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The fluctuations of a number of particles in the Bose-Einstein condensate are studied in the grand canonical
ensemble with an effective single-mode Hamiltonian, which is derived from an assumption that the mode
corresponding to the Bose-Einstein condensate does not asymptotically correlate with other modes. The fluc-
tuations are evaluated in the dilute limit with a proposed simple method, which is beyond the mean-field
approximation. The accuracy of the latter is estimated; it is shown that the mean-field scheme does not work
for the single-mode Hamiltonian, while for the Hartree Hamiltonian it allows us to estimate the condensate
fluctuations up to a numerical factor. As a hypothesis, a formula is proposed that relates the fluctuations in the
canonical ensemble with that of the grand canonical one.
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I. INTRODUCTION

The observation of Bose-Einstein condensationsBECd in
trapped alkali-metal gasesf1g has stimulated theoretical and
experimental studies of the basic problems related to this
phenomenonssee the reviews in Refs.f2–4gd. In particular,
the statistical properties of the condensate are of especial
interest for interacting bosons. In the case of the ideal Bose
gas, fluctuations of a number of particles in the Bose-

Einstein condensatekdN̂0
2l;kN̂0

2l−kN̂0l2 have been studied
thoroughly in a boxf5g and a harmonic trapf6g as well.
However, in the case of the interacting gas, this problem is
rather subtle and requires a more refined approach. So far
there has been no uniform treatment of this problem in the
literature f7–19g. It is not even clear what the value of the
power g is in dependence of the fluctuations on the total
number of particles,

kdN̂0
2l ~ Ng, s1d

in various Gibbs ensemblesscompare, e.g., the different re-
sults of Refs.f10–12gd. Apart from general theoretical inter-
est, condensate fluctuations can be measured, in principle, by
means of a scattering of series of short laser pulsesf20g.

In this paper we deal with the problem of fluctuations in
the grand canonical ensemble and consider the global gauge
symmetry Us1d of the Bose system to be broken. In prin-
ciple, the properties of the dilute Bose gas in the grand en-
semble are described quite well by the Bogoliubov model
f21g, with the condensate terms being treated as asymptotic
c-numbers and with three- and four-boson terms being ne-
glected in the Hamiltonian. However, the statistical proper-
ties of the Bose-Einstein condensate are beyond the Bogoliu-
bov theory due to thec-number replacement. Consequently,
in order to tackle this problem, we need other approxima-
tions or assumptions that keep the quantum nature of the
condensate operators. Assuming that the condensate mode

and other modes can be considered as quasi-independent, we
obtain the usual thermodynamic fluctuations of the conden-
sate withg=1 in Eq. s1d and show that this result is consis-
tent quite well with the Bogoliubov theory.

We consider a dilute Bose gas interacting with a short-
range pairwise potentialfi.e., the potential that goes to zero
at r →` as 1/rm sm.3d or fasterg. The method used in our
paper can be called the approximation of the quasi-
independent mode. This assumption is nothing else but a
generalization of Bogoliubov’s relations3d for the operators
â0 and â0

† ssee Sec. II belowd. As a result, we consider the
condensate mode and the other ones to be uncorrelated. In
the framework of this approximation, one can easily derive
the effective single-mode Hamiltonian. Our consideration is
primarily dedicated to the homogeneous case, except for Sec.
IV B, where fluctuations in the Hartree model are discussed
briefly in the nonhomogeneous case.

The paper is organized as follows. In Sec. II we review
some important issues in the field of Bose-Einstein conden-
sation, which might not be well known for a reader. In the
next section we derive the effective single-mode Hamil-
tonian, which is employed for studying condensate fluctua-
tions in the grand canonical ensemble. In Secs. IV A and
IV B the fluctuations are evaluated in the framework of the
mean-field approximation and beyond it. Possible corrections
to the value of the fluctuations are discussed in Sec. IV C. In
the last section the main results are summarized.

II. GENERAL REMARKS

Let us recall some important issues in the considered
problem, following Bogoliubov’s paperf22g. A number of
bosons in the Bose-Einstein condensate can be defined as the
macroscopic eigenvalueN0 of the one-body density matrix

kĉ†sr dĉsr 8dl—that is, ed3r8kĉ†sr 8dĉsr dlf0sr 8d=N0f0sr d,
ed3r uf0sr du2=1, whereN0 is proportional to the total number
of bosons in the thermodynamic limit, while the other eigen-
values are proportional to the unit. The eigenfunctionf0 is a
one-body wave function of the Bose-Einstein condensate,*Electronic address: cherny@mpipks-dresden.mpg.de
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obeying the Gross-Pitaevskii equation in the first approxima-
tion. One can easily introduce the condensate operatorsâ0
andâ0

