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Spin textures in rotating two-component Bose-Einstein condensates
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We investigate two kinds of coreless vortices with axisymmetric and nonaxisymmetric configurations in
rotating two-component Bose-Einstein condensates. Starting from the Gross-Pitaevskii energy functional in a
rotating frame, we derive a nonlinear sigma model generalized to the two-component condensates. In terms of
a pseudospin representation, an axisymmetric vortex and a nonaxisymmetric one correspond to spin textures
referred to as a “skyrmion” and a “meron-pair,” respectively. A variational method is used to investigate the
dependence of the sizes of the stable spin textures on system parameters, and the optimized variational function
is found to reproduce well the numerical solution. In the(3Usymmetric case, the optimal skyrmion and
meron-pair are degenerate and transform to each other by a rotation of the pseudospin. An external rf field that
couples coherently the hyperfine states of two components breaks the degeneracy in favor of the meron-pair
texture due to an effective transverse pseudomagnetic field. The difference between the intracomponent and
intercomponent interactions yields a longitudinal pseudomagnetic field and a ferromagnetic or an antiferro-
magnetic pseudospin interaction, leading to a meron-pair texture with an anisotropic distribution of vorticity.
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I. INTRODUCTION the other nonrotating component. This vortex state was cre-

Since the experimental realization of quantized vortices irfted by Matthewset al. [1], where they utilized a phase
alkali atomic Bose-Einstein condensatB&ECs [1-4], there  imprinting technique by controlling interconversion between
has been a growing interest in new phenomena related tovo components spatially and temporally with an external
vortices in rotating BECs. A strongly correlated quantumcoupling field[7]. The structurd6] and dynamical stability
Hall-like phase may appear in systems which rotate so rag-10] of this vortex state have been studied. Here, the spinor
idly that the size of the vortex cores becomes comparableature of the order parameter allows us to interpret the vortex
with the intervortex separatidid]. Another direction that has state of the two-component BECs in terms of a “pseu-
not yet been explored so much concerns rich vortex phasefospin.” The pseudospin representation of the two-
in multicomponent BEC$6-11,14-22 Since alkali atoms component BECs reveals that the vortex state observed in
have hyperfine spin, multicomponent BECs can be realized iRef. [1] corresponds to a spin texture referred to as a “skyr-
more than one hyperfine-spin state is populated in the sammion” [15,29 or an “Anderson-Toulouse vorteX9,31]. A
trap[23,24]. The systems described by the multicomponentspin-1 analog of this texture was created by Leanheti.
order parameters allow the excitation of exotic topological[4] and theoretically studied in Refsl1-13.
defects that have no analog in systems with a single- Another coreless vortex which we discuss in this paper
component order parameter. For example, while a quantizeldas a nonaxisymmetric structure, which may be regarded as a
vortex in a single-component order parameter should have pair of “merons”[16,25,27 or “Mermin-Ho vortices”[32].
singular core, it is possible to excite a “coreleg¢gdnsingu-  This configuration can be realized when each component has
lar) vortex in multicomponent systems. On the analogy ofone off-centered vortex. Our previous study showed that an
such topological defects found in other physical systemsxternal driving field that couples coherently the internal hy-
such as superfluitHe [25], unconventional superconductors perfine states of the two components stabilizes a nonaxisym-
[26], quantum Hall system$27], nonlinear optics[28],  metric vortex stat¢16]. Then, the internal coupling induces
nuclear physic§29], and cosmology{30], creating exotic an attractive interaction between the vortex in one compo-
topological defects in atomic BECs could give us furthernent and that in the other, forming a “vortex-antivortex mol-
insight into related problems and offer a good opportunity toecule,” which is bound by a domain wdlbranch cutin the
study their physical properties in much greater detalil. relative phase spad@3]. In contrast to a vortex-antivortex

This paper addresses the structure and the energetic sfaair in conventional superfluid systems, this pair has circu-
bility of two kinds of coreless vortices in two-component lations of the same sign in each individual phase space, but
BECs based on ageneralized nonlinear sigma model has the opposite sign in thelative phase spac&hen more
(NLoM). One of them has an axisymmetric structure, inthan one vortex molecule is present, one component accomo-
which the core of one circulating component is filled with dates vortices and the other accomodates antivortices.
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It is known that the system of two-component BECs suchwhereQ=Qz, ¥, and¥, denote the condensate wave func-
as those studied by a JILA grolifh,23] approximately pos- tions in the two hyperfine states, agg g,, andg,, charac-
sesses the 38) symmetry owing to the near-equal scatter-terize the atom-atom interactions. Hegg g,, andg;, are
ing lengths within and between tHE=1,m:=-1) and |F expressed in terms of tteewave scattering lengthes, anda,
=2,m=1) hyperfine states of’/Rb atoms. Here, the two between atoms in the same hyperfine statesagapbetween
kinds of coreless vortex states are degenerate in a completedyoms in different hyperfine states as
SU(2)-symmetric system. However, adding an external per- ) )
turbation that breaks the $2) symmetry would make the _Amha (i=1,2, gp= Amh’ag 2)
stability problem of those vortex states nontrivial. We inves- oom I m

tigate their structure and stability by exploring the &\ of The last two terms in Eq(1) describe a coherent coupling

the two-component BECs, which is d_erlved “from a PSeUinquced by an external driving field, which allows atoms to
dospin representation of the Gross-Pitaevskii energy func:

. ! : : : : change their internal state cohereritB#]. Since the driving
tional. Using appropriate t.”al functlo_ns for the skyrmion o field is time-dependent, we have introduced the frame in
the meron-pair, we analytically obtain an almost exact spi hich the driving field is time-independefite., the frame of

profile for each case, which leads to a great improvemen laser field. Here,wg(>0) is the Rabi frequency antl is a

gﬂgn t;ZH‘%TJ?;FSQJIStﬁ)g;ogf'maaé:gi]éi\é\;?'m udrig;\l/" detuning parameter between the external field and the atomic
pap Y ransition. Throughout this paper, we et 0 for simplicity

as a variational function, a more general ansatz used here assuming a complete resonarias]
gives accurate profiles of the vortex states. Thé2dym- y 9 P X

metry is broken by the difference between the intracompo- I 'S conv_enlent t(i rpeasure t_hle length, time, an(_zl energy
cale in units ofby,=VA/Mw, ™, and hw, respectively.

