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We propose an atom optics experiment to measure the stability of the quantum kicked rotor under pertur-
bations of the Hamiltonian. We avail ourselves of the theory of Loschmidt echoes, i.e., we consider the overlap
of a quantum state evolved in a perturbed and an unperturbed potential. Atom interferometry allows us to
determine the overlap integral in amplitudeand phase. A numerical analysis of the kicked rotor in various
regimes shows that the quantum signatures of specific classical properties can be detected experimentally.
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I. INTRODUCTION

In the controversy between Loschmidt and Boltzmann
concerning the time reversibility in thermodynamicsf1g,
echo dynamics has played a central role. Around the same
time similar considerations were made independently by
Lord Kelvin f2g. During the last decades the idea of echo
dynamics was adopted in the field of quantum chaos to in-
vestigate the stability of quantum motion. Since then, a
wealth of striking phenomena have emergedf3–11g. In the
present paper we show that relevant signatures of echo dy-
namics for the kicked rotor, a paradigm of quantum chaos
f12g, can be measured with state-of-the-art technology of
quantum optics.

The rapidly expanding field of quantum chaos analyzes
the fingerprints of classical chaos in quantum systems. In
classical systems the Lyapunov exponent allows us to distin-
guish two radically different types of motion, the regular
motion of integrable systems and the chaotic motion of non-
integrable systems. Such a classification is based on trajec-
tories in phase space where the Lyapunov exponent is a mea-
sure for the spreading of a bundle of adjacent trajectories
originating from slightly different initial conditions. In con-
trast, the concept of phase-space trajectories becomes mean-
ingless in quantum systems for times larger than the Ehren-
fest time. Only up to this time the system behaves essentially
classically and features such as the Lyapunov exponent are
relevantf5,6,13,14g.

Due to the intrinsic linearity of quantum-mechanics sen-
sitivity to variations of initial conditions is absent. Therefore
considerable interest in testing sensitivity to perturbations of
the Hamiltonian has emerged. These studies have mainly fo-
cused on the fidelity in echo dynamicsf3–11,14–16g, al-
though other concepts have been usedf17–19g. Experiments
have been carried out as early as 1950 in nuclear magnetic
resonancef20–22g. Moreover, theoretical proposals have
been put forward using ion trapsf23g and experiments per-
formed in atom opticsf24g. Another experiment using elec-
tromagnetic billiardsf25g is in progress.

In this paper we concentrate on the model of the kicked
rotor f26,27g. Its classical dynamics given by the standard
map f12g displays regimes from integrability to near com-
plete chaos. In the quantum case it shows typical signatures
of quantum chaos such as suppression of classical diffusion
also known as dynamical localizationf28g. The kicked rotor
has become even more attractive since its atom optical real-
ization f29g has opened a promising experimental testing
groundf30–32g.

We apply the theory of Loschmidt echoes to the kicked
rotor and compare the cases of classically chaotic and regular
dynamics. Moreover, we suggest a possible experimental
setup for the measurement of the fidelity of the quantum
kicked rotor. Thereby we exploit atom interferometry
f23,24,33g to propose a measurement of the Loschmidt echo.
Our scheme is based on the dynamics of a coherent superpo-
sition of two atomic hyperfine states propagating in two
slightly different optical potentials. The readout provides the
real and imaginary part of the quantum-mechanical overlap
integral, i.e., fidelity amplitude. We emphasize that the pro-
posed atom optical realization for the measurement of the
fidelity decay requires only state-of-the-art technologies. Our
numerical analysis constitutes preparatory work for possible
experiments and yields deeper theoretical insight into the
dynamics of the kicked rotor. So far, echo dynamics has only
been studiedf8g in the semiclassical limit for chaotic situa-
tions.

Our paper is structured as follows: In Sec. II we review
the model of the quantum kicked rotor and summarize its
time evolution. Section III serves as an introduction into the
theory of Loschmidt echoes in the regime of linear response
and beyond. The results of our numerical analysis are pre-
sented in Sec. IV in detail. Section V is dedicated to the
discussion of a possible atom optical measurement of the
fidelity for the kicked rotor. Finally, we conclude with Sec.
VI.
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II. KICKED ROTOR

In order to lay the foundations for the stability analysis in
the following sections, we now briefly summarize the basics
of the kicked rotor. In particular, we define the Hamiltonian
as well as the Floquet operator describing the stroboscopic
time evolution.

A. Hamiltonian

We consider a particle with massM periodically kicked
by a sine potential with wave numberk0 and amplitude"k.
Thus the time evolution of the quantum stateucl is deter-
mined by the Hamiltonian

Ĥ =
p̂2

2M
+ "k sinsk0x̂ddTstd, s1d

where the kicks are modeled by a series of delta functions,

dTstd = o
n=−`

`

dst/T − nd s2d

with temporal separationT. For the case of periodic bound-
ary conditions the Hamiltonian, Eq.s1d, describes the droso-
phila of quantum chaos, the kicked rotor.