† by expanding the Bose field operators in the complete

set of eigenfunctions of the one-body matrix:ĉsr d
= â0f0sr d+o jÞ0âjf jsr d; then, the operatorN̂0= â0

†â0 de-

scribes the number of particles in the condensate:kN̂0l=N0.
For a homogeneous system the indexj is associated with
momentump, fpsr d=expsip ·r d /ÎV sV is the volumed, and
the condensate operators coincide with the Bose zero-
momentum operators. Bogoliubov noticedf21,22g that in this
case the operatorsâ0/ÎV and â0

†/ÎV should be very close to
c-numbers, since they commute in the thermodynamic limit
V→`, n=N/V=const. This implies that

lim
V→`
KS â0

†

ÎV
− În0e

−iwDS â0

ÎV
− În0e

iwDL = 0, s2d

wherew is an arbitrary phase andn0=N0/V denotes the den-
sity of the Bose-Einstein condensate. However, we always
have the constraintkâ0l=kâ0

†l=0 due to global gauge invari-
ance, which is equivalent to conservation of the total number

of bosonssi.e., fĤ ,N̂g=0d. Hence, the ground state is not
stable with respect to an infinitesimally small perturbation
that breaks the gauge symmetry. For a correct mathematical
treatment of the homogeneous Bose system with broken
symmetry, Bogoliubov proposedf22g to include the terms
−nsâ0

†eiw+ â0e
−iwdÎV in the Hamiltonian, where the parameter

n.0 andn→0. Now the absolute minimum of the energy
corresponds to the state withkâ0l /ÎV=kâ0

†l* /ÎV=În0e
iw, be-

cause the gain in energy per particle, by Eq.s2d, is equal to
2nÎn0/n in the limit V→` due to Bogoliubov’s terms. We
stress that the limitn→0 should be performedafter the ther-
modynamic one. These two subsequent limits yield the well-

defined order parameterkĉsr dl=kâ0l /ÎV=În0e
iw with fixed

phasew. Thus, due to Bogoliubov’s infinitesimal terms, the

values of theanomalousaveragesslike kĉl, kĉĉl, and so ond
change drastically, and such averages can be called, follow-
ing Bogoliubov, quasiaveragesshereafter by the term “aver-
age” we mean “quasiaverage”d. At the same time, the values

of thenormalaveragesslike kĉ†ĉl and so ond do not change.

In particular, this is valid for the one-bodykĉ†sr dĉsr 8dl and

two-body kĉ†sr1dĉ†sr2dĉsr 28dĉsr 18dl matrices. Hence, in the
thermodynamic limit the eigenfunctions of the matrices do
not change when the symmetry is broken. On the other hand,
the anomalous averages have a transparent physical interpre-

tation: kĉsr dl=ÎN0f0sr d is the eigenfunction of the one-
body matrix associated with the maximum eigenvalueN0,

and kĉsr dĉsr 8dl is that of the two-body matrix with the ei-
genvalueN0sN0−1d f23g. Hence, with the concept of broken
symmetry we obtain a simple method of evaluating these
eigenfunctions.

Equations2d can be derived from Bogoliubov’s principle
of correlation weakeningf22g, which takes a particular form

kĉsr d¯ ĉ†sr1d¯ ĉsr2d¯ l . kĉsr dlk¯ĉ†sr1d¯ ĉsr2d¯ l
when ur −r 1u→` , . . . andur −r 2u→`. Indeed, using the ex-

pression of the condensate operator in the homogeneous sys-

tem, â0=ed3r ĉsr d /ÎV, we obtain, in the thermodynamic
limit,

K â0

ÎV
¯ ĉ†sr 1d ¯ ĉsr 2d ¯L

=
1

V
E d3rkĉsr d ¯ ĉ†sr 1d ¯ ĉsr 2d ¯ l

=
1

V
E d3rkĉsr dlk¯ĉ†sr 1d ¯ ĉsr 2d ¯ l

=
kâ0l
ÎV

k¯ĉ†sr 1d ¯ ĉsr 2d ¯ l. s3d

One can indeed replace the condensate operators by the
c-numbers, and this procedure, according to Bogoliubov, still
yields exactvaluesf22g of all thermodynamic quantities in
the limit V→`. Note that the above relations can easily be
extended to the inhomogeneous case. For example, in order
to consider the harmonic trap, it is sufficient to replace the
volume V by 1/v̄3 and define the thermodynamic limit as
f24g N→`, Nv̄3=const shere v̄=Î3vxvyvz is the average
harmonic frequencyd.

