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Condensate fluctuations in the dilute Bose gas
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The fluctuations of a number of particles in the Bose-Einstein condensate are studied in the grand canonical
ensemble with an effective single-mode Hamiltonian, which is derived from an assumption that the mode
corresponding to the Bose-Einstein condensate does not asymptotically correlate with other modes. The fluc-
tuations are evaluated in the dilute limit with a proposed simple method, which is beyond the mean-field
approximation. The accuracy of the latter is estimated; it is shown that the mean-field scheme does not work
for the single-mode Hamiltonian, while for the Hartree Hamiltonian it allows us to estimate the condensate
fluctuations up to a numerical factor. As a hypothesis, a formula is proposed that relates the fluctuations in the
canonical ensemble with that of the grand canonical one.
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[. INTRODUCTION and other modes can be considered as quasi-independent, we
. Lo . . obtain the usual thermodynamic fluctuations of the conden-
The observation of Bose-Einstein condensatBiC) in 50 withy=1 in Eq.(1) and show that this result is consis-
trapped alkali-metal gas¢&] has stimulated theoretical and tent quite well with the Bogoliubov theory
experimental studies of the basic problems related to this We consider a dilute Bose gas intera(.:ting with a short-
phenom_en_or(see the reviews in Ref§2—4]). In particular, _range pairwise potentidl.e., the potential that goes to zero
the statistical properties of the condensate are of especigl " o ag 14m (m>3) or fastel. The method used in our
interest for interacting bosons. In the case of the ideal Bos aper can be called the apbroximation of the quasi-

gas, fluctuations of a number of particles in the Bose'independent mode. This assumption is nothing else but a

Einstein condensatésNG)=(N§)—(No)* have been studied generalization of Bogoliubov's relatiof8) for the operators
thoroughly in a box[5] and a harmonic trajp6] as well. 3, anda] (see Sec. Il beloy As a result, we consider the
However, in the case of the interacting gas, this problem igondensate mode and the other ones to be uncorrelated. In
rather subtle and requires a more refined approach. So fa@fie framework of this approximation, one can easily derive
there has been no uniform treatment of this problem in thehe effective single-mode Hamiltonian. Our consideration is
literature[7-19]. It is not even clear what the value of the primarily dedicated to the homogeneous case, except for Sec.
power y is in dependence of the fluctuations on the totally B, where fluctuations in the Hartree model are discussed

number of particles, briefly in the nonhomogeneous case.
- The paper is organized as follows. In Sec. Il we review
(ONg) « N7, (1) some important issues in the field of Bose-Einstein conden-

: . Gibb bl he diff sation, which might not be well known for a reader. In the
in various Gibbs ensembldsompare, e.g., the different re- o goction we derive the effective single-mode Hamil-

sults of Refs[10-12). Apart from general theorgtica_l in_ter- tonian, which is employed for studying condensate fluctua-
est, condensate fluctuations can be measured, in principle, t??éns in the grand canonical ensemble. In Secs. IV A and
meansh_of a scatterlr:jg Olf S?L'ei of shglrt Ias?rﬂpujze]s_ . IV B the fluctuations are evaluated in the framework of the
In this paper we deal with the problem of fluctuations In e 5 fie|q approximation and beyond it. Possible corrections
the grand canonical ensemble and consider the global gaugg e yaue of the fluctuations are discussed in Sec. IV C. In

symmetry Ul) of the Bose system to be broken. In prin- yq |ast section the main results are summarized.
ciple, the properties of the dilute Bose gas in the grand en-

semble are described quite well by the Bogoliubov model

[21], with the condensate terms being treated as asymptotic Il GENERAL REMARKS

c-numbers and with three- and four-boson terms being ne-

glected in the Hamiltonian. However, the statistical proper- Let us recall some important issues in the considered

ties of the Bose-Einstein condensate are beyond the Bogoliproblem, following Bogoliubov's papef22]. A number of

bov theory due to the-number replacement. Consequently, bosons in the Bose-Einstein condensate can be defined as the

in order to tackle this problem, we need other approximamacroscopic eigenvalul, of the one-body density matrix

tions or assumptions that keep the quantum nature of theyt(r)y(r'))—that is, [d% (% (r")g(r))do(r’)=Noeo(r),

condensate operators. Assuming that the condensate m°?83r|qbo(r)|2=1, whereN, is proportional to the total number
of bosons in the thermodynamic limit, while the other eigen-
values are proportional to the unit. The eigenfunciiigris a

