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We investigate two kinds of coreless vortices with axisymmetric and nonaxisymmetric configurations in
rotating two-component Bose-Einstein condensates. Starting from the Gross-Pitaevskii energy functional in a
rotating frame, we derive a nonlinear sigma model generalized to the two-component condensates. In terms of
a pseudospin representation, an axisymmetric vortex and a nonaxisymmetric one correspond to spin textures
referred to as a “skyrmion” and a “meron-pair,” respectively. A variational method is used to investigate the
dependence of the sizes of the stable spin textures on system parameters, and the optimized variational function
is found to reproduce well the numerical solution. In the SUs2d symmetric case, the optimal skyrmion and
meron-pair are degenerate and transform to each other by a rotation of the pseudospin. An external rf field that
couples coherently the hyperfine states of two components breaks the degeneracy in favor of the meron-pair
texture due to an effective transverse pseudomagnetic field. The difference between the intracomponent and
intercomponent interactions yields a longitudinal pseudomagnetic field and a ferromagnetic or an antiferro-
magnetic pseudospin interaction, leading to a meron-pair texture with an anisotropic distribution of vorticity.
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I. INTRODUCTION

Since the experimental realization of quantized vortices in
alkali atomic Bose-Einstein condensatessBECsd f1–4g, there
has been a growing interest in new phenomena related to
vortices in rotating BECs. A strongly correlated quantum
Hall-like phase may appear in systems which rotate so rap-
idly that the size of the vortex cores becomes comparable
with the intervortex separationf5g. Another direction that has
not yet been explored so much concerns rich vortex phases
in multicomponent BECsf6–11,14–22g. Since alkali atoms
have hyperfine spin, multicomponent BECs can be realized if
more than one hyperfine-spin state is populated in the same
trap f23,24g. The systems described by the multicomponent
order parameters allow the excitation of exotic topological
defects that have no analog in systems with a single-
component order parameter. For example, while a quantized
vortex in a single-component order parameter should have a
singular core, it is possible to excite a “coreless”snonsingu-
lard vortex in multicomponent systems. On the analogy of
such topological defects found in other physical systems
such as superfluid3He f25g, unconventional superconductors
f26g, quantum Hall systemsf27g, nonlinear opticsf28g,
nuclear physicsf29g, and cosmologyf30g, creating exotic
topological defects in atomic BECs could give us further
insight into related problems and offer a good opportunity to
study their physical properties in much greater detail.

This paper addresses the structure and the energetic sta-
bility of two kinds of coreless vortices in two-component
BECs based on ageneralized nonlinear sigma model
sNLsMd. One of them has an axisymmetric structure, in
which the core of one circulating component is filled with

the other nonrotating component. This vortex state was cre-
ated by Matthewset al. f1g, where they utilized a phase
imprinting technique by controlling interconversion between
two components spatially and temporally with an external
coupling fieldf7g. The structuref6g and dynamical stability
f10g of this vortex state have been studied. Here, the spinor
nature of the order parameter allows us to interpret the vortex
state of the two-component BECs in terms of a “pseu-
dospin.” The pseudospin representation of the two-
component BECs reveals that the vortex state observed in
Ref. f1g corresponds to a spin texture referred to as a “skyr-
mion” f15,29g or an “Anderson-Toulouse vortex”f9,31g. A
spin-1 analog of this texture was created by Leanhardtet al.
f4g and theoretically studied in Refs.f11–13g.

Another coreless vortex which we discuss in this paper
has a nonaxisymmetric structure, which may be regarded as a
pair of “merons”f16,25,27g or “Mermin-Ho vortices”f32g.
This configuration can be realized when each component has
one off-centered vortex. Our previous study showed that an
external driving field that couples coherently the internal hy-
perfine states of the two components stabilizes a nonaxisym-
metric vortex statef16g. Then, the internal coupling induces
an attractive interaction between the vortex in one compo-
nent and that in the other, forming a “vortex-antivortex mol-
ecule,” which is bound by a domain wallsbranch cutd in the
relative phase spacef33g. In contrast to a vortex-antivortex
pair in conventional superfluid systems, this pair has circu-
lations of the same sign in each individual phase space, but
has the opposite sign in therelative phase space. When more
than one vortex molecule is present, one component accomo-
dates vortices and the other accomodates antivortices.
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It is known that the system of two-component BECs such
as those studied by a JILA groupf1,23g approximately pos-
sesses the SUs2d symmetry owing to the near-equal scatter-
ing lengths within and between theuF=1,mF=−1l and uF
=2,mF=1l hyperfine states of87Rb atoms. Here, the two
kinds of coreless vortex states are degenerate in a completely
SUs2d-symmetric system. However, adding an external per-
turbation that breaks the SUs2d symmetry would make the
stability problem of those vortex states nontrivial. We inves-
tigate their structure and stability by exploring the NLsM of
the two-component BECs, which is derived from a pseu-
dospin representation of the Gross-Pitaevskii energy func-
tional. Using appropriate trial functions for the skyrmion or
the meron-pair, we analytically obtain an almost exact spin
profile for each case, which leads to a great improvement
upon the Thomas-Fermi approximationf6g. While our previ-
ous paperf16g used a solution of a classical NLsM directly
as a variational function, a more general ansatz used here
gives accurate profiles of the vortex states. The SUs2d sym-
metry is broken by the difference between the intracompo-
nent and intercomponent two-body interactions, and by an
external field which couples coherently the internal hyperfine
states of the two componentsf1,34g. Under the pseudospin
picture, they give rise to pseudomagnetic fields and a
pseudospin-pseudospin interaction, either of which has a
great influence on the structure of spin textures. We do not
discuss complicated skyrmion excitations with topologically
nontrivial spin profiles such as those studied in Refs.f17,18g.

After formulating our problem in Sec. II, we derive in
Sec. III the NLsM that describes the two-component BECs.
Based on the NLsM, we determine the optimized structure
of an axisymmetric skyrmion using a variational method in
Sec. IV. We determine the optimized structure of a nonaxi-
symmetric meron-pair in Sec. V. In Sec. VI we address the
effect of axisymmetry-breaking contributions on the two
kinds of spin textures. We conclude this paper in Sec. VII.

II. FORMULATION OF THE PROBLEM

We consider two-component BECs that are condensed
into two different hyperfine statesu1l andu2l such as those of
87Rb atoms. The two-component BECs are assumed to be
trapped in the same harmonic potentialVsr d=msv2r2

+vz
2z2d /2. The potential is assumed to rotate at a rotation

frequencyV about thez axis. Furthermore, their internal
states are coupled coherently by an external driving field
f34g. Viewed from the frame of reference corotating with the
trap potential, the Gross-Pitaevskii energy functional of our
problem reads

EfC1,C2g =E drHo
i
F "2

2m
US=

i
− mV 3 rDCisr dU2

+ SVsr d −
m

2
V2r2DuCisr du2 +

gi

2
uCisr du4G

+ g12uC1sr du2uC2sr du2 − "vRfC2
*sr dC1sr de−iDt

+ C1
*sr dC2sr deiDtgJ , s1d

whereV=Vẑ, C1 andC2 denote the condensate wave func-
tions in the two hyperfine states, andg1, g2, andg12 charac-
terize the atom-atom interactions. Hereg1, g2, and g12 are
expressed in terms of thes-wave scattering lengthsa1 anda2
between atoms in the same hyperfine states anda12 between
atoms in different hyperfine states as

gi =
4p"2ai

m
si = 1,2d, g12 =

4p"2a12

m
. s2d

The last two terms in Eq.s1d describe a coherent coupling
induced by an external driving field, which allows atoms to
change their internal state coherentlyf34g. Since the driving
field is time-dependent, we have introduced the frame in
which the driving field is time-independentsi.e., the frame of
a laser fieldd. Here,vRs.0d is the Rabi frequency andD is a
detuning parameter between the external field and the atomic
transition. Throughout this paper, we setD=0 for simplicity
by assuming a complete resonancef35g.

