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A large-scale dynamical simulation of the superfluid–Mott-insulator transition in a gas of ultracold atoms
placed in an optical lattice is performed using the time-dependent Gutzwiller mean-field approach. This ap-
proximate treatment allows us to take into account most of the details of the recent experimentfGreineret al.,
NaturesLondond 415, 39 s2002dg where by changing the depth of the lattice potential an adiabatic transition
from a superfluid to a Mott insulator state has been reported. Our simulations reveal a significant excitation of
the system with a transition to insulator in restricted regions of the trap only.
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I. INTRODUCTION

The theoretical suggestionf1g of the possibility of realiz-
ing one of the standard models for interacting particles—the
Bose-HubbardsBHd modelf2,3g—in a cold gas placed in an
optical lattice was followed soon by a seminal experiment
f4g. The reported realization of a quantum phase transition
between superfluidsSFd and Mott insulatorsMI d phases
showed convincingly that it was possible to control experi-
mentally the parameters of the model practically at will. This
triggered several studies involving Bose condensatesf5–10g
as well as, more recently Fermi-Bose mixturesf11–13g
placed on optical latticessthe reference list cannot be com-
plete bearing in mind that more than 70 papers with “optical
lattice” in the title were listed in the cond-mat archive last
year onlyd.

At the same time a number of groupsf14–18g tried to
understand the details of the very first experimentf4g to
check the underlying physics. To imagine the difficulty in
modeling the experiment let us recall that it involves about
105 interacting atomssbosonsd placed in a harmonic trap and
a three-dimensionals3Dd lattice potential. Such a system is
well described by the Bose-Hubbard model with position-
dependent chemical potentialf1g. Even finding the ground
state of the system for that number of particles and 65365
365 lattice sites is a formidable task. State of the art quan-
tum Monte CarlosQMCd f14,15,17g calculations aimed at
the ground-state properties include up to 16316316 sites in
3D f14g; more sites may be included in one-s1Dd or two-
s2Dd dimensional modelsf15,17g. These studies, while inter-
esting on their own, can shed little light on thedynamicsof
the system when its parameters are varied. Except for special
exactly solvable models, the efficient simulation of the time-
dependent properties of interacting many-body systems re-
mains an open problem although recently some progress has
been obtained for 1D systemsf19–21g.

It seems, therefore, that the only reasonable and tractable
way of analyzing the dynamics of the discussed experiment
is using approximate methods. To this end we shall use an
approach based on the time-dependent variational principle
with the Gutzwiller ansatz. That will allow us to model the
details of the 3D experimentf4g. The price for this is similar
to that paid in other approximate treatments—one may al-

ways question the extent to which the approximations allow
one to describe the properties of the systems studied. We
hope to convince the reader that the numerical results are at
least mutually consistent and thus may provide considerable
insight into the dynamics of the experiment.

The discussion of the dynamics is postponed to Sec. III
since we discuss in the next section the static mean-field
solutions for the ground state for experimental parameters.
Here a comparison with available exact QMC results is pos-
sible at least. This will give us some confidence about the
applicability of the mean-field approach yielding, at the same
time, the initial state for the dynamics studied later.

II. STATIC MEAN FIELD FOR THE BOSE-HUBBARD
MODEL

The Bose-Hubbard Hamiltonian describing the system
takes the formf1g

H = − Jo
ki,jl

ai
†aj +

U

2 o
i

nisni − 1d + o
i

Wini , s1d

where ni =ai
†ai is the occupation number operator at sitei

swith ai being the corresponding annihilation bosonic opera-
tord, U the interaction energy,J the tunneling coefficient, and
Wi the energy offset at sitei. oki,jl denotes the sum over
nearest neighbors. BothJ andU are functions of the lattice
potential and may be easily expressed in terms of integrals of
the Wannier functions of the lowest energy band for the cold-
atom implementation of the modelf1g.

