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We study the dynamics of Bose-Einstein condensates in symmetric double-well potentials following a
sudden change of the potential from the Mott-insulator to the superfluid regime. We introduce a continuum
approximation that maps that problem onto the wave-packet dynamics of a particle in an anharmonic effective
potential. For repulsive two-body interactions the visibility of interference fringes that result from the super-
position of the two condensates following a stage of ballistic expansion exhibits a collapse of coherent
oscillations onto a background value whose magnitude depends on the amount of squeezing of the initial state.
Strong attractive interactions are found to stabilize the relative number dynamics. We visualize the dynamics of
the system in phase space using a quasiprobability distribution that allows for an intuitive interpretation of the
various types of dynamics.
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I. INTRODUCTION

Atom opticsf1g and the physics of ultracold matter waves
have witnessed rapid progress in recent years, due in large
part to the experimental achievement of Bose-Einstein con-
densationf2g. In particular, there has been much recent in-
terest in ultracold atoms in optical lattices, partly because of
prospects for quantum computationf3g, but also because of
the possibility to study fundamental many-body physics in
model systems with highly controllable parameters. In an
application more closely related to quantum optics, the first
experimental realization of a number-squeezed state of the
matter-wave field was performed using an optical latticef4g,
with the concomitant promise of increased accuracy in inter-
ferometry f5,6g. The saturation in the amount of squeezing
observed at high lattice depths in these experiments was re-
cently explained by the nonadiabaticity of the splittingf7g.
Finally, we mention the transition between a Mott-insulating
and a superfluid state predicted in Refs.f8,9g and experimen-
tally realized by Greiner and co-workersf10g.

A two-well system is the simplest many-body lattice
model that exhibits the effects of the competition between
two-body interactions and quantum tunneling. This makes it
a good candidate for understanding and visualizing the basic
physics behind the more complex behavior of many-well
systems. Many of the static and dynamical properties of con-
densates in two-well potentials, such as squeezingf11,12g
and the self-trapping of Josephson oscillationsf13,14g have
been studied. The collapse and revival dynamicsf15g of
atomic two-mode systems was discussed by Milburnet al.
f16g, and its extension to optical lattices was studied in Ref.
f17g. It was recently suggested as a means to carry out
Heisenberg-limited calibration of interferometersf18g.
Kalosakas and co-workers have studied the stationary states
f19g and have given perturbative estimatesf20g of the clas-
sical oscillation period and revival time of the so-called
boson-Hubbard dimer, or discrete nonlinear Schrödinger
dimer, in the weak tunneling limit.

The goal of the present paper is to study the dynamics of
ultracold bosonic atomic vapors in time-dependent double-
well potentials. Two limiting cases are of particular interest,

the adiabatic limit and the sudden limit. In the first case,
atoms initially in the many-body ground state of the double-
well potential adiabatically follow the instantaneous ground
state. This regime is of particular interest for the preparation
of specific many-body statesf4,5g. On the other hand, rapid
perturbations of a system initially in its ground state induce
nontrivial dynamics that can be used as a probe the proper-
ties of the system. For example, certain aspects of the dy-
namics following the change of the potential depth from a
regime where the ground state is superfluid to the Mott-
insulator regime and back were recently investigated in Ref.
f21g, and Ref.f22g studied the nonadiabatic loading of a
condensate into an optical lattice and the resulting excitation
of collective modes, as experimentally realized in Ref.f23g.
Also noteworthy is Ref.f24g, which described the evolution
of the phase coherence after the atomic system, initially pre-
pared in a Mott-insulating state, was allowed to evolve after
a sudden change in parameters placed it in a regime with a
superfluid ground state, using in particular a stochastic
Gross-Pitaevskii approach. The behavior around the transi-
tion was further studied in Ref.f25g, which predicts macro-
scopic oscillations of the order parameter between the super-
fluid and Mott phases. Finally, Ref.f26g compared the exact
quantum dynamics for few atoms with Hartree-Fock-type ap-
proximations for the case of nonadiabatic loading of a con-
densate into a lattice. We note that much of the past work has
concentrated on the case of repulsive interactions, partly be-
cause for negative scattering lengths the stabilization of the
condensate relies on the trap potential counteracting the col-
lapse brought about by the attractive interactionf27,28g. This
can only be achieved for small condensates, the critical num-
ber of atoms depending on the trap geometryf29g and being
largest for pancake shapes. The condensate sizes achievable
in double-well traps with well-separated minima have been
shown to be essentially identical to those for single-well
trapsf30g.