It is convenient to introduce the dimensionless coordinate
u=k0x and the momentumr=sk0T/Mdp which fulfill the
commutation relationfu ,rg= ik with the scaled Planck con-
stantk ="sk0

2T/Md. Furthermore, we use the scaled timeN
= t /T where the integerN counts the number of kicks. Con-
sequently, we find the new Hamiltonian,

Ĥ ; T̂ + V̂sû,Nd =
r̂2

2
+ K sin ûd1sNd,

consisting of the kinetic energyT̂ and the potentialV̂sû ,Nd,
with kick strengthK="ksk0

2T2/Md, and according to Eq.s2d,
we haved1sNd=ondsN−nd. In the classical limit we find for
K,1 a globally stable phase space whereas forK@1 the
phase space is near globally chaotic.

B. Time evolution

We now turn to the time evolution. Due to the strobo-
scopic kicks with the potentialV we reduce the continuous
time evolution to a discrete map. Between two kicks the
potential vanishes and the stateucNl evolves freely according

to ucN8 l=ÛfreeucNl with Ûfree;expf−i r̂2/ s2k dg. Only for inte-
ger timesN the potential energy dominates the kinetic energy
and we can omit the latter, i.e., the kick transforms the state

according toÛkickucN8 l with Ûkick;expf−iK sin û /k g. Hence
the stateucN+1l immediately after thesN+1dst kick is related
to the stateucNl by the map

ucN+1l = ÛucNl

with the Floquet operatorÛ; ÛkickÛfree. Consequently, the
state afterN kicks is connected to the initial stateuc0l via

ucNl = ÛNuc0l. s3d

We conclude this section by presenting the Floquet operator

Û in the basis of the unperturbed momentum eigenstatesurl
which fulfill the eigenvalue equationr̂url=rurl. Since we
deal with periodic boundary conditions we have a discrete
spectrumr= lk of the momentum operator. Thus we find
url= ulk l with l =0, ±1, ±2,… . Therefore in the momentum
basisulk l the Floquet operator reads

Û = o
l,l8

e−isl2k /2dkl8k uÛkickulk lul8k lklk u, s4d

where the matrix elements are simply given by a Bessel

function kl8k uÛkickulk l=Jl−l8sK /k d.

III. ECHO DYNAMICS

The idea of echo dynamics is to evolve an initial state

from t=0 to t=T with the HamiltonianĤ and subsequently

backwards with a slightly perturbed HamiltonianĤ8. A com-
parison of the echo state with the initial state might serve as
a criterion for the stability of the system under perturbation
of the Hamiltonian.

A. Fidelity

For the quantum case the standard measure to compare

the initial stateuc0l with the echo evolved stateuc̃l is the
fidelity

F ; uf u2 ; ukc0uc̃lu2, s5d

where the fidelity amplitudef measures the complex-valued
overlap between the two states.

We now apply echo dynamics to the kicked rotor. Recall-

ing Eq. s3d leads to uc̃l=fÛÛdg−NÛNuc0l with Ûd

=expf−id sin û /k g, i.e., we use a perturbed potential with
amplitudeK+d, where we assumed to be a small perturba-

tion. To this end we insert the expression foruc̃l into the
definition of the fidelity, Eq.s5d, and finally find

FN = ufNu2 = ukc0ufÛÛdg−NÛNuc0lu2 ; ukfNucNlu2. s6d

We emphasize that this expression can be reinterpreted as the
overlap between the forward propagated statesucNl
; ÛNuc0l andufNl;fÛÛdgNuc0l starting both from the same
initial stateuc0l.

B. Linear response and beyond

Since the perturbationd is assumed to be small with re-
gard to all other parameters, it stands to reason to treat the
problem perturbatively withd as the smallness parameter. A
detailed general analysis of this problem was already worked
out by Prosen and co-workersf7g and in the linear-response
regime the fidelity reads
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FN = 1 −
d2

k 2 o
m,n=0

N−1

T
←

Cm,n + Osd3d. s7d

For the kicked rotor the two-time correlation function

Cm,n ; kc0usin ûmsin ûnuc0l

involves the time-dependent position operatorûn; Û−nûÛn

in the interaction picture. Moreover, the time ordering opera-

tor TQ accounts for the noncommutativity of the operators at
different timesm andn.

Equations7d shows clearly that the behavior of the fidelity
as a function of the kick number is solely determined by the
two-time correlation functionCm,n whereasd andk are scal-
ing parameters. Consequently, the fidelity reflects the distinct
characteristics of this correlation function in the classically
integrable and chaotic regimes. The further analysis makes
use of these differences in order to find simpler expressions
for the fidelity.

1. Chaotic case

In the classically chaotic regimef47g we can assume that
for times larger than the Ehrenfest timetE, that is, when an
initial wave packet has spread over the whole phase space,
the correlation function becomes independent of the initial
state. This assumption implies that the correlation function
depends only on the time difference—or in our case the dif-
ferencem−n in the number of kicks. If we additionally as-
sume that the correlation function decays sufficiently fast for
increasingum−nu, we find in the linear-response regime the
compact expression

FN
chaos= 1 − 2

d2

k 2 C̃N, s8d

where the constantC̃ can be calculated from the correlation
function Cm,n. Its explicit form is given in Ref.f7g.