Consider first the standard homogeneous situation in
which all Wi’s are equal. The last term in Eq.s1d becomes
proportional to thesconservedd number of bosons and may
be dropped. The only remaining parameter of the model is
the ratio U /J. When tunneling dominates the system, its
ground state is superfluid while in the opposite case it be-
comes a Mott insulator. The borderline between the two
phases depends on the chemical potentialm. The Mott insu-
lator state is incompressible and is characterized by an inte-
ger mean occupation of sites. In effect starting from the su-
perfluid at smallU /J and a noninteger ratio ofN/M sN
denotes the number of atoms whileM is the number of sitesd
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and increasingU /J the ground state remains superfluid up to
the highest values ofU /J at fixed boson density. On the
other hand the range ofm values corresponding to the com-
mensurate filling increases withU /J. In effect, the separation
line between a MI and a SF forms characteristic lobes
f2,3,16g.

For a detailed discussion of the BH model seef2,16g. As
we are interested in the mean-field approximation, let us just
quote Zwergerf16g saying “In two- and three-dimensional
lattices, the critical value for the transition from a MI to a SF
is reasonably well described by a mean-field approximation.”
In one dimension the mean-field approximation is much
worsef16g.

In the presence of an additional potential, e.g., a harmonic
trap, local energiesWi depend on the site location. Then the
effective chemical potential at each site becomesmi =m−Wi.
As pointed out already inf1g this will lead for largeU /J to a
shell-like structure with MI phases with different integer oc-
cupations shighest in the middle, assuming an attractive
binding additional potentiald separated by SF regions. This
picture has been nicely confirmed in quantum Monte Carlo
calculations both in 1Df15g and in 3Df14g.

The latter exact results are of particular interest for us
since they allow for a comparison with the mean-field ap-
proximation. Inf14g a 3D 16316316 lattice is considered
with different values ofU and J parameters as well as the
harmonic trap. To find the mean-field ground state we mini-
mize

kEl = kGuH − mN̂uGl, s2d

whereN̂=oini and uGl is the Gutzwiller trial function

uGl = p
i=1

M So
n=0

nm

fn
sidunliD . s3d

The number of parametersfn
sid depends on the number of

sitesshere 163d as well as the maximal occupation at a given
sitenm. The average maximal occupation at the center of the
trap is 2 for the data considered inf14g. Therefore, it is
sufficient to takenm=7. That yields a minimization proce-
dure over 32 768 parameters. Such a number of parameters
must lead to spurious local minima, unless a very good esti-
mate exists for the initial set offn

sid’s si.e., the initial uGld.
Fortunately such a guess is quite obvious and is often termed
the local mean-field approximation; namely, at each sitei
one takes a solution forfn

sid’s corresponding to the homoge-
neous BH model with the effective chemical potentialmi
=m−Wi. ProvidedWi changes smoothly from site to site,
such an approach should be an excellent approximation to a
full mean-field solution. And indeed it is; we have found for
the data discussed below that the initial and finalkEl fsee Eq.
s2dg differ by at most 2%; the number of iterations of stan-
dard Numerical Recipesminimization packagesf22g is
slightly bigger than the number of parameters.

The results obtained are presented in Fig. 1 in the same
form as the corresponding plot inf14g to make the compari-
son easier. The values of parameters correspond to those
taken inf14g. The notation used by us differs slightly from

that of f14g, in particular the tunneling constantJ is denoted
as t in f14g. For the purpose of this figure all parameters are
expressed in units ofJ, i.e., J=1. To make the comparison
with notation used inf14g easier, the coefficient in the term
proportional to the number of atoms at a given site in Eq.s2d,
i.e., the difference of the on-site energyWi and the chemical
potentialm is expressed asWi −m=−U0+U /2+kxi

2, wherexi
is the position vector of sitei with xi

2 being the square of the
distance of theith site from the center of the harmonic trap
measured in units of the lattice constant. With such a defini-
tion the parameters used in Fig. 1 take the following values:
sad U=24.0, U0=−11.08, k=0.195 31; sbd U=32.0, U0
=−28.08,k=0.195 31;scd U=80.0,U0=−65.0,k=0.976 56;
sad U=80.0, U0=−90.0, k=1.030 62; sad U=80.0, U0
=−120.08, k=2.003 75; andsad U=80.0, U0=−150.0, k
=1.757 81. A comparison of Fig. 1 with Fig. 1 off14g indi-
cates that, as far as the average occupation at different sites is
concerned, the mean-field solution is in excellent agreement
with the quantum Monte Carlo results.