With these previous results in mind, the goal of the
present paper is to study the dynamics of Bose-Einstein con-
densates following sudden changes in the double-well poten-
tials in which they are trapped. Our analysis relies largely on
numerical wave-packet dynamics simulations and makes ex-
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tensive use of a Bloch-sphere quasiprobability representation
to achieve a simple geometrical interpretation of our results.
As such, this study complements our previous paperf5g,
which concentrates on approximately adiabatic changes of
the system parameters.

The paper is organized as follows. Section II discusses
our model and establishes the notation. We introduce an ap-
proximate mapping of the problem onto an effective one-
dimensional Schrödinger equation with a quartic effective
potential that can be analyzed by the techniques of wave-
packet dynamics. Section III presents explicit numerical re-
sults of this analysis, and interprets them both in the wave-
packet picture and in a phase-space representation on a
Bloch sphere. Finally, Sec. IV is a summary and outlook.

II. MODEL

In the two-mode approximation, the Hamiltonian of a
Bose-Einstein condensate in a double-well trap can be writ-
ten asf5g

Ĥ =
DEstd

2
fâL

†âR + âR
†âLg + gstdfâL

†2âL
2 + âR

†2âR
2g, s1d

whereâLsRd are annihilation operators for particles in the left
srightd well, and we have introduced the tunneling energy
DEstd and two-body interaction energygstd, both of which
can be externally controlled and are therefore taken to be
functions of time. This two-mode problem is conveniently
reexpressed in the Schwinger angular momentum represen-
tation of bosonic operatorsf16,31g. Introducing the angular
momentum operators

Ĵz =
1

2
sâL

†âL − âR
†âRd, s2d

Ĵ+ = âL
†âR, s3d

Ĵ− = âR
†âL, s4d

whereĴz is the projection onto a fictitious quantization axis,

and the operatorsĴ± are raising and lowering operators along
this axis, we can express the state of the matter-wave field in

terms of eigenstatesuJ,ml of the operatorsĴ2 and Ĵz, where

Ĵ2 = Ĵx
2 + Ĵy

2 + Ĵz
2, s5d

with

Ĵ2uJ,ml = "2JsJ + 1duJ,ml,

ĴzuJ,ml = "muJ,ml =
1

2
snL − nRduJ,ml, s6d

J=N/2, m=−J,−J+1,… ,J, and

Ĵ+uJ,ml = ÎsJ + m+ 1dsJ − mduJ,m+ 1l, s7d

Ĵ−uJ,ml = ÎsJ − m+ 1dsJ + mduJ,m− 1l. s8d

In the angular momentum representation the Hamiltonian
s1d reads, apart from a constant function of the total angular
momentum eigenvalueJ=N/2,

Ĥ = 2gstdĴz
2 + DEstdĴx, s9d

where

Ĵx =
1

2
sĴ+ + Ĵ−d. s10d

The Hamiltonians9d is the single-axis twisting Hamiltonian
familiar from the theory of spin squeezingf32g. We also

recall that in the context of atom optics the operatorĴx plays
a central role: assuming that the spatial mode functions of
the double well are identical and symmetricf5g its expecta-
tion value gives the visibility of interference fringes for a
condensate released from the trapf5g as

V =
kG1s0,t,0dl − kG1s0,t,pdl
kG1s0,t,0dl + kG1s0,t,pdl

=
ukĴxlu

J
, s11d

wherekG1sx,t ,udl is the density of atoms at a spatial loca-
tion for a double-well condensate with a relative average
phaseu between the halves. For these reasons, the Schwinger
angular momentum representation is particularly appropriate
to discuss the problem at hand.