We stress once more that the replacement ofâ0 andâ0
† by

the c-numbers gives always the main asymptotics of the av-
erages of these operatorssif the Bose-Einstein condensate
existsd, and this method is sufficient for obtaining an exact
value of any thermodynamic quantityssee Sec. 7 of Bogoli-
ubov’s paperf22gd. However, the main asymptotic value is

canceled when evaluating the condensate fluctuationskdN̂0
2l,

and, thus, we have to take into consideration here the quan-
tum nature of the condensate operators. Nevertheless, Eq.s2d
results in the constraintg,2 for the parameterg in Eq. s1d.
The caseg.1 implies that bosons in the Bose-Einstein con-
densate and beyond it are strongly correlated, and the extent
of the correlation is nonthermodynamically large, since the
thermodynamic fluctuations of any extensive observable are
proportional to the total number of particles. The resultsg
=4/3 andg=1 have been obtained in Refs.f10g andf11,12g,
respectively, in the Gibbs canonical ensemble. The results of
Refs.f11,12g are consistent with ours for the grand canonical
ensemble, while those of Ref.f10g are at variance with ours
ssee Sec. IV C belowd.

If the symmetry is brokensthat is, if the ground state is a
superposition of states with different numbers of particlesd,
then it is rather difficult to define what the Gibbs canonical
ensemble is. Indeed, within a variational scheme, we cannot
use the restrictionN=const directly and have to impose the

additional conditionkN̂l=N, which is equivalent to introduc-

ing the Lagrange term −mN̂ in the Hamiltonian; this is noth-
ing else but using the Gibbs grand canonical ensemble. So a
reliable treatment of the canonical ensemble can be done in
the framework of the number-conserving schemesfor recent
developments of the scheme, see Refs.f25,26gd. For that rea-
son, in this paper we restrict ourselves to the grand en-
semble.
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III. APPROXIMATION OF THE QUASI-INDEPENDENT
MODE

Let us describe the model and methods of calculation. In
order to evaluate the mean square of the number fluctuations
in the Bose-Einstein condensate, it sufficient to know the
condensate density matrixr̂c. According to general rules of
quantum mechanics, it can be obtained from the total density
matrix r̂ by taking the partial trace in the occupation number
representation

r̂c = Tr
¯np¯

pÞ0

r̂ = o
¯np¯

pÞ0

k¯np ¯ ur̂u ¯ np ¯ l, s4d

where we denoteu¯np¯ l=ppÞ0unpl and the indexp is as-
sociated with momentum in the homogeneous case. Sor̂c
depends on the condensate operatorsâ0

† andâ0 only and acts
only on states of the condensate—say, the Fock statesuN0l
and their superpositions. By analogy with Eq.s4d, one can
also define the density matrix for all noncondensate states
r̂out=TrN0

r̂, which depends on the Bose operatorsâp
† and âp

with pÞ0. Certainly, it is difficult to evaluate the density
matrix of the Bose-Einstein condensate directly from Eq.s4d
and one has to use additional assumptions.

As discussed in Sec. II, Eq.s3d, a particular case of
Bogoliubov’s principle of correlation weakening is valid in
the thermodynamic limit. This suggests that the state of the
condensate mode is, in effect, independent of the other
modes. It means that one can use the approximation for the
density matrixr̂. r̂cr̂out. The parameters of the matricesr̂c
and r̂out are assumed to be related in a self-consistent man-
ner. The factorization of the total density matrix implies that
the condensate and noncondensate subsystems are consid-

ered to be uncorrelated. Hence, we havekÂB̂l.kÂlkB̂l for

arbitraryÂ andB̂, depending on the condensate and noncon-
densate operators, respectively. This is very consistent with
the approximationf27g

ÂB̂ . kÂlB̂ + ÂkB̂l − kÂlkB̂l. s5d

Let us apply the approximations5d for a homogeneous
Bose system with the pairwise potentialVsrd. In this case,
the Hamiltonian reads, in terms of the Bose fields operators,

Ĥ =E d3r ĉ†sr dS−
"2¹2

2m
− mDĉsr d

+E d3rd3r8Vsur − r 8udĉ†sr dĉ†sr 8dĉsr 8dĉsr d. s6d

According to the above method, one should separate explic-
itly the condensate operators in the Hamiltonian by means of

substitution ĉsr d= â0/ÎV+q̂sr d fhere we denote q̂sr d
=opÞ0âp expsip ·r d /ÎVg and employ the decompositions5d
to every operator containing the product of the condensate

operators andq̂ or q̂†. As one can see, applying Eq.s5d to
the Hamiltonians6d, we come to the approximation