This analysis can be extended beyond the linear-response
regime by heuristically assuming Eq.s8d to represent the first
two terms of an exponential,

FN
chaos= expF− 2

d2

k 2 C̃NG . s9d

For the case of Gaussian statistics of the two-time correlation
function, this result is exact. Even for non-Gaussian statistics
this approximation can be extremely accuratef10g.

2. Integrable case

In the classically integrable case we find a different be-
havior since the time average of the correlation function con-

verges to a constantC̄. Using this characteristic property to-
gether with Eq.s7d we arrive at a quadratic time decay

FN
int = 1 −

d2

k 2 C̄N2. s10d

As in the nonintegrable case, we can extend this expression
to a Gaussian decay

FN
int = expF−

d2

k 2 C̄N2G , s11d

which can be exact in many semiclassical situationsf7,34g.
Note, that the results, Eqs.s10d and s11d, are in direct

contradictionf7g with the original work of Peresf4g. Indeed,
this fact gave rise to plenty of confusion and false conclu-
sions. We emphasize that integrable systems have nogeneric
behavior, and therefore fidelity will depend in a more sensi-
tive way on the initial state. In other words, the decay of
correlations might be quite atypical for particular states.
Moreover, the harmonic component of a stable island stabi-
lizes the quantum motion of coherent states near the center
of this island, as we shall see in Fig. 8. Indeed, Peres used a
coherent state in the very center of an island, and thus ob-
tained results quite atypical for integrable systems in general.
Even if we average over a fixed set of orthogonal states, the
dependence on the choice of this set may still be very strong
as pointed out by Ref.f35g. Only random states in anhar-
monic integrable systems will display something akin to a
generic behavior. However, random states go beyond the
scope of the present paper since they are of little interest for
the proposed experiment.

In the next section we test numerically the scaling behav-
ior of Eqs.s8d ands10d as well as the validity of Eqs.s9d and
s11d for different values ofK corresponding to the chaotic
and integrable regime.

IV. NUMERICAL ANALYSIS

We now turn to our numerical simulations and investigate
the behavior of the fidelity as a function of the kick number.
We start mostly with single momentum eigenstates but con-
sider also Gaussian packets in momentum space and mixed
states. We first focus on the chaotic and near-integrable cases
and then present the case of mixed dynamics sometimes re-
ferred to as soft chaos.

We illustrate the results of our simulations using a phase
space spanned by the coordinateu and the momentumr.
Momentum eigenstatesulk l with l =0, ±1, ±2,… are repre-
sented as a uniform distribution of area 2pk in phase space
what reflects the uncertainty relation betweenu andr. It has
an extension in ther direction ofk centered around the value
lk .

For the simulations of fidelity decay we choose the per-
turbation strengthd=0.02 in all figures, as similar values are
correctly related by the scaling properties Eqs.s8d and s10d.

A. Chaotic case

In order to be in the globallysneard chaotic regime we
chooseK=10. Figure 1sad displays the global structure of
phase space in a Poincaré plot. No stable islands can be seen.

1. Momentum eigenstates

We chose two initial momentum eigenstates withl =0 and
l =16, respectively, andk =0.15. In Fig. 1sad we have shaded
the area occupied by the initial momentum eigenstate. In
Figs. 1sbd and 1scd we show the fidelityFN as a function of
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the kick numberN on a semilogarithmic scale. For both ini-
tial states the fidelity decays exponentially in the beginning
but saturates after a certain number of kicks and fluctuates
around a mean plateau. The homogeneity of the Poincaré
plot explains their similar behavior. This decay of the fidelity
FN is in good agreement with the theoretical predictions pre-
sented in Sec. III. The plateau is due to dynamical localiza-
tion, as we shall see later.

In addition to the fidelityFN, we also display the square
of the real and imaginary partssRe fNd2 and sIm fNd2 of the
fidelity amplitudefN since our proposed experiment allows a
measurement of both of this quantities. Whereas the real part
determines the short-time behavior of fidelity, the plateau is
due to both parts.

2. Mixed states

In order to average out the fluctuations in the fidelity we
use an uniform incoherent superposition of many momentum
eigenstates as initial state. This approach allows us a quanti-
tative comparison with the approximate analytic expressions
and the ensuing scaling laws. The results fork =0.05,k 
=0.075,k =0.125, andk =0.2 are plotted in Fig. 2.

Again we recognize the exponential decay of the fidelity
but the fluctuations are now smoothed and clearly defined
plateaus emerge. Fork =0.2 on the other hand we find a
notable deviation from linear decay at short times. One
might suspect that this deviation from linear behavior is a
manifestation of the Zeno effect, since for a small numberN
of kicks and for the case that the correlation functionCm,n can
be assumed to be constant in this regime, we getFN<1
−sd2/k 2dC0,0N

2. However, the time scale of this effect is far

too short to explain this result. We thus have to conclude that
the correlation function decays more slowly than expected
and we have checked numerically that this is indeed the case.
While this anomaly is not understood in full detail, it is clear
that exponential decay originates from the fact, that the cor-
relation function decays to zero. Yet a finite dimensional Hil-
bert space creates some residual correlations. This causes a
Gaussian decay, which always competes with the exponential
one. For very large Hilbert spaces, however, it will become
quite insignificant. Dynamical localization restricts this di-
mension. For large enough values of the effective Planck’s
constant this Gaussian decay will dominate the exponential
one. We wish to point out that the anomalously long corre-
lations found in the chaotic regime are in the range of effec-
tive k values which are in an experimentally feasible domain.