It is convenient to measure the length, time, and energy
scale in units ofbho=Î" /mv, v−1, and "v, respectively.
Renormalizing the wave function asCi →ÎNCi /bho

3/2 with
the total particle numberN=N1+N2, and the energy as
E/"vN→E, we obtain

EfC1,C2g =E drHo
i
F1

2
US¹

i
− V 3 rDCiU2

+ ṼuCiu2 +
ui

2
uCiu4G + u12uC1u2uC2u2

− vRhC2
*C1 + C1

*C2jJ . s3d

Here, we denote the trapping potential asṼ=hs1−V2dr2

+a2z2j /2 with a=vz/v, the coupling constants asui

=4paiN/bho andu12=4pa12N/bho. Since the particles of one
component can convert into the other if the internal coherent
coupling is present, the total particle numberN=N1+N2 is
conserved, and the normalization of the wave functions can
be taken asedr suC1u2+ uC2u2d=1. Minimizing Eq. s3d with
respect toC1 and C2, we obtain time-independent coupled
Gross-Pitaevskii equations

1

2
S¹

i
− V 3 rD2

C1 + ṼC1 + u1uC1u2C1 + u12uC2u2C1

− vRC2 = mC1, s4ad

1

2
S¹

i
− V 3 rD2

C2 + ṼC2 + u2uC2u2C2 + u12uC1u2C2

− vRC1 = mC2. s4bd

Here, the chemical potentialm, which is common for both
components, is determined by the normalization condition.

III. A GENERALIZED NONLINEAR SIGMA MODEL

The pseudospin representation of the order parameter
with internal degrees of freedom is useful to obtain a physi-
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cal interpretation by mapping the system to a magnetic sys-
tem. Some physical properties of the double-layer quantum
Hall system are well-understood by projecting the system
into a pseudospin spacef27g. Also, the spinor order param-
eter of two-component BECs allows us to analyze this sys-
tem as a spin-1/2 BECf9,15–18,34g. An exact mathematical
correspondence can be established between these two sys-
tems. In this section, we derive the pseudospin representation
of the energy functional, Eq.s3d, which is the NLsM that
describes the two-component BECs. We assume thatC1sC2d
corresponds to the upsdownd component of the spin-1/2
spinor. The nonzero spin projection on thex-y plane implies
a relative phase coherence between the up- and down-spin
components. A similar NLsM was also discussed for a two-
component Ginzburg-Landau energy functionalf36g.

We introduce a normalized complex-valued spinorx
=fx1sr d ,x2sr dgT=fux1ueiu1, ux2ueiu2gT and decompose the wave

function asCi =ÎrTsr dxisr d, where rT is the total density
and thus the spinor satisfies

ux1u2 + ux2u2 = 1. s5d

Substitution of the decomposed wave function into Eq.s3d
yields

E =E drH1

2
s¹ÎrTd2 +

rT

2
fu ¹ x1u2 + u ¹ x2u2

− 2sV 3 r dsux1u2 ¹ u1 + ux2u2 ¹ u2d + sV 3 r d2g

+ ṼrT − 2vRrTux1uux2ucossu1 − u2d

+
1

2
rT

2fc0 + c1sux1u2 − ux2u2d + c2sux1u2 − ux2u2d2gJ , s6d

where the new coupling constants are defined as

c0 ;
u1 + u2 + 2u12

4
, s7ad

c1 ;
u1 − u2

2
, s7bd

c2 ;
u1 + u2 − 2u12

4
. s7cd

The pseudospin density is defined asS= x̄sr dsxsr d, wheres
is the Pauli matrix. The explicit expressions ofS
=sSx,Sy,Szd are given by

Sx = sx1
*x2 + x2

*x1d = 2ux1uux2ucossu1 − u2d, s8ad

Sy = − isx1
*x2 − x2

*x1d = − 2ux1uux2usinsu1 − u2d, s8bd

Sz = ux1u2 − ux2u2, s8cd

where the modulus of the total spin isuSu=1.
Transformation of Eq.s6d to the pseudospin representa-

tion can be made as follows. On the kinetic-energy term, we
have

s¹Sd2 = s¹Sxd2 + s¹Syd2 + s¹Szd2

= 4su ¹ x1u2 + u ¹ x2u2d − 4sux1u2 ¹ u1 + ux2u2 ¹ u2d2,

and the second term of Eq.s6d becomes

rT

2
F s¹Sd2

4
+ sux1u2 ¹ u1 + ux2u2 ¹ u2 − V 3 r d2G .

Using Eq.s5d and Eqs.s8d, we define an effective velocity
field

veff = ux1u2 ¹ u1 + ux2u2 ¹ u2

=
1

2
¹ Q +

Sz

2sSx
2 + Sy

2d
sSy ¹ Sx − Sx ¹ Syd, s9d

which depends on the gradient of the total phaseQ=u1+u2
and that of the pseudospin. Thus, we obtain

E =E drF1

2
s¹ÎrTd2 +

rT

8
s¹Sd2 +

rT

2
sveff − V 3 r d2

+ ṼrT − vRrTSx +
rT

2

2
sc0 + c1Sz + c2Sz

2dG . s10d

This form is analogous to the classical NLsM for Heisen-
berg ferromagnets in which only thes¹Sd2 term appears
f37g. In Eq. s10d, the four degrees of freedom of the original
condensate wave functionsC1 andC2 stheir amplitudes and
phasesd are expressed in terms of the total densityrT, the
total phaseQ, and two of the spin density componentsS
=sSx,Sy,Szd sone of them is fixed because ofuSu=1d which
are related to the relative density and the relative phase.

Unique features of Eq.s10d that are absent in the classical
NLsM are sid the total densityrT, which is a prefactor of the
s¹Sd2 term and gives the pseudospin stiffness, is position-
dependent because of the trapping potential,sii d the total
phaseQ appears in the energy functional of Eq.s10d, siii d the
third term of Eq.s10d gives the hydrodynamic kinetic energy
rTsveff−V3 r d2/2 associated with the topological excitation,
and sivd there are several anisotropic terms that break the
SUs2d symmetry. The coherent coupling term with the Rabi
frequencyvR works as a transversespseudodmagnetic field
that aligns the spin along thex axis. The interaction terms
including the coefficientsc1 and c2 also break the SUs2d
symmetry. The coefficientc1 can also be interpreted as a
longitudinalspseudodmagnetic field that aligns the spin along
the z axis. The term involving the coefficientc2 determines
the spin-spin interaction associated withSz; it is antiferro-
magnetic forc2.0 and ferromagnetic forc2,0 f20g.

IV. AXISYMMETRIC SPIN TEXTURE: A SKYRMION

Based on the NLsM described by Eq.s10d, we discuss
the structure of vortex states in the two-component BECs. In
the following sections, we consider the two-dimensional
problem by assumingvz@v. Then, separating the degrees of
freedom of the original wave function asCisr d
=cisx,ydfszd, we obtain the dimensionless two-dimensional
GP equations
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S−
¹2

2
+

r2

2
+ u1uc1u2 + u12uc2u2 − VLzDc1 = m1c1,

s11ad

S−
¹2

2
+

r2

2
+ u2uc2u2 + u12uc1u2 − VLzDc2 = m2c2.

s11bd

Here, we define effective two-dimensional coupling con-
stants ui =4paihN and u12=4pa12hN with h
=edzufszdu4/edzufszdu2.