Instead of the occupation at different sites one may take a
look at the momentum distribution, i.e., a quantity closely
related to that measured in experimentsseef4g and the dis-
cussion belowd. The momentum distribution is given byf14g

nk = ufskdu2o
i,j

eik·sr i−r jdkai
†ajl, s4d

wherek is the wave vector andfskd the Fourier transform of
the Wannier site function. The latter yields a broad bell-

FIG. 1. Mean-field particle density distributionson-site filling
factorsd as a function of the distance from the center of the trap
measured in units of the lattice constanta. Filled circles correspond
to numerical results, lines are drawn to guide the eye. The param-
eters of the BH model match those quoted in Fig. 1 off14g; see the
text for numerical values. Comparison with the latter results ob-
tained within the “exact” quantum Monte Carlo simulation reveals
the accuracy of the mean-field approximation.
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shaped background and merely provides information about
the lattice. The relevant information about the atoms is con-
tained in the Fourier transform ofkai

†ajl. In the mean-field
approximation this factorizes for differenti , j as kai

†ajl
<kai

†lkajl. Such a factorization seems quite drastic and one
may expect significant differences between the momentum
distributions obtained from QMC simulations and within the
mean-field approximation. It is really not so, however, for
bosons in a harmonic trap as visualized in Fig. 2 for the
mean field. That figure should be compared with QMC re-
sults presented in Fig. 2 off14g. Observe that differences
appear only for Fig. 2sdd, the exact results yielding a signifi-
cantly broader momentum distribution. As discussed inf14g
almost no SF fraction is present in the QMC result corre-
sponding to Fig. 2sdd. Then the factorization must affect
strongly the momentum distribution since in a vast majority
of siteskail=0. Clearly, however, as long as some SF frac-
tion is present in the system the mean-field momentum dis-
tribution closely resembles the exact quantum results.

This apparent quite close agreement between QMC re-
sults and the mean-field approximation for a 16316316
lattice and about 103 atoms is very encouraging in view of
the realistic experimental conditionsf4g. Here both the exter-
nal potential changes less rapidlysthe size of the lattice is
now 65365365d and the number of atoms exceeds 105;
thus one may expect that the mean-field approximation
works even better.

While the test described above has been performed for
some values ofU, J, as well as the trap frequency, chosen
sby the authors off14gd to simulate the experiment, we have
to determine first the relevant range of parameters. From
now on we shall measure quantities of the dimension of en-
ergy in units of the recoil energy of87Rb atoms for light with
a wavelengthl=2p /K=852 nm, i.e.,Er ="2K2/2M, where
M is the mass of87Rb atoms. The depth of the optical lattice
V changes from 0 to 22Er. Finding Wannier functions for
different values ofV f23g, we evaluate the corresponding
UsVd andJsVd values. The energy offset at each siteWi has
two components in the experimentf4g. One is the harmonic
magnetic trap potentialstime independentd; the other is due
to the Gaussian intensity profiles of the lattice-creating laser
beams. The latter may also be approximated by a harmonic

term f4g; the corresponding frequency is then dependent
on V.

