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Mean-field dynamics of the superfluid-insulator phase transition in a gas of ultracold atoms
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A large-scale dynamical simulation of the superfluid—Mott-insulator transition in a gas of ultracold atoms
placed in an optical lattice is performed using the time-dependent Gutzwiller mean-field approach. This ap-
proximate treatment allows us to take into account most of the details of the recent expéGmeemeret al.,
Nature(London 415 39 (2002] where by changing the depth of the lattice potential an adiabatic transition
from a superfluid to a Mott insulator state has been reported. Our simulations reveal a significant excitation of
the system with a transition to insulator in restricted regions of the trap only.
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I. INTRODUCTION ways question the extent to which the approximations allow

The theoretical suggestidit] of the possibility of realiz- On€ to describe the properties of the systems studied. We
ing one of the standard models for interacting particles—thd0pe to convince the reader that the numerical results are at
Bose-HubbardBH) model[2,3]—in a cold gas placed in an least mutually consistent and thus may provide considerable
optical lattice was followed soon by a seminal experimentnsight into the dynamics of the experiment.

[4]. The reported realization of a quantum phase transition The discussion of the dynamics is postponed to Sec. IlI
between superfluidSP and Mott insulator(MI) phases since we discuss in the next section the static mean-field
showed convincingly that it was possible to control experi-solutions for the ground state for experimental parameters.
mentally the parameters of the model practically at will. ThisHere a comparison with available exact QMC results is pos-
triggered several studies involving Bose condensigie$(]  sible at least. This will give us some confidence about the
as well as, more recently Fermi-Bose mixturgkl-13  applicability of the mean-field approach yielding, at the same
placed on optical lattice@he reference list cannot be com- time, the initial state for the dynamics studied later.

plete bearing in mind that more than 70 papers with “optical

lattice” in the title were listed in the cond-mat archive last
Il. STATIC MEAN FIELD FOR THE BOSE-HUBBARD

year only. MODEL
At the same time a number of group$4-1§ tried to
understand the details of the very first experimpsit to The Bose-Hubbard Hamiltonian describing the system
check the underlying physics. To imagine the difficulty in takes the fornj1]
modeling the experiment let us recall that it involves about
1C° interacting atomgbosons placed in a harmonic trap and __ t L US -
a three-dimensiondBD) lattice potential. Such a system is H= J% R 2 nn =) 2 ;. @

well described by the Bose-Hubbard model with position-
dependent chemical potentifl]. Even finding the ground Wheren;=aa is the occupation number operator at site
state of the system for that number of particles anck65  (With & being the corresponding annihilation bosonic opera-
X 65 lattice sites is a formidable task. State of the art quantor), U the interaction energy the tunneling coefficient, and
tum Monte Carlo(QMC) [14,15,17 calculations aimed at W the energy offset at site % ;, denotes the sum over
the ground-state properties include up toxXlB6x 16 sites in  nearest neighbors. BothandU are functions of the lattice
3D [14]; more sites may be included in on&D) or two-  potential and may be easily expressed in terms of integrals of
(2D) dimensional modelgl5,17. These studies, while inter- the Wannier functions of the lowest energy band for the cold-
esting on their own, can shed little light on tHgnamicsof  atom implementation of the modEl].
the system when its parameters are varied. Except for special Consider first the standard homogeneous situation in
exactly solvable models, the efficient simulation of the time-which all W;’s are equal. The last term in E¢l) becomes
dependent properties of interacting many-body systems regroportional to the(conservegl number of bosons and may
mains an open problem although recently some progress h&e dropped. The only remaining parameter of the model is
been obtained for 1D systeris9-21. the ratio U/J. When tunneling dominates the system, its
It seems, therefore, that the only reasonable and tractabround state is superfluid while in the opposite case it be-
way of analyzing the dynamics of the discussed experimentomes a Mott insulator. The borderline between the two
is using approximate methods. To this end we shall use aphases depends on the chemical potentialrhe Mott insu-
approach based on the time-dependent variational principltor state is incompressible and is characterized by an inte-
with the Gutzwiller ansatz. That will allow us to model the ger mean occupation of sites. In effect starting from the su-
details of the 3D experimef#]. The price for this is similar perfluid at smallU/J and a noninteger ratio oN/M (N
to that paid in other approximate treatments—one may aldenotes the number of atoms whiteis the number of sitgs
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and increasingJ/J the ground state remains superfluid up to n @ |
the highest values obtl/J at fixed boson density. On the 3 k3 ®
other hand the range qf values corresponding to the com- 04E i3
mensurate filling increases with/J. In effect, the separation 03F 08
line between a MI and a SF forms characteristic lobes — °2f o4r
[2:3116- 0.1F 0.2;—