Ĥ . Ĥc + Ĥout + const, s7d

and, hence, the density matrix of the grand canonical en-

sembler̂,exps−Ĥ /Td is really factorizedsin this paper we

include the term −mN̂ in the Hamiltoniand. By virtue of this
factorization, the condensate fluctuations arise in the grand
canonical ensemble due to the particle and temperature bath
rather than the energy excitations. Here we derive the effec-
tive grand canonical Hamiltonian of the Bose-Einstein con-
densate:

Ĥc =
1

2
SV0

â0
†2â0

2

V
+ Asâ0

†2 + â0
2d + 2sB − mdâ0

†â0

+ 2Csâ0
† + â0dÎVD , s8d

whereV0 is the zero component of the Fourier transform of
the pairwise interactionVsrd, and we introduce by definition
the coefficients

A =E d3r Vsrdkq̂sr dq̂s0dl,

B = V0kq̂†s0dq̂s0dl +E d3r Vsrdkq̂†sr dq̂s0dl,

C =E d3r Vsrdkq̂†sr dq̂sr dq̂s0dl. s9d

In the above expressions, the gauge symmetry is certainly
assumed to be broken, and for the sake of simplicity, we put
w=0 in Bogoliubov’s termsssee Sec. IId; in this case, all the
coefficients are real. In general, they depend on the density
and temperature and will be evaluated below. It is worth-
while to note thatA, B, andC tend to constant values in the

thermodynamic limit. As to the HamiltonianĤout, it is given
by Eq. s6d but with c-numbers instead of the condensate
operatorsf28g, so we arrive at the standard asymptotically
exact Hamiltonian with Bogoliubov’s replacement. The co-
efficientss9d can be calculated by means of the Hamiltonian

Ĥout.
When calculating the coefficients in the dilute limit, one

can employ the results of our previous papersf23,29–31g,
based on an analysis of the two-body density matrix. One
can show the following.

sid The functions

wsrd = 1 +csrd, wpsr d = Î2 cossp · r d + cpsr d sp Þ 0d
s10d

are eigenfunctions of the two-body density matrix, which
belong to the continuous spectrum and describe the scatter-
ing of pairs of bosons in a medium of other bosons. The
quantum numberp can be associated with the relative mo-
mentum of that scatteringfwsrd corresponds to zero momen-
tumg. Their scattering partscsrd and cp, respectively, obey
the boundary conditionscsrd, cpsr d→0 at r →`. The Fou-
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rier transforms of the scattering parts can be expressed in
terms of the Bose operators:

cskd =
kâkâ−kl

n0
, cpskd =Î V

2n0

kâ2p
† âp+kâp−kl

n2p
, s11d

wherenp=kâp
†âpl stands for the average occupation number

of bosons.
sii d The following limiting relations are valid:

lim
p→0

wpsr d = Î2wsrd, lim
n→0

wsrd = ws0dsrd, s12d

wherews0dsrd obeys the two-body Schrödinger equation, de-
scribing the scattering of two bosons in a vacuum with zero
relative momentum. Now, using relationss11d and s12d, one
can obtain the coefficientss9d in the dilute limitn→0 after a
small amount of algebraf32g:

A . n0fUs0ds0d − V0g, B . 2sn − n0dV0,

C . 2În0sn − n0dfUs0ds0d − V0g. s13d

HereUs0ds0d=ed3r ws0dsrdVsrd=4p"2a/m stands for the scat-
tering amplitude anda is the scattering length.

Now all averages of the operatorsâ0
† and â0 and their

products can be calculated in the grand ensemble by means
of the matrix

r̂c = exps− Ĥc/Td/Zc, s14d

with the grand partition function for the condensate

Zc = Tr
N0

exps− Ĥc/Td. s15d

Note that the approximation of the quasi-independent
mode was introduced earlier in Ref.f33g. The authors con-
sidered the quadratic terms only in operatorsâ andâ† in Eq.
s8d ssee the definition in Sec. IV B belowd and obtained the
condensate ground state, which turns out to be the coherent
squeezed state in this case. However, this approach leads to
additional approximations, which change drastically the final
expression for the condensate fluctuationsssee belowd. In
order to avoid the additional approximations, we need to
keep the four-boson Hartree term in the condensate Hamil-
tonian s8d.