A. Numerical results

Figure 1 shows the density profile of the axisymmetric
vortex state obtained by numerically solving Eq.s11d for
u1=u2=u12=1000 sc0=1000 andc1=c2=0d, where the sys-
tem possesses the SUs2d symmetry if vR=0. Here, we as-
sume that thec1 component has one singly quantized vortex
at the center of the trap; we do not discuss the case in which
thec1 component has a multiply quantized vortex. Then, the
nonrotatingc2 component is located at the vortex core of the
c1 component; the core size is expanded due to the intercom-
ponent repulsive interaction. As a result, the total density has
no singularity and the condensates form a coreless vortex.
This vortex structure was created by Matthewset al. f1g by
following the phase imprinting method proposed by Will-
iams and Hollandf7g.

The pseudospin texture corresponding to the axisymmet-
ric vortex state is shown in Fig. 2, which was also discussed
by Leonhardt and Volovikf9g and Muellerf15g. At the center
of the cloud, thec1 component vanishes, and the pseudospin
points down in accordance with the definition of the spinSz

of Eq. s8cd. The spin aligns with a hyperbolic distribution
with sSx,Syd~ sx,−yd around the singularity at the center
fFig. 2sbdg. At the edge of the cloud, thec2 component van-
ishes, and the pseudospin points up. In between, the pseu-
dospin rolls from down to up continuously as shown in Fig.
2scd. This cross-disgyration spin texture is often referred to
as a “skyrmion” in analogy to the work of Skyrmef29g.

Axisymmetric spin textures with continuous vorticity
were extensively investigated in a field of superfluid3He
f25g. When the condensate wave function is parametrized as

FIG. 1. sColor onlined sad The density profile of the coreless
vortex state consisting of the rotatingc1 component and the nonro-
tating c2 component foru1=u2=u12=1000 sc0=1000, c1=c2=0d,
vR=0, andV=0.15. In this calculation, we fix the total particle
numberN=N1+N2, but do not fix each particle numberNi. Then,
the solution converges toN1/N2=2.465.sbd The cross sections of
uc1u2 ssolid curved, uc2u2 sdashed curved, and the total densityrT

sdotted curved along thex axis aty=0, where bold and thin curves
represent the results obtained from the numerical calculation and
the variational calculation, respectively.

FIG. 2. sColor onlined sad The pesudospin
densityS= x̄sx corresponding to the vortex state
in Fig. 1. sbd The vectorial representation of the
spin texture projected onto thex-y plane in the
region f−6.7øx,yø +6.7g. scd The cross section
of the spin texture along thex axis aty=0.
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Sc1

c2
D = ÎrT1eif cos

bsrd
2

sin
bsrd

2
2 , s12d

the configuration satisfying the boundary conditionbs0d=p
andbs`d=0 is referred to as an “Anderson-ToulousesATd”
vortex f9,31g. We also have a “Mermin-HosMHd” vortex or
a “meron” texture with the conditionbs0d=p and bs`d
=p /2 f9,32g. In the case of superfluid3He, a MH vortex is
stabilized by the boundary condition imposed by a cylindri-
cal vessel. However, in the atomic-BEC system there is no
constraint at the boundary; the valuebsrd at the boundary
should be determined self-consistently as discussed later.

It is known that the skyrmion has a topological invariant
defined in a two-dimensional system as

Q ;
1

8p
E drei jS · ]iS3 ] jS, s13d

which is called a topological charge or the Pontryagian index
f27g. The skyrmion with any spin profile is shown to have
Q= ±1, whose sign depends on the direction of the circula-
tion of a vortex. The integrand of Eq.s13d is the topological
charge density associated with the vorticity derived from the
effective velocityveff f15,32g:

qsr d ;
1

8p
ei jS · ]iS3 ] jS=

1

2p
s¹ 3 veffdz, s14d

where we used the relationoixi ¹xi
* =−oixi

* ¹xi si =1,2d in
obtaining the last equality. The topological charge density
qsr d characterizes the spatial distribution of the skyrmion.
Figure 3 shows the spatial distribution ofqsr d and the corre-
sponding veff-field. The topological charge is distributed
around the center and, contrary to a conventional vortex in a
single-component condensate,uveffu vanishes at the center.
This makes a coreless vortex without a density dip in the
total density.

B. Variational analysis

To study the physical properties of the skyrmion in more
detail, we make a variational analysis based on the NLsM in

Eq. s10d. The original NLsM fEq. s10d with only the s¹Sd2

termg admits a skyrmion solution and explicit analytic ex-
pressions are knownf37g. Here we take a more general form
of the skyrmion solution as a variational function; the skyr-
mion solution of Fig. 2 may be parametrized asf38g

Sx =
4lxe−ar2/2

r2 + 4l2e−ar2 ,

Sy =
− 4lye−ar2/2

r2 + 4l2e−ar2 ,

Sz =
r2 − 4l2e−ar2

r2 + 4l2e−ar2 s15d

with uSu=1. Equationss15d with a=0 correspond to the ex-
plicit skyrmion solution of the classical NLsM f37g. The
variational parametersl and a determine the size and the
shape of the skyrmion. Typically,l represents the size of the
domain in which the spin is reversed anda the degree of
spatial variation of the spin inversion. If we take bothl and
a as variational parameters, the number of particles in each
pseudospin component is not conservedswe will discuss be-
low the situation in which each particle number is fixedd.
Therefore the energetically stable configuration of the skyr-
mion brings about an imbalance in the particle number of
each component. Such a population imbalance can be con-
trolled by the turning-off time of the coupling drive in the
phase imprinting methodf1,7g. For the limit l→0s`d with
fixed a all spins point upsdownd along thez axis, which
means perfect polarization of the particle number asN1
→N sN2→Nd. Alternately, for fixed l, the limit N1→N
sN2→Nd corresponds toa→ +`s−`d. Because thec1 com-
ponent has one singly quantized vortex at the center, the total
phaseQ in Eq. s10d is given by

Q = tan−1 y

x
. s16d

Substituting Eqs.s15d and s16d into Eq. s10d yields

E =E drH1

2
s¹ÎrTd2 + Veff rT − vRrT

4lxe−ar2/2

r2 + 4l2e−ar2

+
rT

2

2 Fc0 + c1
r2 − 4l2e−ar2

r2 + 4l2e−ar2 + c2S r2 − 4l2e−ar2

r2 + 4l2e−ar2D2GJ .

s17d

Now the degrees of freedom in the energy functional have
been reduced to the total densityrT and the two variational
parametersl and a. Here, we have introduced an effective
confining potential

FIG. 3. sad The distribution of the topological charge density
qsr d of Eq. s14d and sbd the vectorial plot of the effective velocity
field veff of Eq. s9d, corresponding to the solution shown in Fig. 1.
The insets represent the cross sections ofqsr d and uveffu along the
y=0 line within the range −5øxø5.
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Veff ;
r2 + 4l2e−ar2

fsar2 + 1d2 + 1g

2sr2 + 4l2e−ar2
d2

−
Vr2

r2 + 4l2e−ar2 +
r2

2
,

s18d

which is radially symmetric and determines the shape of the
total densityrT. Note that the term with the Rabi frequency
vR in Eq. s17d breaks the axisymmetry of the problem; we
will discuss the effect of this term in Secs. V and VI. Ignor-
ing this term, we can calculate the total densityrT by solving
the equation

−
s¹2ÎrTd

2ÎrT

+ Veff + rTHc0 + c1
r2 − 4l2e−ar2

r2 + 4l2e−ar2

+ c2S r2 − 4l2e−ar2

r2 + 4l2e−ar2D2J = m, s19d

where the chemical potentialm is fixed by the normalization
conditionedrrT=1.