To find the mean-field ground state for differentV values
and the number of atoms of the order of 105 one needs to
solve a minimization problem over 23106 parametersswith
nm=7 as befored which is hardly manageable. One may,
however, use the symmetry of the problemscubic lattice
combined with spherically symmetric trapd to significantly
reduce that number. Leti , j ,k count the sites in thex,y,z
directions, respectively, with each index taking values from
−32 tons=32 syielding 65 sites in each directiond. Due to the
ground-state symmetry it is enough to consider only the sites
with 0ø i ø j økøns which reduces the number of mini-
mized parameters to about 48 000. Needless to say we have
checked on the smaller 16316316 problem that the
symmetry-reduced problem yields the same ground state as
the full minimization.

The results obtained are presented in Fig. 3 and are prac-
tically indistinguishable from the initial guess, i.e., the wave
function coming from the local mean-field approximation
discussed above. The chemical potentialm has been adjusted
sfor each cased to have the average number of atomsN

=kN̂l=oiknil around 105. This leads to more than two atoms
son averaged per site in the center of the trap. To characterize
whether the state is closer to being superfluid or Mott insu-
lator we define the superfluid factorgSF=s1/Ndokailkai

†l.
This factor is zero for a pure MI stateswhenkail=0 as each
node is in a Fock stated and reaches unity for Poissonian
statistics at each node. While obviously it is not a “proper”
order parameter for the phase transition, it seems to be con-
venient for characterizing the states obtained. Using this fac-
tor we can quantify the states shown in Fig. 1, noting first a

FIG. 2. The rescaled mean-field momentum distributionsin ar-
bitrary unitsd in the first Brillouin zone in thes0,0,1d direction de-
rived from Eq.s4d for data presented in Fig. 1. The distributions are
to be compared with the corresponding “exact” distributions in Fig.
2 of f14g. Observe that the mean-field result differs from the exact
distribution for the casesdd only—see discussion in the text.

FIG. 3. Solid lines represent mean-field atom density distribu-
tion son-site filling factornd as a function of the distance from the
center of the trapsmeasured in units of the lattice constantd. Dashed
lines represent the corresponding variances at different sites 2si

2

=2skni
2l−knil2d. The total number of atoms and the SF factorgSF

ssee textd for each plot aresad V=9Er, N=99 771,gSF=0.95; sbd
V=13Er, N=99 502,gSF=0.40; scd V=16Er, N=95 408,gSF=0.11;
sdd V=22Er, N=94 172,gSF=0.01. Small indents seen in the lines
in scd andsdd are due to anisotropy induced by a cubic lattice in an
isotropic sharmonicd trap; for further details see text.
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general qualitative agreement with the experimental findings
f4g. The caseV=9Er seems almost fully superfluidswith,
however, strongly sub-Poissonian statisticsf24g at each sited,
the caseV=13Er shows the first traces of the insulator phase
sinteger occupation of sites with vanishing varianced, the
transition is completed for a significant fraction of sites at
V=16Er, while for the deepest latticeV=22Er the SF frac-
tion is restricted to very narrow regions separating different
integer occupations. A careful reader may notice small in-
dents visible in the lines in Figs. 3scd and 3sdd. They are due
to anisotropy induced by the cubic lattice on the isotropic
harmonic trap. The data, presented necessarily as a function
of the radial distance, contain occupations along the axes, the
diagonals, and other nonequivalent directions in the cubic
lattice. The smallness of the indents indicates that the sym-
metry of the trap is dominant.

III. TIME-DEPENDENT MEAN-FIELD DYNAMICS

The results obtained for the mean-field ground state in
realistic situations, shown in the previous section, seem quite
encouraging. Yet, in themselves, they can say little about the
dynamics of the system when the lattice depthV is varied. In
an attempt to address this important issue we shall use a
time-dependent version of the mean-field approximation. To
this end we employ the time-dependent variational principle
f8g looking for the minimum of

KGstdUi"
]

]t
− Hstd + mN̂UGstdL , s5d

with Hstd being now the time-dependent Hamiltonian. The
time dependence is implicit via the dependence of the BH
HamiltonianH on U, J, andWi, which in turn depend onV.
The chemical potentialm becomes also time dependent when
the system parameters are varied.uGstdl, the variational wave
function, is assumed in the standard Gutzwiller-type form
s3d, with fn

sidstd now being time dependent. The very same
approach has been successfully applied recently to the for-
mation of moleculesf8,9g, the treatment of disordered opti-
cal latticesf10g, and for determining the phase diagram in
Bose-Fermi mixturesf13g.