*Electronic address: cherny@mpipks-dresden.mpg.de one-body wave function of the Bose-Einstein condensate,
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obeying the Gross-Pitaevskii equation in the first approximapression of the condensate operator in the homogeneous sys-

tion. One can easily introduce the condensate oper@prs tem, a,=Jd #(r)/\V, we obtain, in the thermodynamic
anda) by expanding the Bose field operators in the completq,m,t

set of eigenfunctions of the one-body matrlxp(r)
=89¢ho(r)+=.08¢;(r); then, the operatomNy=ala, de- & -~y ~
scribes the number of particles in the condensdtg)=Nj. \Y,

For a homogeneous system the indeis associated with

1 R - R
momentump, ¢,(r)=expip- 1)/\V (V is the volumg, and =—fd3r<w(r)---wT(rl)---w(rz)--->
the condensate operators coincide with the Bose zero- v

momentum operators Bogollubov notidexd 22 that in this 1 3" ~ -
case the operatod/\V andaj/\V should be very close to =V f A )Y (ry) - glry) - ++)
c-numbers, since they commute in the thermodynamic limit
V— o, n=N/V=const. This implies that ( )
P T ) . 3

At Y
I|m<(’——\n0e )( —\n0e'¢’>> 0, (2)
Voo \ \ WV VW One can indeed replace the condensate operators by the
c-numbers, and this procedure, according to Bogoliubov, still

whereg is an arbitrary phase amd=N,/V denotes the den- ields exactvalues[22] of all thermodynamic quantities in

sity of the Bose-.ElAnstlerAlTcgndensate. However, we alwayg,e jimit v cc. Note that the above relations can easily be
have the constrainy) =(a,)=0 due to global gauge invari- o, anded to the inhomogeneous case. For example, in order
ance, which is equivalent to conservation of the total numbef, consider the harmonic trap, it is sufficient to replace the
of bosons(i.e., [H,N]=0). Hence, the ground state is not volume V by 1/w® and define the thermodynamic limit as
stable with respect to an infinitesimally small perturbation[24] N—, Nw®=const (here w: w_\wxwywz is the average
that breaks the gauge symmetry. For a correct mathematicabrmonic frequency

treatment of the homogeneous Bose system with broken We stress once more that the replacemerﬁocﬁndéo by
symmetry, Bogoliubov proposei@?] to include the terms  the c-numbers gives always the main asymptotics of the av-
-m(afe P +age ')\V in the Hamiltonian, where the parameter erages of these operatofi$ the Bose-Einstein condensate
v>0 andv— 0. Now the absolute minimum of the energy existg, and this method is sufficient for obtaining an exact
corresponds to the state Wl(c&O)/\V (ao) V= \noe“” be-  value of any thermodynamic quantigee Sec. 7 of Bogoli-
cause the gain in energy per particle, by ), is equal to  ubov's papef22]). However, the main asymptotic value is
2v\ne/n in the limit V—o due to Bogoliubov's terms. We canceled when evaluating the condensate fluctuatioNg),
stress that the limit— 0 should be performedfter the ther-  and, thus, we have to take into consideration here the quan-
modynamic one. These two subsequent limits yield the welltum nature of the condensate operators. Nevertheles$2Eq.
defined order parametérp(r y=(a)/\V=\nee® with fixed  results in the constraing< 2 for the parametey in Eq. (1).
phaseg. Thus, due to Bogoliubov’s infinitesimal terms, the The casey>1 implies that bosons in the Bose-Einstein con-

values of theanomalousaverageglike @) @{ﬁ) and so o densate and beyond it are strongly correlated, and the extent
change drastically, and such averages can be called, follo f the correlation is nonthermodynamically large, since the
ing Bogoliubov, qda&averagébereafter by the term “aver- hermodynamic fluctuations of any extensive observable are
age” we mean “quasiaverageAt the same time, the values proportional to the total number of particles. The resylts

