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We propose an atom optics experiment to measure the stability of the quantum kicked rotor under pertur-
bations of the Hamiltonian. We avail ourselves of the theory of Loschmidt echoes, i.e., we consider the overlap
of a quantum state evolved in a perturbed and an unperturbed potential. Atom interferometry allows us to
determine the overlap integral in amplituded phase. A numerical analysis of the kicked rotor in various
regimes shows that the quantum signatures of specific classical properties can be detected experimentally.
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I. INTRODUCTION In this paper we concentrate on the model of the kicked

In the controversy between Loschmidt and Boltzmannfotor [26,27. lts classical dynamics given by the standard
concerning the time reversibility in thermodynamifs], ~ map[12] displays regimes from integrability to near com-
echo dynamics has played a central role. Around the sampglete chaos. In the quantum case it shows typical signatures
time similar considerations were made independently byf quantum chaos such as suppression of classical diffusion
Lord Kelvin [2]. During the last decades the idea of echoalso known as dynamical localizati¢@8]. The kicked rotor
dynamics was adopted in the field of quantum chaos to inhas become even more attractive since its atom optical real-
vestigate the stability of quantum motion. Since then, &zation [29] has opened a promising experimental testing
wealth of striking phenomena have emerd8e11]. In the  ground[30-37.
present paper we show that relevant signatures of echo dy- e apply the theory of Loschmidt echoes to the kicked
namics for the kicked rotor, a paradigm of quantum chaogotor and compare the cases of classically chaotic and regular
[12], can be measured with state-of-the-art technology ofjynamics. Moreover, we suggest a possible experimental
quantum optics. o setup for the measurement of the fidelity of the quantum

The rapidly expanding field of quantum chaos analyzeg;cyaq rotor. Thereby we exploit atom interferometry

the fi.ngerprints of classical chaos in quantum systems. .:%3,24,33 to propose a measurement of the Loschmidt echo.
classical systems the Lyapunov exponent allows us to distinz ur scheme is based on the dynamics of a coherent superpo-

guish two radically different types of motion, the regular sition of two atomic hvperfine states propanating in two
motion of integrable systems and the chaotic motion of non- liahtly diff t opi Iypt tials. Th P dp gt] g'd th
integrable systems. Such a classification is based on trajet?-Ig y ditterent optical potentials. 1he readout provides the

tories in phase space where the Lyapunov exponent is a me!’ae_al and imaginary part of the quantum-mechanical overlap

sure for the spreading of a bundle of adjacent trajectoriefNt€gral, i.e., fidelity amplitude. We emphasize that the pro-
originating from slightly different initial conditions. In con- P0seéd atom optical realization for the measurement of the
trast, the concept of phase-space trajectories becomes medilelity decay requires only state-of-the-art technologies. Our
ingless in quantum systems for times larger than the Ehrerumerical analysis constitutes preparatory work for possible
fest time. Only up to this time the system behaves essentiallgxperiments and yields deeper theoretical insight into the
classically and features such as the Lyapunov exponent afynamics of the kicked rotor. So far, echo dynamics has only
relevant[5,6,13,14. been studied8] in the semiclassical limit for chaotic situa-
Due to the intrinsic linearity of quantum-mechanics sen-tions.

sitivity to variations of initial conditions is absent. Therefore  Our paper is structured as follows: In Sec. Il we review
considerable interest in testing sensitivity to perturbations othe model of the quantum kicked rotor and summarize its
the Hamiltonian has emerged. These studies have mainly faime evolution. Section Il serves as an introduction into the
cused on the fidelity in echo dynami¢8-11,14-16 al-  theory of Loschmidt echoes in the regime of linear response
though other concepts have been UEEG-19. Experiments  and beyond. The results of our numerical analysis are pre-
have been carried out as early as 1950 in nuclear magnetiented in Sec. IV in detail. Section V is dedicated to the
resonance[20-22. Moreover, theoretical proposals have giscussion of a possible atom optical measurement of the

been put forward using ion trap23] and experiments per- figelity for the kicked rotor. Finally, we conclude with Sec.
formed in atom optic$24]. Another experiment using elec- ;.

tromagnetic billiard§25] is in progress.
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IIl. KICKED ROTOR lny = UV . (3

In orde_r to lay t_he foUnaatons for the stab|I|Fy analysis " Wwe conclude this section by presenting the Floquet operator
the following sections, we now briefly summarize the basics-

of the kicked rotor. In particular, we define the Hamiltonian U I the basis of the unperturbed momentum eigenstajes

as well as the Floguet operator describing the stroboscopihich fulfill the eigenvalue equatiop|p)=p|p). Since we
time evolution. eal with periodic boundary conditions we have a discrete
spectrump=Ik of the momentum operator. Thus we find
o |p)=|Ik) with |=0,+1,+2,... . Therefore in the momentum
A. Hamiltonian basis|Ik) the Floquet operator reads

We consider a particle with madd periodically kicked

" -i(1? e ’

by a sine potential with wave numbkg and amplitudei . U =2 e (K| UjieiIR) 1 R)(IK], 4)
Thus the time evolution of the quantum stéw® is deter- L
mined by the Hamiltonian where the matrix elements are simply given by a Bessel

. B2 o function (I'K|U e IRy =3, (K/K).