The models8d yields the asymptotically exact value of the
condensate density provided that the coefficientss9d
are known. Indeed, it follows from Eq.s3d that the con-
densate operators can be replaced by their mean values
kâ0/ÎVl=kâ0

†/ÎVl=În0 in order to evaluate the main asymp-

totics of kĤcl in the thermodynamic limit. Then the conden-

sate density can be found by minimization ofkĤcl with re-
spect to thec-number parametern0. The condition of this
minimum can also be obtained from the initial Hamiltonian
s6d, since Bogoliubov’s replacement is asymptotically exact
f22g due to Eq.s3d. Hence, the condensate densityn0 can be
considered as a variational parameter whose value is ob-
tained by minimization of the thermodynamic potential of
the grand canonical ensemble. With the well-known expres-

sion for an infinitesimal change of the potential,dV=kdĤl,

we have]V /]n0=k]Ĥ /]n0l=]kĤcl /]n0=0. Here the second
equality is due to the condensate operators being involved

explicitly only in Ĥc. The last equation reads

m = V0n0 + A + B + C/În0. s16d

We come to the equation obtained by Bogoliubov and treated
by him as asymptotically exactfsee Eq.s7.16d of Ref. f22gg,
since its derivation is based only on thec-number replace-
ment of the condensate operators. It can be rewritten as

m=ed3r8 Vsur −r 8udkĉ†sr 8dĉsr 8dĉsr dl /În0, where ĉsr d=În0

+q̂sr d. This equation relates the equilibrium value of the
condensate densityn0 with that of the chemical potential.

IV. CONDENSATE FLUCTUATIONS

A. Method of parameter differentiation

We adopt a standard method of evaluating the fluctuations
from the Hamiltonians8d. One can derive a useful relation
by differentiation of the expression for the average

kN̂0l=Trsr̂cN̂0d with respect to the chemical potential. If the

Hamiltonian Ĥc had commuted withN̂0, we would have

kdN̂0
2l /N0=Ts]n0/]mdT/n0 from Eqs.s14d and s15d, but the

noncommutativity leads to corrections we need to estimate.

One can apply the identityd expĜ=e0
1dzexpfzĜgdĜ expfs1

−zdĜg shered denotes variationd to the operatorĜ=−Ĥc/T
and use the first two terms of the expansion

ezĜN̂0e
−zĜ = N̂0 + fĜ,N̂0g

z

1!
+ fĜ,fĜ,N̂0gg

z2

2!
+ ¯ . s17d

This yields

T
]Z

]m
= T

] Tr eĜ

]m
= TrseĜN̂0d,

T
] TrseĜN̂0d

]m
=E

0

1

dzTrSFN̂0 +
A

T
sâ0

†2 − â0
2d

+
C

T
ÎVsâ0

† − â0d + ¯ GeĜN̂0D .

In order to estimate the second term on the right-hand side

sRHSd of the last equation, we note that Trsâ0
†2eĜN̂0d

=fTrsâ0
†2eĜN̂0dg* =TrsN̂0e

Ĝâ0
2d owing to the reality of the co-

efficients in the Hamiltonians8d. Here we derive

Trfsâ0
†2 − â0

2deĜN̂0g = TrseĜfâ0
2,N̂0gd = 2kâ0

2lZ

and, in the same manner,

Trfsâ0
† − â0deĜN̂0g = kâ0lZ.

Thus, we arrive at the asymptotic expression
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kdN̂0
2l

N0
=

T

n0
S ]n0

]m
D

T
−

2A

T
−

C

T

1
În0

+ ¯ . s18d

We stress that the chemical potentials16d is involved in im-
plicit form in the coefficientsA, B, andC, but it is clear from
the above consideration that one should hold the coefficients
constant when taking the derivation]m /]n0 in Eq. s18d. As a
result, we obtain, from Eq.s16d,

n0s]m/]n0dT = V0n0 − C/s2În0d. s19d

In the thermodynamic limit, Eq.s16d is the exact relation
f22g for the chemical potential, and it can be appliedf23g at
any densities and for arbitrary strong pairwise potentialf34g.
By contrast, Eq.s18d cannot be employed in the strong-
coupling regime, for whichV0→ +`, since the divergence
appearing in the coefficientss13d is not canceled in this ex-
pressions18d f35g. However, one can use Eqs.s18d ands19d
in the weak-coupling case, for Eq.s17d is in fact the expan-
sion in terms of the coupling constant. Nevertheless, simple
physical argumentsssee Sec. V in the first paper of Ref.f29gd
can help us to extend our results to the strong-coupling re-
gime. Since the properties of dilute quantum gases are ruled
by the scattering length, the final expression for condensate
fluctuations should depend on the pairwise potentialVsrd
through mediation of the scattering length in the strong-
coupling case. From this expression one can derive the for-
mula for the weak-coupling regime by means of the Born
series for the scattering amplitudeslengthd: Us0ds0d
=4p"2a/m=U0+U1+¯, where U0=V0 and U1
=−s2pd−3ed3k Vk