We proceed by expanding the stateucl of the condensate
on theuJ,ml basis as

ucl = o
m=−J

J

s− 1dmcsm,tduJ,ml, s12d

where the phase factorss−1dm are introduced for conve-
nience, motivated by the analytical form of the eigenstates
known for few particlesf33g. Alternatively, ucl can be ex-
panded in the eigenfunctionsuwnstdl of the time-dependent
HamiltonianHstd as

ucl = o
n=0

N

Dnstduwnstdl, s13d

the eigenfunctionsuwnstdl being in turn expanded in terms of
the statesuJ,ml as

uwnstdl = o
m=−J

J

cm
n stduJ,ml. s14d

If the time evolution of the Hamiltonian is sufficiently slow,
the dynamics of the condensate follows its change adiabati-
cally f5g, the amplitudesDnstd having then constant magni-
tudes. In the present work we consider the other extreme of
sudden change in the Hamiltonian.

To gain further insight into both the stationary states and
the dynamics of the condensate under the Hamiltonians9d,
we proceed in a manner similar to the approach of Ref.f12g,
assuming that for large enough particle numbers the coeffi-
cientscsm,td can be treated as continuous functions of the
magnetic quantum numberm. This leads as we shall see to a
formulation of the problem in terms of wave-packet dynam-
ics, an approach that been exploited both in configuration
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spacef35g and in phase spacef36g and has witnessed much
success due in part to its intuitive appeal.

Assuming that the functioncsm,td is sufficiently smooth,
we expand it around an arbitrary pointm as

csm± 1,td = Scsm,td ±
]csm,td

]m
+

1

2

]2csm,td
]m2 D . s15d

This approximation is expected to hold provided that the
number of atoms is not too small. Inserting Eq.s15d into the
Hamiltonians9d and expanding the matrix elementss7d and

s8d of the operatorsĴ± in powers ofm/J, we arrive at

kmuĤucl = H− DESJ +
1

2
D ]2csm,td

]m2 + F− DESJ +
1

2
D

+ S2g −
DE

2J
Dm2 +

1

8J3m4Gcsm,tdJ . s16d

The continuum approximation implicitly assumes that the
number of nonzero amplitudes is not small, an approxima-
tion that breaks down close to the crossover to the Mott
regime, where a single probability amplitude becomes domi-
nant. It also suffers a breakdown for large attractive interac-
tions when the ground state is dominated by the two states
m= ±1.

Introducing the dimensionless variables

x ;
m

J
, t ; JDEt s17d

and the dimensionless “energy ratio”

Gstd ;
4Jg

DE
, s18d

the time-dependent Schrödinger equation results finally in a
one-dimensional Schrödinger equation in thesquasicontinu-
ousd variablex,

i
]csx,td

]t
= −

1

2Meff

]2csx,td
]x2 + Veffsxdcsx,td, s19d

where the effective massMeff is

Meff =
J2

2
=

N2

8
s20d

and the effective potentialVeffsxd is given by the quartic-
quadratic form

Veffsxd = fG + 1g
x2

2
+

x4

8
, s21d

where we without loss of any generality have dropped a con-
stant term. The quantum dynamics of the Hamiltonians9d
can thus equivalently be analyzed using one-dimensional
wave-packet dynamics in a polynomial potential. In this pic-
ture the momentum states correspond to the relative phase
statesf34g. For repulsive interactionsG.0, the low-energy
eigenstates are approximately harmonic oscillator eigenfunc-
tions, as discussed in Ref.f12g. For attractive interactions, on
the other hand, the effective potential changes from having a

single minimum atx=0 for G.−1 to exhibiting a double
well for G,−1.