The minimization ofs5d yields a set of first-order differ-
ential equations forfn

sidstd:

i
d

dt
fn

sid = FU

2
nsn − 1d + nsWi − mdG fn

sid − JfFi
!În + 1fn+1

sid

+ Fi
Înfn−1

sid g, s6d

where Fi =ok jlkGstduajuGstdl sthe sum, as indicated by the
subscript in angular brackets is over the nearest neighbors
onlyd. The nice feature of the evolution resulting from Eq.

s6d is that the average number of particlesN=kN̂l is an exact
constant of the motionf8g. Naturally, when the parameters of
the BH model, e.g.,U andJ, change the chemical potential
corresponding to the mean-field solution with a given num-
ber of particlesN also changes. The dynamics ofm cannot be
obtained from Eq.s6d only. One can find it, however, by
following the evolution of two statesuG1l and uG2l with

slightly different average numbers of particlesN2

=kG2uN̂uG2l=N1+dN=kG1uN̂uG1l+dN. The chemical poten-
tial at given t may be then approximated bymstd
=fkG2stduHstduG2stdl−kG1stduHstduG1stdlg /dN and adjusted at
each time stepf13g. This is the approach used in the numeri-
cal results presented below.

Since we want to follow as closely as possible the experi-
ment f4g let us recall its main features. The experiment has
three stages after loading the harmonic trap with Rb
condensate—compare Fig. 4. First, the optical lattice depth
Vstd was increased in 80 mssusing an exponential ramp with
time constantt=20 msd from the initial zero valueswhen the
harmonic trap was present onlyd to Vmax=22Er, whereEr is
the recoil energy of Rb atoms. The sample was then held for
20 ms atVmax. Finally Vstd was decreased with a linear ramp
to Vf =9Er with different speed. At any stage the experiment
could be interrupted by rapidly switching off all laser beams
building up the lattice as well as the magnetic trap. The
freely expanding atomic cloud, after some delay, was re-
corded by destructive absorption imaging, yielding a signal
that reflects the momentum distributionf14,16g. Since the
absorption images are taken along two orthogonal axes the
quantity measured is in fact the integrated momentum distri-
bution f14g

Nskx,kyd ~E dkznk . s7d

For clouds released from low optical lattices when tunnel-
ing dominates and the superfluid behavior is expected the
signal reflects Bragg peaks due to interferences of atoms
coming from different lattice sites. At increased lattice
depths above 13Er the interference maxima become im-
mersed in an incoherent background practically disappearing
at 20Er. This behavior was associated with the quantum
phase transition from the SF to the MI phasef4g. Most inter-
estingly, the coherence of the sample may be rapidly recov-

FIG. 4. The experimental time profilessolid lined of the lattice
potential depthV measured in recoil energyEr units. The initial
exponential increase with a time constantt=20 ms is followed by a
flat part and a subsequent decrease toVf =9Er with a linear ramp
with varying slope. Dashed line corresponds to the exponential time
constantt=40 ms, dash-dotted tot=80 ms. Thin dotted lines indi-
cate particularly interesting values of time andV—see text for
discussion.
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ered when the lattice depth is decreasedsthird stage of the
experimentd as measured by the width of the central interfer-
ence peak which decreases almost to its original value atV
=9Er in about 4 ms.

In former applications of the time-dependent mean-field
approachf8–10,13g the time dependence of the system’s pa-
rameters was assumed to be sufficiently slow to assure adia-
baticity. In effect the mean-field ground state has been fol-
lowed by applying the time-dependent equations for the
fn

sidstd’s fEq. s6dg. Here we have a similar situation since it is
claimedf4g that the changes in time ofVstd are made suffi-
ciently slow to keep the system in the many-body ground
state. Having the mean-field ground states for differentV
values we canswithin the mean-field approximationd test this
adiabaticity assumption.

