause an increase in the size of
the uncertainty disk, as well as reduce the length of the
Bloch vector leading to a loss of contrast in the clock signal.
However, both effects are of the order of the pulse-integrated
rate of spontaneous emission which can be kept small, sim-
ply by letting the probe be far detuned.

Additionally, we must update the atomic state based on
the result of the QND measurementf20g. Depending on the
outcome of the measurement the mean value of the pseu-
dospin vector will be shifted away fromk ĵ zl=0. This devia-
tion will be corrected for by application of a short rf pulse
that will shift the vector back into the equatorial plane of the
Bloch spherefFig. 3sfdg.

Since for the cesium clock it is important to have reduced
noise during the precession of the phase componentĵ y in the
equatorial plane, we rotate the pseudospin vector around the
x axis with ap /2 pulsefFig. 3sgdg, which effectively inter-
changes theĵ y and ĵ z components. For thep /2 rotation to
revolve around thex axis, the rf magnetic field, applied in
this step, must be phase shifted byp /2 with respect to that of
the first Ramsey pulsefFig. 3sbdg. The following steps, rep-
resented by Figs. 3shd and 3sid, correspond to the standard
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method for Ramsey spectroscopy in the clock operation, but
now using a spin-squeezed state.

If we compare Figs. 3sjd and 3skd we clearly see that we
would gain in signal-to-noise ratio of the spectroscopy signal
from the projection-noise-limited measurement of the popu-

lation differences ĵ zd in the clock transitionf16g, performed
at sv−v0dT= ±p /2.

III. ATOMIC NOISE MEASUREMENTS

In this part we aim at showing that our apparatus has the
sufficient sensitivity to measure the atomic noise and along
the way we analyze the various considerations and precau-
tions necessary for reaching the goal.

A. Magneto-optical trap

The atomic sample is prepared in a standard six-beam Cs
magneto-optical trapsMOTd. We are able to trap around 3
3108 atoms, when loading the MOT from background Cs
vapor with sufficiently high partial pressuresaround
10−7 mbard. The red detuning of the trapping laser is set to
15 MHz. The cloud volume is approximately 6310−3 cm3,
which at best can yield a resonant optical density of 13. Due
to high background pressure the lifetime of the trap is only
around 20 ms. This short lifetime is convenient for acquiring
statistical data because it allows for quick refreshing of the
atomic sample.

B. Frequency locking of the probe laser

The probe laser is locked and blue detuned from the
atomic transition 6S1/2sF=4d→6P3/2sF8=5d by a specific
detuningD variable from a few megahertz to a few giga-
hertz. The experimental setup used to lock the probe laser in
this way is shown in Fig. 4.

Two lasers with a specific relative frequency separation
can be locked in a number of waysf23,24g. We use a refer-
ence laser locked to the atomic transition 6S1/2sF=4d
→6P3/2sF8=5d by FM saturation spectroscopy. The refer-
ence and a fraction of the probe laser beams are mixed at the
beam splitter BS and their beat note is measured using a
Newport fast photodetectorsmodel 1480d with 15 GHz
bandwidth. The produced rf signal has a frequency compo-
nent corresponding to the probe detuning from the above
specified atomic transition. This signal is monitored with the
spectrum analyzer SA, as shown in the figure. From the rf
signal obtained in such a way, we can generate an error sig-
nal to lock the probe laser with the desired detuning from the

FIG. 3. sColor onlined The Bloch sphere scheme for the state
preparationsad,sbd, QND measurementsed,sfd,sgd, and the Ramsey
spectroscopy for a coherent statescd,sdd, and a spin-squeezed state
shd,sid, with the corresponding simulations of the projection noise
on the Ramsey fringe,sjd and skd, respectively.

FIG. 4. sColor onlined Experimental setup employed to lock the
probe beam. The elements included in the sketch are BS, 50-50
beam splitter; FPD, fast photodetector; SA, spectrum analyzer;
DBM, double balanced mixer; LPF, low-pass filter; Amp, amplifier.
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atomic transition. To accomplish that, the current of the
probe laser is FM modulated with a modulation depth of 1%
using a 1 MHz sinusoidal wave form that is also utilized as a
local oscillator for the double balanced mixer DBM in Fig. 4.
The output from the mixer is a dc signal that is low-pass
filtered and amplified before feeding it back to the probe
laser controller.