. Ay =4/3 andy=1 have been obtained in Ref&0] and[11,12,
of thenormal averageslike (¢'¢) and so ondo not change.  regpectively, in the Gibbs canonical ensemble. The results of

In particular, this is valid for the one-boo(iv’f(r)z,l(r’)) and  Refs.[11,17 are consistent with ours for the grand canonical
two-body <<}T(r1)z,7ﬁ(r2);lr(r§)zjb(ri)> matrices. Hence, in the €nsemble, while those of RdfLO] are at variance with ours

e X - : Sec. IV C below
thermodynamic limit the eigenfunctions of the matrices do(See : . .
not change when the symmetry is broken. On the other hand, If the symmetry is broketithat is, if the ground state is a

the anomalous averages have a transparent physical inter Iperposition of states with different numbers of particles
9 P phy pt en it is rather difficult to define what the Gibbs canonical

tation: ((1))=\Noeho(r) is the eigenfunction of the one- ensemble is. Indeed, within a variational scheme, we cannot
body matrix associated with the maximum eigenvaNip  yse the restrictiotN=const directly and have to impose the
and ((r)y(r")) is that of the two-body matrix with the ei- gdditional conditior(N}-N which is equivalent to introduc-
genvalueNy(Ny—1) [23]. Hence, with the concept of broken
symmetry we obtain a simple method of evaluating thes
eigenfunctions.

Equation(2) can be derived from Bogoliubov’s principle
of correlation weakeninf22], which takes a particular form

ing the Lagrange term,wN in the Hamiltonian; this is noth-

(?ng else but using the Gibbs grand canonical ensemble. So a
reliable treatment of the canonical ensemble can be done in
the framework of the number-conserving sche(fioe recent

~ R - N R ~ developments of the scheme, see RiS,26). For that rea-
W) () - lro) ) = ()G (ry) - ) - -+) son, in this paper we restrict ourselves to the grand en-

when|r—r;|—o,... and|r -r,|—. Indeed, using the ex- semble.
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Ill. APPROXIMATION OFMT(I;EEQUASI-INDEPENDENT H= ﬂc + |:|0ut+ const, (7)

) ) and, hence, the density matrix of the grand canonical en-
Let us describe the model and methods of calculation. In R ~ . R
blep~exp(-H/T) is really factorized(in this paper we

order to evaluate the mean square of the number fluctuatios™
in the Bose-Einstein condensate, it sufficient to know thenclude the term uN in the Hamiltonian. By virtue of this

condensate density matrpg. According to general rules of factorization, the condensate fluctuations arise in the grand
quantum mechanics, it can be obtained from the total densitganonical ensemble due to the particle and temperature bath
matrix p by taking the partial trace in the occupation numberrather than the energy excitations. Here we derive the effec-

representation tive grand canonical Hamiltonian of the Bose-Einstein con-
densate:
pe= Tr p= > ¢ong[pl o np ), (4) .1/ a2 o L
gt o= 2P e+ 2+ 20 - Wil
p#0 p#0 \%
where we denote - -ny---)=II,.[ny) and the indexp is as- +2C(a) + ao)\'T/), (8)

sociated with momentum in the homogeneous casepSo

depends on the condensate operaégranda, only and acts  whereV, is the zero component of the Fourier transform of

only on states of the condensate—say, the Fock stbigs  the pairwise interactiol(r), and we introduce by definition
and their superpositions. By analogy with Eg), one can he coefficients

also define the density matrix for all noncondensate states
Pour=Try,p, Which depends on the Bose operatégsind a,
with p#0. Certainly, it is difficult to evaluate the density
matrix of the Bose-Einstein condensate directly from &g.
and one has to use additional assumptions.