For a detailed discussion of the BH model $2¢16]. As I S r/a I “107/a
we are interested in the mean-field approximation, let us just n ng
quote Zwerge16] saying “In two- and three-dimensional 1F © | 1F @
lattices, the critical value for the transition from a Ml to a SF 08F o8k
is reasonably well described by a mean-field approximation.”  osf osf
In one dimension the mean-field approximation is much 04 04f
worse[16]. o2k o2f

In the presence of an additional potential, e.g., a harmonic b N ST W
trap, local energie%\; depend on the site location. Then the n° 2 4 6 ra n? 2 4 6 8ra
effective chemical potential at each site becomgsu—W.. 15k © | 2F ®
As pointed out already ifl] this will lead for largeU/J to a isk
shell-like structure with MI phases with different integer oc- 1 f
cupations (highest in the middle, assuming an attractive 1t
binding additional potentialseparated by SF regions. This 051 osf
picture has been nicely confirmed in quantum Monte Carlo . . | EL
calculations both in 1015] and in 3D[14]. % 2 4 613 0 2 4 & 8ra

The latter exact results are of particular interest for us
since they allow for a comparison with the mean-field ap- FIG. 1. Mean-field particle density distributidion-site filling
proximation. In[14] a 3D 16X 16X 16 lattice is considered factorg as a function of the distance from the center of the trap
with different values ofU andJ parameters as well as the measured in units of the lattice constantilled circles correspond

harmonic trap. To find the mean-field ground state we minito numerical results, lines are drawn to guide the eye. The param-
mize eters of the BH model match those quoted in Fig. 11ef]; see the

text for numerical values. Comparison with the latter results ob-
(E)=(G|H - uN|G), 2) tained within the “exact” quantum Monte C_arlo simulation reveals
the accuracy of the mean-field approximation.

whereN=Z;n; and|G) is the Gutzwiller trial function that of[14], in particular the tunneling constadiis denoted

M/ ast in [14]. For the purpose of this figure all parameters are
ey =11 (E f2)|n>i>- (3) expressed in units af, i.e., J=1. To make the comparison

i=1 \n=0 with notation used if14] easier, the coefficient in the term

: proportional to the number of atoms at a given site in .
The number of parameter§’ depends on the number of je., the difference of the on-site energy and the chemical
sites(here 16) as well as the maximal occupation at a given potentialu is expressed aﬂ/i—M:—Uo+U/2+KXi2, wherex;
site ny,. The average maximal occupation at the center of thes the position vector of sitewith x? being the square of the
trap is 2 for the data considered [d4]. Therefore, it is  distance of théth site from the center of the harmonic trap
sufficient to takeny,=7. That yields a minimization proce- measured in units of the lattice constant. With such a defini-
dure over 32 768 parameters. Such a number of parameteign the parameters used in Fig. 1 take the following values:
must lead to spurious local minima, unless a very good estita) U=24.0, Uo=-11.08, xk=0.19531; (h) U=32.0, U,
mate exists for the initial set dfﬁl')’s (i.e., the initial |G)). =-28.08,k=0.195 31;(c) U=80.0,U,=-65.0,x=0.976 56;
Fortunately such a guess is quite obvious and is often terme@) U=80.0, Uy,=-90.0, «=1.03062; (a) U=80.0, U,
the local mean-field approximation; namely, at each site =-120.08, k=2.003 75; and(a) U=80.0, Uy,=-150.0, «
one takes a solution fdrﬂ)’s corresponding to the homoge- =1.757 81. A comparison of Fig. 1 with Fig. 1 pt4] indi-
neous BH model with the effective chemical potential cates that, as far as the average occupation at different sites is
=u—W,. ProvidedW, changes smoothly from site to site, concerned, the mean-field solution is in excellent agreement
such an approach should be an excellent approximation tow&ith the quantum Monte Carlo results.
full mean-field solution. And indeed it is; we have found for  Instead of the occupation at different sites one may take a
the data discussed below that the initial and filigl[see Eq. look at the momentum distribution, i.e., a quantity closely
(2)] differ by at most 2%; the number of iterations of stan-related to that measured in experimé¢see[4] and the dis-
dard Numerical Recipesminimization packageg22] is  cussion below The momentum distribution is given h§4]
slightly bigger than the number of parameters. N