Before the analysis proceeds further, it is instructive to
investigate the form of the effective potentialVeff. For sim-
plicity, let us first consider the case witha=0, i.e., the clas-
sical skyrmion solution. Figure 4 shows the effective poten-
tial Veff and the total density profilerT calculated
numerically from Eq.s19d for several values ofl for c0
=1000,c1=c2=0, andV=0. Forl=0 sN=N1d, the value of
Veff at r =0 diverges, which implies that the total densityrT
should vanish at the center. This corresponds to the singular
vortex core of thec1 component. With increasingl the cen-
tral peak of Veff decreases and the total density becomes
smooth because of the appearance of the nonrotatingc2
component, which fills the vortex core of thec1 component.
The limit l→` sN→N2d describes the vanishingc1 com-
ponent with vorticity. Then, the effective potential becomes a
pure harmonic potential and the total density becomesuc2u2
exactly. This character ofVeff also holds foraÞ0. To de-
scribe rT except for l.0, therefore, we can employ the
Thomas-Fermi approximation which neglects the quantum-
pressure term −s¹2ÎrTd /2ÎrT in Eq. s17d. Then, the total
density is directly given from Eq.s19d.

1. SU(2)-symmetric condensates

Using the conditionedrrT=1, we numerically calculate
the chemical potential in Eq.s19d with the Thomas-Fermi
approximationsthe region with negativerT is neglectedd and
the total energyE as a function ofl anda from the resulting
total densityrT. Figure 5 shows the total energyE of the
axisymmetric vortex state as a function ofl for c0=103, c1
=c2=0, and several values of the rotation frequencyV,
where the value ofa is optimized for eachl. For values of
V higher than 0.17, more vortices enter the system. In the
case without rotationsV=0d, the energy decreases withl
and suddenly drops to the value at which the system has no
vorticity, i.e., complete polarization of the particle number as
N=N2 ssee the inset of Fig. 5d, where there is no energy
minimum corresponding to the vortex state for fixedl be-
causea→−`. This means that the global minimum forV
=0 is a nonvortex state forany values of N1 and N2 under the
fixed total particle number N, because the interaction-energy
terms now satisfy the SUs2d symmetry so that the energy of
the nonvortex state is degenerate under the change of the
ratio N1/N2 with fixed N. However, beyond a certain critical
value of V, there appears an energy minimum as shown in
Fig. 5. Since the minimized energy is lower than that of the

FIG. 4. sad The effective potentialVeff of Eq. s18d with a=0 sfor
V=0 andvR=0d for several values ofl. A pure harmonic potential
sobtained forl→`d is shown by a dotted curve. The inset shows
the corresponding total density profilesrT for c0=1000.

FIG. 5. The total energy as a function of the skyrmion sizel for
several values of the rotation frequencyV sV=0,0.55,0.1,0.15d
for c0=103 and c1=c2=0. The energy of the nonvortex state is
11.894. The inset shows the optimized value ofa as a function ofl.

FIG. 6. The optimized value of the variational parameterl
ssolid curved and that ofa sdashed curved as a function of rotation
frequencyV for c0=103, 2.53103, 104 andc1=c2=0.
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nonvortex state atl→ +`, the external rotation can make
the corresponding skyrmion texture stable globally.

Figure 6 shows the values ofl anda that give the mini-
mum of the total energy forc0=103, 2.53103, and 104. The
size of the skyrmion decreases with increasingV, as re-
vealed by a decreasesan increased in lmin samind. The energy
minimum appears at a certain critical frequency ofV, where
lmin samind diverges to +̀ s−`d and the critical frequency
decreases asc0 increases. Therefore the condensates with
largerc0 can have a stable skyrmion at a lower rotation fre-
quency. However, the full numerical calculations of Eq.s11d
show that additional vortices are nucleated and form a lattice
of skyrmions beyondV.0.17,0.11,0.05 forc0=103, 2.5
3103, 104, respectively. These structures cannot be de-
scribed by Eq.s15d and the investigation of such periodic
solutions remains to be made. From the comparison with the
numerical solution as shown in Fig. 1sbd, the optimized
variational functions Eqs.s15d ands16d reproduce an almost
exact numerical solution. Hence our approach improves
greatly the analytic treatment for the vortex states based on
the usual Thomas-Fermi approximation studied in Ref.f6g.

The bending anglebsrd=cos−1 Sz in Eq. s12d decreases
smoothly fromp at r =0 asr increases. Figure 7 shows the
values ofbsrd evaluated at the Thomas-Fermi boundaryr
=RTF at which the total densityrT vanishes, as a function of
rotation frequencyV. The valuebsRTFd can change arbi-
trarily with V by varying the ratioN1/N2, which implies that
an intermediate configuration between a MH vortex
fbsRTFd=p /2g and an AT vortexfbsRTFd=0g can be made
thermodynamically stable. It is the ratioN1/N2 that deter-
mines bsRTFd, which does not change for fixedN1/N2 as
explained in Sec. IV B 3. We also note that there exists a
minimum value ofbsRTFd s,0.09d, below which additional
vortices are nucleated. Therefore an AT vortex can never be
the ground state of the SUs2d-symmetric two-component
condensates. A similar discussion is made in Refs.f12,13g
for the case of ferromagnetic spin-1 BECs.

2. c1 and c2 dependence

Next, we discuss the effects ofc1 andc2 in Eq. s17d, the
values of which are controllable by changing the scattering

lengths. The coefficientc1, proportional to the difference of
the intracomponent interactionsu1 andu2, may be regarded
as aspseudodmagnetic field that aligns the spin along thez
axis; the positivesnegatived c1 aligns the spins downward
supwardd. Figure 8 shows the optimized value ofl anda as
a function ofc1 for V=0.15 andc0=103. For the negativec1
side the size of a stable skyrmion shrinks asuc1u increases,
which implies the spin alignment to upward with increasing
a fraction of the rotatingc1 component. In this case, an AT
vortex can be thermodynamically stable. Belowl at c1
.−85, the Thomas-Fermi approximation breaks down for
small l owing to the appearance of the singular vortex core
in rT. For the positivec1 side the value ofl increases rapidly
and eventually goes to infinitysconcurrently,a goes to −̀ d,
corresponding to the complete “spin-down” alignmentsoccu-
pation of the nonrotatingc2 component onlyd. This depen-
dence on the sign ofc1 reflects the fact that the occupation of
the component with vorticity costs a larger energy than that
of the nonrotating component.

The sign ofc2 determines the nature of the spin-spin in-
teraction associated withSz. For positivec2 su1+u2.2u12d

FIG. 7. The bending anglebsrd=cos−1 Sz at the Thomas-Fermi
boundaryr =RTF at which the total densityrT vanishes, as a func-
tion of V. The optimized values of the variational parametersl and
a in Fig. 6 are used.

FIG. 8. sColor onlined The optimized values of the variational
parametersl ssolid curved anda sdashed curved as a function of the
longitudinal spseudodmagnetic fieldc1 for c0=103, c2=0, and V
=0.15. Insets show the cross sections of the variational function
uc1u2 ssolid curved, uc2u2 sdashed curved, and the total densityrT

sdotted curved along they=0 line sleft: c1=−50, right:c1=8d.

FIG. 9. sColor onlined The optimized values of the variational
parametersl ssolid curved anda sdashed curved as a function of the
spin-spin interaction strengthc2 for c0=103, c1=0, andV=0.15.
The insets show the cross sections of the variational functionuc1u2
ssolid curved, uc2u2 sdashed curved, and the total densityrT sdotted
curved along they=0 line sleft: c2=−50, right:c2=50d.
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the interaction is antiferromagnetic, preferring to the spatial
mixture of the spin-up and spin-down components. While for
negativec2 su1+u2,2u12d, the system enters the ferromag-
netic phase, where the spin domains are spontaneously
formed. This feature also appears in the stable structure of
the skyrmion. Figure 9 shows the optimized values ofl and
a as a function ofc2 for V=0.15,c0=103, andc1=0. For the
antiferromagnetic casec2.0, we see no significant change
of the spin profile compared with that ofc2=0 fthe SUs2d
symmetric caseg. For the ferromagnetic casec2,0, the
variations ofl anda are similar to that of Fig. 8, where the
size of the skyrmion shrinks withuc2u. Since each particle
number is not conserved in this calculation, the energetically
favorable configuration in a ferrmagnetic phase tends to an
overall spin polarization, i.e., complete polarization of the
particle number. In this regime, there are two energy minima,
one of which leads to the perfect polarization of thec1 vor-
tex statescorresponding to the results shown in Fig. 9d and
the other leads to thec2 nonvortex statescharacterized by
l→` anda→−`; not shownd, respectively, and which state
possesses the global stability depends on the rotation fre-
quency.