Looking again at the time profile depicted in Fig. 4 one
may notice that the ramp used in the experiment leads indeed
to a very slow increase ofVstd initially; however, changes of
Vstd become relatively rapid about and aboveV=9Er, i.e., in
the region where the transition from SF to MI is supposed to
take place. Taking as the initial state the mean-field ground
state atV=9Er, our simulations show that to assure adiaba-
ticity a small change ofV on the superfluid sidessay from
V=9Er to 9.1Erd requires about 20 mssone needs 40 ms for
a loop fromV=9Er to 9.1Er and back to keep the overlap
with the initial state of the order of 99%d. That strongly
indicates that a much longer time is needed to traverse adia-
batically the whole interesting region fromV=9Er to 22Er.
And that change is realized in about 20 ms in the experi-
ment.

To test the adiabatic issue further we shall concentrate in
the following on the regime aboveV=9Er containing the
quantum phase transition. Starting again from the Gutzwiller
mean-field ground state atV=9Er we simulate the time evo-
lution up to V=22Er swith experimental time profiled. We
may compare the dynamically obtained wave function plot-
ted in Fig. 5sad with the mean-field ground state atV=22Er
fFig. 5sddg. While the ground state has an insulator character
almost everywhere in the trap withgSF=0.01, the dynami-
cally evolved wave function, by comparison, seems to reflect
an excited wave packet and it has rather small regions where
the occupation of sites is close to integer with vanishing
number variance. The correspondinggSF=0.12 confirms the
presence of a relatively large superfluid region.

To show that the effect is really due to the too fast in-
crease of the lattice depth we have modified the experimental
time profile slightly, by changing the exponential constantt
from 20 to 40 mssor 80 msd. That makes the initial rise of
the laser intensitysand the lattice depthd more uniform in
time scompare Fig. 4d. Observe that while the full duration of
the first stage remains the same, the interval of time spent on
the increase of the lattice depth fromV=9Er to 22Er in-
creases from below 20 mssexperimental profiled, to about
30 mssfor t=40 msd or about 37 mssfor t=80 msd. Starting
again from the mean-field ground state atV=9Er we obtain
the atom density profiles shown in Figs. 5sbd and 5scd, re-
spectively. Observe that the regions of insulator behavior for
both cases are much larger than observed previously. The
corresponding superfluid factors aregSF=0.062 for t

=40 ms andgSF=0.048 fort=80 ms. While the final distri-
butions still show signs of significant excitations, the insula-
tor character becomes dominant for Fig. 5scd and also for
Fig. 5sbd.

Keeping the overall duration of the laser intensity turn-on
at 80 ms and enlarging the final stage comes at the price that
the initial rise fromV=0Er to V=9Er, very smooth in the
experimentf4g for t=20 ms, becomes sharper for largert
scompare Fig. 4d. Thus largert may lead to some excitation
at the initial creation of the lattice, not apparent in our simu-
lations since we start from the ground state atV=9Er. Trying
to keep the total duration of the experiment as short as pos-
siblesto avoid, for example, decoherenced one can still imag-
ine a slightly more sophisticated pulse rise with sayt
=20 ms initially up to sayV=9Er and further increase with a
larger time constant, say 40 ms. While the duration of the
experiment increases by 10% only, the degree of excitation
of the final wave packet becomes much smaller and the in-
sulator character much more pronounced.

In the experimentf4g the atomic density distribution is not
measured directly. The presence of the Mott insulator layer
was detected by observing the resonance in the excitation
spectrum around the interaction energyU. Clearly the size of
the corresponding peak is related to the number of atoms in
the insulator layers. Our results indicate that an appropriate
suggested change in the time profile ofVstd should increase
the size of insulator regions and thus enhance the resonant
peak in the excitation spectrum.