nent and intercomponent two-body interactions, and by aéi - X = 30
: . ; . Renormalizing the wave function aB; — yNW;/b.~ with
| field which I h ly th I'h f . ! I**ho
external field which couples coherently the internal hyperfin ihe total particle numbeN=N,+N,, and the energy as

states of the two componenit$,34]. Under the pseudospin :
picture, they give rise to pseudomagnetic fields and £/ﬁwN_)E’ we obtain
pseudospin-pseudospin interaction, either of which has a
v, )= ol 3
i

1 2
great influence on the structure of spin textures. We do not 5‘ (Ti - QX r)‘I’i
discuss complicated skyrmion excitations with topologically
nontrivial spin profiles such as those studied in Rglf%,18. - U
After formulating our problem in Sec. Il, we derive in +V|‘I’i|2+5||‘1’i|4] + Uy WP W,
Sec. Il the NLoM that describes the two-component BECs.
Based on the N&M, we determine the optimized structure . .
of an axisymmetric skyrmion using a variational method in - “’R{\IIZ‘Pl"’\I’l\PZ}}' 3
Sec. IV. We determine the optimized structure of a nonaxi-
symmetric meron-pair in Sec. V. In Sec. VI we address thejere, we denote the trapping potential ¥s{(1-Q?)r2
effect of axisymmetry-breaking contributions on the tWo 4 ,2;2/2 with a=w,/w, the coupling constants as
kinds of spin textures. We conclude this paper in Sec. VII. =47a,N/ by, anduy,=4ma;,N/ by, Since the particles of one
component can convert into the other if the internal coherent
Il. FORMULATION OF THE PROBLEM coupling is present, the tot_al particle nuthlzale+N.2 is
conserved, and the normalization of the wave functions can
We consider two-component BECs that are condensefle taken agdr (|W,|?+|¥,/2)=1. Minimizing Eq. (3) with
into two different hyperfine state$) and|2) such as those of respect to¥; and ¥,, we obtain time-independent coupled
87Rb atoms. The two-component BECs are assumed to b@ross-Pitaevskii equations
trapped in the same harmonic potenti®(r)=m(w?r?

2
+w27%)/2. The potential is assumed to rotate at a rotation }<X - QO X r) ‘1’1+T/\I’1+U1|‘1’1|2\I’1+U12|‘1’2|2\I’1
frequency() about thez axis. Furthermore, their internal 2
states are coupled coherently by an external driving field R A, 4
[34]. Viewed from the frame of reference corotating with the CRE2ZHTL (43
trap potential, the Gross-Pitaevskii energy functional of our 1/v 2
prOblem reads E<_ - Q X r) ’\1’2 + V\Pz + u2|\1’2|2‘1’2 + U12|’\Pl|2q’2
ﬁZ \vj 2 :
E[\Pl,\lrz]:fdr 2 ?n (T_mx r)‘I’i(r) —wR‘I’1=,u‘I’2. (4b)
I Here, the chemical potential, which is common for both
" (V(r) _ g92f2>|‘1’i(f)|2+ %N’i(r)@ components, is determined by the normalization condition.
G (1) 2W(1)[2 ~ op[ W(r)Wy(r)e st Ill. A GENERALIZED NONLINEAR SIGMA MODEL
. At The pseudospin representation of the order parameter
+ W (r)Wo(r)e™] (1) with internal degrees of freedom is useful to obtain a physi-
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cal interpretation by mapping the system to a magnetic sys- (VS)?=(VS,)?+ (VS/)2+ (VS,)?
tem. Some physical properties of the double-layer quantum

Hall system are well-understood by projecting the system =4 Vol + |V xd?) = 4xal? V 60+ [xo* V 692,
into a pseudospin spa¢@7]. Also, the spinor order param- anq the second term of E¢5) becomes

eter of two-component BECs allows us to analyze this sys-

tem as a spin-1/2 BE{9,15-18,34. An exact mathematical pr| (VS)?
correspondence can be established between these two sys- 5| 4
tems. In this section, we derive the pseudospin representation

+(xaPV 01+ [x2?V - @ X 1)? |

of the energy functional, Eq3), which is the NloM that
describes the two-component BECs. We assumetthad',)

corresponds to the updown component of the spin-1/2

spinor. The nonzero spin projection on tkg plane implies

Using Eq.(5) and Eqgs.(8), we define an effective velocity
field

Vert = [x2* V 01+ |x22 V 6,

a relative phase coherence between the up- and down-spin 1

components. A similar N&M was also discussed for a two-

component Ginzburg-Landau energy functiofzg].
We introduce a normalized complex-valued spingr

=[xa(r), x2(N17=[|xal€', | x2|€'*2]" and decompose the wave

function asW;=p7(r)xi(r), wherep; is the total density
and thus the spinor satisfies

i+ xolP=1. (5

Substitution of the decomposed wave function into B).
yields

E= J dr{i(V Vpr)?+ %[I Vol +1V xal?
= 2@ X1)(aPV 0+ [xo? V 6) + (@ X 1)?]
+Vpr - 20rpr]xallx2|cOK 6; - 6,)
+ %P%[Co + callxal® = [xal?) + calxal? - |X2|2)2]} , (6)

where the new coupling constants are defined as

Up + Uy + 2U45

Co= 2, (7a
u;—u
o= (7b)
ug+u,—2u

The pseudospin density is definedSsy(r)ox(r), whereo
is the Pauli matrix. The explicit expressions

=(S.,S,,S) are given by

Sc= (xix2* x2x1) = 2|x1l|x2lcod 6, - 6), (8a)
Syz‘i()(*ﬂ(z_)(*z)(l) == 2xil|x2lsin(6; - 6,),  (8b)
S, = xal” - Ix2l, (80

where the modulus of the total spin|§/=1.

Transformation of Eq(6) to the pseudospin representa- freedom  of

1o S _
_2V+2(S§+§)(SS,VS( sVS), (9

which depends on the gradient of the total ph@sed; + 6,
and that of the pseudospin. Thus, we obtain

1 .
E:f dr[E(V\pT)2+ %T(VS)2+ p—ZT(veﬁ— Q xr)?

2

+Vpr — wpprSct %(Co +0S,+6S) | (10
This form is analogous to the classical dU for Heisen-
berg ferromagnets in which only th&/S)? term appears
[37]. In Eq.(10), the four degrees of freedom of the original
condensate wave functions; and WV, (their amplitudes and
phasep are expressed in terms of the total dengity the
total phase®, and two of the spin density componeris
=(5.5,,S) (one of them is fixed because {8/=1) which
are related to the relative density and the relative phase.