The results obtained are presented in Fig. 1 in the same My = |¢(k)|22 ekt r')<aiTaj>’ (4)

form as the corresponding plot ji4] to make the compari- &
son easier. The values of parameters correspond to thoséherek is the wave vector ang(k) the Fourier transform of
taken in[14]. The notation used by us differs slightly from the Wannier site function. The latter yields a broad bell-
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FIG. 2. The rescaled mean-field momentum distributionar- 1 1
bitrary unitg in the first Brillouin zone in thg0,0,1) direction de- 05 ~\ A
rived from Eq.(4) for data presented in Fig. 1. The distributions are oba 1l N O NT .jh I
to be compared with the corresponding “exact” distributions in Fig. 0 5 10 15 20 2 0 5 10 15 20 25
2 of [14]. Observe that the mean-field result differs from the exact Distance from the center of the trap
distribution for the caséd) only—see discussion in the text.

g
S

FIG. 3. Solid lines represent mean-field atom density distribu-
shaped background and merely provides information abouton (on-site filling factorn) as a function of the distance from the
the lattice. The relevant information about the atoms is coneenter of the tragmeasured in units of the lattice constamashed
tained in the Fourier transform Qfﬂap_ In the mean-field lines represent the corresponding variances at different sﬁés 2
approximation this factorizes for differeritj as (afa;) =2((n’)=(m)?. The total number of atoms and the SF facjeg
~(a/)(ay). Such a factorization seems quite drastic and onés_ee text f‘ir each p'Ot_are(a)_ Vzg'fr' N:99_771'75F:0'?5? (b)_
may expect significant differences between the momentu = 13?“ N_99_502’73F_0'f0’(c) V=165, N=95408,y5¢=0.11;
distributions obtained from QMC simulations and within ther) V=22, N=94 172,75¢=0.01. Small indents seen in the lines

. . . . in (c) and(d) are due to anisotropy induced by a cubic lattice in an
mean-fle_ld apprOX|m<'_:1t|on. It is “?a”y_”"t SO, however, forisotropic(h.'slrmonio trap; for further details see text.
bosons in a harmonic trap as visualized in Fig. 2 for the
mean field. That figure should be compared with QMC re- ) _
sults presented in Fig. 2 dfl4]. Observe that differences E)en”:]/ [4]; the corresponding frequency is then dependent
appear only for Fig. @l), the exact results yielding a signifi- ) ) )
cgrﬁ)tly broa):jer mogmentum distribution. Ag discu%seﬁlgm To find the mean-field ground state for differahtalues

almost no SF fraction is present in the QMC result corre-2nd the number of atoms of the order of"ine needs to

sponding to Fig. @). Then the factorization must affect solve a minimization problem over210° parametergwith

strongly the momentum distribution since in a vast majority™=/ @S before which is hardly manageable. One may,
of sites(a)=0. Clearly, however, as long as some SF frac-NOWever, use the symmetry of the probleiubic lattice

tion is present in the system the mean-field momentum dis(_:ombmed with spherically symmetric trafo significantly

tribution closely resembles the exact quantum results. reduce that number. Lat |,k count the sites in tha,y,z

