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We present a quantum mechanical treatment for both atomic and field fluctuations of an atomic ensemble
interacting with propagating fields, either in electromagnetically induced transparencysEITd or in a Raman
situation. The atomic spin noise spectra and the outgoing field spectra are calculated in both situations. For
suitable parameters both EIT and Raman schemes efficiently preserve the quantum state of the incident probe
field in the transfer process with the atoms, although a single-pass scheme is shown to be intrinsically less
efficient than a cavity scheme.
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I. INTRODUCTION

There has recently been a lot of interest in quantum com-
munication at the light-atom interface, with the prospect of
realizing quantum information networks composed of nodes
of atomic ensembles connected by lightf1,2g. A basic re-
quirement of such networks is the ability to perform
quantum-state exchanges between fields and atoms. There
have been various proposals to write, store, and read out a
field state onto a long-lived atomic spin, and several experi-
ments have already demonstrated the possibility to manipu-
late quantum states between field and atoms: on the one
hand, “slow-light” experiments based on electromagnetically
induced transparencysEITd f3g have shown that a pulse of
light could be stored and retrieved inside an atomic cloud
f4g. In the weak-probe regime conservation of the quantum
character of the pulse was predicted using the concept of
“dark-state polaritons”f5g, but remains to be demonstrated
experimentally. On the other hand, off-resonant interactions
have been used to entangle two atomic ensembles and map a
polarization state of light onto an atomic spinf6g, and the
mapping and storage of coherent states have been reported
very recently by Julsgaardet al. f7g. There are also several
proposals to realize a quantum memory using such a scheme
f8g. In recent works we studied how nonclassical light states
could be transferred to atoms and predicted quasi-ideal
quantum-state transfer between field and atoms placed in an
optical cavity, in both resonant and off-resonant EIT configu-
rationsf9,10g. In particular we showed that squeezed states
and Einstein-Podolsky-RosensEPRd states could be mapped
onto atomic ground-state spins with a high efficiency. We
also developed a method to read out the atomic state in the
field exiting the cavity, thus allowing quantum memory op-
erations in a controlled and efficient manner. In these calcu-
lations the cavity plays an important part to improve the
collective atom-field coupling which scales linearly with the
number of atoms. Moreover, the intrinsic noise coming from
spontaneous emission or ground-state decoherence is sub-
stantially damped by the cavity interaction, allowing in prin-
ciple quasireversible quantum-state exchanges between the

field and atoms. In the present paper we extend these cavity
results to single-pass interactions and show that good-quality
quantum-state transfers are also possible in either resonant
and off-resonant situations. We first present a general method
to calculate both the field and atomic noise spectra in a one-
dimensional propagation problem. We then apply it to the
case of a squeezed-vacuum input-field state and derive the
outgoing-field spectrum as well as the atomic variances, first
in resonant EIT and then in off-resonant EIT. For some pa-
rameters the atoms may be spin squeezed by the same
amount as the incident field. We analyze the mapping effi-
ciencies and the effect of ground-state decoherence, and
compare the results obtained in the single-pass schemes with
those of the cavity schemes. An important result is that, in
any situation, the efficiency increases faster with the number
of atoms in a cavity schemes~Nd than in a single-pass
schemes~ÎNd.

II. SINGLE-PASS SCHEME

In the following sections we address the issue of one-
dimensional field propagation through a dilute atomic cloud
of length L, cross sectionS, and containingN atoms uni-
formly distributed. We assume that the atomic cloud is elon-
gated with Fresnel number of order unity, so that the emis-
sion can be considered one dimensionalf11g. In order to take
into account transverse effects a three-dimensional theory
would be requiredf12g, which is beyond the scope of the
present paper. In the first section we introduce continuous
operators by dividing the atomic medium into transverse
slices, as inf13g, and we give the atom-field evolution equa-
tions. In the next sections we study the continuous interac-
tion of a coherent pump field and a squeezed-vacuum probe
field with the atoms, and calculate the spectra of the field
exiting the cloud in two situations: in “resonant EIT”—both
fields are one- and two-photon resonant—and in an off-
resonant EIT or “Raman” configuration—large one-photon
detunings, but two-photon resonance is maintained. These
situations have been shown to be the most favorable to the
conservation of quantum states during atom-field transfer op-
erationsf9,10,15g. For each configuration we also calculate
the atomic ground-state coherence variances and show that*Electronic address: dantan@spectro.jussieu.fr
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the incident-field state can be perfectly mapped onto the at-
oms.