C. White-light fiber interferometer

The interferometer as shown on Fig. 5 is a Mach-Zehnder
type made of single-mode optical fibers. The motivation for
using fibers instead of free-space-propagating beams is the
enhanced mechanical stability as well as excellent mode
overlap of the interfering beams in single-mode fibers. The
field in the input fiber enters a 50-50 coupler C1 and is split
into a reference arm and a probe arm surrounding the atoms
to be probed. The field in the probe arm exits the fiber and
with the lens L1 it is focused at the center of the MOT with
a beam waist of 20mm. After passing through the atoms, it
again enters the fiber and is combined with the field from the
reference arm at the second 50-50 coupler C2.

Since we use a non-polarization-maintaining fiber, the
field polarization can evolve differently in the two arms.
Thus, in order to achieve maximal interference visibility, we
include polarization controllers PC to match the field polar-
ization from the two arms at the second coupler C2. We note
that the coupling efficiencyh through the air gap containing
the MOT is 30%. With the fiber couplers providing a nearly
perfect mode overlap of the probe and the reference fields,
i.e., ÎV<1, the visibility becomesV=85%.

The pulsed probe signal is detected with a balanced de-
tection schemef25g using the low-noise photodiodes D1 and
D2. From the integral of the photocurrenti− over the pulse
duration, we extract the area that corresponds to the differ-
ence of the signals from the two arms. The mean value of the
difference gives the dc phase shiftf̃, and the variance gives
information about the phase fluctuations.

1. Locking the interferometer

To reduce thermal and acoustic drifts of the interferom-
eter, we lock it by means of an off-resonant cw laser that

propagates through the interferometer simultaneously with,
and in the same direction as, the probe beam. The locking
beam is several nanometers away from the atomic resonance
and therefore it is not affected by the cold atoms. At the
output the locking beam and the probe beam are separated by
the interference filters F1 and F2. The balanced detectors D3
and D4 provide an error signal which controls the piezo ad-
justing the length of the probe arm.

In order to cancel the amplitude noise term in the Eq.s8d,
the interferometer needs to be locked so that when the cold
atoms are absentsfD=0d the interference signal for the
probe is at half fringe, i.e.,f=ps1/2+md with m
=0, ±1, . . ..However in this position the interference signal
is also most sensitive to the phase noise of lasers. We use
semiconductor lasers that are characterized by strong phase
fluctuations with a wide band of frequencies for both probing
and lockingf26g. We have measured their linewidth to be
approximately 500 kHz. As discussed in Sec. II C, in order
to suppress the effect of the phase noise, we lock the inter-
ferometer at the white-light position, corresponding to a
nearly zero path-length differencef26g. We use a regular
broadband light-emitting diode as a white-light source to de-
termineroughly the white-light position.

2. Shot-noise-limited interferometer

With all the measures for removing undesirable noise con-
tributions implemented, we now try to gauge their effective-
ness. To get a measure of the instability or noise of the in-
terferometer signal we measure the variation of the area from
one pulsesaid to anothersai+1d. This is done by determining
the two-point variancef27g s2st0d which can be defined to
be

s2st0d =
1

2sM − 1d o
i=0

M−1

sai+1 − aid2, s26d

wheret0 is the temporal pulse separation andM is the num-
ber of pulses in our measurement. The pulse sequences used
to computes2st0d are composed of several thousand pulses
each of 2ms duration. From these sequences we can extract

FIG. 5. sColor onlined Sketch of the setup of the interferometer with following elements: BS, 50-50 beam splitter; C1 and C2, 50-50 fiber
couplers; PC1, PC2, and PC3, fiber polarization controllers; L1 and L2, achromatic lenses; F1 and F2, interference filters transmitting at
852 nm; D1 and D2, Hamamatsu low-noise, high-gain photodiodes; D3 and D4, photodetectors; and several half-wave platesl /2 and
collimating lenses for fiber coupling.iL is the locking signal, whereasi−= i1− i2 is the probe signal.
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the two-point variance on time scales comparable with the
pulse duration and up to two orders of magnitude int. The
results corresponding to this measurement are shown in Fig.
6.