We fit exponentialsb expf−N/ask dg to the near linear part
of the curves. To test the scaling law with respect tok we
consider the pairwise ratio of the slopes. When we assume an
essentiallyk -independent correlation functionC̃ we expect
from Eq.s9d a ratio of 2.25 and 2.78 for the pairsk =0.05 and
k =0.075, respectively,k =0.075 andk =0.125. The corre-
sponding ratios following from the fits are 1.87 and 2.52.
Both numerically determined ratios are below the theoretical
counterparts. This discrepancy reflects the fact that after
many kicks linear response is no longer exact. In particular,
we find that for growing smallness parametersd /k d2 the de-
viation becomes larger. Moreover, for our theoretical estima-
tions we have neglected thek dependency of the correlation
function.

We note that we have also checked the fidelity decay for
Gaussian-like initial states and found that the results do not
considerably differ from the incoherent superpositions shown
in Fig. 2. This can be understood since due to the completely
structureless phase space the fidelity does not depend on the
initial state.

FIG. 1. Fidelity decay in the nonintegrable case. Insad the
Poincaré plot of the classical phase space is shown forK=10. Since
this corresponds to a globally chaotic regime no stable island is
visible. The shaded regions denote phase-space representations of
the momentum eigenstatesur=0l and ur=16k l. The decay of the
fidelities corresponding to these two initial states are shown insbd
andscd. The thick line depicts the fidelityFN whereas the thin line
represents the square of real part of the fidelity amplitudefN and the
dotted line the square of the imaginary part, respectively. The pa-
rameters areK=10, k =0.15, andd=0.02.

FIG. 2. Fidelity decay averaged over many different momentum
eigenstates in the nonintegrable regime. The curves show an expo-
nential behavior as predicted by Eq.s9d except of the plot corre-
sponding tok =0.2. This discrepancy is not explained by the theory
of Sec. III B and is a consequence of dynamical localization. We
have fitted the exponential functions to the range where the expo-
nential decay occurs. The fidelity saturates due to the effectively
finite size of the Hilbert space. The dashed horizontal lines mark the
position of the resulting plateausF`. We chose againK=10 and
d=0.02.
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3. Plateau

In order to understand the appearance of the plateaus we
recall the phenomenon of dynamical localizationf28g. After
a certain number of kicks the stateucNl reaches its largest
extension in momentum space and does not grow any further
f27,36,37g. The localization lengthL estimatedf38g by

L =
K2

4k 2 s12d

determines the effective dimension of Hilbert space.
For the chosen parameter range the kicked rotor exhibits

dynamical localization as shown in Fig. 3.
According to Ref.f7g the height of the plateau is given by

the inverse of the Hilbert space dimension. We assume that
due to the localization the effective dimensionality is deter-
mined by L, Eq. s12d, and thus we expect the plateaus to
emerge at

F` = 4k 2/K2.

The theoretical plateausF` for the curves shown in Fig. 2
are represented by dashed horizontal lines and show good
agreement with the numerical results supplying the assump-
tion that the dynamical localization influences strongly the
behavior of the fidelity decay.

4. Quantum resonances

So far we have considered parameters where the system
exhibits dynamical localization. We now consider values ofk 
where quantum resonances appear. Fork =4p the phase fac-
tor in the Floquet operator, Eq.s4d, describing the free time

evolution between two kicks vanishes andÛ is simply given

by Ûkick. Therefore all kicks are in phase and add up coher-
ently leading to a quadratic growth in energy. In fact also for
k =4psp/qd with p andq are mutually prime integers we find
a asymptotically quadratic dependencef39g of energy due to
constructive quantum interference. Figure 3 shows that even
for the resonance p=1 and q=100 leading to k 
=0.125 663 7̄ the quadratic growth is clearly visible.

Figure 4 shows the fidelity decay for the case of a quan-
tum resonance. The result—a Gaussian decay—is in sharp

contrast to the exponential decays depicted in Figs. 1sbd and
1scd. This behavior results from the pure quantum origin of
the resonances. In fact, they are a result of constructive in-
terference and can be interpreted as kicked fractional revivals
f40g. Therefore the assumption that classical ergodicity and
mixing dominate the quantum evolution is no longer valid.
The quantum system at a quantum resonance becomes solv-
able in the sense defined by Calogerof41g, in contrast to the
trivial integrability resulting from the linearity of quantum
mechanics. This results in a behavior similar to that found
for the quantization of a classically integrable system. A de-
tailed discussion is beyond the scope of this paper but is
closely related to Ref.f42g.