H =~ +fix sin(kyX) or(1), (1)

2M

where the kicks are modeled by a series of delta functions, Ill. ECHO DYNAMICS

o The idea of echo dynamics is to evolve an initial state
sr)y= > SUT-n) (2 fromt=0 tot=T with the HamiltonianH and subsequently
A backwards with a slightly perturbed Hamiltonigri. A com-
with tempora| Separatioﬂ]'_ For the case of periodic bound- parison of the echo state with the initial state mlght serve as
ary conditions the Hamiltonian, E¢l), describes the droso- & criterion for the stability of the system under perturbation
phila of quantum chaos, the kicked rotor. of the Hamiltonian.
It is convenient to introduce the dimensionless coordinate
0=kox and the momentunp=(k,T/M)p which fulfill the

commutation relationi 8, p]=ik with the scaled Planck con- A. Fidelity
stantk=%(k3T/M). Furthermore, we use the scaled tilNe For the quantum case the standard measure to compare
=t/T where the integeN counts the number of kicks. Con- the initial state|y,) with the echo evolved statig) is the
sequently, we find the new Hamiltonian, fidelity
A A A a ha - — f12 = |2
HET+V(0,N):%+Ksin051(N), F= 1= Kol I, (5)

where the fidelity amplitudé measures the complex-valued
consisting of the kinetic energy and the potential/(4,N), ~ ©Overlap between the two states.

with kick strengthK:hK(kgTle), and according to Eq2), We now apply echo dyngmicg, to theAkicked rotor. RAecaII—
we haved;(N)==,8N-n). In the classical limit we find for ing Eq. (3) leads to [ =[UU™NUN g with U,
K<1 a globally stable phase space whereasKerl the =exd-idsind/k], i.e., we use a perturbed potential with
phase space is near globally chaotic. amplitudeK + 8, where we assumé to be a small perturba-
tion. To this end we insert the expression fa‘) into the
B. Time evolution definition of the fidelity, Eq(5), and finally find

We now turn to the time evolution. Due to the strobo- —lf 12— S NN A2 2
scopic kicks with the potentia¥ we reduce the continuous Fn=Iin= [llUUaI U o)l = ol (©)
time evolution to a discrete map. Between two kicks thewe emphasize that this expression can be reinterpreted as the
potentiaIAvanishes anq the staig) evolves freely according overlap between the forward propagated states)
t0 [ =Uged thy) With Ugee=exp—ip?/(2k)]. Only for inte- = UN|yp) and| ¢y =[UU N1 starting both from the same
ger timesN the potential energy dominates the kinetic energyinitial state|).
and we can omit the latter, i.e., the kick transforms the state

according toLAJkick|¢ﬁ,> with Ukickzexp[—iK sinb/k]. Hence

the statdn.,) immediately after théN+1)st kick is related B. Linear response and beyond
to the statgyy) by the map Since the perturbatiod is assumed to be small with re-
R gard to all other parameters, it stands to reason to treat the
lns1) = Ul problem perturbatively withs as the smallness parameter. A

R detailed general analysis of this problem was already worked
with the Floquet operatod =U,;Usee Consequently, the out by Prosen and co-workefg] and in the linear-response
state afteN kicks is connected to the initial staléy,) via regime the fidelity reads
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P N-1 ot 5—
Fu=l-13 > TC,,+ O (7) N = exr{- QCNZ} , (11)
w,v=0
which can be exact in many semiclassical situatigh34.
Note, that the results, Eq$10) and (11), are in direct
C = sind. sin 8 contradiction[ 7] with the original work of Peref4]. Indeed,
o = {olSin 6,8in 6,11k this fact gave rise to plenty of confusion and false conclu-

involves the time-dependent position operatige=U""gU”  Sions. We emphasize that integrable systems hageneric
in the interaction picture. Moreover, the time ordering operaPehavior, and therefore fidelity will depend in a more sensi-

tor T accounts for the noncommutativity of the operators afve way on th_e initial state. In ther words, '_[he decay of
different timesu and ». correlations might be quite atypical for particular states.