Let us mention also that qualitatively similar results to
those depicted in Fig. 5 are obtained starting the evolution

FIG. 5. Atom density distributionson-site filling factord after a
mean-field evolution starting from the mean-field ground state at
V=9Er at the final value ofV=22Er for different Vstd time depen-
dence. Exponential time scale ofsad 20, sbd 40, andscd 80 ms. The
longer the time scale, the slower the change ofVstd in the consid-
ered range as can be seen in Fig. 4. Thick dashed lines insad–scd
present twice the variance of the on-site occupation showing that
the insulator regions insbd and scd are much larger than insad. sdd
repeats, after Fig. 3, the mean-field ground state atV=22Er for
comparison. Observe that indents in the lines for dynamically
evolved wave functions are much more pronounced than in the
staticsdd case. As before these indents are due to different symme-
tries of the cubic lattice and spherically harmonic isotropic trap. The
conflicting symmetries lead to anisotropic excitations in the dy-
namical situations when the potential parameters are varied. Those
excitations are responsible for the indents.
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from different value ofV, sayV=8Er, as long as the initialV
is sufficiently big but smaller than the beginning of the
SF-MI transition regimesaroundV=13Erd. In the experiment
the lattice depth is increased from the initial zero value but
for that case the Bose-Hubbard Hamiltonians1d is not a good
model to describe the cold-atom physics. This discrete lattice
model is appropriatef1,16g when the atoms have to remain
in the lowest vibrational state at each site, that is, for a suf-
ficiently deep lattice.

It is most interesting to compare the integrated momen-
tum distributionss7d corresponding to the position distribu-
tions shown in Fig. 5. The cuts alongky=0 are presented in
Fig. 6. In contrast to Fig. 2 we include now the Fourier
transform of the Wannier functionfcompare Eq.s4dg so the
quantity plotted matches the experimentsfor a better quanti-
tative picture, we prefer the cut alongky=0 instead of the
three-dimensional color plot used originally to represent the
experimental datad. Figure 6sad corresponds to the experi-
mental profile. Observe that the integrated momentum distri-
bution consists of a broad peak in a very nice agreement with
the experimentf4g. Note, however, that for other, “more
adiabatic” time profiles the narrow central structure emerges
fcompare Fig. 6sbdg becoming quite pronounced both for Fig.
5scd as well as for the mean-field ground-state momentum
distribution—depicted in Fig. 6sdd. The absence of the nar-
row Bragg peak in the experiment seems to be, therefore, not
related to the emergence of the insulator phase as suggested
in f4g. The persistence of the narrow peaks in the Mott re-
gime has been already noted inf14g in a model static quan-
tum Monte Carlo study on a smaller lattice. The result pre-
sented in Fig. 6sdd indicates that the conclusion of the
authorsf14g concerning the ground-state momentum distri-
bution extends also to a realistic sample. The dynamical re-
sults presented in Fig. 6 suggest that fading of the Bragg
peaks and the appearance of the broad integrated momentum
distribution can be associated with a significant excitation of

the sample rather than the transition to the Mott insulator
regime.

The reliability of the dynamical mean-field approach may
be tested further in an attempt to reproduce the “restoration
of coherence” part of the experimentf4g. In the experiment,
after reachingV=22Er the lattice depth is kept constant for
20 ms and then decreased back toV=9Er with a linear ramp
of durationt. It is shown that the time needed to restore the
narrow interference pattern in the integrated momentum dis-
tribution is of the order of 4 ms. This phenomenon is asso-
ciated with restoring the coherence in the sample.

This interpretationis in contradiction with results already
presented in Fig. 6—the existencesor the lack of itd of the
narrow peaks seems not to be solely related to the coherence
of the sample but also to its excitation. The question, how-
ever, remains whether the dynamical mean-field calculation
can reproduce theresultsof the experiment, i.e., the depen-
dence of the width of the interference pattern on the time
duration of lowering the lattice.

