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Yong-li Ma,"*? Guoxiang Huang;®> and Bambi H&*
lDepartment of Physics, Fudan University, Shanghai 200433, China
“Centre for Nonlinear Studies and Department of Physics, Hong Kong Baptist University, Hong Kong, China
3Department of Physics, East China Normal University, Shanghai 200062, China
4Department of Physics, University of Houston, Houston, Texas 77204, USA
(Received 20 November 2004; published 14 April 2005

We make a systematic study of the resonant mode coupling of the collective excitations at zero temperature
in a Bose-Einstein condensd®EC). (i) Based on the Gross-Pitaevskii equation we derive a set of nonlinearly
coupled envelope equations for a three-mode resonant interd@fidRl) by means of a method of multiple
scales(ii) We calculate the coupling matrix elements for the TMRI and show that the divergence appearing in
previous studies can be eliminated completely by using a Fetter-like variational approximation for the ground-
state wave function of the condensdi@) We provide the selection rules in mode-mode interaction processes
[including TMRI and second-harmonic generati@HG)] according to the symmetry of the excitatiofis.)

By solving the nonlinearly coupled envelope equations we obtain divergence-free nonlinear amplitudes for the
TMRI and SHG processes and show that our theoretical results on the shape oscillations of the condensate
agree well with the experimental ones. We suggest also an experiment to check the theoretical prediction of the
present study on the TMRI of collective excitations in a BEC.
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[. INTRODUCTION densate and the excitations contributed from the boundary

Elementary excitations and their interactions are fundal@yer can not be neglected. In fact 'mode goupll_ngs mostly
mental subjects in quantum many-body systdfis In re- (@K€ place in the boundary layer regidis]. (ii) A singular

cent years, much attention has been paid to the study int appears in the solution of the Bogollgbov amplitude at
linear collective excitations in trapping and weakly interact-tN€ boundary of the condensate8,19 which makes the

ing Bose gasef2,3] due to the remarkable experimental re- thgory uncor_1tro||a_b|e.(iii) The exist_ence O.f the sir_lgular
alization of the Bose-Einstein condensat&ECs of cold point results in a divergence for the interacting coupling ma-

atomic gase$4]. The interparticle interaction may result in IX delem%nts[13,2q,t W?'Ch tr_;lre mportgn; Af}g_antmes for
dramatic effects and many new nonlinear excitations can adpo €-mode resonant interaction procesges A divergence
gccurs also in the calculation of the shape vibration of BECs.

pear in certain experimental conditions. The most spectaculalrhuS a manageable, consistent theory to obtain divergence-

experimental progress for the nonlinear excitations recentl¥ree wave functions. coupling matrix elements, and shape
achieved in BECs are the observation of solit98] and i ration of the condensate for mode couplings of the exci-

vortices[7]. On the other hand, recently there is growingations in trapped BECs is required. However, as far as we
interest on the mode-mode resonant interactions of the €XCknow, such a theory is still lacking up to now.
tations in trapped condensed Bose gd8ed.7]. The nonlin- In a recent work we have proposed a method for finding
eanty, Or|g|nat|ng from the interatomic |nteract|on, IS IN- analytica' solutions of the Bogo”ubov_de Genr(&je)
cluded in the equation of motion of the order parameterequations for the low-lying collective excitations in a har-
through the mean field proportional to the condensate densityonically trapped BEC beyond the TF limit. We showed
and is expected to give various mode-coupling processeshat, by using a simple variational wave function for the
such as second-harmonic generati®HG), three-mode condensate ground state, the divergence at the boundary
resonant interactiof TMRI), and four-wave mixing. This layer of the condensate appearing in the TF limit can be
nonlinearity has an obvious analogy between the mode coweliminated completely. We have also obtained explicit and
pling in BECs and that in other contexts such in nonlineardivergence-free expressions for the eigenvalues and eigen-
optics. functions of the linear excitations for traps with spherical and
As is well known, to develop a complete and consistentcylindrical symmetrie$20]. The purpose of the present work
theoretical description for weakly nonlinear excitations andis to present a consistent, divergence-free theoretical descrip-
their interactions, a satisfactory linear theory is needed. Upion for studying mode coupling of the excitations in trapped
to now nearly all analytical works on the linear excitations inBECs. We consider mainly the energy conversion in various
BECs are based on the Thomas-Fe(h#) limit by using the  TMRI processegincluding SHG as a particular casfer a
fact that, for large particle number and repulsive interatomiBEC at zero temperature. In this case the Gross-PitaevsKii
interaction, the interacting energy is dominant comparedGP) equation for the evolution of order parameter is a good
with the kinetic energyquantum pressuy¢3]. However, the  starting point{21]. We go beyond the TF limit and provide
use of the TF limit brings many untractable problerisAt explicit formulas for divergence-free coupling matrix ele-
the boundary of the condensate the Bogoliubov amplitudenents, selection rules of the coupling matrix elements, and
varies sharply and hence the kinetic energy of both the corthe solutions of the nonlinearly coupled envelope equations,
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as well as the shape oscillations for describing SHG and _dp o~ .

