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Dynamics of Bose-Einstein condensates in double-well potentials
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We study the dynamics of Bose-Einstein condensates in symmetric double-well potentials following a
sudden change of the potential from the Mott-insulator to the superfluid regime. We introduce a continuum
approximation that maps that problem onto the wave-packet dynamics of a particle in an anharmonic effective
potential. For repulsive two-body interactions the visibility of interference fringes that result from the super-
position of the two condensates following a stage of ballistic expansion exhibits a collapse of coherent
oscillations onto a background value whose magnitude depends on the amount of squeezing of the initial state.
Strong attractive interactions are found to stabilize the relative number dynamics. We visualize the dynamics of
the system in phase space using a quasiprobability distribution that allows for an intuitive interpretation of the
various types of dynamics.
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[. INTRODUCTION the adiabatic limit and the sudden limit. In the first case,

Atom optics[1] and the physics of ultracold matter waves atoms initially in the many-body ground state of the double-

have witnessed rapid progress in recent years, due in lar ell potential adiabatically follow the instantaneous ground

part to the experimental achievement of Bose-Einstein co%ate' This regime is of particular interest for the preparation
densatior{2]. In particular, there has been much recent in-Of SPecific many-body statgg,5]. On the other hand, rapid

perturbations of a system initially in its ground state induce

terest in ultracold atoms in optical lattices, partly because o o ;
prospects for quantum computatif], but also because of nontrivial dynamics that can be used as a probe the proper-

P, .« nties of the system. For example, certain aspects of the dy-
the possibility to study fundamental many-body physics in . X ;
model systems with highly controllable parameters. In arf}amics following the change of the potential depth from a

o : .__fegime where the ground state is superfluid to the Mott-
application more closely related to guantum optics, the flrs|{nsulator regime and back were recently investigated in Ref.

experimental realization of a number-squeezed state of thle], and Ref.[22] studied the nonadiabatic loading of a
matter-wave field was performed using an optical laiite condensate into an optical lattice and the resulting excitation

with the concomitant promi§e of increased accuracy in interbf collective modes, as experimentally realized in R2g].
ferometry[5,6]. The saturation in the amount of squeezing ajso noteworthy is Ref[24], which described the evolution
observed at high lattice depths in these experiments was rf the phase coherence after the atomic system, initially pre-
cently explained by the nonadiabaticity of the splitti'd.  pared in a Mott-insulating state, was allowed to evolve after
FinaIIy, we mention the transition between a Mott—insulatinga sudden Change in parameters p|aced itin a regime with a
and a superfluid state predicted in R¢&9] and experimen-  superfluid ground state, using in particular a stochastic
tally realized by Greiner and co-workers0]. Gross-Pitaevskii approach. The behavior around the transi-
A two-well system is the simplest many-body lattice tion was further studied in Ref25], which predicts macro-
model that exhibits the effects of the competition betweerscopic oscillations of the order parameter between the super-
two-body interactions and quantum tunneling. This makes ifluid and Mott phases. Finally, R€i26] compared the exact
a good candidate for understanding and visualizing the basiguantum dynamics for few atoms with Hartree-Fock-type ap-
physics behind the more complex behavior of many-wellproximations for the case of nonadiabatic loading of a con-
systems. Many of the static and dynamical properties of condensate into a lattice. We note that much of the past work has
densates in two-well potentials, such as squeefirigl?l  concentrated on the case of repulsive interactions, partly be-
and the self-trapping of Josephson oscillatiph3,14 have  cause for negative scattering lengths the stabilization of the
been studied. The collapse and revival dynanjitS] of = condensate relies on the trap potential counteracting the col-
atomic two-mode systems was discussed by Milbeirral.  lapse brought about by the attractive interacfidin,28. This
[16], and its extension to optical lattices was studied in Refcan only be achieved for small condensates, the critical num-
[17]. It was recently suggested as a means to carry ouber of atoms depending on the trap geomé®§] and being
Heisenberg-limited calibration of interferometersl8]. largest for pancake shapes. The condensate sizes achievable
Kalosakas and co-workers have studied the stationary stat@s double-well traps with well-separated minima have been
[19] and have given perturbative estimaf@§] of the clas- shown to be essentially identical to those for single-well
sical oscillation period and revival time of the so-called traps[30].
boson-Hubbard dimer, or discrete nonlinear Schrédinger With these previous results in mind, the goal of the
dimer, in the weak tunneling limit. present paper is to study the dynamics of Bose-Einstein con-
The goal of the present paper is to study the dynamics oflensates following sudden changes in the double-well poten-
ultracold bosonic atomic vapors in time-dependent doubletials in which they are trapped. Our analysis relies largely on
well potentials. Two limiting cases are of particular interest,numerical wave-packet dynamics simulations and makes ex-
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tensive use of a Bloch-sphere quasiprobability representation In the angular momentum representation the Hamiltonian
to achieve a simple geometrical interpretation of our results(1) reads, apart from a constant function of the total angular
As such, this study complements our previous pdidy  momentum eigenvalug@=N/2,