As discussed in Sec. Il, Eq3), a particular case of B:V0<{9T(O)1§(O))+fd3r V(r)(&1(r)9(0)),
Bogoliubov’s principle of correlation weakening is valid in
the thermodynamic limit. This suggests that the state of the
condensate mode is, in effect, independent of the other 3 Span o a
modes. It means that one can use the approximation for the C:f d*r V(r){(d'(r) 9(r)$(0)). 9
density matrixp=p.p., The parameters of the matricgs
and p,,;: are assumed to be related in a self-consistent mann the above expressions, the gauge symmetry is certainly
ner. The factorization of the total density matrix implies thatassumed to be broken, and for the sake of simplicity, we put
the condensate and noncondensate subsystems are congic-0 in Bogoliubov’s termgsee Sec. )t in this case, all the
ered to be uncorrelated. Hence’ we haéé>:<,&><é> for coefficients are real. In general, they depend on the denSity

bitrarvA andB. d di th d ¢ d and temperature and will be evaluated below. It is worth-
arbrtrary/A anab, depending on Ihe condensate and NoNCony, ;q 14 note thatA, B, andC tend to constant values in the

densate operators, respectively. This is very consistent witw o A
the approximatio27] thermodynamic limit. As to the Hamiltonia,,, it is given

by Eg. (6) but with c-numbers instead of the condensate
~n AlAAa Al A operators[28], so we arrive at the standard asymptotically
AB = (A)B + A(B) — (AXB). ) exact Hamiltonian with Bogoliubov’s replacement. The co-
Let us app|y the approximatio(‘s) for a homogeneous ?ffICIentS(Q) can be calculated by means of the Hamiltonian
Bose system with the pairwise potent\(r). In this case, Hg.
the Hamiltonian reads, in terms of the Bose fields operators, When calculating the coefficients in the dilute limit, one
can employ the results of our previous papg8,29-3],
- - #2y2 - based on an analysis of the two-body density matrix. One
H =f d°r l/fT(f)(— > ‘M) (r) can show the following.
m . )
(i) The functions

A= f & V(D)D) D)),

+ f Brd®r V(r =1 g O (). (6) () =1+r), ¢yr)= V2 codp 1) + Yo(r) (p#0)
(10)
According to the above method, one should separate explic-re eigenfunctions of the two-body density matrix, which

itly th_e cgndeinsaterp(?_ratgrs in the Hamiltonian by means 0gelong to the continuous spectrum and describe the scatter-
substitution yA(r)=a/\V+3d(r) [here we denoted(r)  ing of pairs of bosons in a medium of other bosons. The
=2 408 explip-r)/\V] and employ the decompositid®)  guantum numbep can be associated with the relative mo-
to every operator containing the product of the condensatgentum of that scatteringp(r) corresponds to zero momen-
operators and) or 9'. As one can see, applying E() to  tum]. Their scattering partg(r) and iy, respectively, obey

the Hamiltonian(6), we come to the approximation the boundary conditiong(r), #,(r)—0 atr —o. The Fou-
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rier transforms of the scattering parts can be expressed e havea()/dny=(dH/ang)=d(H.)/dny=0. Here the second
terms of the Bose operators: equality is due to the condensate operators being involved

(A ay) V (Al A d, ) explicitly only in H,. The last equation reads
WK) = %, Jo(K) = + /_M, (11) c

0

w=Vong+A+B+Cln,. (16)
wherenp-<apap> stands for the average occupatlon number
of bosons. We come to the equation obtained by Bogoliubov and treated
(i) The following limiting relations are valid: by him as asymptotically exagsee Eq(7.16) of Ref.[22]],
_ = ) © since its derivation is based only on tbenumber replace-
:)'TO @p(r) = V2¢(r), L'LTE) e(r)=¢(r), (12)  ment of the condensate operators. It can be rewritten as

p=FdPr V(=1 (AT ) ) ) o, where gAr)=1ng
ﬁ(r) This equation relates the equilibrium value of the
condensate density, with that of the chemical potential.

where ¢9(r) obeys the two-body Schrédinger equation, de-
scribing the scattering of two bosons in a vacuum with zero
relative momentum. Now, using relatiofikl) and(12), one
can obtain the coefficient®) in the dilute limitn— 0 after a

small amount of algebrg32]: IV. CONDENSATE FLUCTUATIONS
A=nfUP0)-V,], B=2(n-nyVy, A. Method of parameter differentiation
— © We adopt a standard method of evaluating the fluctuations
C = 2Vng(n = ng)[U™(0) = Vol. (13)  from the Hamiltonian(8). One can derive a useful relation
HereU©(0)= [d® ¢©(r)V(r)=4mh2a/m stands for the scat- by differentiation of the expression for the average
tering amplitude ana is the scattering length. (No)= Tr(PcNO) with respect to the chemical potential. If the

