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We outline a formalism and develop a computational procedure to treat the process of multiphoton ionization
sMPId of atomic targets in strong laser fields. We treat the MPI process nonperturbatively as a decay phenom-
enon by solving a coupled set of the integral Lippmann-Schwinger equations. As basic building blocks of the
theory, we use a complete set of field-free atomic states, discrete and continuous. This approach should enable
us to provide both the total and differential cross sections of MPI of atoms with one and two electrons. As an
illustration, we apply the proposed procedure to a simple model of MPI from a square-well potential and to the
hydrogen atom.
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I. INTRODUCTION

In recent years, the process of multiphoton ionization
sMPId of atomic and molecular species has been a subject of
intensive experimental and theoretical studiesssee reviews
by Protopapaset al. f1g, Lambropouloset al. f2g, Chu and
Telnov f3g, and Posthumusf4g, and references thereind.
Rapid progress in this field has been largely driven by ad-
vancement in high-power short-pulse laser techniques. The
laser intensities which may go beyond 1013 W cm−2 make it
possible to observe many striking phenomena such as MPI
and above-threshold ionization.

Accurate theoretical description of ionization processes
occurring in laser fields of such intensities should necessarily
go beyond a simple perturbative picture. The first nonpertur-
bative theory of MPI was proposed by Keldyshf5g, Faisal
f6g, and Reissf7g. Their theorysknown as KFRd treated the
process of MPI as a transition of an electron from an initial
bound state into a final state described by the classical
Volkov wave function. The KFR approach provided simple
analytical formulas for the MPI rate which were found in
qualitative agreement with experiment. Various modifica-
tions of the KFR theory were made, in particular those ac-
counting for the rescattering processf8,9g.

The KFR theory treated the laser field purely classically.
The MPI problem can also be formulated in an entirely quan-
tum form. The properties of the scattering matrix in this for-
mulation of the MPI process have been studied starting from
the works of Mowerf10,11g, Gontier et al. f12,13g, Faisal
and Moloneyf14g, and Jackson and Swainf15g. More re-
cently, Guo and Abergf16g and Guo, Aberg, and Crasemann
f17g put forward an MPI theorysreferred to hereafter as
GACd which treats the photoionization process as a QED
scattering phenomenon. The emphasis in this theory was
placed on a proper QED description of an electron interact-
ing with the laser fieldsthe quantum version of the Volkov
statesd. Further development of the QED picture of the MPI

phenomenon was made by Gaoet al. f18g and Chenet al.
f19g, who refined the original GAC theory by including the
nonlaser modes of the electromagnetic field.

This fully QED approach, although solving the problem
in principle, was found to be rather difficult to implement in
practice even for the simplest atomic targets such as one- or
two-electron atoms. For instance, Chenet al. f19g had to
make further drastic approximations in order to carry out
their calculation of MPI on atomic hydrogen.

One possible solution to this problem is to use some suit-
able square-integrable basis to represent the Green functions
occurring in the theory. Such an approach, using ideas of the
complex rotation method, has been proposed by Maquetet
al. f20g. Another solution is to use the field-free atomic states
as building blocks of the theory. Such a choice is particularly
advantageous when theory is applied to complex atomic sys-
tems with more than one target electron. Such an approach
within the context of the complex rotation method has been
used by Mercouris and Nicolaidesf21g and Nicolaides and
Mercourisf22g. Description of the quantum-mechanical evo-
lution of an atom coupled to a laser field is also possible in
the framework of this methodf23g.

In the present paper, we outline a quantum formalism for
MPI which we intend to use for practical computations on
complex atomic systems. The formalism is not entirely new
and is based on the ideas expressed earlier in the literature.
The main emphasis of this work is on the pracical implemen-
tation of the formlism and turning it into an efficient compu-
tational procedure. In this development, we are inspired by a
series of works by Burke and collaborators, who combined
the Floquet description of the laser field with theR-matrix
scattering theory. Following the seminal workf24g, this ap-
proach has been successfully implemented for calculating the
total MPI rate and the level shift in atomic hydrogenf25g,
helium f26g, the negative hydrogen ionf27g, and molecular
hydrogenf28g. Most recently, theR-matrix Floquet theory
was combined with the basis spline technique to describe the
two-electron MPI from the helium atom in the groundf29g
and excited statesf30g. In addition to the total MPI rate,
some differential cross sections can also be calculated within
the Floquet formalism, as was demonstrated for atomic hy-
drogen by Potvliege and Shakeshaftf31g and Potvliegef32g.
It is the most detailed fully differential cross sections that are
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of particular interest to experimentalists and that we intend to
evaluate in our approach.

In the present paper, we employ the operator formalism
due to Goldberger and Watsonf33g. In this formalism, the
MPI process is treated as a decay phenomenon. The partial
decay rates and the energy level shifts are evaluated via the
matrix elements of the transition operator which are found by
solving a coupled set of the integral Lippmann-Schwinger
equations. In this approach, the matrix elements of the tran-
sition operator should be taken between the field-free atomic
states accompanied by an integer number of the laser pho-
tons.

For one-electron targets, evaluation of the field-free states
is trivial. For two-electron targets, an accurate set of target
states, both discrete and continuous, can be generated by the
so-called convergent-close-couplingsCCCd method. This
method has been extensively tested for processes with two
electrons in the continuum such as electron scattering on
atomic hydrogenf34g and low-field double ionization of he-
lium f35,36g. We intend to use the same set of target states
for MPI of He in the nonperturbative strong-field regime.