For the dynamics we consider specifically the situation
where the energy ratioG is suddenly switched from some
initial value to a new valueGst.0d;G at t=0, correspond-
ing to a new time-independent effective potentialVeffsxd with
eigenstates and eigenenergiesCnsxd andEn, respectively. In
complete analogy with one-dimensional, single-particle
quantum mechanics, the dynamics of the “wave function”
csx,td is then given by

csx,td = o
n=0

N

dns0dexps− iEntdCnsxd, s22d

wheredns0d are the projections ofcsx,t=0d onto the eigen-
functionsCnsxd. Apart from the factors−1dm, the stationary
states of the two-mode condensate are thus approximated by
the eigenstates ofVeff.

The wave-packet dynamics are conveniently described us-
ing the intuitively appealing pictures provided by phase-
space representationsf36g. For the problem at hand, which is
amenable as we have seen to an angular momentum repre-
sentation, a natural choice is the quasiprobability density on
the Bloch sphereQsw ,ud,

Qsw,ud = zkcuw,ulz2, s23d

where the angular Bloch states are given byf37g

uw,ul = o
m=−J

J ÎS 2J

m+ J
DsinJ+msu/2dcosJ−msu/2d

3expf− isJ + mdwguJ,ml. s24d

This representation allows one to follow the quantum dy-
namics as the flow of a continuous function on a Bloch
sphere.

III. RESULTS

With this formal development at hand, we now turn to a
discussion of the main results of our numerical study. To set
the stage, it is useful to first consider the expansion of the
eigenstatesuwnl of the Hamiltonians1d in terms of the basis
statesuJ,ml fsee Eq.s14dg. Figure 1 shows the corresponding

probability amplitudescm
0 for the ground staten=0 of Ĥ for

G=−2, 0, 10, together with the corresponding effective po-
tentialsVeffsxd. As the two-body interaction becomes increas-
ingly attractive Veff undergoes a transition from being a
single to a double-well potential. This transition is analogous
to the Landau-Ginzburg phase transition familiar from mag-
netism, laser theory, and other areas of statistical physics. As
a result, the projection of the ground state on the magnetic
quantum numbersm sor equivalently the population differ-
encenL−nRd can be either squeezed or split into a double-
peaked distribution. Specifically, for large repulsive interac-
tions the ground state is highly squeezedf32g in relative
number, becoming approximately a Fock state forG.N2.
This is the double-well analog of the Mott-insulator state
f8,9,38g in a periodic lattice. The number squeezing de-
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creases for weaker interactions and in the vicinity of the
noninteracting limit the ground state is essentially a coherent
state in the relative number distribution with uncertainty
Dm<ÎN. This is essentially a superfluid state. As the inter-
action becomes attractive the distribution of magnetic quan-
tum states further broadens untilG=−1, at which point the
quadratic term in the effective potential goes to zero and the
distribution splits. For large attractive interactions the ground
state is essentially a macroscopic superpositionsSchrödinger
catstated of two states corresponding to all atoms being in
either one well or the other.

Figure 2 shows a gray-scale rendition of the projections
cm

n of all eigenstatesuwnl of H on the magnetic eigenstatesm.
The darker the shade of gray, the largercm

n . The ground-state
projections of Fig. 1 correspond to the horizontal linen=0,
showing again the transition from a squeezed to a double-
peaked distribution as the interaction becomes increasingly
attractive. Note the symmetry between the cases of repulsive
and attractive interactions, in the sense that the probability
amplitudes for eigenstates of high and low quantum numbers
n are interchanged under a change of sign ofG. For large
attractive interactions the central part of the double-well po-
tential can be described to a good approximation by a para-
bolic barrier. Such a potential exhibits scattering resonances
that are turned into stationary states by imposing box quan-
tization conditions. It follows that some of the excited states
are localized near the top of the barrierf39g.