Unique features of Eq10) that are absent in the classical
NLoM are (i) the total densityr, which is a prefactor of the
(VS)? term and gives the pseudospin stiffness, is position-
dependent because of the trapping potentia), the total
phase® appears in the energy functional of E0), (iii ) the
third term of Eq.(10) gives the hydrodynamic kinetic energy
pr(Ver—Q X 1)2/2 associated with the topological excitation,
and (iv) there are several anisotropic terms that break the
SU(2) symmetry. The coherent coupling term with the Rabi
frequencywg works as a transvers@seuddmagnetic field
that aligns the spin along the axis. The interaction terms
including the coefficients; and ¢, also break the S(2)
symmetry. The coefficient; can also be interpreted as a
longitudinal(pseudgmagnetic field that aligns the spin along
the z axis. The term involving the coefficiert determines
the spin-spin interaction associated wi}) it is antiferro-
magnetic forc,>0 and ferromagnetic foc, <0 [20].

IV. AXISYMMETRIC SPIN TEXTURE: A SKYRMION

Based on the N&M described by Eq(10), we discuss
the structure of vortex states in the two-component BECs. In
the following sections, we consider the two-dimensional
problem by assuming,> w. Then, separating the degrees of
the original wave function as¥;(r)

tion can be made as follows. On the kinetic-energy term, we= ¢(X,Y) ¢(2), we obtain the dimensionless two-dimensional

have

GP equations
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b ' . A. Numerical results

00131 Figure 1 shows the density profile of the axisymmetric

vortex state obtained by numerically solving Edl) for
U;=Uy,=U4»,=1000 (c;=1000 andc,=c,=0), where the sys-
tem possesses the &) symmetry if og=0. Here, we as-

7 sume that they; component has one singly quantized vortex
at the center of the trap; we do not discuss the case in which

FIG. 1. (Color online (a) The density profile of the coreless the ¢, component has a multiply quantized vortex. Then, the

vortex state consisting of the rotatigg component and the nonro- Nonrotatingy, component is located at the vortex core of the
tating ¢, component foru;=u,=u;,=1000 (c,=1000, ¢;=c,=0), i, component; the core size is expanded due to the intercom-

or=0, andQ=0.15. In this calculation, we fix the total particle ponent repulsive interaction. As a result, the total density has
numberN=N;+N,, but do not fix each particle numbé¥. Then,  no singularity and the condensates form a coreless vortex.
the solution converges tN;/N,=2.465.(b) The cross sections of This vortex structure was created by Matthestsal. [1] by
|¢af? (solid curve, [y|* (dashed curvg and the total densityr  following the phase imprinting method proposed by Will-
(dotted curve along thex ax_is aty=0, where bold_ and thin CUrves jams and Holland7].
Iﬁgr\?;ﬁgtti;:; r(:e;g:jlsat(i)grﬁal:]eesd fr‘i_m lthe numerical calculation and 1o hseydospin texture corresponding to the axisymmet-
» fespectively. ric vortex state is shown in Fig. 2, which was also discussed
by Leonhardt and Volovik9] and Muelle{15]. At the center
of the cloud, the);, component vanishes, and the pseudospin
points down in accordance with the definition of the s§jn
(113 of Eq. (8c). The spin aligns with a hyperbolic distribution
with (S,,§) = (x,-y) around the singularity at the center
. [Fig. 2(b)]. At the edge of the cloud, th¢, component van-
Ve or 2 P _ ishes, and the pseudospin points up. In between, the pseu-
<_ PR Ual ol + sl _QLZ) Vo= pato. dospin rolls from down to up continuously as shown in Fig.
(11b) 2(c). This cross-disgyration spin texture is often referred to
as a “skyrmion” in analogy to the work of Skyrnj29].
Here, we define effective two-dimensional coupling con- Axisymme_tric gpin t(_axtures_ with_continuous vorticity
stants u=4mazN and up=4ma,mN  with 7 were extensively investigated in a f|elld qf superfl&le_le
= [dZ$(2)|*1 [dZ4 (22 [25]. When the condensate wave function is parametrized as

vz or? 2 2
Y + P + U] + Ul Yhol” = OL, | g = gy,

(b)
rT t
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RIS AAR L -2 ee
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G G DDt A b S b
: :::::\.\\ I"/‘//«::: : : : FIG. 2. (Color onling (a) The pesudospin
BEYY YO NNNN L s densityS=yoy corresponding to the vortex state
- : : : : : ;: E?i"\ "4?‘;?:: :’ : : : in Fig. 1. (b) The vectorial representation of the
PR i. i, v d i i i ': spin texture projected onto they plane in the
X $ 44 region[-6.7<Xx,y< +6.7]. (c) The cross section
. f % 1 1 { t of the spin texture along the axis aty=0.
z y
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AI ISy 2 . . | | . W|
® ¥er(x 0)1 Eq. (10). The original NLoM [Eqg. (10) with only the (VS)?
AR ] . . . .. .
;;;;;;;;:2/315\/\ term| admits a skyrmion solution and explicit analytic ex-
7R pressions are knowfi87]. Here we take a more general form
-\ ) i uti variati unction; -
<01 ‘\\\(f"‘i‘\\\\‘: of the skyrmion solution as a variational function; the skyr
5;‘;&&3://} };}; mion solution of Fig. 2 may be parametrized[8§]
NN
NANNNNw— e sl
G e AL AL
SNNNww——L L TTTl 4xxe—ar2/2
-5 0-41////5/ - 2 ’
y r2+ 4)\2e—ar

FIG. 3. (@) The distribution of the topological charge density
q(r) of Eq. (14) and (b) the vectorial plot of the effective velocity 2o
field v of Eq. (9), corresponding to the solution shown in Fig. 1. Sy— - d\ye

The insets represent the cross sections|(0f and |v.4 along the - r2 4+ 4)\Ze—ar2'
y=0 line within the range -5x=<5.
, r 2 _ Ay 24-ar?
g COS& - & (15)
l//]_ — 2 r2 + 4)\Ze—ar2
=\Npr , (12
1) sin B(r)
2 with |S|=1. Equationg15) with «=0 correspond to the ex-

) . L L plicit skyrmion solution of the classical NEM [37]. The

the conflgura_ltlon satisfying the bPundary condmﬁfD)-:r variational parameters and « determine the size and the

and 5(x)=0 is referred to as fm An_derson-T?uloqghé') shape of the skyrmion. Typically represents the size of the

voEtex[g,%l]. We also_have a Merm_m-H(]MH) VOIeX or  4omain in which the spin is reversed andthe degree of

a “meron” texture with the condition3(0)=m and B(«)  gpatial variation of the spin inversion. If we take batrand