A. Atom-field evolution equations

In order to treat the paraxial propagation problem we
write the positive frequency component of the copropagating
electric fields Ej s j =1,2d as Ej

s+dsz,td=E0jAjsz,tdeiskz−v j td,
where v j is the laser frequency,E0j =Î"v j /2e0SL, and
Ajsz,td is a dimensionless slowly varying envelope operator,
satisfying

fAjsz,td,Aj
†sz8,t8dg =

L

c
dft − t8 − sz− z8d/cg.

From the single-atom operatorssmn
j std sin the rotating frame

of their laser frequencyd one can define continuous operators
at positionz by averaging on a slice of lengthDz f13g:

smnsz,td = lim
Dz→0

L

NDz
o

zøzjøz+Dz

smn
j std.

Denoting the control field byA1 and the probe field byA2 the
interaction Hamiltonian can then be expressed as

H = − " o
j=1,2

E dz

L
NfgjAjsz,tds3jsz,td + H.c.g,

with gj =djE0j /" the atom-field coupling constants. The field
evolution equations are obtained from Maxwell’s propaga-
tion equations in the slowly varying envelope approximation

S ]

]t
+ c

]

]z
DAjsz,td = igjNs j3sz,td s j = 1,2d. s1d

The evolution equations for the atomic variables are given by
a set of Heisenberg-Langevin equations

]

]t
s13 = − sg + iD1ds13 + ig1A1ss11 − s33d + ig2A2s21 + f13,

]

]t
s23 = − sg + iD2ds23 + ig2A2ss22 − s33d + ig1A1s12 + f23,

]

]t
s21 = − sg0 − idds21 + ig1A1

†s23 − ig2A2s31 + f21,

]

]t
s11 = − g0s11 + gs33 + L1 + ig1A1

†s13 − ig1A1s31 + f11,

]

]t
s22 = − g0s22 + gs33 + L2 + ig2A2

†s23 − ig2A2s32 + f22,

]

]t
s33 = − 2gs33 − sig1A1

†s13 − ig1A1s31d

− sig2A2
†s23 − ig2A2s32d + f33,

where theDi’s are the detunings from resonance,d=D1−D2

the two-photon detuning,g the optical dipole decay rate
staken equal on both transitions for simplicityd, and g0 the
decay of the ground-state coherence, modeling collisions or
accounting for the transit of the atoms outside the interaction
area with the light beams. TheLi’s are chosen to maintain
the total number of atoms constantly equal toN. The fmn’s
ared-correlated Langevin operators, the correlation functions
of which are of the form

kfmnsz,tdfrssz8,t8dl =
L

N
Dmnrsdst − t8ddsz− z8d.

The diffusion coefficientsDmnrs can be calculated via the
quantum regression theorem.

B. EIT interaction

In the resonant EIT situationsD1=D2=d=0d, the presence
of the control field allows the probe field to propagate with
little dissipation. Correlations between pump and probe
fields have been investigatedf13,14g and observedf16g, and,
recently, the quantum character of a squeezed-vacuum probe
has been shown to be partially conserved in EITf17g, but
little attention has been paid to the atomic variables. We will
focus on the case of a coherent pump field and a zero-mean-
valued probe field with some quantum fluctuations over a
broad bandwidth—e.g., squeezed vacuum. In such a situation
all the atoms are pumped into level 2 in steady state and the
fluctuations of both fields are decoupledf9g. Moreover, the
fluctuations of the probe field are only coupled to the atomic
ground-state coherence and the optical coherences23. Lin-
earizing around this steady state one obtains, for the fluctua-
tions of the probe field amplitude quadratureX=A2+A2

†,

S ]

]t
+ c

]

]z
DXsz,td = − 2gNsysz,td, s2d

]

]t
sysz,td = − gsy + V jx +

g

2
X + fsy

, s3d

]

]t
jxsz,td = − g0jx − Vsy + f jx

, s4d

whereV=g1kA1l is assumed real, andsy=ss23−s32d /2i and
jx=ss21+s12d /2 are the fluctuations of the optical-dipole and
ground-state coherence. Similar equations relate the field-
phase quadrature, the other atomic componentssx and j y.