TMRI processes with spherically and axially symmetric 'ﬁE:(Ho‘M)d’*g[%(zd’*‘f’)

traps. The arrangement of the paper is as follows. We derive

in Sec. Il the nonlinearly coupled envelope equations for +eys(¢ +2¢ P) + % ¢, 5

TMRI and SHG based on the time-dependent GP equation by R
using the method of multiple scales. In Sec. Ill we calculateVhere Ho=~2V?/(2M) +Ve,(r) and yg satisfies the equa-
analytically the coupling matrix elements using an eliminat-tion

ing divergence technique. In Sec. IV we calculate respec- N

tively the average squared widths of the shape oscillations of (Ho= e+ gy Y= 0. (6)

the condensate in the radial and the axial direCtionS, which We consider weak nonlinear excitations from a BEC; thus
are divergence-free and compare well with the experimenta} js a small parameter characterizing the amplitude of the
results for SHG and TMRI processes. Section V contains @xcitations. To derive nonlinear amplitude equations we use
summary and discussion of our results. the method of multiple scald®2]. Let ¢=¢V+ep@+---

ith &)= ) =
IIl. NONLINEAR AMPLITUDE EQUATIONS FOR THE with ¢7'=¢(r,t, 7), wherer=st. Then Eq.(5) becomes
TMRIS Al — i 0 0 gy2(20 + ") = Q)
OV =ih———-(Hp- D— 20 + ) = QW)
A. Model and asymptotic expansion ¢ at (Ho-p)¢ 9vc(2¢ $7)=Q
The grand canonical Hamiltonian of a weakly interacting (7)

Bose gas is given bj1-3] with Q=0 andQ2=—i%a¢ D/ dr-gy’(2¢D+ V"), The

. - %2 higher-orderQY (j=3,4,..) are not needed and thus are
H =fd3r ¢T(r’t)[' mvz*'vext(r) R omitted here.
+ gt}ﬁ(r,t);ﬁ(r,t)] 1:0(r,t), 1 B. Nonlinear amplitude equations for the TMRI

At the leading order(j=1) Eq. (7) reads(3¢(1):0. To
solve this(variable-coefficient equation we make the fol-
lowing Bogoliubov decomposition:

where (r ,t) is the field operator which annihilates a boson
at locationr and timet, g=4w#%a,/M is the atom-atom
interaction constant wittM the atomic mass ands. the
s-wave scattering lengtte,.> 0 for a repulsive interaction
and u is the chemical potential of the system. The aniso- ¢ (r,t) = 2 [Uy(r)by(Nexp(=iwyt) + v, (r)by(Dexpiwgt)],

o0

tropic harmonic trapping potential is of the forw,(r) n=0
:%M[(w§x2+w§y2+w§zz)], where o; (j=X,y,2) is the fre- (8)
O_I“ency of t.he trapA'n thgth direction. The Heisenberg equa- whereb,, is the amplitude depending on the slowly varying
tion of motion for ¢ reads time 7, andu,(r) andu,(r) are obtained by sovling the BdG
~ 2 eigenvalue equations
2 = | = TV V) - +gw*?p]fﬂ el -
a - Tam T Lun(r) +gdon(r) = +Eqi(r), (9)

with the commutation relatioriifp(r ,t),fp*(r’,t)]:é(r -r’) N
and other commutators zero. At low temperature the dynam- Lug(r) + gydun(r) = = Eqon(r),
ics of a Bose-condensed gas is well described by the tim
dependent GP equation, which can be obtained from(&g.
by taking ¢(r ,t)=y(r ,t)+¢'(r ,t), wherey(r ,t) and ' (r,t)
describe, respectively, the condensed and thermal comp
nents and their fluctuations. For a dilute gas at zero tempera-

(10

%hereE ﬁwn is the eigenvalue and the operatons de-
fined byL Ho w+2gy. From the BdG equation®) and
10) it is easy to show the eigenfunctiong(r) and v,(r)
atisfy the following orthogonality relations:

ture one can neglect the thermal component and its fluctua- 5 s .
tions. Thus we have A [up(NUp (r) = v, (Mo (1] = G, (11
o h?
h__ _mvz"'vext(r) _M+g|¢|2] ‘:b (3)

f &r [Un(r)v (r) = U (Nug(r)] = 0. (12
To find the excitations from a static condensate we take
_ By choosing the zero modése., the modes with zero eigen-

W) = gilr) + 24010 “@ valueg suitably one can obtain a complete set of eigenfunc-
where i5(r) is the ground-state wave functiogh(r ,t) de-  tions, which is the key for diagonalizing a Bogoliub@yua-
scribes the excitations generated from the condensates anddratio Hamiltonian and studying the interaction of the
is a parameter denoting the relative amplitude of the excitacollective excitations in the high-order approximatido].
tions. Then Eq(3) becomes Here we are interested in a TMRI of excitations in the BEC
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and thus the first-order approximated solution should be cho- _db, ]
sen as 'ﬁa = Da1ib;b; explid,7), (23
3 . . '
1 _ . £, Lk . where eA,=w,—2w, is a frequency mismatch. The c*oeffl-
= Z [Un(r)Br(m)exp(=iwnt) +vy(r)bp(mexpliwgt)], cients in Egs.(22) and (23) satisfy Ajp+B11,=2D5;;
n=1 .
=gNyM, with
(13
wherew;, w,, and w; are selected to satisfy the three-mode M, = J A yeluy(ug + v)Uy + v1(Ug + v1)vs
resonant conditiomu;=w,+w;+A5 with A;=¢A; a possible L.
frequency mismatch in the TMRI process. +v3(vy + Uuy], (24)

At t.he §econd orde'(rj =2) the sol.vability conditions of the which is the coupling matrix element for the SHG process
equationO¢®=Q® yield the nonlinearly coupled envelope [23 24,
equations controlling the evolution of, (n=1,2,3:

Ill. CALCULATION OF THE COUPLING MATRIX
ELEMENTS FOR SPHERICALLY AND AXIALLY
HARMONIC TRAPS

db
iﬁd_l = (Aqg2+ Bioghobg exp(—iAs7), (14)
-

iﬁ% = (Agay+ Boygbsby exp(—iAg7), (15) A. Solutions of the BdG equations
dr In order to investigate the TMRI and SHG of the collec-
tive excitations, we must make a detailed calculation of the
important physical quantities, i.e., the coupling matrix ele-
mentsM3 and M,. This requires solving BdG equatiof@)
o ) and (10) to get the related eigenfunctions. Previous studies
where the coefficients are given by [13] show that one cannot avoid a divergence when calculat-
ing the coupling matrix elements if using the the BdG eigen-
Annyn, = gNof P lﬂG[U;(Unl’f Unl)v:12+vn1(v:12+ u;z)v; functions ob_tained under the TF Iin[i18]. Here we employ
results obtained beyond the TF linfi2Q] [i.e., the TF re-
+ Unl(v; + U;)U;ZJ, (17) eglisrr;e; we designat:e the TF regime @s- 1 and the TF limit
— oo, WwhereP=Npas/ayo is the atom-atom interaction
strength,Ny is me particle number in the condensate, and
_ 3 * x x,w x auo=(h/Mw,)** is the characteristic oscillator length of
Banyn, = gNof o wG[unl(unz *Uny)vn + u"l(vn * Up)Un, the trapping potentigkto study the TMRI and the SHG of the
excitations in a BEC with a harmonic trap. In that work we

d
1 = Daga* Dagdbsby explidg?,  (16)
T

* Un(0n, + Un U, ], (18 obtained all possible eigensolutions of E¢8) and (10) in
spherically and axially symmetric harmonic potentials by us-
L, L. T ing an exactly solvable model in the TF regime. The key for
Crngn, = INo J d®r y[Up(vn, + Uy Jon, + Uy (v + Upuy, getting these divergence-free results is the use of a properly
chosen trial wave function for the condensate ground state,
+ Uy, (U, +Up o], (19)  thereby avoiding the appearance of a singularity at the
boundary layer of the condensate as is often encountered in
the TF limit. In the following we give a simple description of
= 3 * + + + * some results related to the ground-state wave function and
Do, gNofd " feltn(Un, + Un))tn, + U, (Un, + 00 J0n the eigenfunctions of the BdG equations obtained in Ref.
x [20].
+0n, (U0 Up)U, . (20 For an axially symmetric trap, we defimé=s>+\%z> (\
It is easy to show that one has the relatid,+By,5=A,5;  —1 IS only a special case for a spherical rap Fetter-like
+By5=2(Da1o+ Dap) =gNoMs, where the coupling matrix  trial wave function yig=CgvA(1-r?)\*"V20(1-T) is care-
213 312 32 3 .
elementM; for the TMRI process is given by fully chosen, whereCs=[ANo/27R}B(3/2,2+q)]'? is a

normalization constant ari8(p,q) is the beta functiofi25].
* « The ratio R, /ayo and the chemical potential take the
— 3 LT AHO
M3 = f d°r lpG[Ug(Ul +v)Uy +v,(Uy + UZ)U3 simple forms R,/ao=[4\P/B(3/2, 2+q)]1/5 and u
1 /5 ; ;
o =>hw, [4\P/B(3/2,2+9)]%" in the TF regime. The varia-
2 1
*va(vg + Ug)u]. (21) tion parameteq is selected by minimizing the ground-state
As a special case, the envelope equations for a SHG reaghergy and hence satisfies a constraint condition, (2.,
i +\?)(AR)’+3(BR)' +4\?P(CR®' =0, whereA, B, andC
i7i—= = (Agoq + By1)bib, exp(= iA,7), 29 are functions ofj and the prime denotes the derivative with
dr ( 121 112) 1M2 Fx 27) ( ) respect th [20]
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By introducing the parametef=fw, /2u<<1, the BAG genvalues including the first-order correction are expressed
equationg9) and(10) are solved analytically by defining the explicitly in Eq. 16 in Ref[20].
new functionse,(r)=u(r)tuv(r). For A\=1 (i.e., spherical
trap), good quantum numbers are the principal quantum B. Expressions for the coupling matrix elements

number n; (=0,1,2,..), the angular quantum numbér Since the characteristic time scale for the energy transfer
(=0,1,2,..), and the magnetic quantum numben  5mong different exciting modes is inversely proportional to

(=0,%1,£2,...,4). Since the excitation spectra are inde- the apsolute value of the matrix element, we define the di-
pendent ofm, the entire excitation modes are labeled by tWOmensmnIess coupling matrix e|emem1$—MkaHo (k=2,3).

guantum numberg, andl, called the(n,/) modes. The nor- i o )
malized solutions of the BdG equations under the normalizal NS definition of M, differs both from[13] and from[27]

tion condition [d3 (u _vz) 1 are[20] since the dependence &, on the atom-atom interaction
strengthP and trap anisotropy\ is also contained in the
@x(r) =[2/(1 RO YA Lalg) ™ 2(1 =)@ V20(r), quantity R;*,"/2. Therefore we look for the dependence of

(25) M, on P and\ by introducing an independeht volurnéo. .

We first recapitulate the case of a spherically symmetric
with W(r)—_rPn ()Y,n(0, @), whereY,,(6, ¢) are spherical trap (i.e.,A=1). According to the solutiori25), the coupling
harmonic functlonsPn, are special hypergeometric series or Matrix element21) for the TMRI reads

classicaln, th-order Jacobi polynomials defined by —  [4PIB(3/2,2 +q)]¥°
3=
Pnrl(x) = F(_ n,ne + |+ q+ 1/2,?2) 4’77\/ 1|2|3w1w2w3

- (1+1/20) (1 _

= n,Bln, | + 372/ (1 - ), « Mo f GFTL 72 Wi W W,
which form a complete set of orthonormal functions in the o
i i i 1+1/2(1 _ ia-
|hteryal Osx_sl with \_/ve|ghtx_ (_1 x)4. The normaliza 3§2“’1“’2‘*’3 A3(1 - 27
tion integral in the radial direction is

The coupling matrix elemen(4) for the SHG is given by
— [4P/B(3/2,2 +q)]*"*°
1 MZ: o /—_
=(1+1/2%(2n, +1+q+3/2B(n, + 1,1 + 3) Al o\l o,

XB(n,+1+q,l+3). ffdﬁl ~T2)2MAW,

The eigenfrequencieEnH including the first-order correction
have been given epr|C|tIy in Ec{.’LO) of Ref.[20]. In the [%2

1
ot = f dx X1 —x)qPﬁrl(x)
0

leading order one ha( )2 (wp )2+(2n,+l)q with (@] )2

—2n +2n,1+3n,+I ( the result in the TF limjt Here we have In Egs. (27) and (28), |
deflnedwn— wy o).