To answer this question we make a simulationsthe results
are shown in Fig. 7d, starting from the static solution in the
SF regimestaken for convenience atV=9Er againd increas-
ing the lattice height exponentially as in the experimentf4g,
the subsequent delay of 20 ms atV=22Er, and a linear ramp
down with various slopes. Note that the shape of the curve as
well as the time scale of restoring the narrow interference
pattern are in quite good agreement with the experiment.
While the experimental data could be fitted with a double-
exponential decay with two time scales, our mean-field data
are reasonably reproduced with a single-exponential decay
with time scalet=1.45 ms. This nicely corresponds with the
shorter time scale of the experiments0.94 msd. The obtained
time scale is also of the order of a typical single tunneling
time s1/J in appropriate unitsd to a nearby site. Our numeri-
cal data fail to reproduce the second experimental time scale.
This points to the possibility that it can be associated indeed
with a long-range correlation between sites. Such a a long-
range correlation should not manifest itself in our mean-field
simulations—the Gutzwiller wave function neglects en-
tanglement between sites.

The observed quite good agreement of the obtained
widths of the momentum distribution with the experimentf4g

FIG. 6. Integrated momentum distributionss7d for states shown
in Fig. 5 spanels match one anotherd. The cutNskx,0d alongky=0 is
shown only. Observe that for the time profile of the experiment no
narrow peak is visible, in agreement with the experiment. For a
more adiabatic time scalescd as well as for the ground statesdd a
narrow peak in the momentum distribution is clearly visible. For
further discussion see text.

FIG. 7. Half-width of the central interference peak for different
ramp-down timestr obtained by a Lorentzian fit of the integrated
momentum distribution—compare Eq.s7d. Filled circles are con-
nected by a line to guide the eye. Dashed line is a single-
exponential decay with a time constantt=1.45 ms.
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seems to be quite a spectacular success of the dynamical
mean-field simulation bearing in mind its simplicity. The fact
that the mean-field approach works so well may be, in our
opinion, attributed to the fact that the dynamics takes place
in the regime where the superfluid fraction remains signifi-
cant. Then the mean atomic fieldFi does not vanish, allow-
ing for a semiclassicalsmean-fieldd description. Our results
suggest that the system has quite a long memory and remem-
bers that it was originally a SF. This fits nicely with the
excited wave-packet-like character of the dynamically ob-
tained wave function clearly visible in Fig. 5sad.

IV. CONCLUSIONS

To summarize, it has been shown that the mean-field
Gutzwiller approximation allows one to simulate the dynam-
ics of the inhomogeneous Bose-Hubbard model taking into
account realistic experimental conditions. The accuracy of
the approximation cannot be controlled, which is the major
drawback of the present approachsa comparison with exact
dynamics for small systems will lead us nowhere since then
the mean-field approach is known to faild. On the other hand
a comparison with the available data seems quite encourag-
ing. Accepting mean-field predictions, we may confirm that
indeed the transition from superfluid to Mott insulator takes
placesalbeit in a small part of the sampled in the experiment

f4g. On the other hand, the claim that the first stage of the
experiment is performed adiabatically assuring that the sys-
tem remains in its many-body ground statesand thus a genu-
ine textbook quantum phase transitionf3g is realizedd seems
questionable. We confirm the suggestion off14g that fading
of narrow peaks in the momentum distribution should not be
associated with the transition to the Mott insulator regime.
Rather it is a dynamical effect.

We suggest that optimization of the lattice-depth time de-
pendencesi.e., laser intensity profiled may help to enlarge the
insulator regions, making the transition more adiabatic. That
may be detected by measuring the size of the peak in the
excitation spectrum of the system.

Note added. Recent workf25g reports a study of the exact
dynamics of the model using the method off20,21g. How-
ever, the results consider at most 49 atoms in 40 sites of a 1D
lattice.
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