which concentrates on approximately adiabatic changes of - - .

the system parameters. H = 2g(t)J2 + AE(1)J,, 9)

The paper is organized as follows. Section I discusseg,vhere
our model and establishes the notation. We introduce an ap-
proximate mapping of the problem onto an effective one-
dimensional Schrddinger equation with a quartic effective
potential that can be analyzed by the techniques of wave- o _ ) _ o o
packet dynamics. Section Il presents explicit numerical re-The Hamiltonian(9) is the single-axis twisting Hamiltonian
sults of this analysis, and interprets them both in the wavefamiliar from the theory of spin squeezir{@2]. We also
packet picture and in a phase-space representation onracall that in the context of atom optics the operakpplays
Bloch sphere. Finally, Sec. IV is a summary and outlook. a central role: assuming that the spatial mode functions of

the double well are identical and symmeti] its expecta-
Il. MODEL tion value gives the visibility of interference fringes for a
condensate released from the tf&p as

3= %(1 +J). (10)

In the two-mode approximation, the Hamiltonian of a R
Bose-Einstein condensate in a double-well trap can be writ- _(G4(0,t,0)) = (G1(0,t, 7)) _ [{IW]

ten as[5] T (Gy(0,,0) +(G,(0t,m)) I’

AE(t)[éﬁéR"’ ala+oalzaz+al2ad], (1) vyhere(Gl(x,t, 0)) is the density of atoms at a spatial loca-
2 tion for a double-well condensate with a relative average
whered, g, are annihilation operators for particles in the left phased between the halves. For.thege reasons, the Schwmger
. . . angular momentum representation is particularly appropriate
(right) well, and we have introduced the tunneling energy, =
AE(t d two-bodv int " 0. both of which to discuss the problem at hand.
() and two-body interaction energy(t), both of whic We proceed by expanding the stéie of the condensate
can be externally controlled and are therefore taken to bSn the|J,m) basis as
functions of time. This two-mode problem is conveniently ’
reexpressed in the Schwinger angular momentum represen- ) "
tation of bosonic operatofd6,31]. Introducing the angular =2 (= DMc(m,)|I,m), (12
momentum operators m=-J
.1 where the phase factors-1)™ are introduced for conve-
J,= —(éIéL—éRaR), (2) nience, motivated by the analytical form of the eigenstates
2 known for few particled33]. Alternatively, | can be ex-
panded in the eigenfunction®,(t)) of the time-dependent
J, = "EQR, (3) HamiltonianH(t) as

11

H=

N
J=afa, (4) ) = g Dn(0)]@n(D)), (13)

wherel, is the p[ojection onto a fictitious quantization axis, the eigenfunctionss,(t)) being in turn expanded in terms of
and the operator3, are raising and lowering operators along the state$J,m) as

this axis, we can express the state of the matter-wave field in ;
. A2 I

terms of eigenstates, m) of the operators> andJ,, where lon(D) = s S (O]3,m). (14)