Now all averages of the operatodg and &, and their  Hamiltonian H, had commuted withl,, we would have

products can be calculated in the grand ensemble by mear@gN ) /No=T(dNo/ Ju)7/No from Egs.(14) and (15), but the

of the matrix noncommutativity leads to corrections we need to estimate.
pe = expl- |:|C/T)/zc, (14)  One can apply the |dent|tﬁexpl“ [0z exp[zl“]ﬁl“ exp{(l
with the grand partition function for the condensate ~2)] (here 5 denotes variationto the operatoi =-H,/T
) and use the first two terms of the expansion
Z.= 'IEr exp(— HJT). (15) 2
. 5 & Nge ™ =N + [, No) = + [ [F Rl 5= + -+ (17)
Note that the approximation of the quasi-independent 1! 2!
mode was introduced earlier in R¢B3]. The authors con- o
sidered the quadratic terms only in operatamnda’ in Eq.  This yields
(8) (see the definition in Sec. IV B belgvand obtained the .
condensate ground state, which turns out to be the coherent dz __9Tre
squeezed state in this case. However, this approach leads to Ta =T
additional approximations, which change drastically the final
expression for the condensate fluctuatidese below In
order to avoid the additional approximations, we need to ﬁTr(erNo 32)
keep the four-boson Hartree term in the condensate Hamil- T o fo dzTr N + ( ~ )
tonian (8).
The model8) yields the asymptotically exact value of the C Fa
condensate density provided that the coefficier® 7Y V(@h-a0) + - ]eFNO)'
are known. Indeed, it follows from Ed3) that the con-
densate operators can be replaced by their mean valugs order to estimate the second term on the right-hand side

(aO/xV> (aO/\V> \ng in order to evaluate the main asymp- (RHS of the last equation, we note that (ﬁzeFNO)

totics of(HC> in the thermodynamic limit. Then the conden- —[Tr(aOZeFNO)] Tr(NOeFaO) owing to the reality of the co-
sate density can be found by mlnlmlzanon(be) with re-  efficients in the Hamiltoniani8). Here we derive

spect to thec-number parameten,. The condition of this

minimum can also be obtained from the initial Hamiltonian Tr{(3*- 3 )eFNO] Tr(er[ao No]) = 2837

(6), since Bogoliubov’s replacement is asymptotically exact

[22] due to Eq.(3). Hence, the condensate densitycan be and, in the same manner,

considered as a variational parameter whose value is ob-

tained by minimization of the thermodynamic potential of Tr[(ég—éo)efﬁlo] = (3)Z.

the grand canonical ensemble. With the well-known expres-

sion for an infinitesimal change of the potentiéQ=<51:|>, Thus, we arrive at the asymptotic expression

= Tr(e'Ny),
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~ ; inl, — 2 ; ;
SN2 2A 1 formula for the ch_emlcall potentigl=4mA<an/m, in leading
Q = I(%> -— - 9—_ + e (18) order at the density, which follows from Eg4.3) and (16).

No no\du/t T  Ting Note that this expression is nothing else but the relationship

We stress that the chemical potentia6) is involved in im-  Petween the compressibility;=(dn/3P)/n and the fluctua-
plicit form in the coefficientsA, B, andC, but it is clear from  tions of the total number of particles, wheestands for the
the above consideration that one should hold the coefficientressure. Indeed, with the help of the thermodynamic rela-
constant when taking the derivatigp/dn, in Eq.(18). Asa  tion (dn/dP)r=n(dn/du)r and the definition of the com-

result, we obtain, from Eq16), pressibility, it can be written in the form
no(a/.l//&no)'r = Vono - C/(Z\’E) . (19) <5Ng> <5IA\I2> _
N N
0