For \ & 1 (axially harmonic trap a good principal quan-
tum numbern, (=0,1,2,...still existy [26]. Let m be an
azimuthal quantum numbém=0,+1,%2,..), n, the radial
quantum numbefns=0,1,2, ...,intn,/2]), andn, the axial )
quantum numbetn,=n,-2ny). The entire excitation modes NOte that in the case on resonaridg=0,k=2,3), the only
can be labeled by three quantum numbagsn,, and m,  contribution toM, comes from this term, although the value
called the(n,ngm) modes. The normalized eigenfunctions areis small due ta?<1. In such a case the coupling is strongest
given by at the boundary of the condensate due to the radial integrand

factor (1-r2)2a-1,

-A,1 -_2)} (28)

n:Inr| for n=1,2,3 and thentegral
range is in the spherefr<1. We note that the term pro-
portional toZ? make the integral§27) and(28) divergent in
the TF limit (i.e., q=0). However, in the TF regimé.e., q
<1), the factor(1-x)% makes the integrals finite. We also

(Z_(O) 12 _ For the case of an axially symmetric trée., \ ¢ 1), we
¢:(r) = 27-rR3 (1-S2 =N V2NMr)  (26)  gefine x=s and y=\z/\1-x. Then by using Eq(26) we
Llnngn obtain the divergence-free coupling matrix elements for the
TMRI as

with function W(r) ?“P(zns)(s 2€™. The polynomials
P<2”5)(zs =3 =Kl E“”?” form an orthonormal 7o [4P/B(3/2,2 +q)]10

function set in the interval €r=1 with the weight 3_16ﬂ2)\9’1°v’/I1I2I3515253
S"(1-r9)9. The squares of the zero-order eigenvalues

0 N 1 1 2
(_( i m)2 are the solutions of a standard continued fraction N /FOI dxf dyf do W, WoW,
equat|on [20 26]. The normalization integral readk, nm 0 0 0
=2[tsdsf, l?’*d_s-’m(l—_s-’ )\Z_z)q[P(Z“S)(z 9% The ei- X [382w wpws(1 —x)297H2(1 —y?)2a7L
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— Ag(1 )23 —y?2a], (29
the coupled matrix elements for the SHG as
—  [4P/B(3/2,2 +g)]"° [N, fl Jl Fw
= ————/—| dx| d de WAW,
2 16772)\9/10| l(l)]_\’lz(x)z P 0 0 Y 0 v

X [3Zwiwy(1 = x)2H AL —y?)2at

_ Kz(l _ X)2q+3/2(1 _ y2)2q+1] (30)

with In=lhnm forn=1,2,3.

C. Selection rules for the coupling matrix elements

To get an efficient energy transfer among different mode
in the TMRI and SHG processes, on the one hand th
frequency-matching (phase-matching conditions w;=w,
+w, (for the TMRI) and w,=2w, (for the SHG should be

satisfied. On the other hand we note that, in order to have an ) X
dhreen,| modes 10, 05, and 15 for the TMRI. Their functions

effective mode mixing, the coupling matrix elements must b

nonzero, which imposes also another requirement of an ove

PHYSICAL REVIEW A 71, 043609(2005

la=li+1,-21 (1=20,1,2, ... 1620<1). (34

Obviously, we have nonzero matrix elements in the follow-
ing particular casedi) 1;=0 if 1,=1,=0; (ii) I3=I5 if 1,=0;
(i) I3=ly+1y; (iv) I1=l,=13=2I for 1=0,1,2,...; andv) I3
=2(I;-1) for 1=0,1,2, ... ,infl,/2] if 1,=1,>0.

D. Calculation of the coupling matrix elements

For the given modes close to the frequency-matching con-
ditions and satisfying the selection rules presented above,
one can make a calculation for tk@imensionlesscoupling
matrix elements based on Eq27)—(30). The concrete ex-
pressions for the radial and axial integrands of the matrix

glements can be obtained easily. In this subsection we take

ome examples to provide the dimensionless matrix elements
or the TMRI and the SHG after carrying out the radial and
axial integrals explicitly.
For the spherically symmetric trgp=1), we first choose

ﬁl’e W]_:[l_(5+2q)/3?2]Y00, W2:?5Y50 and W3:[1_(15

lap among the corresponding spatial wave functions, i.e., théZQ)/_lgz]FsYso- The corresponding ngrmalization inlgegrals
symmetry arguments of the excited states select the certa@fe given byl;=[2(5+20)/3(7+29)]B(3,2+q), 1,=B(%,1

modes at or close to the resonant conditions, which makesq), andl;=[2(15+2)/13(17+29)]1B

M, # 0 for the SHG and;# 0 for the TMRI.

For the axial symmetry trap\ ¢ 1), nonzero azimuthal
angular integrals for some quantum numbmrsselect a cer-
tain transition and give a set of correspondimg for the
nth modes (n=1,2,3. For the SHG, becauseM,

« [27d M m2)ed e, a nonzerdM, results in the selection rule
for the quantum number

m, = 2m;. (31

Similarly, for the TMRI becausd/oc [27d (M mmede g
nonzeroM; requires

(32

In the case of the spherical symmetry trigp=1), since
the excitation spectra are independenngfwe can takem
=0 in Egs.(27) and(28). Selection on the angular quantum
numbersl, is from the integral in thed direction. For the
SHG, M= [EWAW, sin 6d6= [11Pf (x)P,(x)dx (x=cos®).
Thus the selection rule is

mg = my, +m,.