H mphy =-J

P=3+3+7, (5) ’
If the time evolution of the Hamiltonian is sufficiently slow,
the dynamics of the condensate follows its change adiabati-
cally [5], the amplituded,(t) having then constant magni-
tudes. In the present work we consider the other extreme of
sudden change in the Hamiltonian.
- _ _1 To gain further insight into both the stationary states and
JoA3,m) = fim|J,m) = 2(nL M|, m), ) the dynamics of the condensate under the Hamilto@an
we proceed in a manner similar to the approach of Rief],
assuming that for large enough particle numbers the coeffi-
cientsc(m,t) can be treated as continuous functions of the

with

33,m) = 5233 + 1|3, m),

J=N/2, m=-J,-J+1,...,J, and

. m) =@+ m+ DI - m)d,m+ 1), @) magnetic quantum number. This leads as we shall see to a
. formulation of the problem in terms of wave-packet dynam-
J_|3,m=VJ-m+ 1)+ m)|J,m-1). (8) ics, an approach that been exploited both in configuration
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space[35] and in phase spad86] and has witnessed much single minimum atx=0 for G>-1 to exhibiting a double

success due in part to its intuitive appeal. well for G<-1.
Assuming that the function(m,t) is sufficiently smooth, For the dynamics we consider specifically the situation
we expand it around an arbitrary poimtas where the energy rati® is suddenly switched from some

2 initial value to a new valu&(r>0)=G at =0, correspond-
ge(my) | 1dcmt) > (15 ing to a new time-independent effective potentigh(x) with
eigenstates and eigenenerg@gx) and E,, respectively. In

om 2 omP
This approximation is expected to hold provided that thecOMPlete analogy with —one-dimensional, single-particle

number of atoms is not too small. Inserting E4S) into the ~ duantum mechanics, the dynamics of the “wave function”
Hamiltonian(9) and expanding the matrix elemer{® and ¢, 7) is then given by

cmz1,t)= (c(m,t) +

(8) of the operatord, in powers ofm/J, we arrive at N
c(x,7) = 2, dy(0)exp(— iE,NCh(X), (22)
- 1\ #c(mpt) 1 =0
<m|H|l//>: - AE J+5 —m2+ - AE J+E
J whered,(0) are the projections af(x, 7=0) onto the eigen-

AE 1, functions C,(x). Apart from the facto—1)™, the stationary
20755 e + g™ cmy . (16)  states of the two-mode condensate are thus approximated by
the eigenstates of .
The continuum approximation implicitly assumes that the The wave-packet dynamics are conveniently described us-
number of nonzero amplitudes is not Sma”, an approximamg the |ntu|t|ve|y appea"ng pictures provided by phase-
tion that breaks down close to the crossover to the Motkpace representatiof36]. For the problem at hand, which is
regime, where a single probability amplitude becomes domiamenable as we have seen to an angular momentum repre-

nant. It also suffers a breakdown for large attractive interacsentation, a natural choice is the quasiprobability density on
tions when the ground state is dominated by the two stateghe Bloch spher€(, 6),

m==+1.

Introducing the dimensionless variables Qle,0) = [(he, ), (23

m where the angular Bloch states are given8Y]

x=—, 7=JAEt (17)
J 2
—_ st m —m
and the dimensionless “energy ratio” 0.6) = EJ <m+J)S|rr’ (612)cos™™(6/2)
G(r) = 29 (18) xexg—i(J+m)e]|J,m). (24)
AE’

This representation allows one to follow the quantum dy-
the time-dependent Schrodinger equation results finally in @amics as the flow of a continuous function on a Bloch
one-dimensional Schrédinger equation in tgeasicontinu-  sphere.
ous variablex,