In the thermodynamic limit, Eq.16) is the exact relation
[22] for the chemical potential, and it can be appli@d] at  For the ideal Bose gas=0, and we come to an infinitely
any densities and for arbitrary strong pairwise poteri8dl.  |arge value of the fluctuations because of the nonphysical
By contrast, Eq.(18) cannot be employed in the strong- pehavior of the compressibility of the ideal Bose &s).
coupling regime, for whichvy— +¢0, since the divergence Note that the fluctuations of the total number of particles in
appearing in the coefficientd3) is not canceled in this €x- the grand canonical ensemble remain finite and approach
pression(18) [35]. However, one can use Ed48) and(19)  zero asT— 0 whena is finite, however weak the interaction

in the weak-coupling case, for E€L7) is in fact the expan-  may be; this is also valid for the one- and two-dimensional
sion in terms of the coupling constant. Nevertheless, simpl@ose gasef19].

physical argumentssee Sec. V in the first paper of RE29])

can help us to extend our results to the strong-coupling re-

gime. Since the properties of dilute quantum gases are ruled B. Mean-field calculations

by the scattering length, the final expression for condensate |t js interesting to compare the res(®0) with the mean-
fluctuations should depend on the pairwise poterel)  field calculations for the condensate fluctuations. By separat-
through mediation of the scattering length in the strong-ng the c-number part/z in the condensate operatég=1z
coupling case. From this expression one can derive the forJ;é1 (hence,(N0>:N0:<éTé>+z), the fluctuation of the con-

mula for the weak-coupling regime by means of the Born . .
series for the scattering amplituddlength: U©(0) densate in the grand ensemble can be represented in the form

=4mh%a/m=Uy+U,+--,  where Uy=V, and U, J2) — 2.2 _

=—(2m) 2 [, \2/ (2T <0, T =A%2/(2m), and Vi is the (ONg) = (x + 127 +y" 1/ + Zx + 12 +y), - (22)
Fourier transform of the pairwise interaction. Otherwise, thewhere the notationg=(a'a) andy=(a'a')=(aa) are intro-
relation obtained in the weak-coupling case should involveduced, and the decoupling?a2=2x2+y? is employed in
some first terms of the Born series, but coefficients befor@accordance with Wick’s theorem.

the termU,=V, are the same as befoE?(0) in the strong- Let us study the Hartree grand canonical Hamiltonian
coupling case. Thus, in the “weak-coupling” formulas the v

substitution VQ—>U(°>(O) (and U, Uy, ...—0) should be = ~031282 - uata, (23)
made to obtain the “strong-coupling” formulas. Performing 2V

this substitution in the coefficientd3) yieldsA—0, C—0,

) ; ; hich is the model Hamiltoniari8) in the case ofA=B
and Eqgs.(18) and(19) result in a simple final answer: whien | lltoniar8) i

=C=0. To evaluate the parameterandy in Eq.(22), which
(5N2> m T correspond to the Hamiltoniai23), one can use the Gibbs-
R VAP ——-. (200  Bogoliubov inequality

No 477 noa

This equation is valid for sufficiently small depletion of the 1= 0o+ (H = Hok. (24)
condensate—that is, when<T.. Note that the above con- Here(:--), means the averages in the grand Gibbs ensemble

sideration allows us to avoif29,30 the divergencel, — with the Hamiltonian|:|0, andQ and (), are the grand ther-

— arising in the standard pseudopotential approximationy,,qynamic potentials corresponding to the arbitrary Hamil-

V=4mh2alm. o~ ~ _ . :
The result(20) is a direct consequence of the single-modetomansl'| eind Ho, respectively. Now, the basic idea is to

approximation(8). Indeed, when deriving the Hamiltonian chooseH=H; and
(8), we neglect the correlations between the condensate and

noncondensate particles; besides, the condensate depletion is Ho = l(Aoéff2+ AgA% + 2B,a'a), (25)
small for the dilute Bose gas. Consequently, we can put 2
R ~ oN mv T with arbitrary parameter8, and By, and minimize the RHS
(8NZy = <5NZ>:T<(9—> = aria (21)  of Eqg. (24) with respect to them. As a result, we find the
M~/

stationary values oA, and B,. Note thatB, is always real,

Here the familiar expression is employed for the fluctuation®nd we can puh,=A, if all coefficients are real in the
of the total number of particles in the grand ensemble and thelamiltonianH. By using Bogoliubov’s transformation, one
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can find the valueg andy with the Hamiltonian(25): broken in Egs.(22), (27), and (28). As a result, the term
B — Vy=Uy vanishes in the limilv — o, and the main contribu-