This apparent quite close agreement between QMC reqllrecnons, respectively, with each index taking values from

sults and the mean-field approximation for axl86x 16 —32 tony=32(yielding 65 s_ites in each direct_iturDue o the .
lattice and about Foatoms is very encouraging in view of ground-state symmetry it is enough to consider only the sites

the realistic experimental conditioh4]. Here both the exter- mtzh O?g'rsrjngtkfnts WL"Cht L%dgggsl\ihedTumt:er of w'n'r'] v
nal potential changes less rapidihe size of the lattice is ed parameters to abou - Needless 1o say we have

now 65x 65X 65) and the number of atoms exceeds’;10 checked on the smaller l§16>< 16 problem that the
thus one may expect that the mean-field approximatiorTc.ymmetry-reduced problem yields the same ground state as
works even better the full minimization.

While the test described above has been performed for The results obtained are presented in Fig. 3 and are prac-
some values ofJ, J, as well as the trap frequency, Chosentically indistinguishable from the initial guess, i.e., the wave

(by the authors of14]) to simulate the experiment, we have “%”C“O” gonk:mg f_rrohm tEe I(_)calll rrlear!;‘ileldbapprogl_ma;tlgn
to determine first the relevant range of parameters. Fro Iscussed above. The chemical potengiaias been adjuste

now on we shall measure quantities of the dimension of en-fof each caseto have the average number of atomis

ergy in units of the recoil energy 8fRb atoms for light with ~ =(N)=Zi(n;) around 16. This leads to more than two atoms

a wavelength\ =27/K=852 nm, i.e.,E,=A%K?/2M, where (on averaggper site in the center of the trap. To characterize
M is the mass of’Rb atoms. The depth of the optical lattice Whether the state is closer to being superfluid or Mott insu-
V changes from 0 to 2. Finding Wannier functions for lator we define the superfluid factorse=(1/N)=(a;)a).
different values ofV [23], we evaluate the corresponding This factor is zero for a pure MI statevhen(a;)=0 as each
U(V) andJ(V) values. The energy offset at each sehas node is in a Fock stateand reaches unity for Poissonian
two components in the experimed]. One is the harmonic statistics at each node. While obviously it is not a “proper”
magnetic trap potentigtime independent the other is due order parameter for the phase transition, it seems to be con-
to the Gaussian intensity profiles of the lattice-creating lasevenient for characterizing the states obtained. Using this fac-
beams. The latter may also be approximated by a harmonior we can quantify the states shown in Fig. 1, noting first a
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general qualitative agreement with the experimental findings Tt
[4]. The caseV=9E, seems almost fully superfluidvith,
however, strongly sub-Poissonian statisfi24] at each sitg

the case/=13E, shows the first traces of the insulator phase
(integer occupation of sites with vanishing variancthe
transition is completed for a significant fraction of sites at
V=16E,, while for the deepest lattice=22E, the SF frac-

tion is restricted to very narrow regions separating different
integer occupations. A careful reader may notice small in-
dents visible in the lines in Figs(& and 3d). They are due

to anisotropy induced by the cubic lattice on the isotropic
harmonic trap. The data, presented necessarily as a function
of the radial distance, contain occupations along the axes, the
diagonals, and other nonequivalent directions in the cubic gg, 4. The experimental time profilsolid line) of the lattice
lattice. The smallness of the indents indicates that the symsotential depthv measured in recoil energ§, units. The initial

80 100 120

time [ms]

metry of the trap is dominant. exponential increase with a time constast20 ms is followed by a
flat part and a subsequent decreas&/#e9E, with a linear ramp
11l. TIME-DEPENDENT MEAN-FIELD DYNAMICS with varying slope. Dashed line corresponds to the exponential time

constantr=40 ms, dash-dotted te=80 ms. Thin dotted lines indi-

The results obtained for the mean-field ground state ireate particularly interesting values of time abe—see text for
realistic situations, shown in the previous section, seem quitgjscussion.