_9C(X,7) 1 &cx,7) lIl. RESULTS
! =- 2 + Veff(x)c(xv T)l (19) . .
aT 2Megt X With this formal development at hand, we now turn to a

discussion of the main results of our numerical study. To set

the stage, it is useful to first consider the expansion of the
P N? eigenstates$p,) of the Hamiltonian(1) in terms of the basis

Meft = 5 g (20) stategJ, m) [see Eq(14)]. Figure 1 shows the corresponding

probability amplitudes;?n for the ground state=0 of H for
G=-2, 0, 10, together with the corresponding effective po-

where the effective madd is

and the effective potentiaV.4(x) is given by the quartic-

quadratic form tentialsVq4(x). As the two-body interaction becomes increas-
2 x4 ingly attractive Vo undergoes a transition from being a
Ver(X) =[G + 1]5 iy (21)  single to a double-well potential. This transition is analogous

to the Landau-Ginzburg phase transition familiar from mag-
where we without loss of any generality have dropped a connetism, laser theory, and other areas of statistical physics. As
stant term. The quantum dynamics of the Hamilton{@h a result, the projection of the ground state on the magnetic
can thus equivalently be analyzed using one-dimensionajuantum numbersn (or equivalently the population differ-
wave-packet dynamics in a polynomial potential. In this pic-encen_ —ng) can be either squeezed or split into a double-
ture the momentum states correspond to the relative phageeaked distribution. Specifically, for large repulsive interac-
stateg34]. For repulsive interaction& >0, the low-energy tions the ground state is highly squeeZ&2] in relative
eigenstates are approximately harmonic oscillator eigenfungaumber, becoming approximately a Fock state @ N2,
tions, as discussed in R¢f.2]. For attractive interactions, on This is the double-well analog of the Mott-insulator state
the other hand, the effective potential changes from having £8,9,39 in a periodic lattice. The number squeezing de-

043603-3



M. JAASKELAINEN AND P. MEYSTRE

PHYSICAL REVIEW A71, 043603(2005

X
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0.25} . JUPTLEEED — 15
0 A : G < 0 FIG. 1. Probability amplitudes?, for the
b) '\ ground state of the exact Hamiltoni&®) (solid
o 050 ' . J410 lines), and effective potentialVg4(x) (dashed
Ch \ K Veﬁ(x) lines), G= (a) —2.5, (b) 0, and(c) 10. The distri-
0.251 N S 15 bution of exact ground-state probability ampli-
. VX tudes is consistent with what could be expected
0 ' N 0 for the effective potential.
a) vk
0.50f ' ' 10
1 1
1) !
0.25} e 15
1} L
0 -75 50 -25 0 25 50 75 0
m

creases for weaker interactions and in the vicinity of theby shifted Gaussians when the interwell tunneling enéfy
noninteracting limit the ground state is essentially a cohereris much smaller than their frequencies, which are also of
state in the relative number distribution with uncertainty orderfw [40]. If these two conditions are met, it is easy to
Am=N. This is essentially a superfluid state. As the inter-modify the energy rati@ in a time 1w <T<#%/AE, #/gN
action becomes attractive the distribution of magnetic quansuch that the change is adiabatic with respect to the double

tum states further broadens un@k=-1, at which point the well, but practically instantaneous as far as the many-body
quadratic term in the effective potential goes to zero and thglynamics is concerned.