3. Energy minimization under the fixed particle number
of each component

So far, we have allowed a change in the particle number
of each component to calculate the minimized skyrmion size.
However, the experiments at JILA on two-component BECs
f23g were made under the condition in which each particle
number is fixed. This restriction can be taken into account by
noticing the relation

N1

N2
=
E drrTs1 + Szd

E drrTs1 − Szd
; s20d

for a givenl the value ofa is uniquely determined by Eq.
s20d, where bothrT and Sz are functions of two variational
parameters. Therefore the energy minimization can be done
with respect to one variational parameterswhich we choose
to be ld. As discussed before, this ratio determines the
boundary value of the bending anglebsrd.

Here, we consider the situation of the equal particle num-
berN1/N2=1 and investigate the stable size of the skyrmion
as done before. In this case, we find that the stable size is not
affected by the change ofV. Figure 10 shows the optimized
values ofl anda as a function ofc1 andc2. In this case, no
complete polarization of the particle number occurs, so that
the skyrmion may exist for all values ofc1 and c2; in this
case, however, even if the optimal variational parameters ex-
ist, they do not ensure a local minimum of the total energy.
In Fig. 10sad, for positivec1 the divergence oflmin seen in
Fig. 8 is suppressed due to the conservation of each particle
number. Alternately, to enlarge the “spin-down” domain
where thec2 component is occupied, the size of the vortex
core of thec1 component becomes large by increasing both
lmin andamin. For negativec1, the domain with the rotating
c1 component tends to increase. As a result, the vortex core

of thec1 component shrinks and a part of thec2 component
is pushed out of thec1 component. Here, the total energy of
the skyrmion with the sameuc1u is always lower for positive
c1 than for negativec1. This is because it is favorable for the
c1 component with the relationu1.u2 to spread spatially by
the centrifugal effect with a vortex, and increase the “spin-
down” domain. This is consistent with the experimental ob-
servationf1g that the vortex in the component having a larger
intracomponent interaction is stable; otherwise it is unstable
ssee also the argument of the dynamical stability in Ref.
f10gd. In thec2 dependence, while we see no drastic change
in the antiferromagneticc2.0 range, forc2,0 a rapid in-
crease oflmin and amin with increasinguc2u is seen in Fig.
10sbd. This means that the spin-up or spin-down domains
grow and their boundary becomes sharp with increasinguc2u.

V. NONAXISYMMETRIC SPIN TEXTURE: A MERON-
PAIR

A. Numerical results

In this section we discuss a nonaxisymmetric vortex state.
This structure can be regarded as a spin texture consisting of
a pair of meronsf27g or MH vorticesf25,32g. Our previous
study showed that this meron-pair can be stabilized thermo-
dynamically in the presence of rotation and internal coherent

FIG. 10. sColor onlined The optimized values of the variational
parametersl ssolid curved anda sdashed curved as a function ofsad
c1 andsbd c2 under the condition of a fixed particle number of each
componentN1/N2=1 for c0=103, V=0.15 fc2=0 andc1=0 for sad
and sbd, respectivelyg. The insets show the cross sections of the
variational functionsuc1u2 ssolid curved, uc2u2 sdashed curved, and
the total densityrT sdotted curved along they=0 line fsad left: c1

=−50, right:c1=50 andsbd left: c2=−30, right:c2=30g.
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couplingf16g. A typical solution of this structure is shown in
Fig. 11. Each component has one off-axis vortex and the
density peak of one component is located at the vortex core
of the other component. This results in a coreless vortex in
which the total density has no singularity.

Because of the presence of the coherent coupling, the pro-
file of the relative phasefsr d=u1−u2 plays an important role
in optimizing the structure, which is shown in Fig. 11scd. The
relative phase shows that the central region is characterized
by the configuration of a vortex-antivortex pair. In other
words, the two vortices are connected by a domain wall of
the relative phase with the 2p difference, which is character-
istic of a topological soliton in two-component BECs with

the internal coherent coupling. Son and Stephanovf33g ob-
tained an exact form of the domain wall in a homogeneous
one-dimensional system. In our case, the one-dimensional
profile of fsr d along thex=0 line approximately takes a
form

fs0,yd = − 4 tan−1 eky + C, s21d

wherek−1=suc1uuc2u /2vRrTd1/2 gives a characteristic size of
the domain wall, and the constantC=2ps0d for y.0s,0d
makes the branch cut aty=0 shown in Fig. 11scd. Then, the
vortex in one component and that in the other can be bound
by this domain wall, forming a “vortex molecule”f16g.

FIG. 11. sColor onlined sad The density profile
of the condensatesuc1u2 and uc2u2 for u1=u2

=u12=1000 sc0=103, c1=c2=0d, V=0.15, and
vR=0.05. The two components have the same
particle number.sbd The cross sections ofuc1u2
ssolid curved, uc2u2 sdashed curved, and the total
density rT sdotted curved along thex axis at y
=0, where bold and thin curves represent the re-
sults obtained from the numerical calculation and
those obtained from the variational calculation,
respectively.scd The grayscale plot of the relative
phasef=u1−u2.

FIG. 12. sColor onlined sad The pesudospin
densityS= x̄sx corresponding to the vortex state
in Fig. 11.sbd The vectorial representation of the
spin texture projected onto thex-y plane in the
regionf−6.7øx,yø6.7g. scd The cross section of
the spin texturesbd along thex axis aty=0.
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The pseudospin profiles corresponding to the solution of
Fig. 11 are shown in Fig. 12sad. While the profile ofSx is
axisymmetric,Sy andSz show dipole structures. The structure
of S has a form similar to what is obtained by exchangingSx
andSz in Fig. 2. The corresponding spin texture is shown in
Figs. 12sbd and 12scd. The spins are oriented in thex direc-
tion everywhere except in the central domain-wall region,
where they tumble rapidly by 2p. There exist two points
corresponding to the locations of vortices at whichS is par-
allel to the z axis. The spin around the singularity withS
= +ẑ sS=−ẑd has a radialshyperbolicd distribution, charac-
terized by sSx,Syd~ s−x,−yd f~sx,−yg, and rotates through
90° as it goes outward to become perpendicular to thex axis.
This texture is known as a “radial-hyperbolic” pair of
merons, which has been discussed in the study of topological
defects in superfluid3He f25g and a double-layer quantum
Hall systemf27g. Since the trapping potential is axisymmet-
ric, the energy is degenerate with respect to the orientation of
the molecular polarization. If the molecule is polarized along
they axis, the texture forms a “circular-hyperbolic” pairf16g
and can therefore continuously change into the radial-
hyperbolic form.

We find that, whenu1=u2=u12 sc1=c2=0d, the topologi-
cal charge densityqsr d and the effective velocity fieldveff

exhibit a radially isotropic profileas in Fig. 3, even though
each component forms a nonaxisymmetric vortex configura-
tion. As we discuss later, this is due to the fact that the
meron-pair texture and the axisymmetric skyrmion texture
are equivalent as a topological excitation in the case ofu1
=u2=u12; they can transform to each other through an overall
rotation of the pseudospin. Therefore the Rabi coupling
alone does not break the axisymmetry of the topological ex-
citation. However, inclusion of both the Rabi coupling and
unequal coupling constantsu1Þu2Þu12 induces an aniso-
tropy of the meron-pair as discussed in Sec. VI.