x=(a'a),= = coth— - =, tion comes in the condensate fluctuations from the t&gm

2 2T 2 Note that the approximations used in RE83] lead to the

same effect. Thus, the mean-field scheme, applied to the
model Hamiltonian(8), is not consistent for calculating
the fluctuations, because it does not reproduce the correct
= ) ~answer(20). Nevertheless, for a qualitative estimation of the
wheree =By—|Ag|°. We notice that at zero temperature this condensate fluctuations, it is quite right to make use of the
method is nothing else but the approximation of the coherenfean-field scheme, which reproduces the correct answer up
squeezed statsee, e.g., Ref36]) for the condensate mode. g a factor of 3/2. Note that the Hartree Hamiltonian can be
It is more convenient to d’\eal with the Variablkﬁndy eas"y written down for the nonhomogeneous Syst(me'e
rather thand, and By, since(H), is easily expressed via  Sec. 2.8 in Ref{4]); the coefficients depend on the conden-
and y with Wick's theorem and m0_<|:|0>0):_AOdy sate wave funcFiomt.he eigenfuqction of the one—bo_dy den:
—-By dx. Hence, we come to the minimum conditions sity ”?a"'x)v V‘.’h'.Ch IS t_he SOIUt'O.n of the G_ros_s-Pltaevsku
equation. So it is possible to estimate qualitatively the con-

a<|:|>0/ay =A,, ,9(|3|>O/(7X =B,, (27)  densate fluctuations for the trapped system by means of Egs.
(30) and (31).

y=(aay,=- Ao coth (26)

£
2¢ 2T’

which should be solved in conjunction with

07<|:|>0/0"z: 0. (28 C. Next-to-leading order corrections for the fluctuations

In this paper we study the condensate fluctuations within
the single-mode Hamiltonia(8). As is stressed in Sec. Il it
means that we neglect the correlations between the numbers

For the Hartree Hamiltonian we ha\(d;1h>02(V0/2V)(2x2
+y2+4xz+2zy+7°) - u(z+x), and Eqs(27) and(28) yield

1-ylz w-ylz 1 of the particles in the condensate and beyond it; that is, we
X= a=-yiz coth T 2 put[{NgNou» —{NoX{Nou 1/V =0 in the thermodynamic limit,
where by definitiorﬁlout:N—NO:ED#Oégép is the operator of
1+ylz uN-ylz particles beyond the Bose-Einstein condensate. In [Ré.
y=74 V—yiz coth T (29 an opposite idea was accepted tha2)=(sN2,) due to the

restriction N=const in the canonical ensemble, but at the
where the asymptotic formulgyz/V = u is utilized. The lim-  same time, Bogoliubov’'s scheme, which does not conserve
its x/z— 0 andy/z— 0 atV— < follow from Eq. (2), since  the number of particles, was used there. This approach leads
zIV=n. If these limits were not fulfilled, the separation of to nonthermodynamical fluctuations wity=4/3 in Eq.(1).
the condensate operator into quantum a@agumber parts As discussed in Sec. Il, the replacement of the condensate
would have made no sense. At zero temperature E8.  operators by the-numbers implies that Bogoliubov’s terms
lead tox=-y=2z3/243 andx+1/2+y=2"%32"13 and Eq.  are involved in the Hamiltonian. Such a procedure leads to

(22) yields [H,N]#0 and can change the accepted relatigiNg)
(5&5) 31 :(&qup. On the other hand, within theonservingscheme

No B ﬁ@' (30) (when [I:I,IQI]=0) the Bogoliubov transformatiorﬁ)p=uprp
+v,& relates the creatiod! and destructioriy, quasipar-
This result was obtained for the Hartree model by another.vlpa‘p ith h P | [;) k 'hpf)
method in Refs[4,8]. We note that the asymptoti¢30) is in ticle operators with not the particle operay but with b,

agreement with Eq20) at T=0, which reproduces only the =a3)/ \No [25,26,37. Hence, the variance of the operator
exact limit (6N3)/Ng=0 for Ny— . At nonzero temperature Zp¢0bgbp is no longer equal to the variance of the number of

we obtain in the same manner=—y=\T/ux\z/2 andx  noncondensate bosonsN2 ). For this reason, the approach
+1/2+y=T/(2n), and, hence, [10] is implicitly based on the assumption thEiN3NZ,)
(N2 3T —(NoNoup2l/N2=(N2,) —(Nou? in leading order. A justifica-