distribution splits. For large attractive interactions the ground
state is essentially a macroscopic superposit®ehrodinger n

catstate of two states corresponding to all atoms being in
either one well or the other. 150| a)
Figure 2 shows a gray-scale rendition of the projections 100
cp, of all eigenstate$p,) of H on the magnetic eigenstates 50
The darker the shade of gray, the larggr The ground-state oL
projections of Fig. 1 correspond to the horizontal lime0, 150 b) Z
showing again the transition from a squeezed to a double- 100
peaked distribution as the interaction becomes increasingly
attractive. Note the symmetry between the cases of repulsive 50 '
and attractive interactions, in the sense that the probability 0— =
amplitudes for eigenstates of high and low quantum numbers 150
n are interchanged under a change of signGofFor large 100!
attractive interactions the central part of the double-well po- 50
tential can be described to a good approximation by a para- 0— _
bolic barrier. Such a potential exhibits scattering resonances d
that are turned into stationary states by imposing box quan- 150 )
tization conditions. It follows that some of the excited states 100
are localized near the top of the barrj@9]. 50
In contrast to Ref[5], which considers approximately 0
adiabatic changes in the potential double-well potential as a 150 e)
means to prepare specific states of the matter-wave field, we 100
now analyze the response of the atoms to sudden changes in 50
V.
The time scale over which the Hamiltonian changes can- 0 _75-50-25 0 25 50 75

not be arbitrarily short since the system has to be adiabatic
with respect to the external mode functions of the confining

potential. It is knowr{16] that the two-mode approximation  F|G. 2. Probability density for all eigenstates versus magnetic
is valid provided that the interaction enerdyg remains  qguantum numbem for G= (a) —10, (b) —2, (c) 0, (d) 2, and(e) 10.
small compared to the energy separatiom between trap  The lower part of the spectrum is well described by the stationary
levels. In addition, the spatial mode functions of particlessolutions for the effective potential, Eq(21). Units are
localized on each side of the double well are well describediimensionless.

m
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FIG. 3. Probability amplitudes,, as function
of the dimensionless time for Ggy,=10 and for
Gin= (a) 100, (b) 2000, and(c) 40 000.

The specific example that we consider is the sudden trarlarger “momentum” components associated with a narrower
sition for a squeezed state in the Mott regime wakG,,  initial wave functionc(x, 7=0) allow the atoms to probe re-
>0 to a new static potential wittb=Ggy, that corresponds gions of V(x) where its anharmonicity becomes more no-
to a superfluid ground state, both for repulsive and for attracticeable, as shown in Figs(I3 and 3c).
tive interactions. In terms of the effective potental) this This behavior is reflected in the fringe visibilit{11),
corresponds to taking a squeezed initial state and suddenwhich is illustrated in Fig. 4 in both the long- and short-time

widening the potential, and for attractive interaction, intro-limits. As expected for a system with an anharmonic spec-
ducing a central barrier. trum, V exhibits a sequence of collapses and revivals. Figure

5 further shows the short-time oscillations of the visibility as
a function of the final energy ratiGg,,. Larger interaction
A. Dynamics for Gg,n>0 strengths are seen to result in slower oscillations and slower
) ) o ) damping. This is further illustrated in Fig. 6, which shows
_Consider first the case of repulsive interactioBg,,>0.  the oscillation period as a function of the final tunneling
Figure 3 shows the dynamics of an initially squeezed state asnergy AE for several values of the two-body interaction
a function of time for three different values &,. The low-  energyg. This period is seen to approach the tunneling time
est value ofG;,, shown in Fig. 8a), results in the harmonic asg—0, in qualitative agreement with the experimental re-
breathing of the amplitudes,, aroundx=0 (or m=0). In-  sults of Ref.[41]. The expectation value of any operator
creasing the strength of the interaction, and thus increasingonsists of both a time-dependent part and a static part, the
the initial squeezing, alters the dynamics markedly. Thdatter consisting of terms diagonal in the energy eigenstates

FIG. 4. Visibility V as a function of the di-
mensionless time. (a) shows the long-time col-
lapses and revivals of, while the short-time be-
havior is shown in more detail itb). The dashed
line shows the background visibility},4 calcu-
lated from Eq.(25).

0 2 4 6 8 10 12
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FIG. 5. Visibility V as a function of the di-
mensionless time and the final energy ratiGgyy,
for N=200.