B. Integrable case

Let us now turn to a classically near-integrable case. We
choose the kick strengthK=0.5. The resulting Poincaré plot
with a richly structured phase space of stable trajectories is
depicted in Fig. 5sad. We therefore expect the fidelity to de-
pend significantly on the choice of the initial state.

1. Momentum eigenstates

In order to highlight this dependence we present first two
limiting cases of momentum eigenstates. In Fig. 5scd we

FIG. 3. Mean energy of the kicked rotor as function of the kick numberN for dynamical localizationsleftd and for a quantum resonance
srightd. In the case of localizationsleftd the mean energy starts to grow linearly analogously to the classical diffusion, but for larger kick
numbers it diverges from the linear growth and turns into an oscillatory, bounded behavior. For the left figure we have chosenk =0.15.
However, for a slightly differentk =4p /100=0.125 663 7̄ we are on a quantum resonancesrightd. Here, the mean energy shows an almost
perfect quadratic growth. In the insets we have plotted the momentum distribution of the stateucNl after N=2000sleftd andN=300 srightd
kicks in a logarithmic scale. While the exponential decay as a typical indication for localization is clearly visible on the left, the decay is
clearly nonexponential on the right. The latter indicates that for quantum resonances the system does not localize. For both plots we have
used the parameterK=10 and the initial stateur=0l.

FIG. 4. Fidelity decay for a quantum resonance. Fork 
=4p /100 the fidelityFN shows a Gaussian decay although the pa-
rameters are withK=10 in the classically nonintegrable regime. For
the plot we chose an initial stateur=0l and a perturbationd=0.01.
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have chosen an initial stateulk l with l =0 which is embedded
in a region of phase space dominated by closed trajectories.
In contrast in Fig. 5sbd we select a state withl =13 covering
a phase-space region of almost flat trajectories, which mimic
the shape of momentum eigenstates. This difference in the
initial states is reflected in the time evolution of the corre-
sponding fidelities. In the first case we find the Gaussian
decay predicted by Eq.s11d followed by an oscillatory be-
havior. The second case is characterized by an almost con-
stant fidelity.

In a semiclassical picture this can be easily understood:
The initial phase-space distribution, shaded in the Poincaré
plot, Fig. 5sad, evolves according to the classical trajectories.
The fidelity can then be interpreted as the overlap between
two such distributions evolving along slightly different tra-
jectories corresponding toK andK+d. In the case depicted
in Fig. 5scd the distributions circulate with almost constant
frequency near the center of the island, which causes the
regular oscillations, while the variable frequency in the outer
parts cause the Gaussian decay. The almost constant fidelity
in Fig. 5sbd suggests that the momentum eigenstate is almost
exactly an eigenstate of the Floquet operator. This seems
rather obvious, because the flat trajectories do not consider-
ably change the shape of the initial distribution.

As in the chaotic case we include in Fig. 5 the square of
the real and imaginary parts of the fidelity amplitude. Again
we find that the real part determines the short-time decay
which is now Gaussian. The oscillations in the fidelity for the
initial state withl =0 originate from both the real and imagi-
nary parts. For the approximate Floquet eigenstate withl
=13 we find that the decay of the real part is balanced by an
increase of the imaginary part as they oscillate with opposite
phase. This results in an almost constant fidelity.

2. Mixed states

In order to average out the dependence on different initial
states in Fig. 6 we use again a mixed state which consists of
many equally weighted momentum eigenstatesulk l. We com-
pare the averaged fidelity for the three different values ofk 
=0.2, k =0.4, andk =0.8. In contrast to the chaotic case we
find now a Gaussian decay of the fidelity, in agreement with
the theoretical prediction given in Eq.s11d. We have fitted
Gaussiansb8expf−N2/s2g to the fidelity decay and found the
ratio of width to be 1:2.07:3.91 which is in good agreement
with the prediction of Eq.s11d. This agreement indicates that
C̃ does not depend strongly on the parametersk .

In the chaotic case we have seen a deviation from Eq.s9d
due to the fact that the Hilbert space becomes small for large
k as a consequence of localization. A similar deviation from
Eq. s11d does not occur because the correlation functions
saturate at higher values than those that result from the di-
mension of these spaces.

3. Pure Gaussian initial states

So far we have only discussed momentum eigenstates and
their incoherent superpositions. We now address the question
of stability of coherent superpositions using Gaussian states,

uc0l = No
r

expf− r2/s4sr
2dgurl, s13d

in momentum space with the normalization constantN. We
calculate the fidelity decay for the two different valuessr

FIG. 5. Fidelity decay in the integrable regime. The Poincaré
plot shown insad depicts the richly structured classical phase space
for K=0.5 which consists of only stable trajectories. Again we
choose two initial momentum eigenstatesur=0l and ur=13k l with
k =0.2. The uniform phase space distribution corresponding to their
classical limit is given by the shaded areas insad. The dashed el-
lipses represent Gaussian-like states which we used as initial states
for the fidelity decay shown in Figs. 7 and 8, where the dashed lines
show the contour at half maximum. Insbd the distribution lies in an
area of almost flat trajectories leading to an stable dynamics as
suggested by the nearly constant fidelityFN denoted by the thick
horizontal line. The square of the realsthin lined and imaginary part
sdotted lined show distinct variation and only their sum is balanced
out to a constant. Inscd, where the initial distribution lies in an area
of closed trajectories, the fidelity shows initially a Gaussian decay
and ends in bounded oscillations. This behavior we find also in the
real and imaginary part where the initial decay is governed by the
real part.