L,=21(1=0,1,2, ... 1y, (33

wherel; and |, are the angular quantum numbers for the
lower- and higher-lying modes, respectively. In obtaining
this selection rule, we have used one property of the Leg

endre polynomiaP(x) so that the integratiofi*1x<P,(x)dx
has a nonzero value fd=I1+2j and vanishes fok<<I or k
=1+2j+1, wherej=0,1,2,.... For theTMRI, without loss
of generality we take the order o0l <|,=<I; for the given
three modes, where mode(srklg satisfy the frequency-
matching  condition.  Since M3ocfgW1W2W; sin 6do
o f ﬁ}P|l(x)P|2(x)P,3(x)dx, by using the property of the Leg-
endre polynomial we have the general selection rule

(133,2+q). The explicit

expression for the dimensionless coupling matrix elements

then becomes
/No
P

X \ 382w, 0,0 B<1—3 2 )—3(55+1aq)3(ES 2 )
1W203 5" q 39 5 q

e [4P/B(3/2,2 +q)]V/*0

T — — —
8’77\" I 1| 2| 3W1WrW3

1 17 —| (13
+ 5(75 + 40+ 4q2)|3<?2q>] - A{B(?,Z + 2q>

-2 (5541 )3(1—52+ )+i(75+4 +agd)
39 @B .2+ |+ o5 @+ 4q

ol 242}

Substituting the expressions fdt o, (k=1,2,3, and the
finction g(P) into Eq. (35), we obtain the theoretical curve

Mg(P), plotted in Fig. 1, by takindN,=10°. Note that due to
the weight factor(1-x)%d the divergence in the integré?7)
is eliminated completely. This point can also be seen clearly

from the £? term in Eq.(35) for the resonant cas@\;=0):

Mg 2/q and £?/qo P?5—0 in the TF limit(i.e., P— or
g—0). AlthoughB(p,q) has a singularity as f/atq=0, the
result for the matrix elements is divergence-free. Figure 1
shows thatM4(P) is a decreasing function with increasing

atom-atom interaction strengfh M;(P)>0 means a nega-
tive initial population amplitude. The numerical results show
that the term proportional t¢? in Eq. (35) dominates the
TMRI process even far from resonance or at large endrigh
closing on the TF limit, where the contribution from the term

proportional toA5 still remains small.

(35

043609-5



MA, HUANG, AND HU PHYSICAL REVIEW A 71, 043609(2005

0.05 0.03
0.04
< 0.03
Z ")
0.02
0.02 =
0.01
200 400 600 800 1000 0.01
P 0.5 1 1.5 >

A
~ FIG. 1. The TWRI dimensionless coupling matrix element
M3(P) as a function ofP (atom-atom interaction strengtfor N __FIG. 3. The TWRI dimensionless coupling matrix element
(particle number in the condensptd 10° with a spherical symme- M3(\) as a function of the trap anisotropy for P=100 andN,
try trap. The threen,| modes are 10, 05, and 15, respectively. =10° with a axially symmetric trap. The thregnsm modes are 001,
002, and 103.

We next choose twa,| modes 01 and 10 for the SHG.
Their functions aréV;=TY;o andW,=[1-(5+29)/3r2]Yge.  +a)B(,1+q), 1,=(1/20)B(3,2+g)B(3,1+g), and |5
The corresponding normalization integrals are givenlpy :(1/2A3)B(4,§+q)8(§,1+q). The explicit expression for the
:B(§,1+q) andI2:[2(5+2q)/3(7+2q)]B(§,2+q). We get dimensionless coupling matrix element then becomes

v [4PB(E/2,2+9) 1" N, 2—2_[ (5 ) — _ [4P/B(3/2,2 +g)]¥1° \/'\TO
M,= 5\ 38( 2,2 My = —— /2
2 p § wqWo 2 q 3 877)\19/10V’/|1|2|3w1w2w3 P

87T| 1(1)1\' | 2o

—(5+2q)B<z 2q>} —K{B(E) 2+2q) X 3§—2___B(4 1+ )—£B(4 3+2)

2 2 2’ qwlwzws , Yol 1+q ) ) |.
5+2q_(7 (37

——3 B<2,2+2q>]}. (36)

The theoretical curv®73()\) is plotted in Fig. 3. It is impor-

Figure 2 shows the@(P) curve withNy=1CF. It is shown tant to note that; is dominated by the mismatching term
that the £% term in Eq.(36) dominates the SHG process. (j.e., the term proportional tds) and affected a little by the
There is a resonant nonlinear coupling between the lowercontribution from¢? term.
lying (01) and higher-lying(10) modes. The resonance is  \We then choose thregngm modes 001, 010, and 101 in
determined by @;,=w, and it is most efficient foP<400.  the TMRI. Their excitation spectra in the leading-order ap-
For the case of axial symmet(y ¢ 1), we takeNo=10°  proximation are given by(”=\1+q, o®={2+3\2+q-[4
and P=100 (which means takingyo/as.=10* for most ex- —4)\2+9)\4+(4—3)\2+q)q]1/}}1/2 and Ef%)zwr’(l+)\2)(l+q).
periment$ and study the geometric effect of the trap on the,o fuéctions araN, =se® WZ:'1+b_zz+3c_§ andW,=sze¢
dimensionless coupling matrix elements. We first choos he correspondin norm:allization inte ralys read '
three n,nym modes 001, 002, and 103 in the TMRI. Their P g g

excitation spectra at leading-order approximation af& I, =(1/20)B(2,2 +q)B(3,1 +q),
=\1+q, ©}’=\2+29, and wy =(3+\?)(1+q). The func-
tions are given by, =se'¢, W,=s’¢%¢, andW;=sz€"*¢. The 1= (1/20)[1/(3/2 +q) + 2¢B(2,3 +q)

corresponding normalization integrals relget (1/2)\)8(2 %
+¢?B(3,2+q)]B(3,1 +q) + (2b/AA)[ 1/(5/2 +q)