In contrast to Ref.f5g, which considers approximately
adiabatic changes in the potential double-well potential as a
means to prepare specific states of the matter-wave field, we
now analyze the response of the atoms to sudden changes in
Veff.

The time scale over which the Hamiltonian changes can-
not be arbitrarily short since the system has to be adiabatic
with respect to the external mode functions of the confining
potential. It is knownf16g that the two-mode approximation
is valid provided that the interaction energyNg remains
small compared to the energy separation"v between trap
levels. In addition, the spatial mode functions of particles
localized on each side of the double well are well described

by shifted Gaussians when the interwell tunneling energyDE
is much smaller than their frequencies, which are also of
order"v f40g. If these two conditions are met, it is easy to
modify the energy ratioG in a time 1/v!T!" /DE, " /gN
such that the change is adiabatic with respect to the double
well, but practically instantaneous as far as the many-body
dynamics is concerned.

FIG. 1. Probability amplitudescm
0 for the

ground state of the exact Hamiltonians9d ssolid
linesd, and effective potentialVeffsxd sdashed
linesd, G= sad 22.5, sbd 0, andscd 10. The distri-
bution of exact ground-state probability ampli-
tudes is consistent with what could be expected
for the effective potential.

FIG. 2. Probability density for all eigenstates versus magnetic
quantum numberm for G= sad 210, sbd 22, scd 0, sdd 2, andsed 10.
The lower part of the spectrum is well described by the stationary
solutions for the effective potential, Eq.s21d. Units are
dimensionless.
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The specific example that we consider is the sudden tran-
sition for a squeezed state in the Mott regime withG=Gin
@0 to a new static potential withG=Gdyn that corresponds
to a superfluid ground state, both for repulsive and for attrac-
tive interactions. In terms of the effective potentials21d this
corresponds to taking a squeezed initial state and suddenly
widening the potential, and for attractive interaction, intro-
ducing a central barrier.

A. Dynamics for Gdyn.0

Consider first the case of repulsive interactions,Gdyn.0.
Figure 3 shows the dynamics of an initially squeezed state as
a function of time for three different values ofGin. The low-
est value ofGin, shown in Fig. 3sad, results in the harmonic
breathing of the amplitudescm aroundx=0 sor m=0d. In-
creasing the strength of the interaction, and thus increasing
the initial squeezing, alters the dynamics markedly. The

larger “momentum” components associated with a narrower
initial wave functioncsx,t=0d allow the atoms to probe re-
gions of Veffsxd where its anharmonicity becomes more no-
ticeable, as shown in Figs. 3sbd and 3scd.

This behavior is reflected in the fringe visibilitys11d,
which is illustrated in Fig. 4 in both the long- and short-time
limits. As expected for a system with an anharmonic spec-
trum, V exhibits a sequence of collapses and revivals. Figure
5 further shows the short-time oscillations of the visibility as
a function of the final energy ratioGdyn. Larger interaction
strengths are seen to result in slower oscillations and slower
damping. This is further illustrated in Fig. 6, which shows
the oscillation period as a function of the final tunneling
energy DE for several values of the two-body interaction
energyg. This period is seen to approach the tunneling time
asg→0, in qualitative agreement with the experimental re-
sults of Ref. f41g. The expectation value of any operator
consists of both a time-dependent part and a static part, the
latter consisting of terms diagonal in the energy eigenstates

FIG. 3. Probability amplitudescm as function
of the dimensionless timet for Gdyn=10 and for
Gin= sad 100, sbd 2000, andscd 40 000.