FIG. 6. Fidelity decay averaged over many different initial states
in the integrable regimeK=0.5. The plot shows the Loschmidt echo
for three different values ofk . Initially the decay is purely Gaussian
and finally saturates to a constant which reflects the nonvanishing
correlations in the integrable system. Note that the curves result
from averaging fidelities of types shown in Fig. 5sbd and 5scd, that
is, they consist of rapidly and almost nondecaying contributions.
The dotted lines represent fitted Gaussian curves.
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=k andsr=10k for the momentum width. The corresponding
distributions in phase space are represented by the two
dashed ellipses centered at zero momentum and position in
Fig. 5sad. The resulting fidelity, as well as its squared real
and imaginary parts are shown in Fig. 7. In both cases we
again find the expected Gaussian decay. However, only in the
second case this decay originates from the real part, whereas
the imaginary part defines the plateau. In the first case both
the decay and the plateau result from a complicated interplay
of real and imaginary part.

4. Plateaus and oscillations

For different states the fidelity after many kicks results
either in plateaus or in oscillations, where the latter are
washed out in the incoherent averages. For momentum
eigenstates shown in Fig. 5 the time at which the fidelity
deviates from the Gaussian decay law varies from around 40
kicks to infinity, with an upper bound of the fidelity in that
range from near unity to 10−1. For coherent statessFig. 7d we
find a time of roughly seventy kicks and after the decay the
fidelity varies from 10−1 to 10−2.

The oscillations apparent in Figs. 5scd and 7sad are quali-
tatively understood in terms of the classical frequencies in-
cluded in the corresponding states. The oscillations around
the mean value of the momentum eigenstate, Fig. 5scd, dis-
play one basic frequency. Similarly, the coherent state with
sr=k is determined by the same basic frequency as seen in
the l =0 momentum eigenstate. However, the beatings of
higher frequency components blot out the ground frequency
entirely indicating the central role of interferences. Yet the
real and imaginary parts individually still display this fre-
quency quite clearly. The coherent state underlying Fig. 7sbd
apparently contains so many different frequencies, that it be-
haves quite similar to an incoherent superposition shown in
Fig. 6, though the near eigenstates of the Floquet operator
are represented with less weight than in the incoherent su-
perposition. The height of the plateau in the incoherent su-
perposition of momentum states is simply explained by the
large portion of momentum eigenstates that are almost eigen-
functions of the Floquet operator.

5. Stable and unstable fixed point

We conclude our considerations of the integrable regime
by inspecting two special initial states which have very non-

generic behavior. Indeed, we place a Gaussian state, Eq.s13d,
at the center of the integrable island, i.e., at the pointsu
=−p /2 ,r=0d shown as dashed ellipse in Fig. 5sad, and an-
other Gaussian state exactly at the principal unstable fixed
point sp /2 ,0d. As discussed above, the former is precisely
the kind of state used by Peres and whose unsurprising be-
havior can be seen in Fig. 8sad. Rather more interesting is the
second case shown in Fig. 8sbd. We presume the regular
behavior of the fidelity resulting from the fact that the Gauss-
ian wave packet covers not only the hyperbolic fixed point,
but also its surrounding. Thus the fast irregular oscillations
follow from the unstable fixed point whereas the slow envel-
oping oscillations are reminiscent of the elliptic trajectories.
We shall not go into more details, but rather refer to the
extensive, though probably not exhaustive discussion of such
a situation in Ref.f43g. There, the authors discuss dynamics
near the top of a repulsive oscillator, which is the classical
example of a hyperbolic point of this type.

C. Dependence on the kick strength and soft chaos

So far we have analyzed the stability of quantum motion
near the two limiting cases where the phase-space portrait
was globally chaotic or near integrable. Although the theory
presented in Sec. III makes no statement about the interme-
diate regime, we complete our investigations with numerical
results. We choosek =0.1 and calculate the fidelityFN for
five different values ofK reaching from global chaos to situ-
ations where the Poincaré plot shows stable islands, as de-
picted in the inset of Fig. 9. We focus on theulk =0l momen-
tum eigenstate localized in a region of phase space where we
expect the primary islands to appear in the Poincaré plot. For
the K valuessK=12, 9, 8, and 7d, all corresponding to the
near chaotic regime, the decay is exponential as expected.
However, the slope of the decay is not a monotonic function
of K. For the K value K=3, where the surface of section
shows stable islands in phase space the decay can be char-
acterized by two distinct features. It behaves exponentially
on a longer time scale whereas it shows oscillations on a
shorter one. In the short-time regime we recognize the
Gaussian decrease typical for the integrable case. On the
longer time scale the exponential decay is still present on