Equation(7) shows clearly that the behavior of the fidelity Moreover, the harmonic component of a stable island stabi-

as a function of the kick number is solely determined by theIlzes the quantum motion of coherent states near the center

two-time correlation functiort, , whereass andk are scal- of this island, as we shall see in Fig. 8. Indeed, Peres used a

ing parameters. Consequently; the fidelity reflects the distinc;fqhe(rjem stl?te ”?t thet ve_ryI(;enFetr of ak?l |slantd, an_d thus Obl'
characteristics of this correlation function in the classically ained results quite atypical for intégrable Systems in general.

integrable and chaotic regimes. The further analysis makegVen |Lwe avera:ge or\]/er a f'ﬁﬁ. set tOf orthotg”otr)lal statest, the
use of these differences in order to find simpler expression ependence on the choice of this set may still be very strong
for the fidelity. as pointed out by Ref35]. Only random states in anhar-

monic integrable systems will display something akin to a

generic behavior. However, random states go beyond the

scope of the present paper since they are of little interest for
In the classically chaotic reginfd7] we can assume that the proposed experiment.

for times larger than the Ehrenfest timg, that is, when an In the next section we test numerically the scaling behav-

initial wave packet has spread over the whole phase spacwr of Egs.(8) and(10) as well as the validity of Eq$9) and

the correlation function becomes independent of the initial11) for different values ofK corresponding to the chaotic

state. This assumption implies that the correlation functiorand integrable regime.

depends only on the time difference—or in our case the dif-

ferencew—v in the number of kicks. If we additionally as-

sume that the correlation function decays sufficiently fast for

increasing|—v|, we find in the linear-response regime the  We now turn to our numerical simulations and investigate

For the kicked rotor the two-time correlation function

1. Chaotic case

IV. NUMERICAL ANALYSIS

compact expression the behavior of the fidelity as a function of the kick number.
£ We start mostly with single momentum eigenstates but con-
Fehaos= q — 2-5CN, (8)  sider also Gaussian packets in momentum space and mixed
k states. We first focus on the chaotic and near-integrable cases

and then present the case of mixed dynamics sometimes re-
ferred to as soft chaos.

We illustrate the results of our simulations using a phase
ss‘ﬁace spanned by the coordinateand the momentunp.
Momentum eigenstatgtk) with 1=0,+1,+2,... are repre-
sented as a uniform distribution of areakin phase space

where the constart can be calculated from the correlation
functionC,, ,. Its explicit form is given in Ref[7].

This analysis can be extended beyond the linear-respon
regime by heuristically assuming E@®) to represent the first
two terms of an exponential,

. P what reflects the uncertainty relation betwegandp. It has
FN %= expg - 25CN . (9)  anextension in the direction ofk centered around the value
Ik.

For the case of Gaussian statistics of the two-time correlation For the simulations of fidelity decay we choose the per-
function, this result is exact. Even for non-Gaussian statisticturbation strengt=0.02 in all figures, as similar values are
this approximation can be extremely accurgt6]. correctly related by the scaling properties E@.and (10).

2. Integrable case A. Chaotic case

In the classically integrable case we find a different be- |n order to be in the globallfnea) chaotic regime we
havior since the time average of the correlation function conchooseK =10. Figure 1a) displays the global structure of
verges to a constaitt Using this characteristic property to- phase space in a Poincaré plot. No stable islands can be seen.
gether with Eq(7) we arrive at a quadratic time decay

1. Momentum eigenstates

FN=1- %CNZ- (10 We chose two initial momentum eigenstates Wit and
=16, respectively, and=0.15. In Fig. 1a) we have shaded
As in the nonintegrable case, we can extend this expressicdhe area occupied by the initial momentum eigenstate. In
to a Gaussian decay Figs. Xb) and Xc) we show the fidelityFy as a function of
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FIG. 2. Fidelity decay averaged over many different momentum
eigenstates in the nonintegrable regime. The curves show an expo-

FIG. 1. Fidelity decay in the nonintegrable case. (& the  nential behavior as predicted by E@) except of the plot corre-
Poincaré plot of the classical phase space is showK #t0. Since  sponding tok=0.2. This discrepancy is not explained by the theory
this corresponds to a globally chaotic regime no stable island i®f Sec. lll B and is a consequence of dynamical localization. We
visible. The shaded regions denote phase-space representationsh@ve fitted the exponential functions to the range where the expo-
the momentum eigenstatés=0) and|p=16k). The decay of the nential decay occurs. The fidelity saturates due to the effectively
fidelities corresponding to these two initial states are shown)in finite size of the Hilbert space. The dashed horizontal lines mark the
and(c). The thick line depicts the fidelityy, whereas the thin line position of the resulting plateaus... We chose agaiiK=10 and
represents the square of real part of the fidelity amplifiydend the ~ 6=0.02.