encouraging. Yet, in themselves, they can say little about the

dynamics of the system Wher) the Iattlcg deytis varied. In slightly different average numbers of particlesl,
an attempt to address this important issue we shall use a~ = PP he chemical
time-dependent version of the mean-field approximation. To‘,<GZ|N|G2.>‘N1+5N—<G1|N|G1>+5N- The chemica poten-
this end we employ the time-dependent variational principldial at given t may be then approximated byu(t)

[8] looking for the minimum of =[(Ga(D)[H(D)|G,(1)) = (G4 (1) |H(1)|G4(1))]/ SN and adjusted at
each time stepl3]. This is the approach used in the numeri-
0 N cal results presented below.
<G(t) Iﬁat HEO + MN‘ G(t)>’ ©® Since we want to follow as closely as possible the experi-

th () bei he time-d d Hamiltonian. Th ment[4] let us recall its main features. The experiment has
with H(t) being now the time-dependent Hamiltonian. Cthree stages after loading the harmonic trap with Rb

time dependence is implicit via the dependence of the BR,,jensate—compare Fig. 4. First, the optical lattice depth

HamiltonianH on U, J, andW, which in turn depend oN. ;) was increased in 80 nissing an exponential ramp with
The chemical potentigk becomes also time dependent Whentime constant=20 mg from the initial zero valuéwhen the

the system parameters are variglt)), the variational wave harmonic trap was present oplip V, .= 22E,, whereE, is

function, is assumed in the standard Gutzwiller-type formye yecoil energy of Rb atoms. The sample was then held for
(3), with f'(t) now being time dependent. The very samepq ms atVay Finally V(t) was decreased with a linear ramp
approach has been successfully applied recently to the fog, v/, =9, with different speed. At any stage the experiment
mation of molecule$8,9)], the treatment of disordered opti- could be interrupted by rapidly switching off all laser beams
cal lattices[10], and for determining the phase diagram in building up the lattice as well as the magnetic trap. The

Bose-Fermi mixture$13]. _ _ freely expanding atomic cloud, after some delay, was re-
The m|n|r_n|zat|on(i)of(5) yields a set of first-order differ- corded by destructive absorption imaging, yielding a signal
ential equations fof '(t): that reflects the momentum distributi¢h4,16. Since the
d U absorption images are taken along two orthogonal axes the
i—fV=| =n(n-1)+nW, - ) [fV = IJ[DFyn+ 1), quantity measured is in fact the integrated momentum distri-
dt 2 bution [14]
+®nfl ], (6) f
N(Ky, ky) o | dkny. 7
where ®;=X;,(G(t)|a;|G(t)) (the sum, as indicated by the (kaky) K @

subscript in angular brackets is over the nearest neighbors gq. 16,ds released from low optical lattices when tunnel-

only). The nice feature of the evolution resulting from EQ. i, dominates and the superfluid behavior is expected the
(6) is that the average number of partics(N) is an exact  signal reflects Bragg peaks due to interferences of atoms
constant of the motiof8]. Naturally, when the parameters of coming from different lattice sites. At increased lattice
the BH model, e.g.U andJ, change the chemical potential depths above 18 the interference maxima become im-
corresponding to the mean-field solution with a given num-mersed in an incoherent background practically disappearing
ber of particledN also changes. The dynamicswftannot be  at 2(E,. This behavior was associated with the quantum
obtained from Eq.(6) only. One can find it, however, by phase transition from the SF to the Ml ph#@g¢ Most inter-
following the evolution of two state$G,) and |G,) with  estingly, the coherence of the sample may be rapidly recov-
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ered when the lattice depth is decreastird stage of the N
experiment as measured by the width of the central interfer-
ence peak which decreases almost to its original valué at
=9E, in about 4 ms.