=m/2[9,32. In the case of supgr_flwﬁﬁe, a MH vortex is , a5 variational parameters, the number of particles in each

stabilized by the boun_dary condlt!on imposed by a Cy'"?d”'pseudospin component is not conser¢ee will discuss be-

cal vessel. However, in the atomic-BEC system there is N¢qy the situation in which each particle number is fixed

constraint at the boundary; the valyr) at the boundary  Therefore the energetically stable configuration of the skyr-

should be determined self-consistently as discussed later. ion brings about an imbalance in the particle number of
It is known that the skyrmion has a topological invariant g5 component. Such a population imbalance can be con-

defined in a two-dimensional system as trolled by the turning-off time of the coupling drive in the
1 ) phase imprinting methofll,7]. For the limitA — 0(ec) with
Q= an f dre’s- S X gS, (13 fixed « all spins point up(down) along thez axis, which
ar

means perfect polarization of the particle numberNys

which is called a topological charge or the Pontryagian index>N (No—N). Alternately, for fixedX, the limit N;— N

[27]. The skyrmion with any spin profile is shown to have (N— N) corresponds ter— +co(-). Because thes com-

Q=+1, whose sign depends on the direction of the circulajponent has one singly quantized vortex at the center, the total

tion of a vortex. The integrand of E(L3) is the topological phase® in Eq. (10) is given by

charge density associated with the vorticity derived from the

effective velocityveq [15,32): y

L L =tan? o (16)

qr) = ——€'S-4Sx §;S=—(V X V), (19
8 2

where we used the TE|ati®iXiVXT:‘EiX?VXi (i=1.2 in Substituting Eqs(15) and(16) into Eq. (10) yields

obtaining the last equality. The topological charge density

q(r) characterizes the spatial distribution of the skyrmion.

Figure 3 shows the spatial distribution @fr) and the corre-

Anxe 12

1 .
E:fdr Z(VNpp)2+ Vg pr — wppr——
2 Pt eff PT RPTr2 N 4)\2e‘“'2

sponding ve¢-field. The topological charge is distributed

. : 2 2 2 —ar? 2 2 -ar?\ 2
around the center and, contrary to a conventional vortexina  p7f "~ 4\‘e r’—4n%e
single-component condensatg.q vanishes at the center. 0 1r2+4)\26—ar2 2 r2 4+ A\2e "

This makes a coreless vortex without a density dip in the

total density. (17

- . Now the degrees of freedom in the energy functional have
B. Variational analysis been reduced to the total densjty and the two variational
To study the physical properties of the skyrmion in moreparameters. and «. Here, we have introduced an effective
detail, we make a variational analysis based on theMLn confining potential
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FIG. 5. The total energy as a function of the skyrmion difer
several values of the rotation frequen€y ((21=0,0.55,0.1,0.16
for c,=10® and ¢;=c,=0. The energy of the nonvortex state is
11.894. The inset shows the optimized valuevafs a function of\.

FIG. 4. (a) The effective potentiaV/¢ of Eq. (18) with a=0 (for
Q=0 andwr=0) for several values of. A pure harmonic potential
(obtained for\ — <) is shown by a dotted curve. The inset shows
the corresponding total density profiles for co=1000.

, 1. SU(2)-symmetric condensates
r2+ A% (ar?+ 1)%2+ 1] Qr? r2
2(r2+4)\2€—ar2)2 - 12 + A2 ot + PR Using the conditionfdr pr=1, we numerically calculate
the chemical potential in Eq19) with the Thomas-Fermi

(18)  approximation(the region with negative is neglecteland

which is radially symmetric and determines the shape of thdh€ total energy as a function ok anda from the resulting
total densitypr. Note that the term with the Rabi frequency t©0t@l densitypr. Figure 5 shows the total enerdy of the
wg in Eq. (17) breaks the axisymmetry of the problem; we axisymmetric vortex state as a function bﬁor co=1C, ¢,
will discuss the effect of this term in Secs. V and VI. Ignor- =¢2=0, and several values of the rotation frequeridy
ing this term, we can calculate the total dengityby solving where the value ok is optimized for eac\. For values of

Veff

the equation Q higher than 0.17, more vortices enter the system. In the
- case without rotatior({2=0), the energy decreases with
(Vz\*"p-r) 12— 42 and suddenly drops to the value at which the system has no
- ng *Vert o) Cot Clrz + 4\2e vorticity, i.e., complete polarization of the particle number as
N=N, (see the inset of Fig.)5where there is no energy
12— A\2g a2 minimum corresponding to the vortex state for fixede-
2 m =M (19 causea— —». This means that the global minimum f6r

=0 is a nonvortex state fany values of Nand N, under the
where the chemical potential is fixed by the normalization fixed total particle number Noecause the interaction-energy
condition fdrpy=1. terms now satisfy the S@) symmetry so that the energy of

Before the analysis proceeds further, it is instructive tothe nonvortex state is degenerate under the change of the
investigate the form of the effective potenthdly. For sim- ratio N;/N, with fixed N. However, beyond a certain critical
plicity, let us first consider the case with=0, i.e., the clas- Vvalue of(}, there appears an energy minimum as shown in
sical skyrmion solution. Figure 4 shows the effective potenFig. 5. Since the minimized energy is lower than that of the
tial Ve and the total density profilepr calculated

numerically from Eq.(19) for several values ol for c, ¢,=10* 2.5X10° 10°
T

=1000,c;=c,=0, andQ2=0. ForA=0 (N=N,), the value of ? ' '
Ve at r=0 diverges, which implies that the total density 25|

should vanish at the center. This corresponds to the singular

vortex core of thay; component. With increasing the cen- 2L

tral peak of Vs decreases and the total density becomes A

smooth because of the appearance of the nonrotafing 15l

component, which fills the vortex core of thjg component.