FIG. 4. Visibility V as a function of the di-
mensionless timet. sad shows the long-time col-
lapses and revivals ofV, while the short-time be-
havior is shown in more detail insbd. The dashed
line shows the background visibilityVbg calcu-
lated from Eq.s25d.
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as well as contributions from matrix elements from energy-
degenerate states. The static part of the visibility, which is
seen as the background value in Fig. 4, is approached as the
oscillations collapse after some time. Using Eq.s11d together
with Eqs. s7d and s8d, the background contribution to the
visibility is found to be

Vbg =
1

2J
o
n=0

nmax

uDns0du2

3 F o
m=−J+1

J

cm
n cm−1

n ÎsJ + m− 1dsJ − m+ 2d

+ o
m=−J

J−1

cm
n cm+1

n ÎsJ − m− 1dsJ + m+ 2dG , s25d

where the coefficientscm
n have been taken to be real without

loss of generality since they describe a transformation be-
tween real functions. In principle Eq.s25d contains contribu-
tions from all combinations in the expectation value that are
nonoscillatory. Figure 4sbd illustrates the excellent agreement
between this expression and the full dynamical results.

In the continuum limit Eq.s25d reduces to

Vbg < o
n=0

nmax

udns0du2E
−1

1

uCnsxdu2Î1 − x2dx, s26d

where the cutoffnmax corresponds to the quantum number of
the highest occupied eigenstate. We see from Eq.s26d, which
is a sum of positive terms, that only those eigenfunctions that
are sufficiently well localized aroundx=0 contribute appre-
ciably to Vbg.

This sensitivity of the background visibility to the initial
state of the atomic sample is illustrated in Fig. 7, which
showsVbg as a function ofGin for several values ofGdyn, and

FIG. 5. Visibility V as a function of the di-
mensionless timet and the final energy ratioGdyn

for N=200.

FIG. 6. Period of oscillations ofV, in arbitrary
units, as a function of the final tunneling energy
DE sarbitrary unitsd for several values of the two-
body interaction energyg.
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for N=200 and 201 particles. The quantitative difference be-
tween odd and even particle numbers, which was already
present in the adiabatic regimef5g, results from the two-well
analog of the situation in optical lattices, where integer fill-
ing results in a Mott-insulator transition whereas half-integer
filling does not. The dependence ofVbg on the initial state of
the atomic field observed in the regime of largeGmax can be
exploited to determine its degree of squeezing, and in par-
ticular to determine the maximal squeezing reached in an
experiment of the type of Ref.f4g.

To gain further insight into into the dynamics of the sys-
tem, we now turn to the phase-space representationQsw ,ud.
Figure 8 shows the quasiprobability distributionQsw ,ud,
plotted on the Bloch sphere at four equidistant times. From
the Hamiltonians9d, the initial distribution is rotated around

the Ĵx axis by quantum tunneling, as is already apparent in
Fig. 8sbd. In addition it is rapidly deformedfsee Fig. 8scdg as

a result of the twisting induced by two-body collisions. Spe-
cifically, the effect of the collisions is to twistQsw ,ud around
the polar axis, counterclockwise in the northern hemisphere
and clockwise in the southern hemisphere.Qsw ,ud finally
returns close to its initial state in Fig. 8sdd. The dynamics
occurs faster than would be expected from tunneling alone as
the interaction makes the flow ofQsw ,ud take a shortcut that
avoids the polar region of the Bloch sphere. This explains
intuitively the more rapid period of oscillations of the vis-
ibility of Fig. 6 with increasingg.

B. Dynamics for G,0

We now turn for completeness to a brief discussion of the
atomic dynamics in the regime of attractive two-body inter-
actions,Gdyn,0.