In former applications of the time-dependent mean-field
approacH8-10,13 the time dependence of the system’s pa-
rameters was assumed to be sufficiently slow to assure adia-
baticity. In effect the mean-field ground state has been fol-
lowed by applying the time-dependent equations for the
fg)(t)’s [Eq. (6)]. Here we have a similar situation since it is
claimed[4] that the changes in time &f(t) are made suffi-
ciently slow to keep the system in the many-body ground
state. Having the mean-field ground states for differént
vaI_ues we carfwithin Fhe mean-field approximatigtest this FIG. 5. Atom density distributiorfon-site filling factoy after a
adiabaticity assumption. _ _ o mean-field evolution starting from the mean-field ground state at

Looking again at the time profile depicted in Fig. 4 oney=og, at the final value of/=22E, for different V(t) time depen-
may notice that the ramp used in the experiment leads indeeafbnce. Exponential time scale @ 20, (b) 40, and(c) 80 ms. The
to a very slow increase of(t) initially; however, changes of |onger the time scale, the slower the chang&/@f in the consid-

V(t) become relatively rapid about and abowe9E,, i.e., in  ered range as can be seen in Fig. 4. Thick dashed linés)-c)

the region where the transition from SF to Ml is supposed tresent twice the variance of the on-site occupation showing that
take place. Taking as the initial state the mean-field grounghe insulator regions i) and(c) are much larger than ia). (d)

state atV=9E,, our simulations show that to assure adiaba-repeats, after Fig. 3, the mean-field ground staté/aR2E, for

ticity a small change o¥ on the superfluid sidésay from  comparison. Observe that indents in the lines for dynamically
V=9E, to 9.1E,) requires about 20 m@®ne needs 40 ms for evo!ved wave functions are m_uch more pronounced than in the
a loop fromV=9E, to 9.1E, and back to keep the overlap st_atlc(d) case. As bgfore these |n_dents are dug to differ_ent symme-
with the initial state of the order of 9906 That strongly tries .of.the cubic Iatt!ce and spherlgally ha.rmonlcl |sqtrop|p trap. The
indicates that a much longer time is needed to traverse adi§onMicting symmetries lead to anisotropic excitations in the dy-
batically the whole interesting region fromM=9E, to 22E,. nan_1|ce_1I situations wher? the potent_lal parameters are varied. Those
And that change is realized in about 20 ms in the experi-excItatlons are responsible for the indents.
ment. =40 ms andysz=0.048 for7=80 ms. While the final distri-

To test the adiabatic issue further we shall concentrate iButions still show signs of significant excitations, the insula-
the following on the regime abov¥=9E, containing the tor character becomes dominant for Figc)5and also for
quantum phase transition. Starting again from the GutzwilleFig. 5(b).
mean-field ground state &t=9E, we simulate the time evo- Keeping the overall duration of the laser intensity turn-on
lution up to V=22E, (with experimental time profile We  at 80 ms and enlarging the final stage comes at the price that
may compare the dynamically obtained wave function plotthe initial rise fromV=0E, to V=9E,, very smooth in the
ted in Fig. 5a) with the mean-field ground state ¥t 22E, experiment[4] for 7=20 ms, becomes sharper for larger
[Fig. 5(d)]. While the ground state has an insulator charactefcompare Fig. # Thus largerr may lead to some excitation
almost everywhere in the trap withse=0.01, the dynami- at the initial creation of the lattice, not apparent in our simu-
cally evolved wave function, by comparison, seems to reflectations since we start from the ground stat&/&9E,. Trying
an excited wave packet and it has rather small regions wheite keep the total duration of the experiment as short as pos-
the occupation of sites is close to integer with vanishingsible (to avoid, for example, decoherename can still imag-
number variance. The correspondimg=0.12 confirms the ine a slightly more sophisticated pulse rise with say
presence of a relatively large superfluid region. =20 ms initially up to sayw=9E, and further increase with a