(31)  tion of this assumption is needed, since it may occur that the
main contribution to the LHS comes from the term
The replacement,— 4fi%a/m, discussed in Sec. IV A, re- (Ngut(Nﬁ—NS)VNS, which may be proportional tv*3. The

sults in Eq.(20) but with the factor 3/2. Certainly, the pre- 4,estion remains open what approximation is more correct,

vious relation(20) is valid, as based on the more generalihe approximation of the quasi-independent mode or the non-
considerations than the mean-field expres$&f). Note that onservina  approximation in  coniunction witN5N2>
the method of the previous section, applied to the Hartre& - 9 app ! 0

Hamiltonian(23), also leads to the same correct regall).  =(8N3,. Note that our resul20) does not contradict to that
The mean-field scheme works even worse in the case daff the paper$11,12, in which the fluctuations were investi-
the Hamiltonian(8), for the subtle balance of the terms is gated in the canonical ensemble within the number-

No 2up
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conserving simple scheme. We stress that the Bogoliubov Em © —(nea®)Y2T

model, based on the-number replacement, is consistent Mol = =noU™(0) 1—6V’WW ;

with any value of y<2, so all the approachegd0] and orT 0

[11,17 and ours do not contradict to the Bogoliubov's where(ny,a®¥?T/[nU®(0)]<1 (see, e.g., Ref39]). On the
c-number replacement. Thus, we are able to use the singl®ther hand, the number-conserving approach of REf]
mode Hamiltoniar(8) until a decisive answer has been given yields

what is the value of the correlat@(l(lolilow)—(N())(Nou,)]lv 5 )
ithi i Noe 5=
within the number-conserving sche&s]. 20 o\ r(ngad) Y ——
Let us formulate the hypothesis for the interacting Bose No noU?(0)
gas that !n th? f[ameworkAdfle number-conserving §cheme in that temperature regiofd0]. Thus, with the proposed
the relation (NoNouy/V=(NoNou)c/V should be fulfilled;  equation(32) we obtain the relation
here,(---) and{- --). stand for the averages in the grand ca- ~
nonical and canonical ensembles, respectively. This hypoth- <5N3> T =
it ! = ~ 1+ (6 + 2\/2)\"77— , (33)
esis is reasonable, since transitions of bosons from the con- No noU©(0) noU©(0)
densate state to the noncondensate ones and back occur in ] ) ) ] )
the whole volume, and thus the boundary conditions seem t¢/hich contains the correction term in comparison with Eq.

be of no importance here. In addition, we have the relation$20)-

(NoN)c=NgN and<N0N>—N0l\lA:T(aN0/ﬁM)T; the latter can V. SUMMARY
be derived by differentiatingN,) with respect to the chemi-
cal potential(within the number-conserving scheme we do

not face the difficulties discussed in Sec. IV.Ahus, from
the accepted hypothesis we obtain

(nge) 2T

Starting from the approximation of the quasi-independent
mode, we derive the single-mode Hamiltoni@h and obtain
the condensate fluctuatioi®0) for the grand canonical en-
semble in the dilute limit. This relation is derived beyond the
mean-field approximation. The mean-field scheme, applied
(32) to the Hamiltonian(8), leads to incorrect results. For the
No Hartree Hamiltoniar(23), the mean-field approximation re-

sults in Eq.(31) at nonzero temperature, which differs from

Here the derivativelau/dng)r is not related to the formula the correct relatiori20) by a factor of 3/2. With the help of
(19), which concerns the single-mode Hamiltoniég), be-  the proposed hypothesis and the estimations of R&f, the
cause the averages in E§2) correspond to the full Hamil- r?ext-to—leadlng term is obtained for the condensate fluctua-
tonian with the pairwise potential; one should calculate itions (33).
from the thermodynamic expression for the chemical poten-
tial. In particular, in the temperature regiopU@(0)<T
<T, [hereT, is the transition temperature of the ideal Bose This work was supported by RFBR Grant No. 01-02-

@ — I(&n()) + <5N(%>c
T
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