If the interferometer noise were purely white, the two-
point variance would stay constant on all time scales. Natu-
rally, temperature drifts would cause the variance to rise on
larger time scales than those we measure. We observe that
the two-point variance fluctuates with a period of 200 ms
corresponding to 50 Hz line noise. On the scale of Fig. 6,
this is seen as a slow rise of the curves. However, on the
microsecond time scale this line noise is of no importance.
One interesting feature is seen from the upper trace of Fig. 6.
By modulating the laser diode current and thereby the fre-
quency of the probe laser, we see thats2st0d oscillates with
a period corresponding to the modulation frequency. This in
turn means that the interferometer is sensitive to frequency
changes and therefore is not exactly in the white-light posi-
tion. By adjusting the path-length difference of the interfer-
ometer arms it is possible to come in to the white-light po-
sition and consequently the oscillation disappears from the
two-point variance as seen on the lower trace of Fig. 6. This
method ensures afine white-light alignment to within
10 mm, so that we can havem&2 and satisfy the condition
f&5p /2. Since it is of less concern what is the exact value
of m, for the sake of simplicity we assume it to be zero.

It is crucial to find how the interferometer noise, as ex-
pressed by the variance of the probe pulses, depends on the
power of the probe laser. If the interferometer is shot-noise
limited, then according to Eq.s11d we would expect the
noise to scale linearly with the probe power. Applying the
same pulse sequence as described above, we first try to de-
termine the noise in the amplitude quadrature. For that pur-
pose, we block the probe arm of the interferometer and just
observe the noise of the transmitted beam. In Fig. 7 a fit to
the data shows that the amplitude noise depends linearly on
the probe power. This shows that our detection is shot-noise

limited and in addition to that, we have found the shot-noise
level for later reference.

Next, we unblock the probe arm and look at the phase
noise of the interferometer, which in the white-light position
should be dominated by shot noise. This is also shown in
Fig. 7 and one sees that the dependence on the probe power
is linear to within the uncertainty of the fit. On this, we
conclude that the interferometer is shot-noise limited in the
probe power range 0.05–2mW. Moreover, Fig. 7 shows that
the quantum noise is similar in the two quadratures, as one
would expect from a coherent probe field.

We are now in a position to apply the interferometric
detection to a sample of cold atoms. As a start we show how
the interferometer can be used to nondestructively measure
the number density of the trapped atomic cloud.

D. Interferometry with cold atoms

We begin with balancing the interferometer at half fringe
in the absence of trapped atoms. Trapped atoms cause a dc
phase shift of the probe pulse. The measured signal must
then be corrected for the absorption of the probe. From the
corrected signalidc, the dc phase shiftfD is deduced asfD

=arccossidcd. MeasuringfD as a function of the detuning, in
the vicinity of theF=4 level, we observe the dispersive be-
havior shown in Fig. 8. Fitting the experimental data points
using Eq.s3d, we can determine the density of atoms

N4 =
2pC

l2l
=

2p39.9

s8523 10−7d20.1
= 4.33 109 cm−3, s27d

whereC is the parameter given by the fit and is proportional
to f0. The estimated number of probed atoms is then 5500.

Notice that the theoretical fit in Fig. 8 overestimates the
amplitude of the 6S1/2sF=4d→6P3/2sF8=3,4d transitions.
This can be explained in the following way. We have ac-
counted for the reduction in photon fluxF and thereby the
amplitude of the interference fringes as a result of absorp-
tion. However, we did not consider the optical pumping of
the atoms due to the absorbed light, and the consequent re-
duction of the corresponding atomic density. The reduction
of the atomic density at each resonance will depend mainly

FIG. 6. sColor onlined The two-point variance extracted from
measurements done with pulse separationt0=20 ms. Lower trace:
Interferometer in white-light position with probe laser locked and
the variance increases on larger time scales due to the 50 Hz line
noise. Upper trace: Interferometer out of white-light position with
probe laser frequency modulated at 5 kHz, which is directly re-
flected in the variance by a 200ms oscillation period. Additional
phase noise from the laser raises the level of the minimasdotted
lined with respect to the lower trace, because the laser is not phase
locked and the interferometer is not in the white light position.

FIG. 7. sColor onlined Noise in the amplitudex ssd and phasey
sPd quadratures of the probe light. Fits to the data in log-log scale
give slopes of 1.2±0.2s---d for the amplitude and 1.2±0.4s—d for
the phase quadrature.
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on the resonant term of the line-shape functionDsDd, where
the weight factor of the resonant terms should give the rela-
tionship between the absorption probabilities at the three
resonances. However, for the 6S1/2sF=4d→6P3/2sF8=3,4d
transitions we are pumping atoms over into theF=3 ground
state, making them insensitive to the probe at the current
detuning. On the other hand, the 6S1/2sF=4d→6P3/2sF8=5d
transition is a cycling transition since the decay to theF=3
ground state is not allowed. Therefore, we do not depump the
F=4 ground state at this resonance. Consequently, the fit to
Eq. s3d should avoid points close to the depumped 6S1/2sF
=4d→6P3/2sF8=3,4d resonances, and the numberC used in
Eq. s27d is indeed obtained from such a fit.