B. Variational analysis

In the case ofu1=u2=u12 sc1=c2=0d, the spin profile of
the meron-pair in Fig. 12 is radially isotropic and may be
parametrized asf16g

Sx =
r2 − 4l2e−ar2

r2 + 4l2e−ar2 ,

Sy =
− 4lye−ar2/2

r2 + 4l2e−ar2 ,

Sz =
− 4lxe−ar2/2

r2 + 4l2e−ar2 . s22d

Here we assume that the vortex molecule is polarized along
thex axis. Compared with the ansatz solution in Eq.s15d for
a skyrmion, onlySx and Sz are exchanged. In this case, the
ratio of the particle number given in Eq.s20d is always unity,
becauseSz is an odd function. In Ref.f16g, we seta=0 to
simplify the variational problem, and obtained a reasonable
agreement with the numerical solution. The full variational

analysis with two variational parametersl and a gives al-
most perfect quantitative agreement with the numerical one
as seen below.

The locations of the vortex cores are determined by two
extremes ofSz, given by

x2 = 4l2e−ax2
. s23d

Its solution is represented asx= ±Ws4al2d /Îa with the
product log functionWszd f39,40g. Then, it is natural to take
the form of the total phaseQ as

Q = tan−1 y

x − 2le−ar2/2
+ tan−1 y

x + 2le−ar2/2
. s24d

Substituting Eqs.s22d and s24d into Eq. s10d, we obtain the
total energy similar to Eq.s17d:

E =E drF1

2
s¹ÎrTd2 + Veff rT + c0

rT
2

2
− vRrT

r2 − 4l2e−ar2

r2 + 4l2e−ar2G .

s25d

Here, the effective confining potentialVeff is the same as in
Eq. s18d. Contrary to the axisymmetric skyrmion, the internal
coupling term withvR does not break the radial symmetry of
the problem.

Because Eq.s25d gives the same energy for any value ofl
and a as that of the axisymmetric skyrmion given by Eq.
s17d, if vR=0, i.e., for the SUs2d symmetric case, the skyr-
mion and the meron-pair have the same optimal values ofl
anda and their energies are degenerate. In other words, the
energy is degenerate with respect to the rotation of the over-
all pseudospin between the two spin textures. We can see that
turning on the Rabi termvR always decreases the free energy
of the meron-pair from any solutions of vortex states with
the topological chargeQ= +1 for vR=0. Therefore, adding
the infinitesimal value ofvR is enough to stabilize the non-
axisymmetric configuration ifc1=c2=0.

Since the Rabi frequency may be regarded as a transverse
magnetic field along thex axis, the stable size of the meron-
pair as a function ofvR shows a similar behavior as that
shown in Fig. 8. The difference is that the Rabi term is pro-
portional to rT instead ofrT

2, which changes the behavior
from that of Fig. 8. In the presence of slow rotationf41g, we
calculate the minimized value ofl anda as a function ofvR,
the result being shown in Fig. 13sad. As vR increases, the
minimized value ofl sad becomes smallerslargerd, and
eventually vanishessdivergesd. This behavior corresponds to
a decrease in the sizedm of the meron-pairfsee Fig. 11sbd for
the definitiong as shown in Fig. 13sbd, wheredm is calculated
from Eq. s23d. This indicates that the binding of the meron-
pair becomes stronger with increasingvR, which is caused
by the tension of a domain wall in the relative phase between
the two-component wave functionsf16,33g. The variational
result agrees perfectly with the numerical result. Beyond
vR.3.0 the separationdm vanishes, where the locations of
the density nodes overlap despite the intercomponent repul-
sive interaction.

The physical origin of the binding of the meron-pair, i.e.,
the vortex molecule, was discussed previouslyf16g. For
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well-separated merons, the repulsive interaction between
them originates from the second and third terms of Eq.s10d,
which are the gradient energy of the pseudospin and the hy-
drodynamic kinetic energy of theveff-field. On the other
hand, the attractive force between two merons is estimated
from a tensionTd of the domain wall of the relative phase to
be ,Tddm; for a homogeneous systemTd=8uc1u2uc2u2k/rT
with the characteristic domain sizek−1=suc1uuc2u /2vRrTd1/2

f33g, we haveTd~ÎvR. Then, the competition between the
repulsive force and the attractive force creates an energy
minimum so that the two vortices can form a bound pair. The
contribution of the other terms is almost constant except for
smalldm s,0.30 forc0=103d, where the vortex core appears
in the total density. Then, the Thomas-Fermi approximation
cannot apply to the evaluation of the total energy;lmin drops
suddenly to zero with increasingvR because of the lacking
of the energy barrier associated with the quantum pressure of
rT. The numerical result shows that the separationdm de-
creases smoothly to zero withvR.

C. Basis transformation of the pseudospin

In the SUs2d symmetric casesc1=c2=0d, a further insight
of the nonaxisymmetric vortex is obtained by rotating the
basis of the spinor so that the internal coupling becomes

simpler. Note that the spin profile of a skyrmionsFig. 2d and
a meron-pairsFig. 12d is connected only through the ex-
change ofSx andSz. In this case, the Rabi term makes thex
axis as a preferred one. Actually, if we rotate the spinors as
c±=sc1±c2d /Î2 sthe basis along with thex axisd, the
coupled Gross-Pitaevskii equationss4d become

F1

2
S¹

i
− V 3 rD2

+ Ṽ + c0rTGc+ = sm + vRdc+,

F1

2
S¹

i
− V 3 rD2

+ Ṽ + c0rTGc− = sm − vRdc−.

Here, the internal coupling is just the chemical potential dif-
ference between the “1” and “2” components. Then, the
nonaxisymmetric structure in Fig. 11 is transformed to the
axisymmetric vortex state of Fig. 1, i.e., a skyrmion. Here,
the vortex core of the “1” component is filled with the non-
rotating “2” component. As one increasesvR the number of
the “2” particle drops because of a decrease in the chemical

FIG. 13. sColor onlined sad The optimized values of the varia-
tional parametersl ssolid curved anda sdashed curved as a function
of vR for c0=103, V=0.15,c1=0, andc2=0. sbd The corresponding
size of the meron-pair 2dm calculated from Eq.s23d fsee Fig. 11sbd
for definitiong for c0=103. We also show 2dm obtained from nu-
merical simulations as filled circles. The insets show the cross sec-
tions of the variational functionsuc1u2 ssolid curved, uc2u2 sdashed
curved, and the total densityrT sdotted curved along they=0 line
sleft: vR=0.1, right:vR=0.5d.

FIG. 14. sColor onlined Equilibrium structures of the spin tex-
ture in the presence of a longitudinal magnetic fieldsc1d and a
transverse magnetic fieldsvRd in the regionf−4øx,yø +4g. The
vectorial plots in thex-y plane and along they=0 line are shown.
The values of the parameters areV=0.15, c0=1000, c1=−10, c2

=0, andsad vR=0, sbd vR=0.02, scd vR=0.05, sdd vR=0.10. The
cross sections ofuc1u2 ssolid curved, uc2u2 sdashed curved, and the
total densityrT sdotted curved along they=0 line are also shown
within the rangef−8øxø +8g. sed The distributions of the topo-
logical charge densityqsr d along they=0 line for vR=0 ssolidd,
0.02 sdashedd, 0.05 sdashed-dottedd, and 0.1sdottedd.
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potential of c−, and the vortex cores eventually become
empty, which corresponds to the overlap of the vortex cores.