dotted line the square of the imaginary part, respectively. The pa- . .
rameters ar& =10, k=0.15, ands=0.02. too short to explain this result. We thus have to conclude that

the correlation function decays more slowly than expected
) ) o ~and we have checked numerically that this is indeed the case.
the kick numbem on a semilogarithmic scale. For both ini- while this anomaly is not understood in full detail, it is clear
tial states the fidelity decays exponentially in the beginninghat exponential decay originates from the fact, that the cor-
but saturates after a certain number of kicks and fluctuateglation function decays to zero. Yet a finite dimensional Hil-
around a mean plateau. The homogeneity of the Poincaigert space creates some residual correlations. This causes a
plot explains their similar behavior. This decay of the fidelity Gaussian decay, which always competes with the exponential
Fu is in good agreement with the theoretical predictions pre-one. For very large Hilbert spaces, however, it will become
sented in Sec. Ill. The plateau is due to dynamical localizaquite insignificant. Dynamical localization restricts this di-
tion, as we shall see later. mension. For large enough values of the effective Planck’s
In addition to the fidelityFy, we also display the square constant this Gaussian decay will dominate the exponential
of the real and imaginary partRefy)2 and (Im fy)2 of the ~ one. We wish to point out that the anomalously long corre-
fidelity amplitudefy, since our proposed experiment allows a ations found in the chaotic regime are in the range of effec-

measurement of both of this quantities. Whereas the real paf/€ K v]f\lues which alre inan expeéimentﬁlly feasli'ble domain.
determines the short-time behavior of fidelity, the plateau is We fit exponentlasﬂexr{—N/q( )]tot € near linear part
due to both parts. of the curves. To test the scaling law with respecktae

consider the pairwise ratio of the slopes. When we assume an

5 Mixed states essentiallyk-inde_pendent correlation functiofi we expect
: from Eq.(9) a ratio of 2.25 and 2.78 for the paks 0.05 and
In order to average out the fluctuations in the fidelity wek=0.075, respectivelyk=0.075 andk=0.125. The corre-
use an uniform incoherent superposition of many momentunsponding ratios following from the fits are 1.87 and 2.52.
eigenstates as initial state. This approach allows us a quantoth numerically determined ratios are below the theoretical
tative comparison with the approximate analytic expressionsounterparts. This discrepancy reflects the fact that after
and the ensuing scaling laws. The results kr0.05,k  many kicks linear response is no longer exact. In particular,
=0.075,k=0.125, anck=0.2 are plotted in Fig. 2. we find that for growing smallness parametérk)? the de-
Again we recognize the exponential decay of the fidelityviation becomes larger. Moreover, for our theoretical estima-
but the fluctuations are now smoothed and clearly definedons we have neglected tikedependency of the correlation
plateaus emerge. Fd&=0.2 on the other hand we find a function.
notable deviation from linear decay at short times. One We note that we have also checked the fidelity decay for
might suspect that this deviation from linear behavior is aGaussian-like initial states and found that the results do not
manifestation of the Zeno effect, since for a small nun¥er considerably differ from the incoherent superpositions shown
of kicks and for the case that the correlation functipn, can  in Fig. 2. This can be understood since due to the completely
be assumed to be constant in this regime, we Bgt=1  structureless phase space the fidelity does not depend on the
- (821K Cy N2, However, the time scale of this effect is far initial state.

Position § ——
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FIG. 3. Mean energy of the kicked rotor as function of the kick numbér dynamical localizatiorfleft) and for a quantum resonance
(right). In the case of localizatiofleft) the mean energy starts to grow linearly analogously to the classical diffusion, but for larger kick
numbers it diverges from the linear growth and turns into an oscillatory, bounded behavior. For the left figure we hav&=zddden
However, for a slightly differenk=47/100=0.125 663 %- we are on a quantum resonar(cdght). Here, the mean energy shows an almost
perfect quadratic growth. In the insets we have plotted the momentum distribution of thi/ghedéter N=2000 (left) and N=300 (right)
kicks in a logarithmic scale. While the exponential decay as a typical indication for localization is clearly visible on the left, the decay is
clearly nonexponential on the right. The latter indicates that for quantum resonances the system does not localize. For both plots we have
used the parametét=10 and the initial statgp=0).

3. Plateau contrast to the exponential decays depicted in Fi¢fs). 4nd

In order to understand the appearance of the plateaus V\?éC). This behavior results from the pure quantum origin of

recall the phenomenon of dynamical localizat[@8]. After e resonances. In fact, they are a result of constructive in-
a certain number of kicks the stalé,) reaches its‘ largest terference and can be interpreted as kicked fractional revivals
N

o 40]. Therefore the assumption that classical ergodicity and
extension in momentum space and does not grow any furth

A : ixing dominate the quantum evolution is no longer valid.
[27,36,317. The localization length. estimated 38] by The quantum system at a quantum resonance becomes solv-

K2 able in the sense defined by Calogg#a], in contrast to the
e (12)  trivial integrability resulting from the linearity of quantum
mechanics. This results in a behavior similar to that found
determines the effective dimension of Hilbert space. for the quantization of a classically integrable system. A de-
For the chosen parameter range the kicked rotor exhibiti@iled discussion is beyond the scope of this paper but is
dynamical localization as shown in Fig. 3. closely related to Ref42]
According to Ref[7] the height of the plateau is given by B. Integrable case
the inverse of the Hilbert space dimension. We assume that
due to the localization the effective dimensionality is deter-
mined byL, Eqg. (12), and thus we expect the plateaus to
emerge at

L=

Let us now turn to a classically near-integrable case. We

choose the kick strengti=0.5. The resulting Poincaré plot

with a richly structured phase space of stable trajectories is

depicted in Fig. ta). We therefore expect the fidelity to de-
F. = 4R2IK2. pend significantly on the choice of the initial state.