Fourier transforming these equations, one derives the
outgoing-field spectrumSXoutsvd, defined by

kXoutsvdXoutsv8dl = 2pdsv + v8d
L

c
SXoutsvd. s5d

Assuming that the incident-amplitude squeezing spectrum is
constant and equal toSXin over the frequency bandwidth con-
sidered, one gets

SXoutsvd = 1 − f1 − SXinge−sa+a* d, s6d

with
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asvd = − i
vL

c
+ C

gsg0 − ivd
sg − ivdsg0 − ivd + V2 .

We have denoted byGE=V2/g the optical pumping at reso-
nance and introduced a cooperativity parameterf9g

C =
g2N

g

L

c
.

The term inivL /c corresponds to the field dephasing due to
the propagation in vacuum. However, in EIT conditions, the
propagation is strongly modified: expandingasvd around
zero frequency yields the well-known result

asvd = A − iv
L

vg
+ Osv2d,

where

A = C
g0

g0 + GE
, s7d

vg =
c

1 +
g2N

g

GE − g0

sGE + g0d2

s8d

represent the absorption of the field and group velocity
change in EIT, which is drastically reduced wheng0!GE
!g2N/g f5g.

A typical spectrum is plotted in Fig. 1 for an initial-
amplitude squeezing of 3 dB and different values ofg0: the
interesting result is that the outgoing field is squeezed only in
a certain transparency window, of width

Dv . GEÎ ln 2

2C
S1 −

Cg0

GE
D ,

whenC@1 andGE@g0. Outside this window the outgoing-
field fluctuations are “absorbed” by the atoms and the field is
at the shot noise. Besides, the more atoms, the largerC and
the narrower the transparency bandwidth is. Last, an impor-
tant parameter isg0, which, although it can be made very
small with respect to the optical pumping and the spontane-

ous emission rates, can be responsible for a substantial
squeezing reduction at low frequency when the number of
atoms is largefsee Fig. 1 and Eq.s7dg.

It is also very interesting to look at what happens to the
atoms. As conjectured by Fleischhauer and Lukinf5g, and
predicted in a cavity configuration inf9g, the atomic coher-
ence may be squeezed by almost the same amount as the
incident field for a good choice of the interaction parameters.
The atoms are said to be spin squeezed when the variance of
one spin component in the plane orthogonal to the mean spin
is less than its coherent-state value. More precisely, we de-
fine collective atomic observables by integrating the continu-
ous operators over the cloud length:

Jmstd = NE dz

L
jmsz,td.

In our case the collective mean spin is completely polarized
along z, kJzl=N/2, and, for a coherent-spin state, one has
DJx

2=DJy
2=N/4. A spin-squeezed ensemble will haveDJu

2

,N/4 for some componentJu in the sx,yd planef18g.
From Eqs.s2d–s4d it is possible to compute the variances

of the ground-state spin coherence. The general method to
perform these calculations is detailed in the Appendix. It
yields the spectrum of the collective spin-squeezed coher-
enceJx of the squeezed component,SJx

svd, defined as

kJxsvdJxsv8dl = 2pdsv + v8dSJx
svd.

The atomic spectrum is found to be the sum of three contri-
butions:

SJx
svd =

N

4
fBfsvdSXin + Bcohsvd + Bspinsvdg. s9d

The first term in Eq.s9d is the coupling with the incident
squeezed-vacuum fluctuations and quantifies how much of
the incident-field squeezing is transferred to the spin,
whereasBcoh andBspin give the contribution of, respectively,
the atomic noise resulting from spontaneous emission and
the atomic noise due to the loss of coherence in the ground
state. Integrating over frequency yields the sought variance

DJx
2 ;E dv

2p
SJx

svd,

the exact expression of which is not reproduced here. How-
ever, when the incident field is ascoherentd vacuum state—
SXin=1—the atoms are in a coherent-spin state. This implies
a simple relation between the integrals of theB’s:

E dv

2p
fBfsvd + Bcohsvd + Bspinsvdg = 1.

In the case of an amplitude-squeezed input one can then
measure the efficiency of the squeezing transfer by compar-
ing the atomic squeezing to that of the incident field:

h ;
1 − sDJx

2d/sN/4d
1 − SXin

.

h=1 thus corresponds to perfect transfer,h=0 to no transfer
at all. Using the previous relations the efficiency is equal to

FIG. 1. Outgoing-field squeezing spectrum in EIT for different
values ofg0: sad 0, sbd g /1000, scd g /100, andsdd g /10. Param-
eters:GE=10g, C=100.
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h =E dv