FIG. 7. Fidelity decay for Gaussian-like initial states. Insad we show the result for the initial state, Eq.s13d, with sr=k . This corresponds
to an almost equal position and momentum distribution centered at the origin of phase space, as illustrated in Fig. 5sad by the egg-shaped
ellipse. The fidelity decay for an initial state with broad momentum distribution and localized in positionssr=10k d is shown insbd. We have
again symbolized this state by the stretched ellipse in Fig. 5sad. In both plots we show again the fidelitysthick lined and the square of the real
sthin lined and imaginary partsdotted lined. The parameters areK=0.5, k =0.2, andd=0.02.
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average. Therefore from Fig. 9 we can conclude that in the
intermediate regime characteristics of both limiting cases are
present.

V. ECHO EXPERIMENTS WITH ATOMS

The kicked rotor in its realization of a kicked particle can
be experimentally modeled by an atom in a standing light
wave and is nowadays routinely implemented in many labs
f30,31g. Typically such an experiment consists of an atom of
massM where two electronic states with level spacingv0,
denoted by the ground stateu1l and the excited stateuel, are
driven by two counterpropagating laser fields. The dipolemW
of this transition is coupled to the electromagnetic field

EW sx,td=EeWcosskLx+wLde−ivt+c.c. of the lasers with wave
numberkL, frequencyv, complex amplitudeE, polarization
eW, and phasewL. The Hamiltonian describing this interaction
reads in rotating wave approximation

Ĥint =
p̂2

2M
+ "v0uelkeu + F"V

2
cosskLx + wLde−ivtuelk1u + H.c.G

with the Rabi frequencyV=smW ·eWdE /". A large detuningD
=v0−v allows us to adiabatically eliminate the excited state
uel leading to the Hamiltonian

Ĥ1 =
p̂2

2M
+ "k1fsins2kLxd + 1gdTstd s14d

for the ground stateu1l in a frame rotating with the laser
frequency. Here we introduced the interaction strengthk1
=V2/ s8Dd and chose the phasewL appropriately. Moreover,
the periodic kicks theoretically described by the train ofd
functions in Eq.s14d can be approximately realized by rap-
idly switching on and off the laser fields with periodT.
Therefore the Hamiltonian Eq.s14d corresponds to the
Hamiltonian of the kicked rotor, Eq.s1d, in its realization of
a kicked atom. The additional constant potential leads only to
a global phase factor.

In order to measure the Loschmidt echo an analog setup
can be applied if we additionally make use of atom interfer-
ometry f23,24,33g. For this reason we take again an atom
with excited electronic stateuel but two hyperfine ground
statesu1l and u2l separated by the hyperfine splittingvhf, as
illustrated in Fig. 10. Following the same procedure as above
for large detuningD we can again eliminate the excited level

and find for the two ground states the HamiltonianĤg

=Ĥ1u1lk1u+Ĥ2u2lk2u with

Ĥ2 =
p̂2

2M
+ "vhf + "k2fsins2kLxd + 1gdTstd. s15d

Here we analogously defined

k2 =
V2

8sD + vhfd
= k1 − d

where d=k1vhf / sD+vhfd. We mention that the physical
quantity d is connected with the scaled perturbation, intro-
duced in Sec. III, viad="dsk0

2T2/Md.
The motional state of an atom prepared in an internal

superposition of statesu1l andu2l propagates in two different

FIG. 8. Fidelity at stable and unstable fixed points. Shown are the fidelityFN sthick lined and the square of the realsthin lined and
imaginary partsdotted lined of the fidelity amplitude as a function of the kick numberN. In ad we have placed a Gaussian state of widthsr=k 
at the center of the stable islands−p /2 ,0d. As expected, the fidelity displays oscillations corresponding to the classical frequencies. In
contrast, insbd the Gaussian state is placed at the unstable fixed pointsp /2 ,0d and shows highly nongeneric behavior. As parameters we
choseK=0.5 andk =0.2.

FIG. 9. Fidelity decay approaching the intermediate regime.
Shown is the decay of the fidelityFN for five different values ofK,
constantk =0.1, andulk =0l. For K=12, 9, 8, and 7, that is, for
globally chaotic phase space, the decay is exponential as expected,
but no clear trend for the decay length can be recognized. ForK
=3 where the phase space shows stable islandsssee insetd the decay
is characterized by both the exponential decay and oscillations.
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potentials described by the HamiltoniansĤ1 and Ĥ2, Eqs.
s14d and s15d, respectively. Indeed, this is exactly the situa-
tion we need to realize a Loschmidt-echo experiment with
perturbationd.

We are now in the position to measure the fidelity

FN = u f̃Nu2 = ukc0uÛ2
−NÛ1

Nuc0lu2

introduced in Eq.s6d, whereÛi describes the time evolution

with the HamiltonianĤi. For this purpose one has to prepare
the atom in a superposition of the internal statesu1l and u2l
leading to the initial state

uCl =
1
Î2

fu1l + u2lguc0l

of the composite system of internal and external degrees of
freedom. Hereuc0l represents the initial state of the center-
of-mass motion. The time evolution as described above leads
to the state

uCNl ; uCst = NTdl =
1
Î2

fu1lucNl + u2lufNlg.