The theoretical plateaus., for the curves shown in Fig. 2 1. Momentum eigenstates

are represented by dashed horizontal lines and show good In order to highlight this dependence we present first two

agreement with the numerical results supplying the assumgimiting cases of momentum eigenstates. In Figc) Sve

tion that the dynamical localization influences strongly the

behavior of the fidelity decay.

1F

4. Quantum resonances

So far we have considered parameters where the syster =
exhibits dynamical localization. We now consider valueg of
where quantum resonances appear. Eotr the phase fac-
tor in the Floquet operator, E¢4), describing the free time

evolution between two kicks vanishes adds simply given

by Uik Therefore all kicks are in phase and add up coher-
ently leading to a quadratic growth in energy. In fact also for ~ 001 -
k=4m(p/q) with p andq are mutually prime integers we find o 100 200 300
a asymptotically quadratic depender88] of energy due to

F.

01 ¢

Fidelity

. . ) Kicks N
constructive quantum interference. Figure 3 shows that even 1cKs
for the resonancep=1 and =100 leading to k FIG. 4. Fidelity decay for a quantum resonance. Hor
=0.125 663 7-- the quadratic growth is clearly visible. =47/100 the fidelity.Fy shows a Gaussian decay although the pa-

Figure 4 shows the fidelity decay for the case of a quanrameters are witk=10 in the classically nonintegrable regime. For
tum resonance. The result—a Gaussian decay—is in shatpe plot we chose an initial state=0) and a perturbatio@=0.01.
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FIG. 6. Fidelity decay averaged over many different initial states
in the integrable regimK=0.5. The plot shows the Loschmidt echo
for three different values . Initially the decay is purely Gaussian

FIG. 5. Fidelity decay in the integrable regime. The Poincaréand finally saturates to a constant which reflects the nonvanishing
plot shown in(a) depicts the richly structured classical phase spacecorrelations in the integrable system. Note that the curves result
for K=0.5 which consists of only stable trajectories. Again we from averaging fidelities of types shown in Figbband Hc), that
choose two initial momentum eigenstatps0) and|p=13k) with is, they consist of rapidly and almost nondecaying contributions.
k=0.2. The uniform phase space distribution corresponding to theilhe dotted lines represent fitted Gaussian curves.
classical limit is given by the shaded areas(@ The dashed el- . . . . .
lipses represent Gaussian-like states which we used as initial states AS in the chaotic case we include in Fig. 5 the square of
for the fidelity decay shown in Figs. 7 and 8, where the dashed linetl€ real and imaginary parts of the fidelity amplitude. Again
show the contour at half maximum. (b) the distribution lies inan W€ find that the real part determines the short-time decay
area of almost flat trajectories leading to an stable dynamics a&/hich is now Gaussian. The oscillations in the fidelity for the
suggested by the nearly constant fideliy denoted by the thick initial state withl=0 originate from both the rgal and imagi-
horizontal line. The square of the regin line) and imaginary part Nary parts. For the approximate Floquet eigenstate With
(dotted ling show distinct variation and only their sum is balanced =13 We find that the decay of the real part is balanced by an
out to a constant. Ifc), where the initial distribution lies in an area iNCrease of the imaginary part as they oscillate with opposite
of closed trajectories, the fidelity shows initially a Gaussian decayPhase. This results in an almost constant fidelity.
and ends in bounded oscillations. This behavior we find also in the 2. Mixed states
real and imaginary part where the initial decay is governed by the
real part.

Position 0 —»

In order to average out the dependence on different initial
states in Fig. 6 we use again a mixed state which consists of
o ) o many equally weighted momentum eigenstalies We com-
have chosen an initial stai) with I =0 which is embedded pare the averaged fidelity for the three different valueg of
in a region of phase space dominated by closed trajectories.0 2 k=0.4, andk=0.8. In contrast to the chaotic case we
In contrast in Fig. B) we select a state with=13 covering  find now a Gaussian decay of the fidelity, in agreement with
a phase-space region of almost flat trajectories, which mimi¢ne theoretical prediction given in E¢l1). We have fitted
the shape of momentum eigenstates. This difference in th@aussiang’exd -N?/o?] to the fidelity decay and found the
initial states is reflected in the time evolution of the corre-ratio of width to be 1:2.07:3.91 which is in good agreement
sponding fidelities. In the first case we find the Gaussiamwith the prediction of Eq(11). This agreement indicates that
decay predicted by qul) f0||OW6d by an OSCi||atOI’y be' E does not depend Strongly on the paramemrs
havior. The second case is characterized by an almost con- |n the chaotic case we have seen a deviation from(®q.
stant fidelity. due to the fact that the Hilbert space becomes small for large