2/ s2Tkd,0, Tk="2k2/ s2md, and Vk is the
Fourier transform of the pairwise interaction. Otherwise, the
relation obtained in the weak-coupling case should involve
some first terms of the Born series, but coefficients before
the termU0=V0 are the same as beforeUs0ds0d in the strong-
coupling case. Thus, in the “weak-coupling” formulas the
substitution V0→Us0ds0d sand U1,U2, . . .→0d should be
made to obtain the “strong-coupling” formulas. Performing
this substitution in the coefficientss13d yields A→0, C→0,
and Eqs.s18d and s19d result in a simple final answer:

kdN̂0
2l

N0
=

m

4p 2n0

T

a
. s20d

This equation is valid for sufficiently small depletion of the
condensate—that is, whenT!Tc. Note that the above con-
sideration allows us to avoidf29,30g the divergenceU1→
−` arising in the standard pseudopotential approximation
Vk=4p"2a/m.

The results20d is a direct consequence of the single-mode
approximations8d. Indeed, when deriving the Hamiltonian
s8d, we neglect the correlations between the condensate and
noncondensate particles; besides, the condensate depletion is
small for the dilute Bose gas. Consequently, we can put

kdN̂0
2l . kdN̂2l = TS ]N

]m
D

T
.

mV

4p"2

T

a
. s21d

Here the familiar expression is employed for the fluctuations
of the total number of particles in the grand ensemble and the

formula for the chemical potential,m=4p"2an/m, in leading
order at the density, which follows from Eqs.s13d and s16d.
Note that this expression is nothing else but the relationship
between the compressibilityxT=s]n/]PdT/n and the fluctua-
tions of the total number of particles, whereP stands for the
pressure. Indeed, with the help of the thermodynamic rela-
tion s]n/]PdT=ns]n/]mdT and the definition of the com-
pressibility, it can be written in the form

kdN̂0
2l

N0
.

kdN̂2l
N

= TnxT.

For the ideal Bose gasa=0, and we come to an infinitely
large value of the fluctuations because of the nonphysical
behavior of the compressibility of the ideal Bose gasf5,6g.
Note that the fluctuations of the total number of particles in
the grand canonical ensemble remain finite and approach
zero asT→0 whena is finite, however weak the interaction
may be; this is also valid for the one- and two-dimensional
Bose gasesf19g.

B. Mean-field calculations

It is interesting to compare the results20d with the mean-
field calculations for the condensate fluctuations. By separat-
ing the c-number partÎz in the condensate operatorâ0=Îz

+ â shence,kN̂0l=N0=kâ†âl+zd, the fluctuation of the con-
densate in the grand ensemble can be represented in the form

kdN̂0
2l = sx + 1/2d2 + y2 − 1/4 + 2zsx + 1/2 +yd, s22d

where the notationsx=kâ†âl and y=kâ†â†l=kââl are intro-
duced, and the decouplingkâ†2â2l=2x2+y2 is employed in
accordance with Wick’s theorem.

Let us study the Hartree grand canonical Hamiltonian

Ĥh =
V0

2V
â0

†2â0
2 − mâ0

†â0, s23d

which is the model Hamiltonians8d in the case ofA=B
=C=0. To evaluate the parametersx andy in Eq. s22d, which
correspond to the Hamiltonians23d, one can use the Gibbs-
Bogoliubov inequality

V ø V0 + kĤ − Ĥ0l0. s24d

Herek¯l0 means the averages in the grand Gibbs ensemble

with the HamiltonianĤ0, andV andV0 are the grand ther-
modynamic potentials corresponding to the arbitrary Hamil-

tonians Ĥ and Ĥ0, respectively. Now, the basic idea is to

chooseĤ=Ĥh and

Ĥ0 =
1

2
sA0â

†2 + A0
* â2 + 2B0â

†âd, s25d

with arbitrary parametersA0 andB0, and minimize the RHS
of Eq. s24d with respect to them. As a result, we find the
stationary values ofA0 andB0. Note thatB0 is always real,
and we can putA0=A0

* if all coefficients are real in the

HamiltonianĤ. By using Bogoliubov’s transformation, one
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can find the valuesx andy with the Hamiltonians25d:

x = kâ†âl0 =
B0

2«
coth

«

2T
−

1

2
,

y = kââl0 = −
A0

2«
coth

«

2T
, s26d

where«=ÎB0
2− uA0u2. We notice that at zero temperature this

method is nothing else but the approximation of the coherent
squeezed statessee, e.g., Ref.f36gd for the condensate mode.