0.4

as well as contributions from matrix elements from energy-doss of generality since they describe a transformation be-
degenerate states. The static part of the visibility, which igsween real functions. In principle E€R5) contains contribu-
seen as the background value in Fig. 4, is approached as ttiens from all combinations in the expectation value that are

oscillations collapse after some time. Using Etl) together
with Egs. (7) and (8), the background contribution to the
visibility is found to be

Nmax

V= — D,(0)|?
bg 2Jn§0| n()|

J
x| 2 chemaV@+m=1)J-m+2)

m=-J+1
J-1
+ 2 cpemV@-m-1)@+m+2) |,

m=-J

(25)

nonoscillatory. Figure @) illustrates the excellent agreement
between this expression and the full dynamical results.
In the continuum limit Eq(25) reduces to

nmax

l p—
Vog= 2 Idn(O)IZJ |Ca(X)[?V1 — x2dx,
n=0 1

(26)

where the cutofh,,,, corresponds to the quantum number of
the highest occupied eigenstate. We see from(#g), which
is a sum of positive terms, that only those eigenfunctions that
are sufficiently well localized around=0 contribute appre-
ciably to Vy,g.

This sensitivity of the background visibility to the initial
state of the atomic sample is illustrated in Fig. 7, which

where the coefficients], have been taken to be real without showsV, as a function of5;, for several values o, and

x 10

osc

FIG. 6. Period of oscillations d¥, in arbitrary
units, as a function of the final tunneling energy
AE (arbitrary unit$ for several values of the two-
body interaction energy.
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a result of the twisting induced by two-body collisions. Spe-
cifically, the effect of the collisions is to twi€(¢, 6) around

the polar axis, counterclockwise in the northern hemisphere
| and clockwise in the southern hemisphe@, 6) finally
Sffzzs====- returns close to its initial state in Fig(®. The dynamics

occurs faster than would be expected from tunneling alone as
the interaction makes the flow Gf(¢, 6) take a shortcut that

o5t AN\ T avoids the polar region of the Bloch sphere. This explains
intuitively the more rapid period of oscillations of the vis-
ibility of Fig. 6 with increasingg.

0.25 B. Dynamics for G<0

We now turn for completeness to a brief discussion of the
atomic dynamics in the regime of attractive two-body inter-
actions,Ggyy,<0.

10 10 10 G 10 10 Figure 9 shows the evolution of the probability ampli-
in tudescy(7) for three values 0fGyy,<0. For the casda)

FIG. 7. Background visibility for particle numbefé=200 and of WeaI; attractive mtgr.actlons th.e atomlq Stat@
201 for several values of final energy rat,,. The final contrast =2n(-1) c(m,t)|J-, m) EXh_'b'tS a breathlng_ beha"'?*- We also
decreases for increasir@yy, observe that an increasingly attractive interaction does not
force all particles into one or the other potential well. Rather,
for N=200 and 201 particles. The quantitative difference bethe dynamics results in a symmetric distribution with on av-
tween odd and even particle numbers, which was alreadgrage(a;a )=(aL3z)=N/2 atoms in each potential well, far
present in the adiabatic regim®], results from the two-well from the ground state of the system.
analog of the situation in optical lattices, where integer fill-  The range of magnetic moments(or x) covered by the
ing results in a Mott-insulator transition whereas half-integeratomic state first increases with the interaction strength, as
filling does not. The dependence \gf; on the initial state of illustrated in Fig. b). This trend persists until alh quan-
the atomic field observed in the regime of la@g., can be  tum numbers are encompassed, but further incred€ing|
exploited to determine its degree of squeezing, and in pampast this point prevents the system from reachng+J
ticular to determine the maximal squeezing reached in athrough the presence of early reflections. The fact that this
experiment of the type of Ref4]. behavior cannot be understood in terms of the effective po-
To gain further insight into into the dynamics of the sys-tential V. is an indication of the breakdown of the continu-
tem, we now turn to the phase-space represent&ian 6). ous approximation, which permits larger momentum changes
Figure 8 shows the quasiprobability distributi€(¢,6),  than allowed by the discrete original system. In this sense,
plotted on the Bloch sphere at four equidistant times. Fronthis situation is the reverse from the familiar problem where
the Hamiltonian(9), the initial distribution is rotated around a discretized model cannot faithfully reproduce all features

the J, axis by quantum tunneling, as is already apparent ifPf ItS continuous counterpart.