Figure 9 shows the evolution of the probability ampli-
tudes cmstd for three values ofGdyn,0. For the casesad
of weak attractive interactions the atomic stateucl
=oms−1dmcsm,tduJ,ml exhibits a breathing behavior. We also
observe that an increasingly attractive interaction does not
force all particles into one or the other potential well. Rather,
the dynamics results in a symmetric distribution with on av-
eragekâL

†âLl=kâR
†âRl=N/2 atoms in each potential well, far

from the ground state of the system.
The range of magnetic momentsm sor xd covered by the

atomic state first increases with the interaction strength, as
illustrated in Fig. 9sbd. This trend persists until allm quan-
tum numbers are encompassed, but further increasinguGdynu
past this point prevents the system from reachingm= ±J
through the presence of early reflections. The fact that this
behavior cannot be understood in terms of the effective po-
tential Veff is an indication of the breakdown of the continu-
ous approximation, which permits larger momentum changes
than allowed by the discrete original system. In this sense,
this situation is the reverse from the familiar problem where
a discretized model cannot faithfully reproduce all features
of its continuous counterpart.

This behavior can, however, be intuitively understood by
examining the dynamics of the quasiprobability distribution
Qsw ,ud, as illustrated in Figs. 10 and 11. For sufficiently
weak attractive interaction, the distributionQsw ,ud rotates

nearly rigidly in time around the directionĴx, with some
slight distortion near its tips due to the twisting flow. For a
strongly squeezed initial state, which corresponds to an ini-
tial distribution covering a large fraction of the equatorial
region, this rotation leads after some time to the occupation
of states up tom= ±J.

The situation is markedly different asuGdynu is increased:
in this case, the twisting action of the two-body interactions
becomes dominant, and in terms of the Bloch-sphere distri-
bution the flow ofQsw ,ud results in its wrapping around the
pole but never reaching it, as seen in Fig. 11. Note also the
destructive interferences inQsw ,ud resulting from the super-
position of distinct phase-space trajectories.

IV. CONCLUSION

In this paper, we have analyzed the dynamics of a Bose-
Einstein condensate of interacting atoms trapped in a double-

FIG. 7. Background visibility for particle numbersN=200 and
201 for several values of final energy ratioGdyn. The final contrast
decreases for increasingGdyn.

FIG. 8. Snapshots ofQsw ,ud at the dimensionless timest
=f0,0.25,0.5,0.75g for Gdyn=10. The initial state is the highly
squeezed ground-state distribution withGin=8000. The orientation
of the Cartesian coordinate system is shown for reference.
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well potential whose characteristics are changed suddenly. In
addition to its intrinsic interest, this study is motivated by
ongoing attempts to develop sub-shot-noise atom interferom-
etry based on the use of nonclassical states of the matter-
wave field. Double-well and lattice potentials offer an attrac-
tive way to achieve a significant number squeezing of the
atomic state. Following such a state preparation, Tuchman
and Kasevichf42,43g have observed a sharp feature, a so-
called “contrast resonance,” in the detection of weak pertur-
bations when the potential was suddenly switched to the

superfluid regime. With the present results at hand, the next
step toward a full understanding of this remarkable feature
will be to add a position-dependent potential, such as, e.g., a
gravitational potential that breaks the symmetry of the
double wellsor the latticed and leads to the observed contrast
resonance. It is hoped that when extended to that situation,
the wave-packet and phase-space analysis developed in the
present paper will lead to a detailed understanding of this
system and allow a quantitative assessment of its use in sub-
shot-noise matter-wave interferometry.

FIG. 9. Probability amplitudescmstd as a
function of the dimensionless timet for Gin=10
andGdyn,0: Gdyn= sad 21, sbd 22, andscd 210.

FIG. 10. Four snapshots ofQsw ,ud taken at equidistant dimen-
sionless timest=2.5, 5.0, 7.5, 10. HereGdyn=−1. As in Fig. 8, the
effects of nonlinearity are evident in the twisting motion of the
distribution, although the oscillatory motion is now slowed down
rather than accelerated. Same initial state as in Fig. 9.

FIG. 11. Four snapshots ofQsw ,ud taken at equidistant dimen-
sionless timest=0.5, 1.0, 1.5, 2.0. HereGdyn=−10. In comparison
with the dynamics in Fig. 10, the dynamics is seen to be markedly
different as the trajectories here wrap around the north pole instead.
Same initial state as in Fig. 9.
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