To show that the effect is really due to the too fast in-larger time constant, say 40 ms. While the duration of the
crease of the lattice depth we have modified the experimentaixperiment increases by 10% only, the degree of excitation
time profile slightly, by changing the exponential constant of the final wave packet becomes much smaller and the in-
from 20 to 40 ms(or 80 mg. That makes the initial rise of sulator character much more pronounced.
the laser intensityand the lattice depthmore uniform in In the experimenit4] the atomic density distribution is not
time (compare Fig. # Observe that while the full duration of measured directly. The presence of the Mott insulator layer
the first stage remains the same, the interval of time spent onas detected by observing the resonance in the excitation
the increase of the lattice depth frow=9E, to 22E, in-  spectrum around the interaction enetdgyClearly the size of
creases from below 20 m@xperimental profilg to about the corresponding peak is related to the number of atoms in
30 ms(for 7=40 m9 or about 37 mgfor =80 mg. Starting  the insulator layers. Our results indicate that an appropriate
again from the mean-field ground stateVat 9E, we obtain ~ suggested change in the time profile\§t) should increase
the atom density profiles shown in Figgbband Hc), re- the size of insulator regions and thus enhance the resonant
spectively. Observe that the regions of insulator behavior fopeak in the excitation spectrum.
both cases are much larger than observed previously. The Let us mention also that qualitatively similar results to
corresponding superfluid factors arese=0.062 for r  those depicted in Fig. 5 are obtained starting the evolution

Atom density distribution
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0 1 R —- FIG. 7. Half-width of the central interference peak for different
ka ramp-down timed, obtained by a Lorentzian fit of the integrated

momentum distribution—compare E7). Filled circles are con-
FIG. 6. Integrated momentum distributio® for states shown nected by a line to guide the eye. Dashed line is a single-
in Fig. 5 (panels match one anotherhe cutN(k,,0) alongk,=0 is exponential decay with a time constant1.45 ms.
shown only. Observe that for the time profile of the experiment no o ]
narrow peak is visible, in agreement with the experiment. For £h€ sample rather than the transition to the Mott insulator

more adiabatic time scalg) as well as for the ground statd) a regime. o ) ]
narrow peak in the momentum distribution is clearly visible. For T he reliability of the dynamical mean-field approach may
further discussion see text. be tested further in an attempt to reproduce the “restoration

of coherence” part of the experime]. In the experiment,
after reaching/=22E, the lattice depth is kept constant for
is sufficiently big but smaller than the beginning of the 20 ms qnd ther) decreased baCMngf with a linear ramp
SF-MI transition regimaroundv=13€,). In the experiment of durationt. It is shown that the time needed to restore the
e narrow interference pattern in the integrated momentum dis-

the lattice depth is increased from the initial zero value burtribution is of the order of 4 ms. This phenomenon is asso-
for that case the Bose-Hubbard Hamiltoniahis not a good  jated with restoring the coherence in the sample.