The limit A\ - (N—N,) describes the vanishing; com- 1L

ponent with vorticity. Then, the effective potential becomes a

pure harmonic potential and the total density becofjgl 0.50

exactly. This character o¥; also holds fora#0. To de-
scribe pr except forA =0, therefore, we can employ the
Thomas-Fermi appgxima@n which neglects the quantum- FIG. 6. The optimized value of the variational parameter
pressure term (V2\p7)/2\p7 in Eq. (17). Then, the total (solid curve and that ofe (dashed curveas a function of rotation
density is directly given from Eq19). frequency(Q for c,=10%, 2.5x 10%, 10* andc;=c,=0.
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ﬁmin/n 0 1
-100 50 100
0 L AT
0 0.05 0.1 0.15 vortex

Q
FIG. 8. (Color online The optimized values of the variational

FIG. 7. The bending anglg(r)=cos'S, at the Thomas-Fermi  parametera (solid curve anda (dashed curveas a function of the
boundaryr =Ry at which the total densityy vanishes, as a func- longitudinal (pseudomagnetic fieldc, for c,=10°% ¢,=0, andQ
tion of Q). The optimized values of the variational parameteed  =0.15. Insets show the cross sections of the variational function
« in Fig. 6 are used. lya]? (solid curve, |,|?> (dashed curve and the total densityr

. (dotted curve along they=0 line (left: c;=-50, right:c,;=8).

nonvortex state ak — +oo, the external rotation can make
the corresponding skyrmion texture stable globally. lengths. The coefficient;, proportional to the difference of

Figure 6 shows the values afand a that give the mini-  the intracomponent interactions andu,, may be regarded
mum of the total energy fato=10% 2.5x 10%, and 16. The  as a(pseuddmagnetic field that aligns the spin along the
size of the skyrmion decreases with increasldg as re-  axis; the positive(negative c, aligns the spins downward
vealed by a decreasan increasgin Nyin (@min). The energy  (upward. Figure 8 shows the optimized value ofand « as
minimum appears at a certain critical frequency¥hfwhere  a function ofc, for 2=0.15 andc,=10°. For the negative,
Amin (amin) diverges to + (-=) and the critical frequency side the size of a stable skyrmion shrinks|ag increases,
decreases as, increases. Therefore the condensates withwhich implies the spin alignment to upward with increasing
largercy can have a stable skyrmion at a lower rotation fre-a fraction of the rotatings, component. In this case, an AT
quency. However, the full numerical calculations of Etl)  vortex can be thermodynamically stable. Belowat c;
show that additional vortices are nucleated and form a lattice= -85, the Thomas-Fermi approximation breaks down for
of skyrmions beyond=0.17,0.11,0.05 forc,=10°, 2.5 small\ owing to the appearance of the singular vortex core
X 10%, 10%, respectively. These structures cannot be dein p;. For the positives; side the value ok increases rapidly
scribed by Eq.(15) and the investigation of such periodic and eventually goes to infiniticoncurrently,a goes to <),
solutions remains to be made. From the comparison with theorresponding to the complete “spin-down” alignmésttcu-
numerical solution as shown in Fig.(l, the optimized pation of the nonrotatings, component only. This depen-
variational functions Eqq15) and(16) reproduce an almost dence on the sign af; reflects the fact that the occupation of
exact numerical solution. Hence our approach improveshe component with vorticity costs a larger energy than that
greatly the analytic treatment for the vortex states based oof the nonrotating component.
the usual Thomas-Fermi approximation studied in R&f. The sign ofc, determines the nature of the spin-spin in-

The bending angled(r)=cosS, in Eq. (12) decreases teraction associated witB,. For positivec, (u;+u,>2u;,)
smoothly from at r=0 asr increases. Figure 7 shows the

values of B(r) evaluated at the Thomas-Fermi boundary 3 oo T i 2
=Ry at which the total density; vanishes, as a function of W;’:;f :

rotation frequencyQ). The valueB(Rrs) can change arbi- , p 142
trarily with Q) by varying the ratid\N;/N,, which implies that i %o —

an intermediate configuration between a MH vortex x 1? &

[B(Rrp)=m/2] and an AT vorteq B(Ryg)=0] can be made min

thermodynamically stable. It is the ratid;/N, that deter-

mines B(Ryg), which does not change for fixed;/N, as

explained in Sec. IV B 3. We also note that there exists a

minimum value of 3(Ryg) (~0.09, below which additional AT S0 0 %0 100

vortices are nucleated. Therefore an AT vortex can never be c

the ground state of the SB)-symmetric two-component

condensates. A similar discussion is made in REfg,13 FIG. 9. (Color online@ The optimized values of the variational

for the case of ferromagnetic spin-1 BECs. parameters (solid curve anda (dashed curveas a function of the

spin-spin interaction strengtey, for c,=10%, ¢;=0, and2=0.15.

The insets show the cross sections of the variational fundiigA
Next, we discuss the effects of andc, in Eq. (17), the  (solid curve, |¢,|? (dashed curve and the total density (dotted

values of which are controllable by changing the scatteringurve along they=0 line (left: c,=-50, right:c,=50).

2. ¢ and ¢, dependence
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the interaction is antiferromagnetic, preferring to the spatial (a) 3
mixture of the spin-up and spin-down components. While for
negativec, (u;+u,<2u;,), the system enters the ferromag-

netic phase, where the spin domains are spontaneously 2
formed. This feature also appears in the stable structure of ,
the skyrmion. Figure 9 shows the optimized valuea @nd min
«a as a function ot, for 1=0.15,c,=10? andc,=0. For the 1
antiferromagnetic case,>0, we see no significant change

of the spin profile compared with that a¢f=0 [the SU2)

symmetric casp For the ferromagnetic case,<0, the 0
variations ofA and « are similar to that of Fig. 8, where the -1
size of the skyrmion shrinks witfc,|. Since each particle

number is not conserved in this calculation, the energetically (b) 3

favorable configuration in a ferrmagnetic phase tends to an 0 e~ \ 002
overall spin polarization, i.e., complete polarization of the 0013 7

particle number. In this regime, there are two energy minima, 2 O(Lg; \

one of which leads to the perfect polarization of thevor- A oLt

tex state(corresponding to the results shown in Fig.&hd min ;

the other leads to thé, nonvortex statdcharacterized by L

A — o anda— —o0; not shown, respectively, and which state
possesses the global stability depends on the rotation fre-
quency.