0 +cB(2,.2+q)]B(Z,1+q) + (b2\Y
-0.002 X[B(5/2,1+q)/(7/2 +q)],
0 004 andl3=(1/22%B(2,2+9)B(Z,1+g). In mode 2, the conden-
= sate oscillates along theaxis, and the axial and radial os-
~0.006 cillations have relative amplitudé/c=ws—4-2q with ¢
= w3/ (2+29-w3). Note that aiw,=2+2q the axial and ra-
-0.008 dial amplitudes are divergent. Figure 4 shows such diver-
200 400 600 800 1000 gence behavior at.=1.303 by plottingc against the trap

F anisotropy\ with P=100. In thex <A regionc is positive,

FIG. 2. The SHG dimensionless coupling matrix eIerﬂE@(P) while in the A=A regionc is negative.l, displays a very

as a function oP for Ng=1Cf in a spherical symmetry trap. Twpl ~ sharp peak at=\.. Figure 5 shows th#3(\) curve for this
modes are 01 and 10. three-mode coupling. Ak <(>)\. the positive (negative
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6000 0.0025
4000 N /\ 2

0 1 1. 2 .5
2000
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1.28 1.3 .31 1.32 -0.0050
-2000
-4000
-0.0100
-6000

FIG. 4. The radial amplitude (including the axial amplitude

becc) against the trap anisotropyfor the 101 quadrupole mode. A . ) ) ) —
divergence appears a=1.303. FIG. 6. The dimensionless SHG coupling matrix elemdnt\)

as a function of the trap anisotropyfor P=100,Ny=1C, and fixed
_ g=0.7 with an axially symmetric trap. The twansm modes are
Mj increases slightly on increasing due to the jump of 100 and 010. The maximal resonant coupling is located at
Maoxc/\1, at A=\, where the strongest resonance arises. [F£0-924 and\;=2.022.
was shown that th&; term dominates the coupling process.

We fma”y calculate the Coup“ng matrix element for athe TWRI and SHG processes. Note that the solutions of
SHG. We choose twa,ngm modes 010 and 200. The exci- Eds.(149—(16), (22), and(23) have been studied in nonlinear
tation spectra are*,={2+3\2+q T [4- M2+ 4+ (4-3n2  Optics (28] with the forms ofby,(t) = |by(t) |exdien(t)] for n .
+q)q]l/2}l/2 and the functions are given b, =1+b,7 :.1,.2,3. Thegeneral solutions can be pr.re.s.sed by the ellip-
+c. with the corresponding axial and radial amplitudes tic integrals s[tx,yl For the SHG with initial amplitude
andc, (n=1,2). Figure 6 shows tha,(\) curve for this b1o=b4(0) the solutions of Eqsi22) and (23) read

two-mode coupling. It was shown that thg term dominates 1 ) a1

the coupling process. The integrand containedMas a  ba(t) = ,_EA—blosf{t/tsz—/&]eXP{"<2<P10+E"’EAzt)],
function of the trap anisotropy has a peak at.. The com- v

bination of the peaks contained W2 and the zero points (38)
contained in 1/; makeM, a continuous function ok with

two maxima at=\;. The strongest resonances occuk af ’ JER
determined by @;=w, which has roots of\=¢{77 by(t) = + Vb2, - 2|by(t)[2exp| —i| @1+ — + =Ast
+51q7 5[145+374+27)q]Y3Y2 in the leading order of 4 4

o). By taking P=100 andN,=1C we get\;=0.924 forq . Ayfby(0)]

=0.7, and\;=2.022 forq=0.1. As a special case, in the TF -~ cost 2_—2)] ' (39)
limit (q=0) one has\;=0.683 and\;=1.952, which have 2 4P M,|by(1)[?

been obtained already in Ref&,13].

whereA§:1+%ezi Vex(1+e/4) (i.e., the amplitudes are on
the order of 1, .=(\2A,/87PM,)? are the relative fre-
guency mismatches f&=2 (3) in the SHG(TMRI) process,
A. Solutions of the TMRI and SHG envelope equations tk:|2\§§WA+blop|\/|kwL|—1 are the time scales, and we note

With the dissipation-free coupling matrix elements in thatt;=10 ms for most experiments. We see that the ampli-
hand we now turn to look for the nonlinear amplitudegor ~ tudes change periodically foe,#0, with a period Ty
=F(1/2,1/2,1 A% A%)[|\27Ab;PMw | (k=2,3). In the

IV. NONLINEAR AMPLITUDES FOR TMRI AND SHG

0.02 case on resonand¢é,=0), the solutions become monotonic
with respect to time: b;(t)= b, seclit/ty)exp(-i¢;o) and
0.01 b,(t)=(byo/ V2)tanh(t/t,)exd —i(2¢9+ w/2)]. Note that the
phase difference betwedn andb; is ¢gt+7/2.
=t T I T s T A For the TMRI with initial amplitudes,, and b,, the so-
' ) ' ' ) lutions Eqgs.(14)—(16) are
-0.01 1
- bs(t) = =A_bysrt/ts, A/A,]
-0.02 V2
- 1
FIG. 5. Same as Fig. 3 for the three 001, 010, and 101 modes. xexp{— i(¢10+ ©0+ K _A3t>:|, (40)
The strongest resonant coupling occura gt 1.303. 2 2
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by(D) = £ Vb~ 2lbs(D? expl-iey] (1=1,2),
(41) 0.157
where Ai=%[1+0'+631 V(1+0'+ 63)2_40'], (T=|b20/b10|2, 'S ',"'
en(t)=Agfbdtbs(t)[/|ba(1)]? (n=1,2), andt;=5 ms. We see 7 :
\ /\.' I

that the initial value of mode 3 is zero and it increases from 0.1565
zero as time increasdi is generally a periodic function of i

time). In the case on resonance, i.A3=0, the expressions

for A, are simplified toA, ;=1 (byg/b;o) for |b,g <|bsq and 0156 -
As(c)=byo/byg (1) for |byg <|byg. The corresponding solu-
tions bs(t) =(A_byo/ \s’E)sr[t/ta,A_/AJexp[—i(<p10+ ©20 FIG. 7. The average axial width in units Bf, vst in units of

wll in the SHG process from the lower 010 mode to the higher 200

mode for|b;g|=0.05,¢,=0, P=100,Ny=1C°, and fixedq=0.7 with

an axially symmetric trap. The solid line is for the matched-

resonancecase(\=2.419, which shows clearly generation of the

B. Oscillations of the average squared widths of the second-harmonic mode 200. The dashed line is for the mismatched
condensate (off-resonanckecase(A =2.000.