2p
Bfsvd =E dv

2p

CGEg2

uDu2
u1 − e−au2

uau2
, s10d

with D=sg0− ivdsg− ivd+V2. For most relevant situations,
however, the field and optical dipole evolve rapidly com-
pared to the ground-state coherence, so that it is possible to
adiabatically eliminate them in Eqs.s2d–s4d and retrieve
simple analytical expressions for the atomic spectrum and
variance. In Fig. 2 we represent a typical atomic noise spec-
trum for typical experimental parameters. The atomic spec-
trum has a width proportional toGE/ÎC for largeC. In order
to maximize the transfer efficiency the pumping must be
chosen in the regimeg0!GE/ÎC!g. The efficiency can
then be shown to be

h . 1 −
Î2/p
ÎC

−
Cg0

GE
sC @ 1,g0 ! gd. s11d

A very good efficiency can thus be reached for a large coop-
erative behavior, and, as in the cavity scheme, the cooperat-
ivity is again the relevant parameter to quantify the transfer
efficiency. Note also that the ground-state decay rate can also
contribute to degrade the squeezing when the number of at-
oms grows large.

C. Raman interaction

We now consider a situation in which both fields are
strongly detuned with respect to the one-photon resonances
sDi @gd, but the two-photon resonance is maintainedsd=0d,
using a small longitudinal magnetic field, for instance. In this
off-resonant EIT or “9Raman” interaction one can eliminate
the optical dipole and write simplified equations for the
ground-state coherence and field:

S ]

]t
+ c

]

]z
DXsz,td = − 2g̃Njysz,td,

]

]t
j ysz,td = − sg0 + GRd j y +

g̃

2
X + f jy

,

whereGR=gV2/D2 is the Raman optical pumping ratesas-
sumed much smaller thangd and g̃=gV /D is the effective
atom-field coupling constant. Note that in this case the am-
plitude fluctuations are coupled to those ofj y. Following a
method analogous to the previous section the outgoing-field
noise spectrum can be written as

SXoutsvd = 1 − f1 − SXinge−sa8+a8* d, s12d

with

a8svd = − i
vL

c
+

CGR

GR + g0 − iv
.

The spectrum, plotted in Fig. 3, is radically different from
the EIT one; the squeezing is now absorbed around zero
frequency on a width

Dv8 .Î 2

ln 2
ÎCGRsGR + g0d,

and the spectrum broadens when the number of atomssor the
propagation lengthd is increased. For higher frequencies the
field comes out unchanged. Note also that, the optical pump-
ing rate being kept constant, the width of the spectrum no-
ticeably depends on the value of the ground-state decay rate:
as can be seen from Fig. 3 the central absorption peak width
increases withg0 as soon asg0,GR.

Concerning the atoms, one finds an atomic spectrum for
the spin component coupled toXin as represented in Fig. 4.
Although it is rather different from the EIT spectrum, the
transfer efficiency is remarkably similar:

h8 =E dv

2p

CGR

sGR + g0d2 + v2

u1 − e−a8u2

ua8u2
. s13d

In this case the atomic noise spectrum width depends on
ÎCGR, so that the good regime for quantum-state transfer is
this timeg0!ÎCGR!g. The efficiency, as in EIT, increases
to 100% with the cooperativity asC−1/2, but shows a differ-

FIG. 2. Noise spectrum of thex component of the spin in EIT
when the incident field is in a coherent statesSXin=1, dashed lined
and squeezed by 3 dBsSXin=0.5, solid lined, under the same pump-
ing conditionssC=100, GE=10g, g0=g /1000d. The transfer effi-
ciency ish=0.91 in the second case.

FIG. 3. Outgoing-field noise spectrum in a Raman situation for
the same values ofg0 as in Fig. 1. Parameters:GR=g /100, C
=100.
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ent sensitivity to the ground-state decoherence:

h8 . 1 −
Î2/p
ÎC

Î1 + g0/GR s14d

for C@1 andg0!g.