Closer theoretical calculations that also take stimulated
emission and the branching ratios of the excited-level decay
into account allow us to determine the time evolution of the
level populations for a given detuning and power of the
probe. From this the average number of atoms that during the
pulse have been pumped over into theF=3 ground state can
be calculated, and used to estimate the reduction of the dc
phase shift due to depumping. With this compensation ap-
plied to the data, the ratios between the amplitudes of the dc
phase shift at the three resonances come very close to values
predicted by the transition strengths.

We conclude that in the vicinity of theF=4→F8=5 tran-
sition the probe does not perturb the atomic population with
our measurement conditions.

E. Poisson noise of atomic population

As we can see from Eq.s3d, at constant detuning the
phase shift is proportional to the density of atomsN. There-
fore, given a fixed detuning we can use the dc phase shift as
a measure for the number of atoms probed in the MOT
f28,29g. We vary the number of atoms trapped by varying the
background cesium pressure in the chamber.

The precision of our setup that we have so far reached
does not enable us to measure at the detuning ofD45/2p
=4312 MHz where the atomic phase shift cancelssfD=0d
for equal populations in the two hyperfine ground states.
With this in mind, the optimal choice of the probe detuning
is dictated by the balance between the strength of the QND

interaction and the strength of decoherence processes. As in
Sec. II D, the signal refers to the photocurrent variance due
to atoms and the noise is the photocurrent variance due to
other noise sources. Equations17d tells us that the signal-to-
noise ratiok2 varies as the square of the detuning function
DsDd and linearly with the probe fluxF. From this relation-
ship, we infer that a better signal is obtained at small detun-
ings from the transitions whereDsDd is large. On the other
hand, at small detunings the photon flux would decrease
strongly due to absorption by the atoms. Moreover, the exci-
tations can destroy the atomic coherences.

For the data presented here, the atomic population noise
measurements were performed at the blue detuning of
15 MHz from theF=4→F8=5 transition. As a consequence
we measure the noise of the atomic population in theF=4
ground state rather than the noise of the pseudospin compo-
nent jz. Using 2-ms-long pulses of 0.6mW power, this yields
a pulse-integrated rate of atomic transitions ofpe=15. Obvi-
ously, this is far from being a QND measurement and the
atomic coherence would have been completely lost under
such measurement conditions. Normally, this would also
mean that many atoms are transferred to theF=3 ground
state, but since we are close to a cycling transition, virtually
all of the atoms remain in theF=4 ground state after the
measurement. Therefore, we have effectively relaxed the de-
mand for the measurement to conserve the populations only,
but not the coherences. However, the nature of the noise is
unaffected by the measurement being or not being QND, and
in that light the ability to measure the noise is a relevant
indicator for the feasibility of this procedure, in spite of the
large amount of real transitions.

Note that the photon flux is limited only by the detection,
which is shot-noise limited up to around 1mW. With this
photon flux of 53106, every atom performs about 50 ab-
sorption cycles with the probe on resonance, whereby their
recoil velocity reaches approximately 1.5 cm/s, which does
not pose any problems on the time scales of our experiment.

For this measurement we employ a slightly more complex
scheme of pulses. Each sequence consists of three pulses of a
duration of 2ms and equally separated by 10 ms. All three
light pulses have the same 0.6mW incident power which lies
in the range where our detection is shot-noise limited. Before
each sequence we load the MOT and turn off the magnetic
field just before the first of the three pulses. This means that
pulse 1 probes the atomic cloud. With no trapping force to
contain it, the MOT has long decayed at the arrival of pulse
2. In this way, the pulses 2 and 3 probe the chamber without
any atomic cloud and are used as a reference. We repeat this
sequence several thousand times to obtain the statistical in-
formation on the pulse areasa1, a2, anda3. We subtract the
pulse areas pairwised1−2=a1−a2 andd2−3=a2−a3, and cal-
culate the mean valuesd1−2, d2−3 and variancessdd1−2d2,
sdd2−3d2, over all the recorded sequences.