VI. EFFECTS OF SYMMETRY-BREAKING TERMS

In this section, we discuss the effect of the symmetry
breaking terms, which are neglected in the last two sections,
by numerically solving Eqs.s11d. For an axisymmetric skyr-
mion texture, the Rabi term breaks the axisymmetry of the
spin texture, and for a meron-pair thec1 andc2 terms cause
symmetry breaking.

First, we neglect the spin-spin interaction termsc2 termd
and investigate the dependence of the stable structure onc1
andvR, which corresponds to a situation in which a longitu-
dinal and transversespseudodmagnetic field are applied si-
multaneously. We first prepare a stable axisymmetric skyr-
mion by applying the longitudinal magnetic fieldc1=−10,
and then turn on the transverse magnetic fieldvR. Figures
14sad–14sdd show the variation of the spin texture as well as
the cross section of the condensate densities along they=0
line when the Rabi frequencyvR is increased. The transverse
magnetic field shifts the skyrmion to the off-center and con-
verts it into a meron. Correspondingly, another meron enters
from outward and forms anasymmetricvortex molecule
shown in Figs. 14scd and 14sdd. This change is a second-

order transition; there is no energy barrier to destabilize the
axisymmetric skyrmion with respect to the transverse mag-
netic field. Figure 14sed shows the topological charge density
qsr d along thex axis sthey=0 lined. Although its distribution
is shifted from the center with increasingvR, there is no
dramatic change in the global shape from the isotropic one.
As vR increases further, the peak ofqsr d gets back to the
center and its value goes to infinity when the two merons
merge.

Next, we study the effects of the spin-spin interaction
term sc2 termd on the stable structure of a meron-pair under a
transverse magnetic field withvR=0.05 sc1 is fixed to be
zerod. Then,c2 changes the structure of the meron-pair dra-
matically, in contrast to the case ofc1. Figure 15 shows the
equilibrium structure of the condensate density, the spin tex-
ture, and the topological charge densityqsr d for the antifer-
romagnetic casesc2=−20d and the ferromagnetic casesc2

=20d. For the antiferromagnetic case there is no significant
difference in the density and spin profile, compared with the
solution ofc2=0 in Figs. 11 and 12. However, the topologi-
cal charge density, i.e., vorticity, is distributed anisotropically
in such a manner that the distribution is elongated along the
direction of polarization of the meron-pair. For the ferromag-
netic case, the spin domains are formed, which gives rise to
a considerable change in the density and spin profile as seen

FIG. 15. sColor onlined Equilibrium structures
of the spin texture in the presence of a spin-spin
interaction c2 and a transverse magnetic field
svRd. The parameter values areV=0.15, c0

=1000,c1=0, vR=0.05, andsad c2=20, sbd c2=
−20. stopd The cross sections ofuc1u2 ssolid
curved, uc2u2 sdashed curved, and the total density
rT sdotted curved along they=0 line are also
shown.smiddled The corresponding spin texture
in the regionf−4øx,yø +4g. The vectorial plots
in the x-y plane and along they=0 line are
shown.sbottomd The spatial distributions of the
topological charge densityqsr d.
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in Fig. 15sbd. Most of the spins align up or down along thez
axis on both sides, sandwiching the domain wall across
which the spin flips rapidly. If the Rabi frequencyvR is
increased further, the spins on both sides are laid along thex
axis, converting into the well-defined meron-pair as in Fig.
12. Then, the topological charge density is distributed in the
direction perpendicular to the direction of polarization of the
meron-pair, being concentrated on the domain-wall region.
This anisotropy of the meron-pair gives an interesting situa-
tion when the condensates undergo a rapid rotation; the an-
isotropic interaction between the meron-pairs generates a
distorted lattice of the “vortex molecules”f16g, which is a
unique feature of the rotating two-component system with
the internal coherent coupling.

VII. CONCLUSION

In conclusion, we have discussed the coreless vortex
states and the corresponding spin textures in rotating two-
component BECs with and without internal coherent cou-
pling. The axisymmrteric and nonaxisymmetric structure of
the spin texture have been discussed by exploring the NLsM
derived from the Gross-Pitaevskii energy functional. The
variational function of the spin profile, which is based on the
exact solution of the classical NLsM, provides a good de-
scription of the coreless vortex states. This variational
method also improves greatly the usual analytical approach
based on the Thomas-Fermi approximationf6g. In the case of
SUs2d symmetry, these two spin textures are equivalent to-
pological excitations and transform to each other by a global
rotation of the pseudospin. We have discussed the effect of
the SUs2d-symmetry breaking contributions, inequality of the
three coupling constantsu1, u2, andu12 sc1 andc2 termd, and
the Rabi frequencyvR, on the spin textures. These contribu-
tions are interpreted as a longitudinal and transverse mag-

netic field and a spin-spin interaction in the NLsM. For an
axisymmetric skyrmionsa nonaxisymmetric meron-paird, the
c1 and c2 term svR termd affect the optimized size of the
topological excitation, but do not break the radial symmetry
of the problem. Inclusion of all those terms makes a topo-
logical excitation characterized by an anisotropic distribution
of the vorticity and the topological charge density.

One of the open problems is to study vortex states in a
ferromagnetic regime. Rich spin textures are expected with
the combination of the ferromagnetic feature leading to spin-
domain formation and a rotational effect, e.g., a rotating
domain-wall crosss“propellers”d f42g and “serpentine” vor-
tex sheetsf20g. The problem of their stability remains to be
investigated. Furthermore, it is necessary to study in more
detail lattices of spin textures which appear in the rapidly
rotating two-component BECs, where we can expect a richer
phase diagram and structural phase transition of the vortex
phasesf16,43g. It is also of interest to extend the pseudospin
model to two-component fermion systems in view of the
rapid progress in ultracold fermions after the observation of
condensation of fermionic pairsf44g; rapidly rotating two-
component fermionsf45g may exhibit phenomena analogous
to what has been discussed in double-layer quantum Hall
systems.

ACKNOWLEDGMENTS

The authors are grateful to M. M. Salomaa and E. J.
Mueller for useful comments. K.K. and M.T. acknowledge
support by a Grant-in-Aid for Scientific ResearchsGrants
No. 15·5955 and No. 15341022d by the JSPS. M.U. acknowl-
edges support by a Grant-in-Aid for Scientific Research
sGrant No. 15340129d by the MEXT of Japan, and a CREST
program by JST.

f1g M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E.
Wieman, and E. A. Cornell, Phys. Rev. Lett.83, 2498s1999d.

f2g K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard,
Phys. Rev. Lett.84, 806 s2000d; J. R. Abo-Shaeer, C. Raman,
J. M. Vogels, and W. Ketterle, Science292, 476 s2001d; E.
Hodby, G. Hechenblaikner, S. A. Hopkins, O. M. Maragó, and
C. J. Foot, Phys. Rev. Lett.88, 010405s2002d.

f3g P. C. Haljan, I. Coddington, P. Engels, and E. A. Cornell, Phys.
Rev. Lett. 87, 210403s2001d.

f4g A. E. Leanhardt, Y. Shin, D. Kielpinski, D. E. Pritchard, and
W. Ketterle, Phys. Rev. Lett.90, 140403s2003d.

f5g For a recent review, G. Baym, J. Low Temp. Phys.138, 601
s2005d, and references therein.

f6g T.-L. Ho and V. B. Shenoy, Phys. Rev. Lett.77, 3276s1996d;
S. T. Chui, V. N. Ryzhov, and E. E. Tareyeva, Phys. Rev. A63,
023605s2001d; D. M. Jezek, P. Capuzzi, and H. M. Cataldo,
ibid. 64, 023605s2001d.

f7g J. E. Williams and M. J. Holland, NaturesLondond 401, 568
s1999d.

f8g T. Ohmi and J. Machida, J. Phys. Soc. Jpn.67, 1822s1998d; T.