+/2)] and by,(t) = /b3, - 2|bs(t)[?exp-i¢ne) (nN=1,2) are
still periodic in time with a periodrs.

We now discuss the oscillating behavior of the average
squared width$éASWSs) of the condensate in the processes of(nonzero values withm=0 for the first-order small vibra-
TMRI and SHG, which are important physical quantities rel-tions), ands3«z < |b,(t)|? for the second-order small vibra-
evant to the experimental measuremdi®]. Based on the tions. Note that [ir2dr(|u,?+[v,d)=3/ar?dr(¢2+¢?)
results given in Ref.20] we obtain the solutions for the field o /T°(q)+constk for q—0; the ASWs are divergent in the
operatory(r ,t) at zero temperature, TF limit (i.e., P—). Here divergence-free results are ob-
P(r ) = )\\EWO[ZWRiB(?;/Z,Z +q) Y41 -T?)@D2@(1 -T) t>>au£1)ed by going beyond the TF limit.e., the TF regimeP
k The evolutions of the axial and radial ASWs of the BEC
+ E [uy(n)b,(t)exp(—im,t) + v:,(r)b;(t)exp(iwnt)] in the axially symmetric trap are shown, respectively, in Figs.
n=1 7 and 8 for the SHG process from the lower 010 mode to
(42)  higher 200 mode withb,; ¢ =0.05 ande,,=0 for the param-
etersP=100 andN,=1CP. A resonant nonlinear coupling be-
for the SHG(k=2) and TMRI (k=3) processes. The ASWs tween the fundamental mode 010 and the second-harmonic

in the radial and axial directions are given [30] mode 200 happens under the phase-matching conditign 2
_ - =w,, Which requires\=\.=2.415 forq=0.7. The dashed
(%)= N01<'/’G(r)|T2|'/IG(r)>+ N01/2<¢G(r)|?z|¢(1>(r,t)> Iir:vezs for the r%ismatcheiﬂoﬁ-resonan?:)a case (A=2.000
+{(pV(r,)[r ¢ D(r,1). (43)  show an oscillation of the lower 010 mode. In this case the

The first term of Eq(43) (Fé) comes from the ground-state ?-i(;or;%]%arnglcir:n ?g: ef.i,gtuhrisz Oa?rem ?(?re ?hréotngstréirgf_d.
background, the middle terifr?) is a first-order oscillation resonancecase(\=2.415, and show clearly the generation
(proportional to|by| with the fundamental-mode frequency ot the second-harmonic mode. The generation of the 200
wp), and the last terné?%) is a second-order oscillatidipro-
portional to|b,|?> due to the mixing of sum- and difference-

sav
frequency modes with the frequeney+ w,). 0 538 ’
For A=1 (i.e., spheral trap the radial ASWs are?2G :
=3/7 forq=0,
0.536
. 3¢ K Gooyl [ 2
r=- 2 _|bn(t)|coi¢’n+wnt) T
V27B[3/2,2 +q]n=1 NF — 14 N 1 0.534 2
(nonzero values witth=0), and
0.532

1 k
5= ?ZdTE |bn(t)|2[|un|2 + |Un|2 + 2|Un||vn|coS A ¢n
0 n=1 FIG. 8. The average radial width in units Bf, vst in units of
k wf in the SHG process from the lower 010 mode to the higher 200
+ o]+ > [Uwybby expi(w,+ wy) +c.cl mode for|byo|=0.05, =0, P=100,Ny=1C", and fixedq=0.7 with
0 %n an axially symmetric trap. The solid line is for the matched case
(A=2.419 and the dashed line is for the mismatched cése
For \ ¢ 1 (i.e., axial trap, the radial and axial ASWs are =2.000. There is no manifestation of the SHG from the radial

given bys2=2/7 andz2=\"2/7 for q=0, ;% Z % Solby(t)]  ASWs.
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ravg
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0.8
0.7 \\\ N ! = >
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0.5

0.1342
0.4

FIG. 11. The average axial width in units B, vst in units of

w7} in the TWRI process from the lower 001 and 002 modes to the

FIG. 9. The average radial width of the condensate in units ofhigher 103 mode fofb; =0.03, |b,g =0.06, ¢10=@,0=0, P=100,
R, vstin units of wll in the TMRI process from the lower 20 and andN,=10° with an axial symmetry trap af,=1.682.

30 modes to the higher 60 mode fby=0.03, by,;=0.06, @19

=200, andNo=10° under the phase-matching conditi®F49  gp, 0 in Fig. 9 for a TMRI process in a BEC with a spheri-

and for a spherical symmetry trap. The solid line shows the genera: . . — - - =
tion of the higher 60 mode while the dashed line shows the '[imzcaIIy Szmmemc trap witty=0.03, b=0.06, 910=20=0,

. andNy=1C. The energy of the lower 20 and 30 modes trans-
evolution of the lower modes.