=0,1,2,5,10, 20, 40
lyn

Fig. 8b). In addition it is rapidly deformefsee Fig. &)] as Thi.s _behavior can, _however, be in_tuitively_.unde_rstpod. by
examining the dynamics of the quasiprobability distribution
a) - b) - Q(e,0), as illustrated in Figs. 10 and 11. For sufficiently

/./ \ // \ weak attractive interaction, the distributid®(¢, 6) rotates

nearly rigidly in time around the directiod,, with some
slight distortion near its tips due to the twisting flow. For a
strongly squeezed initial state, which corresponds to an ini-
tial distribution covering a large fraction of the equatorial
region, this rotation leads after some time to the occupation
of states up tan=+J.

The situation is markedly different 46y, is increased:
in this case, the twisting action of the two-body interactions
becomes dominant, and in terms of the Bloch-sphere distri-
bution the flow ofQ(¢, 6) results in its wrapping around the
pole but never reaching it, as seen in Fig. 11. Note also the
destructive interferences @(¢, 6) resulting from the super-
position of distinct phase-space trajectories.

FIG. 8. Snapshots oQ(¢,6) at the dimensionless times IV. CONCLUSION
=[0,0.25,0.5,0.7b for Ggy,=10. The initial state is the highly
squeezed ground-state distribution Wit =8000. The orientation In this paper, we have analyzed the dynamics of a Bose-
of the Cartesian coordinate system is shown for reference. Einstein condensate of interacting atoms trapped in a double-
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80

4 ‘ 2 -
@ ~ " ——

m o | —- ity ampli
0 FIG. 9. Probability amplitudex,(7) as a

_40 — — function of the dimensionless timefor G;,=10
andGgyyn<<0: Ggy= (8) —1, (b) —2, and(c) —10.

well potential whose characteristics are changed suddenly. Isuperfluid regime. With the present results at hand, the next
addition to its intrinsic interest, this study is motivated by step toward a full understanding of this remarkable feature
ongoing attempts to develop sub-shot-noise atom interferomwill be to add a position-dependent potential, such as, e.g., a
etry based on the use of nonclassical states of the mattegravitational potential that breaks the symmetry of the
wave field. Double-well and lattice potentials offer an attrac-double well(or the lattice and leads to the observed contrast
tive way to achieve a significant number squeezing of theesonance. It is hoped that when extended to that situation,
atomic state. Following such a state preparation, Tuchmathe wave-packet and phase-space analysis developed in the
and Kasevich[42,43 have observed a sharp feature, a so-present paper will lead to a detailed understanding of this
called “contrast resonance,” in the detection of weak pertursystem and allow a quantitative assessment of its use in sub-
bations when the potential was suddenly switched to thehot-noise matter-wave interferometry.

FIG. 10. Four snapshots 6)(¢, 6) taken at equidistant dimen- FIG. 11. Four snapshots @¥(¢, 6) taken at equidistant dimen-
sionless timeg=2.5, 5.0, 7.5, 10. Her&y,,=—1. As in Fig. 8, the  sionless timeg=0.5, 1.0, 1.5, 2.0. Her€yy,,=—10. In comparison
effects of nonlinearity are evident in the twisting motion of the with the dynamics in Fig. 10, the dynamics is seen to be markedly

distribution, although the oscillatory motion is now slowed down different as the trajectories here wrap around the north pole instead.
rather than accelerated. Same initial state as in Fig. 9. Same initial state as in Fig. 9.
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