S ) . -100 -50 0 50 100
3. Energy minimization under the fixed particle number

of each component 2

So far, we have allowed a change in the particle number FIG. 10. (Color onling The optimized values of the variational
of each component to calculate the minimized skyrmion sizeparameters. (solid curve and« (dashed curveas a function ofa)
However, the experiments at JILA on two-component BECs:; and(b) ¢, under the condition of a fixed particle number of each
[23] were made under the condition in which each particlecomponeniN;/N,=1 for ¢,=10%, 02=0.15[c,=0 andc,=0 for (a)
number is fixed. This restriction can be taken into account byand (b), respectively. The insets show the cross sections of the
noticing the relation variational functiongy,|? (solid curve, |¢,|? (dashed curve and

the total densitypr (dotted curveg along they=0 line [(a) left: c;
| f drpr(1+S) =-50, right:¢;=50 and(b) left: c,=-30, right:c,=30].
1
N_2 = : (20 of the ¢, component shrinks and a part of tii¢ component
j drpr(1-S) is pushed out of the/; component. Here, the total energy of
the skyrmion with the samie,| is always lower for positive
for a given\ the value ofa is uniquely determined by Eq. Cithan for negatives;. This is because it is favorable for the
(20), where bothp; and'S, are functions of two variational ~#1 component with the relation; > u, to spread spatially by
parameters. Therefore the energy minimization can be doni@e centrifugal effect with a vortex, and increase the “spin-
with respect to one variational parametahich we choose down” domain. This is consistent with the experimental ob-
to be \). As discussed before, this ratio determines theservation 1] that the vortex in the component having a larger
boundary value of the bending anghér). intracomponent interaction is stable; otherwise it is unstable

Here, we consider the situation of the equal particle num{se€ also the argument of the dynamical stability in Ref.
berN;/N,=1 and investigate the stable size of the skyrmion[10]. In the c, dependence, while we see no drastic change
as done before. In this case, we find that the stable size is n8t the antiferromagnetic,> 0 range, forc,<0 a rapid in-
affected by the change 1. Figure 10 shows the optimized Crease of\yi, and ap;, with increasingc,| is seen in Fig.
values ofA anda as a function ot; andc,. In this case, no  10(b). This means that the spin-up or spin-down domains
complete polarization of the particle number occurs, so thagfow and their boundary becomes sharp with increafsisig
the skyrmion may exist for all values @f andc,; in this
case, however, even if the optimal variational parameters ex- V. NONAXISYMMETRIC SPIN TEXTURE: A MERON-
ist, they do not ensure a local minimum of the total energy. PAIR
In Fig. 1Q@a), for positivec, the divergence ok, seen in
Fig. 8 is suppressed due to the conservation of each particle
number. Alternately, to enlarge the “spin-down” domain In this section we discuss a nonaxisymmetric vortex state.
where theiy, component is occupied, the size of the vortex This structure can be regarded as a spin texture consisting of
core of they, component becomes large by increasing botha pair of merong27] or MH vortices[25,32. Our previous
Amin @nd amin. FOr negativec;, the domain with the rotating study showed that this meron-pair can be stabilized thermo-
¥, component tends to increase. As a result, the vortex cordynamically in the presence of rotation and internal coherent

A. Numerical results
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(@ hp, 2 ® 002

FIG. 11. (Color onling (a) The density profile
of the condensate$yy|? and |y,> for u;=u,
=U,,=1000 (cp=1C, ¢;=c,=0), 2=0.15, and
wr=0.05. The two components have the same
particle number(b) The cross sections dij|?
(solid curve, |i|? (dashed curvg and the total
density pr (dotted curve along thex axis aty
=0, where bold and thin curves represent the re-
sults obtained from the numerical calculation and
those obtained from the variational calculation,
respectively(c) The grayscale plot of the relative
phase¢=60,— 6.

10

y

coupling[16]. A typical solution of this structure is shown in the internal coherent coupling. Son and Stephai83] ob-

Fig. 11. Each component has one off-axis vortex and theained an exact form of the domain wall in a homogeneous
density peak of one component is located at the vortex corene-dimensional system. In our case, the one-dimensional
of the other component. This results in a coreless vortex iprofile of ¢(r) along thex=0 line approximately takes a

which the total density has no singularity. form
Because of the presence of the coherent coupling, the pro-
file of the relative phase(r)=6,- 6, plays an important role #(0y)=-4tanteV+C, (21

in optimizing the structure, which is shown in Fig.(&1 The

relative phase shows that the central region is characterizettherek™=(|y| 1|/ 2wgpr)*/? gives a characteristic size of
by the configuration of a vortex-antivortex pair. In other the domain wall, and the consta@t=2m(0) for y>0(<0)
words, the two vortices are connected by a domain wall ofnakes the branch cut gt=0 shown in Fig. 1(c). Then, the

the relative phase with ther2difference, which is character- vortex in one component and that in the other can be bound
istic of a topological soliton in two-component BECs with by this domain wall, forming a “vortex moleculg16].

(@) s,
e ®
0.5
%7, "
—0.50
i ARARRAR
AN
X

FIG. 12. (Color online (a) The pesudospin
densityS=yoy corresponding to the vortex state
in Fig. 11.(b) The vectorial representation of the
spin texture projected onto they plane in the
region[-6.7<x,y=<6.7]. (c) The cross section of
the spin texturdgb) along thex axis aty=0.
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The pseudospin profiles corresponding to the solution o&nalysis with two variational parametexsand « gives al-
Fig. 11 are shown in Fig. 13). While the profile ofS is  most perfect quantitative agreement with the numerical one
axisymmetric S, andS, show dipole structures. The structure as seen below.
of S has a form similar to what is obtained by exchangig The locations of the vortex cores are determined by two
andS, in Fig. 2. The corresponding spin texture is shown inextremes ofS,, given by
Figs. 12b) and 12c). The spins are oriented in thedirec- ) _—
tion everywhere except in the central domain-wall region, X“=4Ne . (23
where they tumble rapidly by 2 There exist two points
corresponding to the locations of vortices at whi&iks par-
allel to the z axis. The spin around the singularity with
=+ (S=-2) has a radialhyperbolig distribution, charac-
terized by (S, §) = (-x,-y) [*(x,~y], and rotates through
90° as it goes outward to become perpendicular tocthgis.
This texture is known as a “radial-hyperbolic” pair of
merons, which has been discussed in the study of topologic&ubstituting Eqs(22) and (24) into Eq. (10), we obtain the
defects in superfluidHe [25] and a double-layer quantum total energy similar to Eq(17):
Hall system[27]. Since the trapping potential is axisymmet- ) ) 5 ar?
. B . . . —_ ar
ric, the energy is degenerate with respect to the orientation of _ 1 [\2 Pr_ rF-4\"e
the molec A ; ; dr| -(VNpr)“+ Ve pr + Co WRPT 2

ular polarization. If the molecule is polarized along 2 2 r2 + 4\2e "

they axis, the texture forms a “circular-hyperbolic” p&ir6] (25)
and can therefore continuously change into the radial-
hyperbolic form. Here, the effective confining potentislly is the same as in