From this state the fidelity can be extracted by determining
the probabilityWNsud;edxuk jsudukxuCNlu2 to find the atom
in the internal stateu jsudl;s1/Î2dfu1l+e−iuu2lg. Here we
used the position statesuxl in order to trace over the external
degrees of freedom. We find

WNsud =
1

2
s1 + Refe−iukfNucNlgd

from which we can finally calculate the real and imaginary
part of the fidelity amplitude

Re f̃N = 2WNs0d − 1,

Im f̃N = 2WNsp/2d − 1.

These results provide us with the fidelity

FN = sRe f̃Nd2 + sIm f̃Nd2. s16d

Due to the constant potential terms in the HamiltoniansĤ1

and Ĥ2, Eqs.s14d and s15d, the measured fidelity amplitude

f̃N picks up a constant phase factor expf−isvhf−ddNg. Thus
the desired fidelity amplitude as defined in Eq.s6d is related
to the measured fidelity amplitude via

fN = eisvhf−ddNf̃N.

We now turn to the discussion of a possible experimental
implementation. The setup is similar to previous experiments
using sodium atomsf30g. We consider theD2 transition of
sodium. The hyperfine levels 32S1/2, F=1 and 32S1/2, F=2
with a level splitting of approximately 1.77 GHz serve as the
ground statesu1l and u2l. The exited stateuel can be chosen
to be the 32P3/2 state. If the interaction laser is tuned 2 THz
from resonancesto the blued of the D2 line, then the two
hyperfine components would experience a potential with
fractional difference of aboutd /K=0.001f48g.

In order to create the initial superposition of the statesu1l
and u2l we apply a Raman pulse which has to be copropa-
gating to avoid momentum change. The time evolution is
realized by applying laser pulses with the driving lasers in
order to create the momentum kicks. For the readout we
apply anotherp /2 pulse in the same way as for the prepara-
tion such that we have a sequence of twop /2 pulses with an
accumulated phase difference ofu between the two statesu1l
and u2l. The final measurement of the population in the hy-
perfine states provides us with the real or imaginary part of
the fidelity amplitude depending on the phase differenceu
=0 or u=p /2. For details on the experimental controllability
of the phase differenceu and the state-selective measurement
we refer to Refs.f44,45g. The experiment has to be repeated
with the other choice foru in order to measure the complete
fidelity FN, Eq. s16d.

VI. CONCLUSIONS

We have studied the stability of the quantum kicked rotor
under perturbations of the Hamiltonian. As a measure of the
influence of the perturbation we have used the fidelity in a
Loschmidt-echo situation, i.e., we considered the quantum-
mechanical overlap of two initially identically prepared
states propagated under two slightly different Hamiltonians.
We have found good agreement with the theoretical predic-
tions valid for the initial stage of the time evolution. In par-
ticular, we distinguished between a classically chaotic and
integrable regime and numerically confirmed the theoreti-
cally expected decay laws, namely an exponential and a
Gaussian decay for the chaotic and integrable case, respec-
tively. Discrepancies from the theoretical predictions can
also be distinguished, and have been attributed to the effect
of dynamical localization emerging in the model under con-
sideration. Moreover, we also discussed the long-time behav-

FIG. 10. Level scheme for the measurement of the Loschmidt
echo. A classical laser drives the transitionsuel↔ u1l and uel↔ u2l
of a three-level atom with excited electronic stateuel and two hy-
perfine ground statesu1l and u2l which have a level spacing ofvhf.
The laser is detuned byD from the transitionuel↔ u1l and byD
+vhf from the transitionuel↔ u2l.
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ior of the fidelity decay in its dependence on different initial
states. Clear signatures of the structure imprinted by classical
dynamics on phase space appear. We also briefly considered
the special case of quantum resonances and investigated the
transient regime between integrability and global chaos.

We additionally emphasize that our results are in agree-
ment with Refs.f7,35g. Both papers predict a wide variation
of the fidelity for pure states or states which average over
members of some basis. Our present study confirms these
claims for the example of the kicked rotor. In contrast to
what might be concluded from the title of Ref.f35g, we have
found that such averages over a specific basis will not pro-
vide unique information about quantum chaos, a fact, that
can also be inferred from the results of Ref.f35g for two
different bases in integrable situations. Insensitivity to the
choice of a basis might be some indicator of chaos, but is
certainly not a practical test since we cannot try out all basis
sets. Furthermore, some sensitivity exists also in the chaotic
case for short timesf46g. We do not present calculations for
random states as their experimental realization is by no

means obvious. Hence the corresponding claims in Ref.f7g
will be difficult to test experimentally.

We conclude by emphasizing that the parameters used in
our study correspond to experiments that can be carried out
with state-of-the-art technology. Indeed, all ingredients for
the proposed experiment based on atom interferometry are
already in operation.
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