It is more convenient to deal with the variablesx and y

rather thanA0 and B0, sincekĤl0 is easily expressed viax

and y with Wick’s theorem and dsV0−kĤ0l0d=−A0dy
−B0 dx. Hence, we come to the minimum conditions

]kĤl0/]y = A0, ]kĤl0/]x = B0, s27d

which should be solved in conjunction with

]kĤl0/]z= 0. s28d

For the Hartree Hamiltonian we havekĤhl0=sV0/2Vds2x2

+y2+4xz+2zy+z2d−msz+xd, and Eqs.s27d and s28d yield

x =
1 − y/z

4Î− y/z
coth

mÎ− y/z

T
−

1

2
,

y = −
1 + y/z

4Î− y/z
coth

mÎ− y/z

T
, s29d

where the asymptotic formulaV0z/V.m is utilized. The lim-
its x/z→0 andy/z→0 at V→` follow from Eq. s2d, since
z/V.n0. If these limits were not fulfilled, the separation of
the condensate operator into quantum andc-number parts
would have made no sense. At zero temperature Eqs.s29d
lead tox.−y.z1/3/24/3 andx+1/2+y.2−5/3z−1/3, and Eq.
s22d yields

kdN̂0
2l

N0
.

3

25/3

1

N0
1/3. s30d

This result was obtained for the Hartree model by another
method in Refs.f4,8g. We note that the asymptoticss30d is in
agreement with Eq.s20d at T=0, which reproduces only the

exact limit kdN̂0
2l /N0=0 for N0→`. At nonzero temperature

we obtain in the same mannerx.−y.ÎT/mÎz/2 and x
+1/2+y.T/ s2md, and, hence,

kdN̂0
2l

N0
.

3

2

T

m
. s31d

The replacementV0→4p"2a/m, discussed in Sec. IV A, re-
sults in Eq.s20d but with the factor 3/2. Certainly, the pre-
vious relations20d is valid, as based on the more general
considerations than the mean-field expressions31d. Note that
the method of the previous section, applied to the Hartree
Hamiltonians23d, also leads to the same correct results20d.

The mean-field scheme works even worse in the case of
the Hamiltonians8d, for the subtle balance of the terms is

broken in Eqs.s22d, s27d, and s28d. As a result, the term
V0=U0 vanishes in the limitV→`, and the main contribu-
tion comes in the condensate fluctuations from the termU1.
Note that the approximations used in Ref.f33g lead to the
same effect. Thus, the mean-field scheme, applied to the
model Hamiltonians8d, is not consistent for calculating
the fluctuations, because it does not reproduce the correct
answers20d. Nevertheless, for a qualitative estimation of the
condensate fluctuations, it is quite right to make use of the
mean-field scheme, which reproduces the correct answer up
to a factor of 3/2. Note that the Hartree Hamiltonian can be
easily written down for the nonhomogeneous systemssee
Sec. 2.8 in Ref.f4gd; the coefficients depend on the conden-
sate wave functionsthe eigenfunction of the one-body den-
sity matrixd, which is the solution of the Gross-Pitaevskii
equation. So it is possible to estimate qualitatively the con-
densate fluctuations for the trapped system by means of Eqs.
s30d and s31d.

C. Next-to-leading order corrections for the fluctuations

In this paper we study the condensate fluctuations within
the single-mode Hamiltonians8d. As is stressed in Sec. III it
means that we neglect the correlations between the numbers
of the particles in the condensate and beyond it; that is, we

put fkN̂0N̂outl−kN̂0lkN̂outlg /V.0 in the thermodynamic limit,

where by definitionN̂out=N̂−N̂0=opÞ0âp
†âp is the operator of

particles beyond the Bose-Einstein condensate. In Ref.f10g
an opposite idea was accepted thatkdN̂0