We find that, wheru;=u,=uy, (c;=¢,=0), the topologi-  Eq.(18). Contrary to the axisymmetric skyrmion, the internal
cal charge density(r) and the effective velocity fielde;  coupling term withwg does not break the radial symmetry of
exhibit aradially isotropic profileas in Fig. 3, even though the problem.
each component forms a nonaxisymmetric vortex configura- Because Eq25) gives the same energy for any value\of
tion. As we discuss later, this is due to the fact that theand « as that of the axisymmetric skyrmion given by Eq.
meron-pair texture and the axisymmetric skyrmion texturg(17), if wg=0, i.e., for the S(2) symmetric case, the skyr-
are equivalent as a topological excitation in the case;of mion and the meron-pair have the same optimal values of
=U,=U,; they can transform to each other through an overallnd o and their energies are degenerate. In other words, the
rotation of the pseudospin. Therefore the Rabi couplingenergy is degenerate with respect to the rotation of the over-
alone does not break the axisymmetry of the topological exall pseudospin between the two spin textures. We can see that
citation. However, inclusion of both the Rabi coupling andturning on the Rabi termvg always decreases the free energy
unequal coupling constants # U, # Uy, induces an aniso- of the meron-pair from any solutions of vortex states with

Its solution is represented as:iW(4a)\2)/\fE with the
product log functionM(z) [39,40. Then, it is natural to take
the form of the total phas® as

Yy Y

0 =tan! — +tan —.
X — 2 e 72 X+ 2 e 12

(24)

tropy of the meron-pair as discussed in Sec. VI. the topological charg®=+1 for wg=0. Therefore, adding
the infinitesimal value ofvg is enough to stabilize the non-
B. Variational analysis axisymmetric configuration i€;=c,=0.

Since the Rabi frequency may be regarded as a transverse
magnetic field along the axis, the stable size of the meron-
pair as a function ofwg shows a similar behavior as that
shown in Fig. 8. The difference is that the Rabi term is pro-

In the case ofu;=u,=uy,(c;=c,=0), the spin profile of
the meron-pair in Fig. 12 is radially isotropic and may be
parametrized agl6]

2 _ gy 24mar? portional to p instead ofp2, which changes the behavior
re—4n<e [ T
=T from that of Fig. 8. In the presence of slow rotatieti], we
re+4n‘e calculate the minimized value afanda as a function ofwg,
the result being shown in Fig. (8. As wg increases, the
_4)\ye-ar2/2 minimized value of\ (a) becomes smalleflargen, and

S

eventually vanishe@iverges. This behavior corresponds to

a decrease in the sizk, of the meron-paifsee Fig. 11b) for

the definition] as shown in Fig. 1&), whered,, is calculated
from Eq. (23). This indicates that the binding of the meron-
pair becomes stronger with increasing, which is caused

by the tension of a domain wall in the relative phase between
Here we assume that the vortex molecule is polarized alonthe two-component wave functioh&6,33. The variational
the x axis. Compared with the ansatz solution in Etp) for  result agrees perfectly with the numerical result. Beyond
a skyrmion, onlyS, and S, are exchanged. In this case, the wg=3.0 the separatiod,, vanishes, where the locations of
ratio of the particle number given in E€O) is always unity, the density nodes overlap despite the intercomponent repul-
becauses, is an odd function. In Refl16], we seta=0 to  sive interaction.

simplify the variational problem, and obtained a reasonable The physical origin of the binding of the meron-pair, i.e.,
agreement with the numerical solution. The full variationalthe vortex molecule, was discussed previougly]. For

=,
r2_,_4)\2e ar

_ .2
_ —dxe 7

= . (22
12+ 4\2
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FIG. 13. (Color onling (a) The optimized values of the varia-
tional parametera (solid curvg and« (dashed curveas a function
of wg for cg=10%, 0=0.15,¢,=0, andc,=0. (b) The corresponding
size of the meron-paird®, calculated from Eq(23) [see Fig. 1b)  tyre in the presence of a longitudinal magnetic fiétd) and a
for definition] for c,=10°. We also show @, obtained from nu- transverse magnetic fieldog) in the region[-4<x,y< +4]. The
merical simulations as filled circles. The insets show the cross segzectorial plots in thex-y plane and along thg=0 line are shown.
tions of the variational functiong/y|? (solid curve, |¢,> (dashed  The values of the parameters afs=0.15, c,=1000, ¢,=-10, c,
curve, and the total density (dotted curve along they=0 line =0, and(a) wz=0, (b) wz=0.02, (c) wg=0.05,(d) wg=0.10. The
(left: wg=0.1, right: vg=0.9). cross sections ofij;|? (solid curve, |¢,|? (dashed curve and the

total densitypt (dotted curve along they=0 line are also shown
well-separated merons, the repulsive interaction betweewithin the range[-8<x= +8]. (e) The distributions of the topo-
them originates from the second and third terms of @),  logical charge density(r) along they=0 line for wg=0 (solid),
which are the gradient energy of the pseudospin and the hy2-02 (dashed 0.05(dashed-dotted and 0.1(dotted.
drodynamic kinetic energy of the.y-field. On the other
hand, the attractive force between two merons is estimatesimpler. Note that the spin profile of a skyrmi¢iig. 2) and
from a tensionTy of the domain wall of the relative phase to a meron-pair(Fig. 12 is connected only through the ex-
be ~Tydy,; for a homogeneous systey=8|¢|%¢n|°k/pr  change ofS, andS,. In this case, the Rabi term makes the
with the characteristic domain siz€=(|y||¢|/2wrpr)Y?  axis as a preferred one. Actually, if we rotate the spinors as
[33], we haverOC\s“cTR. Then, the competition between the o, =(y,£4,)/\2 (the basis along with thex axis), the
repulsive force and the attractive force creates an energgoupled Gross-Pitaevskii equatio@® become
minimum so that the two vortices can form a bound pair. The