In a semiclassical picture this can be easily understoodk as a consequence of localization. A similar deviation from
The initial phase-space distribution, shaded in the Poincargq. (11) does not occur because the correlation functions
plot, Fig. 5a), evolves according to the classical trajectories.saturate at higher values than those that result from the di-
The fidelity can then be interpreted as the overlap betweemension of these spaces.
two such distributions evolving along slightly different tra-
jectories corresponding td andK+ 4. In the case depicted
in Fig. 5(c) the distributions circulate with almost constant ~ So far we have only discussed momentum eigenstates and
frequency near the center of the island, which causes théeir incoherent superpositions. We now address the question
regular oscillations, while the variable frequency in the outerof stability of coherent superpositions using Gaussian states,
parts cause the Gaussian decay. The almost constant fidelity i) = NS exd - pz/(4a'§):||p), (13)

p

3. Pure Gaussian initial states

in Fig. 5(b) suggests that the momentum eigenstate is almost
exactly an eigenstate of the Floquet operator. This seems
rather obvious, because the flat trajectories do not considein momentum space with the normalization const&htwe
ably change the shape of the initial distribution. calculate the fidelity decay for the two different values
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FIG. 7. Fidelity decay for Gaussian-like initial states(#we show the result for the initial state, E4.3), with o,=k. This corresponds
to an almost equal position and momentum distribution centered at the origin of phase space, as illustratedantyigh& egg-shaped
ellipse. The fidelity decay for an initial state with broad momentum distribution and localized in pdsited(k) is shown in(b). We have
again symbolized this state by the stretched ellipse in Fa). B both plots we show again the fidelithick line) and the square of the real
(thin line) and imaginary partdotted ling. The parameters at€=0.5,k=0.2, and5=0.02.

=k ando,= 10k for the momentum width. The corresponding generic behavior. Indeed, we place a Gaussian staté1Bx).
distributions in phase space are represented by the twat the center of the integrable island, i.e., at the pdint
dashed ellipses centered at zero momentum and position #-7/2 p=0) shown as dashed ellipse in Figah and an-
Fig. 5@). The resulting fidelity, as well as its squared realpther Gaussian state exactly at the principal unstable fixed
and imaginary parts are shown in Fig. 7. In both cases Weoint (7/2,0). As discussed above, the former is precisely

again find the expected Gaussian decay. However, only in e ing of state used by Peres and whose unsurprising be-
second case this decay originates from the real part, whereE

the imaginary part defines the plateau. In the first case bot Avior can be seen in Fig(@. Rather more interesting is the

. ; econd case shown in Fig(l8. We presume the regular
the decay and the plateau result from a complicated interpl . N ;
of real and imaginary part. 3ehavior of the fidelity resulting from the fact that the Gauss-

ian wave packet covers not only the hyperbolic fixed point,
4. Plateaus and oscillations but also its surrounding. Thus the fast irregular oscillations

For different states the f|de||ty after many kicks resu]tst”OW from the unstable fixed pOint whereas the slow envel-
either in plateaus or in oscillations, where the latter areoping oscillations are reminiscent of the elliptic trajectories.
washed out in the incoherent averages. For momentur/e shall not go into more details, but rather refer to the
eigenstates shown in Fig. 5 the time at which the fidelityextensive, though probably not exhaustive discussion of such
deviates from the Gaussian decay law varies from around 48 situation in Ref[43]. There, the authors discuss dynamics
kicks to infinity, with an upper bound of the fidelity in that near the top of a repulsive oscillator, which is the classical
range from near unity to 1. For coherent statéig. 7) we  example of a hyperbolic point of this type.
find a time of roughly seventy kicks and after the decay the
fidelity varies from 10! to 1072

The oscillations apparent in Figs(ch and 7a) are quali-
tatively .UﬂderStOOd in terms of the classical freqluenCieS in- So far we have ana|yzed the Stabmty of quantum motion
the mean value of the momentum eigenstate, Fig), 8lis- \yas globally chaotic or near integrable. Although the theory
play one basic frequency. Similarly, the coherent state withyegented in Sec. Il makes no statement about the interme-

o,=K is determined by the same basic frequency as seen 'Fiate regime, we complete our investigations with numerical

the 1=0 momentum eigenstate. However, the beatings Ofog s e choosk=0.1 and calculate the fidelityFy for

higher frequency components blot out the ground frequenc o itterent values oK reaching from global chaos to situ-
entirely indicating the central role of interferences. Yet the

real and imaginary parts individually still display this fre- ations where the Poincaré plot shows stable islands, as de-

guency quite clearly. The coherent state underlying Fig) 7 picteq in the inslet O{.Fi%' .9' We fpcusfonhthb:w momehn—
apparently contains so many different frequencies, that it bel™M €lgenstate localized In a region of phase space where we

haves quite similar to an incoherent superposition shown i§XP€ct the primary islands to appear in the Poincare plot. For
Fig. 6, though the near eigenstates of the Floquet operatdp€ K values(K=12, 9, 8, and J, all corresponding to the

are represented with less weight than in the incoherent syl€ar chaotic regime, the decay is exponential as expected.
perposition. The height of the plateau in the incoherent suHowever, the slope of the decay is not a monotonic function
perposition of momentum states is simply explained by thef K. For theK value K=3, where the surface of section
large portion of momentum eigenstates that are almost eigeghows stable islands in phase space the decay can be char-