L. Ho, Phys. Rev. Lett.81, 742 s1998d.
f9g U. Leonhardt and G. E. Volovik, JETP Lett.72, 46 s2000d.

f10g J. J. García-Ripoll and V. M. Pérez-García, Phys. Rev. Lett.
84, 4264 s2000d; V. M. Pérez-García and J. J. García-Ripoll,
Phys. Rev. A 62, 033601s2000d; D. V. Skryabin, ibid. 63,
013602s2000d.

f11g S.-K. Yip, Phys. Rev. Lett.83, 4677s1999d; T. Isoshima and
K. Machida, Phys. Rev. A66, 023602s2002d.

f12g T. Mizushima, K. Machida, and T. Kita, Phys. Rev. Lett.89,
030401s2002d; Phys. Rev. A66, 053610s2002d.

f13g J.-P. Martikainen, A. Collin, and K.-A. Suominen, Phys. Rev.
A 66, 053604s2002d.

f14g J. J. García-Ripoll, V. M. Pérez-García, and F. Sols, Phys. Rev.
A 66, 021602sRd s2002d.

f15g E. J. Mueller, Phys. Rev. A69, 033606s2004d.
f16g K. Kasamatsu, M. Tsubota, and M. Ueda, Phys. Rev. Lett.93,

250406s2004d.
f17g U. Al Khawaja and H. T. C. Stoof, NaturesLondond 411, 918

s2001d; Phys. Rev. A64, 043612s2001d; S. Tuchiya and S.
Kurihara, J. Phys. Soc. Jpn.70, 1182s2001d; Y. Zhang, W-D.

SPIN TEXTURES IN ROTATING TWO-COMPONENT… PHYSICAL REVIEW A 71, 043611s2005d

043611-13



Li, L. Li and H. J. W. Müller-Kirsten, Phys. Rev. A66, 043622
s2002d; H. Zhai, W. Q. Chen, Z. Xu, and L. Chang,ibid. 68,
043602s2003d.

f18g J. Ruostekoski and J. R. Anglin, Phys. Rev. Lett.86, 3934
s2001d; R. A. Battye, N. R. Cooper, and P. M. Sutcliffe,ibid.
88, 080401s2002d; C. M. Savage and J. Ruostekoski,ibid. 91,
010403s2003d; J. Ruostekoski, Phys. Rev. A70, 041601sRd
s2004d.

f19g E. J. Mueller and T.-L. Ho, Phys. Rev. Lett.88, 180403
s2002d.

f20g K. Kasamatsu, M. Tsubota, and M. Ueda, Phys. Rev. Lett.91,
150406s2003d.

f21g T. Kita, T. Mizushima, and K. Machida, Phys. Rev. A66,
061601sRd s2002d; J. W. Reijnders, F. J. M. van Lankvelt, K.
Schoutens, and N. Read,ibid. 69, 023612 s2004d; T. Mi-
zushima, N. Kobayashi, and K. Machida,ibid. 70, 043613
s2004d.

f22g The observation of interlaced square vortex lattices in rotating
spinor BECs has been reported recently in V. Schweikhard, I.
Coddington, P. Engels, S. Tung, and E. A. Cornell, Phys. Rev.
Lett. 93, 210403s2004d.

f23g D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman, and
E. A. Cornell, Phys. Rev. Lett.81, 1539s1998d.

f24g J. Stenger, S. Inouye, D. M. Stamper-Kurn, H.-J. Miesner, A.
P. Chikkatur, and W. Ketterle, NaturesLondond 369, 345
s1998d.

f25g G. E. Volovik, The Universe in a Helium DropletsOxford
University Press, Oxford, 2003d.

f26g A. Knigavko, and B. Rosenstein, Phys. Rev. Lett.82, 1261
s1999d; B. Rosenstein, I. Shapiro, B. Ya. Shapiro, and G. Bel,
Phys. Rev. B67, 224507s2003d.

f27g For a brief review see, S. M. Girvin, Phys. Today53, 39
s2000d, and references therein.

f28g Y. F. Chen, K. F. Huang, H. C. Lai, and Y. P. Lan, Phys. Rev.
Lett. 90, 053904s2003d.

f29g T. H. R. Skyrme, Proc. R. Soc. London, Ser. A260, 127
s1961d.

f30g Topological Defects and the Non-Equilibrium Dynamics of
Symmetry Breaking Phase Transitions, edited by Y. M.
Bunkov and H. GodfrinsKluwer Academic Publishers, Les
Houches, 1999d.

f31g P. W. Anderson and G. Toulouse, Phys. Rev. Lett.38, 508
s1977d.

f32g N. D. Mermin and T. L. Ho, Phys. Rev. Lett.36, 594 s1976d.
f33g D. T. Son and M. A. Stephanov, Phys. Rev. A65, 063621

s2002d.
f34g M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, M.

J. Holland, J. E. Williams, C. E. Wieman, and E. A. Cornell,
Phys. Rev. Lett.83, 3358s1999d.

f35g The detuning parameterD in Eq. s1d ignored in this paper can
be utilized to control the ratio of the particle number because it
gives the chemical potential difference between two compo-
nents. As a result, an additional termDrTSz/2 appears in the
NLsM. This term thus acts as a magnetic field that aligns the
spin along thez axis just like thec1 term, being proportional to
rT instead ofrT

2.
f36g E. Babaev, L. D. Faddeev, and A. J. Niemi, Phys. Rev. B65,

100512sRd s2002d.
f37g R. Rajaraman,Soliton and InstantonssNorth-Holland, Amster-

dam, 1989d.
f38g J. Sinova, S. M. Girvin, T. Jungwirth, and K. Moon, Phys. Rev.

B 61, 2749s2000d.
f39g http://mathworld.wolfram.com/LambertW-Function.html
f40g It is easy to see that this variational function also describes the

domain-wall structure in the relative phase space. If we take
0,f, +ps−p,f,0d in the regiony.0sy,0d, the profile
of f=tan−1s−Sy/Sxd becomes that in Fig. 11scd, wherefsx,yd
have a branch cut at y=0 for −Ws4al2d /Îaøx
ø +Ws4al2d /Îa.

f41g As explained in Ref.f16g, rotation is necessary to stabilize the
meron-pair in spite of an attractive force of vortices induced by
the domain wall of the relative phase. We have performed
simulations using the imaginary time propagation of the Gross-
Pitaevskii equations to study the stability, and confirmed that
for V=0 and the finite value ofvR the center of mass of the
vortex molecule spirals out towards the edge of the conden-
sates because of the drift instabilityfD. S. Rokhsar, Phys. Rev.
Lett. 79, 2164s1997dg.

f42g B. A. Malomed, H. E. Nistazakis, D. J. Frantzeskakis, and P.
G. Kevrekidis, Phys. Rev. A70, 043616s2004d.

f43g A similar discussion can be found in H. Zhai, Q. Zhou, R. Lü,
and L. Chang, Phys. Rev. A69, 063609s2004d, where the
structure of a vortex lattice in a condensate trapped by a
double-layer potential is investigated.

f44g C. A. Regal, M. Greiner, and D. S. Jin, Phys. Rev. Lett.92,
040403s2004d; M. W. Zwierlein, C. A. Stan, C. H. Schunck,
S. M. F. Raupach, A. J. Kerman, and W. Ketterle,ibid. 92,
120403s2004d.

f45g S. Ghosh, M. V. N. Murthy, and S. Sinha, Phys. Rev. A64,
053603s2001d. These authors analyzed the equilibrium struc-
ture of the two-component fermions using the Thomas-Fermi
approximation. They considered an unpolarized system, where
the pseudospin densitySz=r1−r2 is zero.

KASAMATSU, TSUBOTA, AND UEDA PHYSICAL REVIEW A 71, 043611s2005d

043611-14