FIG. 14. (Color onling Equilibrium structures of the spin tex-

contribution of the other terms is almost constant except for /v z2 - _

smalldy, (<0.30 forcy=10%), where the vortex core appears S\ T TRXT )+ VA Copr |t = (u+ wR)ih,
in the total density. Then, the Thomas-Fermi approximation

cannot apply to the evaluation of the total energy;, drops )

suddenly to zero with increasingg because of the lacking F(Y —Q X r) +V+ COPT:| b= (- o).
of the energy barrier associated with the quantum pressure of 2\ i

pt- The numerical result shows that the separatignde-

creases smoothly to zero with. Here, the internal coupling is just the chemical potential dif-

ference between the+” and “—” components. Then, the

nonaxisymmetric structure in Fig. 11 is transformed to the

axisymmetric vortex state of Fig. 1, i.e., a skyrmion. Here,
In the SU2) symmetric caséc,;=c,=0), a further insight the vortex core of the+” component is filled with the non-

of the nonaxisymmetric vortex is obtained by rotating therotating “—" component. As one increases the number of

basis of the spinor so that the internal coupling becomeshe “—" particle drops because of a decrease in the chemical

C. Basis transformation of the pseudospin
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=1000,¢;=0, wg=0.05, and(a) ¢,=20, (b) c,=
-20. (top) The cross sections ofyx|? (solid
curve, |¢,|? (dashed curve and the total density
pt (dotted curvg along they=0 line are also
shown. (middle) The corresponding spin texture
in the region—4<x,y< +4]. The vectorial plots
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potential of ., and the vortex cores eventually becomeorder transition; there is no energy barrier to destabilize the
empty, which corresponds to the overlap of the vortex coresaxisymmetric skyrmion with respect to the transverse mag-
netic field. Figure 1%&) shows the topological charge density
q(r) along thex axis (they=0 line). Although its distribution
is shifted from the center with increasingg, there is no

In this section, we discuss the effect of the symmetrydramatic change in the global shape from the isotropic one.
breaking terms, which are neglected in the last two sectiond)s wg increases further, the peak qfr) gets back to the
by numerically solving Eqs(11). For an axisymmetric skyr- center and its value goes to infinity when the two merons
mion texture, the Rabi term breaks the axisymmetry of thenerge.
spin texture, and for a meron-pair tkgandc, terms cause Next, we study the effects of the spin-spin interaction
symmetry breaking. term(c, term) on the stable structure of a meron-pair under a

First, we neglect the spin-spin interaction tefog term)  transverse magnetic field witlhg=0.05 (c, is fixed to be
and investigate the dependence of the stable structug on zerg. Then,c, changes the structure of the meron-pair dra-
and wg, Which corresponds to a situation in which a longitu- matically, in contrast to the case of. Figure 15 shows the
dinal and transversépseudomagnetic field are applied si- equilibrium structure of the condensate density, the spin tex-
multaneously. We first prepare a stable axisymmetric skyrture, and the topological charge densify) for the antifer-
mion by applying the longitudinal magnetic fielj=—10, romagnetic caséc,=-20) and the ferromagnetic cade,
and then turn on the transverse magnetic fiejd Figures =20). For the antiferromagnetic case there is no significant
14(a)-14(d) show the variation of the spin texture as well asdifference in the density and spin profile, compared with the
the cross section of the condensate densities along#ife  solution ofc,=0 in Figs. 11 and 12. However, the topologi-
line when the Rabi frequenayy is increased. The transverse cal charge density, i.e., vorticity, is distributed anisotropically
magnetic field shifts the skyrmion to the off-center and con-4n such a manner that the distribution is elongated along the
verts it into a meron. Correspondingly, another meron entergirection of polarization of the meron-pair. For the ferromag-
from outward and forms amsymmetricvortex molecule netic case, the spin domains are formed, which gives rise to
shown in Figs. 1&) and 14d). This change is a second- a considerable change in the density and spin profile as seen

VI. EFFECTS OF SYMMETRY-BREAKING TERMS
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in Fig. 15b). Most of the spins align up or down along the netic field and a spin-spin interaction in the 8. For an
axis on both sides, sandwiching the domain wall acrossxisymmetric skyrmiorfa nonaxisymmetric meron-pajthe
which the spin flips rapidly. If the Rabi frequenaygr is c; andc, term (wg term) affect the optimized size of the
increased further, the spins on both sides are laid along thetopological excitation, but do not break the radial symmetry
axis, converting into the well-defined meron-pair as in Fig.of the problem. Inclusion of all those terms makes a topo-
12. Then, the topological charge density is distributed in thdogical excitation characterized by an anisotropic distribution
direction perpendicular to the direction of polarization of theof the vorticity and the topological charge density.
meron-pair, being concentrated on the domain-wall region. One of the open problems is to study vortex states in a
This anisotropy of the meron-pair gives an interesting situaferromagnetic regime. Rich spin textures are expected with
tion when the condensates undergo a rapid rotation; the athe combination of the ferromagnetic feature leading to spin-
isotropic interaction between the meron-pairs generates @omain formation and a rotational effect, e.g., a rotating
distorted lattice of the “vortex molecule$16], which is a  domain-wall crosg“propellers’ [42] and “serpentine” vor-
unique feature of the rotating two-component system withtex sheet$20]. The problem of their stability remains to be

the internal coherent coupling. investigated. Furthermore, it is necessary to study in more
detail lattices of spin textures which appear in the rapidly
VIl. CONCLUSION rotating two-component BECs, where we can expect a richer

] ) phase diagram and structural phase transition of the vortex
In conclusion, we have discussed the coreless vortexnaseg16,43. It is also of interest to extend the pseudospin
states and the corresponding spin textures in rotating tWamodel to two-component fermion systems in view of the
component BECs with and without internal coherent couyapid progress in ultracold fermions after the observation of
pling. The axisymmrteric and nonaxisymmetric structure ofcondensation of fermionic paif@d]; rapidly rotating two-
the spin texture have been discussed by exploring theNiL component fermionf45] may exhibit phenomena analogous

variational function of the spin profile, which is based on thegystems.

exact solution of the classical MM, provides a good de-
scription of the coreless vortex states. This variational
method also improves greatly the usual analytical approach
based on the Thomas-Fermi approxima{iéh In the case of
SU(2) symmetry, these two spin textures are equivalent to- The authors are grateful to M. M. Salomaa and E. J.
pological excitations and transform to each other by a globaMueller for useful comments. K.K. and M.T. acknowledge
rotation of the pseudospin. We have discussed the effect ;fupport by a Grant-in-Aid for Scientific Resear@@rants
the SU2)-symmetry breaking contributions, inequality of the No. 15-5955 and No. 15341028y the JSPS. M.U. acknowl-
three coupling constants, u,, andu,, (c; andc, term), and  edges support by a Grant-in-Aid for Scientific Research
the Rabi frequencyg, on the spin textures. These contribu- (Grant No. 1534012%y the MEXT of Japan, and a CREST
tions are interpreted as a longitudinal and transverse magrogram by JST.
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