C. Dependence on the kick strength and soft chaos

functions of the Floquet operator. acterized by two distinct features. It behaves exponentially
_ ) on a longer time scale whereas it shows oscillations on a
5. Stable and unstable fixed point shorter one. In the short-time regime we recognize the

We conclude our considerations of the integrable regimésaussian decrease typical for the integrable case. On the
by inspecting two special initial states which have very nondonger time scale the exponential decay is still present on
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FIG. 8. Fidelity at stable and unstable fixed points. Shown are the fidglitythick line) and the square of the reéhin line) and
imaginary par{dotted ling of the fidelity amplitude as a function of the kick numidérin & we have placed a Gaussian state of widkk
at the center of the stable islarte7/2,0). As expected, the fidelity displays oscillations corresponding to the classical frequencies. In
contrast, in(b) the Gaussian state is placed at the unstable fixed paifz,0) and shows highly nongeneric behavior. As parameters we
choseK=0.5 andk=0.2.

average. Therefore from Fig. 9 we can conclude that in the. p? /0 ot
intermediate regime characteristics of both limiting cases ar&lint= ot haole)(el + 7C05{kLX+ eUe"lex1] +H.c.
present.
with the Rabi frequency)=(u-€)E/7%. A large detuningA
=wo— w allows us to adiabatically eliminate the excited state

V. ECHO EXPERIMENTS WITH ATOMS le) leading to the Hamiltonian
~n2
The kicked rotor in its realization of a kicked particle can H,= 2p_M + fireq[ Sin(2k, x) + 1] 54(t) (14)

be experimentally modeled by an atom in a standing light
wave and is nowadays routinely implemented in many labgor the ground statél) in a frame rotating with the laser
[30,31). Typically such an experiment consists of an atom offrequency. Here we introduced the interaction strenggh
massM where two electronic states with'level spacing =0?/(8A) and chose the phasg appropriately. Moreover,
denoted by the ground stas) and the excited state), aré  the periodic kicks theoretically described by the traindof
driven by two counterpropagating laser fields. The digole f,nctions in Eq.(14) can be approximately realized by rap-
Qf this transition is coupled to the electromagnetic fieldid|y switching on and off the laser fields with peric
E(x,t)=Eecogk x+ ¢ )e"“+c.c. of the lasers with wave Therefore the Hamiltonian Eq(14) corresponds to the
numberk, frequencyw, complex amplitudef, polarization ~ Hamiltonian of the kicked rotor, Eq1), in its realization of

¢, and phasep,. The Hamiltonian describing this interaction a kicked atom. The additional constant potential leads only to
reads in rotating wave approximation a global phase factor.

In order to measure the Loschmidt echo an analog setup
can be applied if we additionally make use of atom interfer-
ometry [23,24,33. For this reason we take again an atom
with excited electronic statge) but two hyperfine ground
states|1) and|2) separated by the hyperfine splitting;, as
illustrated in Fig. 10. Following the same procedure as above

l‘f g for large detuning\ we can again eliminate the excited level
§ 107 | and find for the two ground states the Hamiltonil%tg1
= 50 =H, 11|+ H,|2)(2] with
10° E ‘ A 52
o H,= M + fioops + [ SIN(2K X) + 1] 87 (t). (15

- 0 K
Position § —

0 100 200 Here we analogously defined
Kicks N 02

FIG. 9. Fidelity decay approaching the intermediate regime. d
Shown is the decay of the fidelit¥y for five different values oK, . .
constantk=0.1, and|lk=0). For K=12, 9, 8, and 7, that is, for Where d=kjwn/(A+wy). We mention that the physical
globally chaotic phase space, the decay is exponential as expecte@ijantity d is connected with the scaled perturbation, intro-
but no clear trend for the decay length can be recognizedKFor duced in Sec. Ill, viad=#d(k3T2/M).
=3 where the phase space shows stable isl@®isinsetthe decay The motional state of an atom prepared in an internal

is characterized by both the exponential decay and oscillations. superposition of statd4) and|2) propagates in two different
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le) Im Ty = 2Wy(7/2) - 1.
These results provide us with the fidelity
Fu=(Refy)?+ (ImTy)2. (16)
Due to the constant potential terms in the Hamiltoniﬁns
|2> andH,, Egs.(14) and(15), the measured fidelity amplitude
Whe 1 fy picks up a constant phase factor pxigwn;—d)N]. Thus
Y 1 the desired fidelity amplitude as defined in E@). is related
A 4 | ) to the measured fidelity amplitude via
y___Y___. ), = el ONF