model to describe the cold-atom physics. This discrete lattice Thjs interpretationis in contradiction with results already
model is appropriat¢l,16] when the atoms have to remain presented in Fig. 6—the existentar the lack of i} of the
in the lowest vibrational state at each Site, that iS, for a SUfnarrOW peaks seems not to be So|e|y related to the coherence
ficiently deep lattice. of the sample but also to its excitation. The question, how-
It is most interesting to compare the integrated momenever, remains whether the dynamical mean-field calculation
tum distributions(7) corresponding to the position distribu- can reproduce theesultsof the experiment, i.e., the depen-
tions shown in Fig. 5. The cuts along=0 are presented in dence of the width of the interference pattern on the time
Fig. 6. In contrast to Fig. 2 we include now the Fourier duration of lowering the lattice.
transform of the Wannier functiofcompare Eq(4)] so the To answer this question we make a simulatftre results
guantity plotted matches the experiméfur a better quanti- are shown in Fig. ) starting from the static solution in the
tative picture, we prefer the cut alorig=0 instead of the ~SF regime(taken for convenience at=9E, again increas-
three-dimensional color plot used originally to represent theéng the lattice height exponentially as in the experiment
experimental daja Figure &a) corresponds to the experi- the subsequent delay of 20 ms\&t 22E,, and a linear ramp
mental profile. Observe that the integrated momentum distridown with various slopes. Note that the shape of the curve as
bution consists of a broad peak in a very nice agreement witvell as the time scale of restoring the narrow interference
the experimenf4]. Note, however, that for other, “more pattern are in quite good agreement with the experiment.
adiabatic” time profiles the narrow central structure emerge$Vhile the experimental data could be fitted with a double-
[compare Fig. fb)] becoming quite pronounced both for Fig. exponential decay with two time scales, our mean-field data
5(c) as well as for the mean-field ground-state momentunare reasonably reproduced with a single-exponential decay
distribution—depicted in Fig. @). The absence of the nar- with time scaler=1.45 ms. This nicely corresponds with the
row Bragg peak in the experiment seems to be, therefore, nshorter time scale of the experimdft94 ms. The obtained
related to the emergence of the insulator phase as suggestéale scale is also of the order of a typical single tunneling
in [4]. The persistence of the narrow peaks in the Mott retime (1/J in appropriate unitsto a nearby site. Our numeri-
gime has been already noted[it¥] in a model static quan- cal data fail to reproduce the second experimental time scale.
tum Monte Carlo study on a smaller lattice. The result pre-This points to the possibility that it can be associated indeed
sented in Fig. @) indicates that the conclusion of the with a long-range correlation between sites. ISaca long-
authors[14] concerning the ground-state momentum distri-range correlation should not manifest itself in our mean-field
bution extends also to a realistic sample. The dynamical resimulations—the Gutzwiller wave function neglects en-
sults presented in Fig. 6 suggest that fading of the Bragganglement between sites.
peaks and the appearance of the broad integrated momentumThe observed quite good agreement of the obtained
distribution can be associated with a significant excitation ofwidths of the momentum distribution with the experimgsit

from different value o, sayV=8E,, as long as the initiaV/

043601-6



MEAN-FIELD DYNAMICS OF THE SUPERFLUID-.. PHYSICAL REVIEW A 71, 043601(2005

seems to be quite a spectacular success of the dynamidal]. On the other hand, the claim that the first stage of the
mean-field simulation bearing in mind its simplicity. The fact experiment is performed adiabatically assuring that the sys-
that the mean-field approach works so well may be, in outem remains in its many-body ground stéaed thus a genu-
opinion, attributed to the fact that the dynamics takes placéne textbook quantum phase transiti] is realized seems

in the regime where the superfluid fraction remains signifi-questionable. We confirm the suggestion bf] that fading
cant. Then the mean atomic fielel does not vanish, allow- of narrow peaks in the momentum distribution should not be
ing for a semiclassicalmean-field description. Our results associated with the transition to the Mott insulator regime.
suggest that the system has quite a long memory and remerRather it is a dynamical effect.

bers that it was originally a SF. This fits nicely with the = We suggest that optimization of the lattice-depth time de-
excited wave-packet-like character of the dynamically obspendencéi.e., laser intensity profilemay help to enlarge the

tained wave function clearly visible in Fig(d. insulator regions, making the transition more adiabatic. That
may be detected by measuring the size of the peak in the
IV. CONCLUSIONS excitation spectrum of the system.

] ) ] Note addedRecent worK 25] reports a study of the exact
To summarize, it has been shown that the mean—fleIqjymimicS of the model using the method[@D,21]. How-

Gutzwiller approximation allows one to simulate the dynam-eyer, the results consider at most 49 atoms in 40 sites of a 1D
ics of the inhomogeneous Bose-Hubbard model taking intg4ttice.

account realistic experimental conditions. The accuracy of
the approximation cannot be controlled, which is the major
drawback of the present approa@hcomparison with exact
dynamics for small systems will lead us nowhere since then Participation of D. Delande at the early stage of this work
the mean-field approach is known to jaiOn the other hand is appreciated as well as discussions with B. Damski, M.
a comparison with the available data seems quite encouragewenstein, and K. Sacha. This work was supported by the
ing. Accepting mean-field predictions, we may confirm thatPolish Committee for Scientific Research Grant Quantum In-
indeed the transition from superfluid to Mott insulator takesformation and Quantum Engineering Grant No. PBZ-MIN-
place(albeit in a small part of the sampla the experiment 008/P03/2003.
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