Let us address the significance of these variances. For the
first pulse the atoms are trapped in the MOT and thus, the
pulse area variancesda1d2 is given by Eq.s11d where, as
mentioned earlier, we may neglect the classical phase noise
N due to the white-light alignment of the interferometer,

FIG. 8. sColor onlined dc phase shift due to dispersion by the
atomic cloud with fits—d to Eq.s3d. A closer fits---d is obtained by
letting the line strengths be independent, and thus not given only by
the value of the 6J symbols.
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sda1d2 = sdidp
2 + e2VF2S h

1 + h
D2

sdfDd2cos2sfDd. s28d

For atoms in a coherent superposition of two ground hyper-
fine state probed by light tuned in between the two states the
atomic contribution to the phase noisesdfDd2 is induced by
the quantum projection noise as in Eq.s15d. For atoms in a
thermal state probed by light tuned close to one of the hy-
perfine transitions, as in our present setup, the atomic contri-
bution to the phase noise is dominated by the population
noise. The population noise arises from the statistical nature
of the trapping process and from the motion of atoms in and
out the probe region. As we demonstrate experimentally, it is
characterized by Poission statistics with the widthÎNat, the
same as for the projection noise.

For the last two pulses, recorded without any cold atoms
sfD=0d, there is no noise term from the atoms and conse-
quently, the variance of the two areas may be written as

sdajd2 = sdidp
2, j = 2,3. s29d

We see that one ought to be able to extract the shot noise and
atomic noise from the appropriate pulse areas. What hinders
it are slow thermal drifts of the interferometer that would
dominate the variance if not corrected for. This is why we
subtract the pulses pairwise to cancel the effect of the ther-
mal drifts. Since the shot noise and atomic noise are uncor-
related it is easy to verify that for the subtracted areasd1−2
and d2−3 we have sdd1−2d2=sda1d2+sda2d2 and sdd2−3d2

=sda2d2+sda3d2 so that we can determine the shot-noise and
atomic-noise contributions as

sdidp
2 =

sdd2−3d2

2
,

sdfDd2 =
sdd1−2d2 − sdd2−3d2

e2VF2fh/s1 + hdg2cos2sfDd
, s30d

respectively.
In Fig. 9 we show the atomic contribution to the phase

noisesdfDd2 as a function of the dc phase shiftfD, which, in
turn, is proportional to the number of atoms. The linear fit,
within the uncertainty, shows that the variance of the atomic
fluctuations scale asNat. Thus we conclude that white-light
interferometry is capable of achieving the sensitivity at the
level of projection-noise fluctuations.

IV. SUMMARY AND OUTLOOK

In this paper we propose a sequence of QND measure-
ments and spin rotations which allows us to circumvent the
projection-noise limit of accuracy of the Cs atomic clock.
The realization of this protocol requires interferometric QND
measurement of the atomic population with a sensitivity at
the projection-noise level. Toward this goal we demonstrate

experimentally that a shot-noise-limited fiber optical interfer-
ometer at the white-light setting can reach a sensitivity suf-
ficient to detect the projection noise under conditions not far
from those of the QND measurement.

The main parameter that can significantly improve the
QND figure of meritk2 is the resonant optical densitya0
=l2lN /2p, which is directly proportional to the number of
atoms in the probing region. Increasing the optical density
should allow us to reduce the photon number and increase
the detuning of the probe. Both those measures will improve
the spin-squeezed state preparation. The atomic density can
be greatly increased compared to our present level by apply-
ing a far-off-resonant trap, where the dipole force from a
focused laser beam traps the cold atomsf30g. This naturally
suggests that the QND scheme could be used in an optical
lattice clock where the number of atoms is preserved and it is
possible to have high densities. Given the density limitation
on the clock, an optimal density and atomic number should
be sought for, in order to improve the clock performance.

Another improvement lies in the optimization of the in-
terferometer, with the aim of reducing losses. This may mean
abandoning the fiber interferometer thereby practically elimi-
nating coupling lossessh=1d. There is another reason why
the increased flexibility of a free-space interferometer can be
an advantage. If the atoms are confined in a dipole trap, the
sample will be needle shaped, which will have a lensing
effect on the tightly focused probe beam. In this case it is
desirable to be able to include compensating lenses into the
probe arm. The effect of diffraction by atomic samples with
different densities and geometries on the spin squeezing is
analyzed in detail inf31g.
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FIG. 9. sColor onlined Phase noise induced in the probe light
from the interaction with cold atoms. The dc phase shift is used as
a measure for the number of atoms.
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