2l=kdN̂out
2 l due to the

restriction N=const in the canonical ensemble, but at the
same time, Bogoliubov’s scheme, which does not conserve
the number of particles, was used there. This approach leads
to nonthermodynamical fluctuations withg=4/3 in Eq.s1d.
As discussed in Sec. II, the replacement of the condensate
operators by thec-numbers implies that Bogoliubov’s terms
are involved in the Hamiltonian. Such a procedure leads to

fĤ ,N̂gÞ0 and can change the accepted relationkdN̂0
2l

=kdN̂out
2 l. On the other hand, within theconservingscheme

swhen fĤ ,N̂g=0d the Bogoliubov transformationb̂p=upâp

+vpâ−p
† relates the creationâp

† and destructionâp quasipar-

ticle operators with not the particle operatorâp but with b̂p

= âpâ0
†/ÎN0 f25,26,37g. Hence, the variance of the operator

opÞ0b̂p
†b̂p is no longer equal to the variance of the number of

noncondensate bosonskdN̂out
2 l. For this reason, the approach

f10g is implicitly based on the assumption thatfkN̂0
2N̂out

2 l
−kN̂0N̂outl2g /N0

2.kN̂out
2 l−kN̂outl2 in leading order. A justifica-

tion of this assumption is needed, since it may occur that the
main contribution to the LHS comes from the term

kN̂out
2 sN̂0

2−N0
2dl /N0

2, which may be proportional toV4/3. The
question remains open what approximation is more correct,
the approximation of the quasi-independent mode or the non-

conserving approximation in conjunction withkdN̂0
2l

=kdN̂out
2 l. Note that our results20d does not contradict to that

of the papersf11,12g, in which the fluctuations were investi-
gated in the canonical ensemble within the number-
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conserving simple scheme. We stress that the Bogoliubov
model, based on thec-number replacement, is consistent
with any value of g,2, so all the approachesf10g and
f11,12g and ours do not contradict to the Bogoliubov’s
c-number replacement. Thus, we are able to use the single-
mode Hamiltonians8d until a decisive answer has been given

what is the value of the correlatorfkN̂0N̂outl−kN̂0lkN̂outlg /V
within the number-conserving schemef38g.

Let us formulate the hypothesis for the interacting Bose
gas that in the framework ofthe number-conserving scheme

the relation kN̂0N̂outl /V.kN̂0N̂outlc/V should be fulfilled;
here,k¯l and k¯lc stand for the averages in the grand ca-
nonical and canonical ensembles, respectively. This hypoth-
esis is reasonable, since transitions of bosons from the con-
densate state to the noncondensate ones and back occur in
the whole volume, and thus the boundary conditions seem to
be of no importance here. In addition, we have the relations

kN̂0N̂lc=N0N and kN̂0N̂l−N0N=Ts]N0/]mdT; the latter can

be derived by differentiatingkN̂0l with respect to the chemi-
cal potentialswithin the number-conserving scheme we do
not face the difficulties discussed in Sec. IV Ad. Thus, from
the accepted hypothesis we obtain

kdN̂0
2l

N0
=

T

n0
S ]n0

]m
D

T
+

kdN̂0
2lc

N0
. s32d

Here the derivatives]m /]n0dT is not related to the formula
s19d, which concerns the single-mode Hamiltonians8d, be-
cause the averages in Eq.s32d correspond to the full Hamil-
tonian with the pairwise potential; one should calculate it
from the thermodynamic expression for the chemical poten-
tial. In particular, in the temperature regionn0U

s0ds0d!T
!Tc fhereTc is the transition temperature of the ideal Bose
gas andUs0ds0d=4p"2a/mg we have

n0S ]m

]n0
D

T
. n0U

s0ds0dF1 − 6Îp
sn0a

3d1/2T

n0U
s0ds0d G ,

wheresn0a
3d1/2T/ fn0U

s0ds0dg!1 ssee, e.g., Ref.f39gd. On the
other hand, the number-conserving approach of Ref.f11g
yields

kdN̂0
2lc

N0
. 2Î2Îpsn0a

3d1/2S T

n0U
s0ds0dD

2

in that temperature regionf40g. Thus, with the proposed
equations32d we obtain the relation

kdN̂0
2l

N0
.

T

n0U
s0ds0dF1 + s6 + 2Î2dÎp

sn0a
3d1/2T

n0U
s0ds0d G , s33d

which contains the correction term in comparison with Eq.
s20d.

V. SUMMARY

Starting from the approximation of the quasi-independent
mode, we derive the single-mode Hamiltonians8d and obtain
the condensate fluctuationss20d for the grand canonical en-
semble in the dilute limit. This relation is derived beyond the
mean-field approximation. The mean-field scheme, applied
to the Hamiltonians8d, leads to incorrect results. For the
Hartree Hamiltonians23d, the mean-field approximation re-
sults in Eq.s31d at nonzero temperature, which differs from
the correct relations20d by a factor of 3/2. With the help of
the proposed hypothesis and the estimations of Ref.f11g, the
next-to-leading term is obtained for the condensate fluctua-
tions s33d.
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