fers into the higher 60 mode under the matching condition
mode here is due to the strong resonance between the 0R¥49. Sincel;=1,=13=0, there is a first-order vibration of
mode and the 200 mode and hence the energy of the 1dfle condensate with the oscillating frequencies, 5 The
mode transfers into the 200 mode in the most efficient waysolid line denotes the vibrations of the radial ASW of the
when the phase-matching condition is exactly satisfiedcondensate, showing clearly the generation of the higher 60
However, due to the symmetry of these modes, the secondRode. For comparison a dashed line is plotted to show the
harmonic generation is manifested only in the axial oscilla-vibrations of the lower 20 and 30 modes.
tion. Thus if one explores the SHG according to the measure- Shown in Fig. 10 is the time evolution of the radial ASW
ment of the ASWs for a BEC in an axially symmetric trap of the condensate for the SHG process from the lower 01
with the above selected modes, it is useless to measure tfieode to the higher 10 mode witfh,o=0.05, ¢10=0, and
radial ASW. One must measure the axial ASW which dis-No=10° under the matching condition &=82 for a spheri-
plays strong signals for the SHG. This result agrees well witteal trap. Because in this case we hayel andl,=0, in the
the experiment done by Hechenblaikmgral. [12]. The rea- leading order there is no contribution to the oscillation of the
son our theoretical curves fit well the experimental di€§ ~ ASW coming from the fundamental mode 01. The ASW os-
is the following. For the 010 mode the functidi [see Eq. Cillation is due to the contribution from the second-harmonic
(26)] is W;=1+b,;Z2+c,s%. Both the axial and radial ampli- mode 1Q(in the leading ordgrand the fundamental modin
tudesb, andc, are divergent when the on-resonance condithe second ordgr _ _
tion w?=2+2q is satisfied. However, the ratio db,/c,| _Shown in Figs. 11 and 12 are, respectlve_ly, the time evo-
:|5§_4_2q|=2, i.e., the oscillation amplitude in theaxis  lution of the axial and radial ASWs of an axially symmetric
is greater than that in they plane. Therefore, the condensate BEC in the TMRI process from the lower 001 and 002
oscillates along the axial direction and the SHG can be obmodes to the higher 103 mode withy=0.03,b,,=0.06, and
served by measuring the axial ASM/2]. ¢10=¢20=0 for the parameter®=100 andN,=10° where

We now turn to discuss the three-mode resonant processé€ phase-matching conditionig=1.682. Since in this case

by using other different modes, which are not explored exS:=4=0 and S5 z=[ZdZs_,|by(t)*(|un/>+|v,/?), there
perimentally. The time evolution of the radial ASWs is are only zero-frequency second-order oscillation coming

0.7

0.546
0.68
0.545
£ 0.661\ A N
H \/ \/10 \/i&/ 20 2 4 6 8 10
T
0.64 t 0.543

FIG. 10. The average radial width for a spherical trap in units of  FIG. 12. The average radial width in units Bf vst in units of
R, vstin units ofwl1 in the SHG process from the lower 01 mode wll in the TWRI process from the lower 001 and 002 modes to the
to the higher 10 mode fdp;(=0.05, ¢;0=0, andNy=1C° under the  higher 103 mode foth;¢ =0.03, |b,g =0.06, ©10= 20=0, P=100,
matching condition oP=82. andNy=10° with an axial symmetry trap of.=1.682.

Savg
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from the elliptic integrals. So there is energy transfer of up-the calculations of the coupling matrix elements and shape
and down-conversion within each time peribdTs. In the  oscillations can be simplified greatly by using the orthogo-
time interval 0<t<Ts;, the system is in the lower 001 and nality relations of the eigenfunctiong(r) anduv,(r).
002 modedi.e., by=0). Fort>T; the energy is transferred We have discussed in detail a set of three-mode resonant
to the higher 103 modéi.e., b; ,=0). The up-conversion coupling processedncluding SHG as a particular caskr
occurs att=T;. However, there are no fundamental-modespherically and axially symmetric traps. By solving the non-
frequency components appearing in the shape vibrations. linearly coupled envelope equations we have obtained the
nonlinear amplitudes and then made a detailed calculation of
the shape oscillations of the condensate for different mode-
coupling processes in different parameter regimes. The the-
We have made a systematic investigation of the resonaratretical results about the shape vibrations of the BEC for
mode coupling of the collective excitations in a harmonicallySHG in the case of an axially symmetric trap agree well with
trapped BEC at zero temperature with a repulsive interthe experimental observations. We have also made theoreti-
atomic interaction. We have proposed a divergence-free, corgal predictions on a series of TMRI processes, which need to
sistent theory for describing low-energy collective excita-be verified experimentally further. For example, for a BEC in
tions and their interactions in both the linear and nonlinea@ spherically symmetric trap, the first-order radial vibration
regimes beyond the TF limit. The nonlinearly coupled enve-of the condensate shape with the frequenaigg wso, and
lope equations for three-mode resonant interactions havego may be measured by selecting the lower modgs2,
been derived by use of the method of multiple scales. Wé;=0 andn,=3, [,=0 (dashed line predicted in Fig,) @&nd
have demonstrated how to calculate analytically the couplindgligher moden, =6, I3=0 (solid line predicted in Fig. Bwith
matrix elements for mode-coupling problems in trappedsuitable parametens, andag/ayo. We stress that although
BECs and how to eliminate the divergence appearing in théhe theoretical description developed in this work is mainly
integrals of the coupling matrix elements by using a Fetterfor TMRI and SHG, a generalization to other mode-coupling
like variational approximation for the ground-state waveprocesses is straightforward.
function of the condensate. We have obtained the selection
rules for mode-mode interaction processes according to the
symmetry of the excitation modes. The divergence-free for- This work was supported in part by the National Natural
mulas for the average squared widths in the radial and axigbcience Foundation of China under Grants No. 10274012,
directions have been given explicitly; they describe the shapdlo. 10274021, No. 90403008, and No. 10434060 in part by
oscillations of the condensate and can be compared with exhe Hong Kong Research Grants CourfBIGC) and a Hong
perimental measurements directly. We have also shown th#tong Baptist University Faculty Research GraRRG) .

V. DISCUSSION AND SUMMARY
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