III. SINGLE-PASS vs CAVITY

It was shown inf9g that, if the atomic cloud was placed
inside a single-ended optical cavity, with an output coupling
mirror transmissionT, a quasi-ideal mapping of the incident
field is possible either in EIT or Raman. If we first consider
the EIT situation, the atomic spectrum is Lorentzian shaped
with width g̃0=g0+GE/ s1+2Cd, whereas the field exiting the
cavity is squeezed by approximately the same amount as the
incident field for all frequencies. This is a strong difference
with the single-pass scheme in which the outgoing field is
squeezed only in the transparency window—i.e., for low fre-
quencies. This is clearer when looking at the intracavity-field
fluctuationsX and relating them to those of the output field,
Xout=ÎTX−Xin:

Xsvd =
2
ÎT

1

1 + 2C
F1 +

2Cg̃0

g̃0 − iv
GXin +

iv

g̃0 − iv
F,

with F some atomic noise operator. For frequenciesv!g̃0,
X,2/ÎTXin, and the output-field fluctuations are those of the
incident field:Xout,Xin. This means that, the medium being
transparent in this frequency window, the intracavity field is
simply the incident field, and since there is no field radiated
by the atoms, the output field is the same as the input. How-
ever, at high frequencies, the intracavity-field fluctuations are
in Os1/Cd and the output field is equal to the reflected field:
Xout,−Xin. Indeed, outside the transparency window the
incident-field fluctuations are absorbed by the atoms which
radiate a field interacting destructively with the incident
field, Xr ,−Xin, so thatX~Xr +Xin.0. In contrast, in the

single-pass scheme, this reflected-field contribution to the
output field is of course not present, so that the squeezing
disappears outside the transparency window.

If we now compare with the Raman situation, this fre-
quency dependence is opposite. The intracavity-field fluctua-
tions can be written as

X =
2
ÎT

GR − iv

g̃0 − iv
Xin +

F8

g̃0 − iv
,

where the effective atomic decay rate is nowg̃0=g0
+s1+2CdGR and, again,F8 some atomic noise operator. At
low frequencies, one hasX.0, so that the output fluctua-
tions are those of the reflected field,Xout,−Xin. On the con-
trary, for frequenciesv@g̃0, X,2/ÎTXin and Xout,Xin.
This is again in good agreement with what was found for the
single-pass scheme.

Coming now to the atoms, a noticeable difference is the
transfer efficiency: in the cavity scheme the efficiency in-
creases to 1 as 1/C, whereas, in the single-pass scheme, the
increase is slower—in 1/ÎC. Physically, it means that the
atom-field interaction in a cavity withN atoms and an output
mirror transmissionT is not equivalent to a single-pass inter-
action with N/T atoms, even though the cooperativities are
then equal in both casessC=g2N/Tg in a cavityf9gd. This is
naturally due to the fact that the incident squeezing is re-
cycled inside the cavity on each round trip, whereas, in the
single-pass scheme, the atoms “see” less and less squeezing
along the propagation pass. This accounts for the fact that the
cavity scheme intrinsic atomic noise decreases as 1/N and as
1/ÎN in a single-pass scheme. First, in an EIT cavity con-
figuration and forC@1, GE@g0, the efficiency can be writ-
ten asf9g

h =
2C

1 + 2C

GE/s1 + 2Cd
g0 + GE/s1 + 2Cd

. 1 −
1

1 + 2C
−

s1 + 2Cdg0

GE
.

s15d

Comparing Eq.s15d with Eq. s11d it is clear that the differ-
ence in efficiency comes from the sensitivity to noise coming
from spontaneous emission, damped by a factors1+2Cd in a
cavity configuration and byÎC in single pass. Note, how-
ever, that the robustness of the mapping operation with re-
spect to the ground-state decoherence is the same in the cav-
ity and single pass, because the absorption is then linear in
the number of atoms effectively seen by the field—i.e., pro-
portional toC in both cases. This drawback can be overcome
with the use of a buffer gas, which can significantly reduce
the ground-state decay rate and increase the transfer effi-
ciency f4g.

For a Raman interaction this sensitivity is less crucial,
since its effect is to reduce the cooperativity fromC to
CGR/ sGR+g0d, as can be seen from Eq.s14d. This difference
with EIT comes from the fact that the range of frequencies
involved in the Raman interaction is broaderssee Fig. 4d than
in EIT sFig. 2d. In the latter the atomic noise reduction is
greater around zero frequency where the effect of ground-
state decoherence is the most important. In Fig. 5 is plotted
the transfer efficiency in both schemes when the cooperativ-

FIG. 4. Noise spectrum of they component of the spin for a
Raman interaction is in a coherent statesSXin=1, dashed lined and
squeezed by 3 dBsSXin=0.5, solid lined. Parameters:C=100, GR

=g /100, g0=g /1000. The transfer efficiency ish8.0.91 for a 3-
dB-squeezed input, as in EIT.
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ity is varied. It is worth noticing that, even though the in-
crease in efficiency is slower in a single pass than in a cavity,
an excellent mapping—h,100%—can be achieved for all
these schemes when the cooperativity is high enough.