FIG. 10. Level scheme for the measurement of the Loschmidt \We now turn to the discussion of a possible experimental
echo. A classical laser drives the transitigels—[1) and|e)<[2)  jmplementation. The setup is similar to previous experiments
of a three-level atom with excited electronic stéeand two hy- using sodium atom§30]. We consider theD, transition of
perfine gro_und statd4) and|2) which havg_a level spacing @fj.;. sodium. The hyperfine level$S,,,, F=1 and 3S,,, F=2
The laser is detuned by from the transitionje) —[1) and byA \yith 4 level splitting of approximately 1.77 GHz serve as the
+ e from the transitiorie)  |2). ground state$l) and|2). The exited statée) can be chosen

A . to be the 3P, state. If the interaction laser is tuned 2 THz
potentials described by the Hamiltoniahls and H,, Egs.  from resonancéto the blug of the D, line, then the two
(14) and (15), respectively. Indeed, this is exactly the situa- hyperfine components would experience a potential with
tion we need to realize a Loschmidt-echo experiment witHractional difference of abou/K=0.001[48].

perturbationd. In order to create the initial superposition of the statgs
We are now in the position to measure the fidelity and|2) we apply a Raman pulse which has to be copropa-
gating to avoid momentum change. The time evolution is
F= ﬁN|2: |<¢o|0£N0T|¢o>|2 realized by applying laser pulses with the driving lasers in

order to create the momentum kicks. For the readout we

introduced in Eq(6), whereUi describes the time evolution "’.‘pp'y anothetr/2 pulse in the same way as for the prepara-
tion such that we have a sequence of @ pulses with an

with the H_amiltoniarHi. I_:_or this purpose one has to prepare 5ccumulated phase difference between the two statés)
the atom in a superposition of the internal stdgsand |2) and|2). The final measurement of the population in the hy-

leading to the initial state perfine states provides us with the real or imaginary part of
the fidelity amplitude depending on the phase differetice
[Py = i_[|1> +12)1|%0) =0 or =/ 2. For details on the experimental controllability

V2 of the phase differencéand the state-selective measurement

we refer to Refs[44,45. The experiment has to be repeated
of the composite system of internal and external degrees afith the other choice fop in order to measure the complete
freedom. Herd ) represents the initial state of the center- fidelity Fy, Eq. (16).
of-mass motion. The time evolution as described above leads
to the state
VI. CONCLUSIONS

[Py = [W(t=NT)) = %[|1>|¢N> +(2)[ )] We have studied the stability of the quantum kicked rotor
& under perturbations of the Hamiltonian. As a measure of the
grfluence of the perturbation we have used the fidelity in a
" - . 2 , oschmidt-echo situation, i.e., we considered the quantum-
the pro!oab|I|tyWN(0)ffd>4<1(9)|§l(|\pN>| _tIC; find the atom o hanical overlap of two initially identically prepared
in the internal statelj(6))=(1/v2)[|1)+e""|2)]. Here we  giaiaq propagated under two slightly different Hamiltonians.
used the position statés in order to trace over the external We have found good agreement with the theoretical predic-

From this state the fidelity can be extracted by determinin

degrees of freedom. We find tions valid for the initial stage of the time evolution. In par-
1 ticular, we distinguished between a classically chaotic and
WN(9):—(1+R€[e_i0<¢m|¢m>]) integrable regime and numerically confirmed the _theoret|—
2 cally expected decay laws, namely an exponential and a

) ) ) _ Gaussian decay for the chaotic and integrable case, respec-
from which we can finally calculate the real and imaginarytively. Discrepancies from the theoretical predictions can

part of the fidelity amplitude also be distinguished, and have been attributed to the effect
_ of dynamical localization emerging in the model under con-
Refy=2Wy(0) -1, sideration. Moreover, we also discussed the long-time behav-
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ior of the fidelity decay in its dependence on different initial means obvious. Hence the corresponding claims in Fef.

states. Clear signatures of the structure imprinted by classicatill be difficult to test experimentally.

dynamics on phase space appear. We also briefly considered We conclude by emphasizing that the parameters used in

the special case of quantum resonances and investigated tber study correspond to experiments that can be carried out

transient regime between integrability and global chaos.  with state-of-the-art technology. Indeed, all ingredients for
We additionally emphasize that our results are in agreethe proposed experiment based on atom interferometry are

ment with Refs[7,35]. Both papers predict a wide variation already in operation.

of the fidelity for pure states or states which average over

me.mbers of some basis. Our present study confirms these ACKNOWLEDGMENTS
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