IV. DISCUSSION AND CONCLUSION

It is therefore possible to map almost perfectly a
squeezed-vacuum field state onto a ground-state spin coher-
ence, results already predicted for a cavity scheme inf9g.
The same decrease in transfer efficiency is found in EIT or
Raman schemes as compared to the cavity schemes under the
same conditions. However, good-quality transfer remains
possible for very realistic parameters. Most properties rela-
tive to the transfer processes stress the importance of the
cooperative behavior of the atoms. If qualitatively the con-
clusions drawn in the cavity scheme remain valid in a single-
pass approach, quantitatively, however, the difference of
scaling with the cooperativity shows that the cavity scheme
is more efficient in many ways: writing and readout time,
mapping efficiency, robustness with respect to spontaneous
emission, etc. It is also interesting to note the differences and
similarities between Raman and EIT interactions in terms of
noise spectra, for instance. Good tests of this theory could be
provided by outgoing-field noise measurements, such as
those performed inf17g. We note that limitations may arise
from the imperfections of the one-dimensional theory. For
instance, diffraction effects or the issue of matching between
the field and atomic modes are expected to play an important
role f12,19,20g when the Fresnel number is not unity and
when the plane-wave approximation for the field is no longer
valid. In f10g it was shown that this quantum-state exchange
mechanism also extends to EPR-entangled fields interacting
with two ensembles in cavities. The calculations of this paper
naturally extend to such states in single-pass interactions,
provided suitable interaction parameters are chosen. Most
ideas developed inf9,10,15g are also transposable to single-
pass interactions, which should simplify the manipulation
and storage of quantum states in atom-field quantum com-
munication networks.

Note added. We recently became aware of similar work
on EIT by Penget al. f21g, who reach the same conclusions
about the outgoing-field spectrum in EIT.

APPENDIX: ATOMIC SPECTRUM CALCULATION

From Eqs.s2d–s4d it is possible to compute the variances
of the ground-state coherence. We would like to stress the
method to solve these space- and time-dependent coupled
differential equations, a method which is actually quite gen-
eral and may be applied to other situations. The idea is to
perform a Fourier transform in time and a Laplace transform
in space, in order to have a simple linear system. We stan-
dardly define the Laplace transform offszd as

ffsg =E
0

`

e−szfszddz,

and the Fourier transform ofgstd as

gsvd =E
−`

`

eivtgstddv.

The systems2d–s4d then becomes

s− iv + csdXfs,vg = cXs0,vd − 2gNsyfs,vg,

sg − ivdsyfs,vg = V jxfs,vg +
g

2
Xfs,vg + fsy

fs,vg,

sg0 − ivd jxfs,vg = − Vsyfs,vg + f jx
fs,vg.

From these equations one deducesjxfs,vg:

jxfs,vg =
B1

s+ s0
Xinsvd + B2

s− b2

s+ s0
fsy

fs,vg + B3
s− b3

s+ s0
f jx

fs,vg,

with Xinsvd=Xs0,vd, B1=−gV /2 /D, B2=−V /D, B3=sg
− ivd /D, b2= iv /c, b3= iv /c−g2N/csg− ivd, D=sg0− ivdsg
− ivd+V2, and s0=asvd /L. Using inverse Laplace trans-
forms one then gets the fluctuations of the atomic operators
at positionz:

jxsz,vd = B1e
−s0zXinsvd

+ B2F fsy
sz,vd − ss0 + b2dE

0

z

dz8e−s0sz−z8dfsy
sz8,vdG

+ B3F f jx
sz,vd − ss0 + b3dE

0

z

dz8e−s0sz−z8df jx
sz8,vdG .

Finally, integrating overz yields the collective spin fluctua-
tions

Jxsvd = B1N
1 − e−a

a
Xinsvd

+ NB2E
0

L dz

L F fsy
sz,vd − l2E

0

z

dz8e−s0sz−z8dfsy
sz8,vdG

+ NB3E
0

L dz

L F f jx
sz,vd − l3E

0

z

dz8e−s0sz−z8df jx
sz8,vdG ,

with li =s0+bi si =2,3d. Using the correlation functions of
the f ’s and of the incident field one deduces the expressions
of the functionsBf, Bcoh, andBspin of the atomic-field spec-
trum s9d.

FIG. 5. Mapping efficiency versus cooperativity in a cavity
schemesad and a single-pass interactionfsbd Raman,scd EITg, for
g0=g /1000.
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