In our approach, we ignore all the processes of spontane-
ous emission of photons, which is justified as we are inter-
ested in processes induced by strong fields. Since the work of
Shirley f37g, it is known that if one neglects spontaneous
processes in the quantum description of the interaction of
laser light and atom, then the quantum picture and the Flo-
quet method of solving the time-dependent Schrodinger
equation become equiavalent. Therefore, the present ap-
proach and those based on the Floquet ansatzssuch asf24g,
for exampled are completely equivalent. However, recasting
the MPI description in the form presented below may have
some practical advantages, especially if we have good means
of representing the field-free atomic states for complex
atomic systems. This includes, of course, the states belong-
ing to the continious spectrum. Such means do exist. As
mentioned above, the CCC method turned out to be very
efficient at representing field-free states of atomic systems. It
was the desire to exploit fully the possibilities provided by
the CCC technique that largely motivated us to give a for-
mulation of the MPI process presented below.

The rest of the paper is organized as follows. In Sec. II,
we give a formulation of the MPI theory in terms of the
field-free atomic states. In Sec. II A, we consider a model
square-well problem, and in Sec. II B, the MPI of hydrogen.
We conclude in Sec. III by outlining a set of problems we
intend to consider in the immediate future.

II. NONPERTURBATIVE FRAMEWORK FOR THE
DESCRIPTION OF THE MPI PROCESS

Let us consider a system which consists of a number of
photons with a given frequencyv and momentum vectork
corresponding to an incident plane wave and a targetsatom
or iond. We shall describe the field fully quantum mechani-
cally and write the Hamiltonian of the system as

Ĥ = Ĥatom+ Ĥfield + Ĥint. s1d

Here Ĥatom and Ĥfield have the usual meaning of the Hamil-
tonians of the atom and the field,

Ĥatom= o
i=1

N
pi

2

2
− o

i=1

N
Z

ri
+ o

i,j=1,i. j

N
1

r ij
,

Ĥfield = N̂v. s2d

The atomic Hamiltonian is taken in a nonrelativistic form.

The number operatorN̂ refers to the laser photons only.
The corresponding states of the system consisting of the

noninteracting atom and the field are denoted asual= ua,nl,
where a set of quantum numbersa defines a state of the atom
and n is the number of the laser photons. The following
notations will be kept throughout the paper: Greek letters
will be used to designate the states of a whole system “the
atom plus external field,” while the Latin letters will be used
for the atomic states. The atomic system of units is in use
with e=m="=1.

The part of the HamiltonianĤint which describes the in-
teraction of the atom and the linearly polarized laser field
characterized by angular frequencyv, wave vectork, and
polarization vectore can be written asssee, e.g., Sobelman
f38gd

Ĥint = −
1

c
o
i=1

N SÂ · p̂i −
Â2

2c2D , s3d

where p̂ is the momentum operator andÂ is a quantized
vector potential normalized to the unit volume

Â =Î2pc2

v
esâk

†eik·r + âke
−ik·rd. s4d

Here â† and â have the usual meaning of the operators cre-
ating and annihilating a photon. As mentioned above, we are
interested in sufficiently strong field intensities, when all pro-
cesses of spontaneous emission of photons can be neglected.
For this reason, only one mode corresponding to the wave
vector of the incident laser field is kept in Eq.s4d. Therefore,

here and below,Â describes the laser photons only. We also
restrict ourselves to the dipole approximation in which the

operatorÂ does not act on the atomic coordinates.
The matrix elements of the vector potential operator taken

between the noninteracting states of the system “atom plus
laser photons” are given by the well-known formulasssee,
e.g., Sobelmanf38gd

ka,nuÂ · âub,n − 1l =Î2pc2n

v
kaue · âubl,

ka,nuÂ · âub,n + 1l =Î2psn + 1dc2

v
kaue · âubl, s5d

where â is an arbirtary vector operator acting only on the
coordinates of the atomic sub-system.

In strong fieldn.n−1@1 and the coefficients in Eqs.s5d
can be simplified to

I. A. IVANOV AND A. S. KHEIFETS PHYSICAL REVIEW A 71, 043405s2005d

043405-2



Î2pnc2

v
<Î2psn + 1dc2

v
<

Fc

2v
, s6d

where F is the electric field strength related to the energy
density asF2=8pnv. This leads to the following formulas

for the matrix elements of the operatorĤint:

ka,nuĤintub,n ± 1l = −
F

2v
kaue · p̂ubl,

ka,nuĤintub,n ± 2l =
F2

8v2kaubl,

ka,nuĤintub,nl =
F2

4v2kaubl. s7d

We shall treat the MPI process as a decay phenomenon
within the framework of the quantum decay theory as de-
scribed by Goldberger and Watsonf33g. We shall be inter-
ested in the following process. At the momentt=0, the sys-
tem “atom plus external field” is prepared in the eigenstate

ual of the HamiltonianĤ0=Ĥatom+Ĥfield. Then interaction

Ĥint between atomic and photon subsystems is switched on.
Our aim is to describe possible outcomes of this event. The
partial rates of the decay of the initial statesual into various
open channelsubl are given by the expressions

Gb = 2puTbasEdu2drsEd, s8d

WherersEd denotes the density of states in the final state,
and the transition operatorT satisfies the operator equation
f33g

T̂sEd = Ĥint + Ĥints1 − P̂ad
1

E − Ĥ0

T̂sEd. s9d

HerePa is a projection operator on the initial stateual. In Eq.
s8d, both the matrix element of the transition operator and the
density of states are to be computed at the energy, corre-
sponding to the shifted energy of the initial stateual: E
=Ea+DEa. Finally, the energy shiftDEa of the final state is
related to the diagonal matrix element of the transition op-
erator via the implicit equationf33g

DEa = ReTaasEd. s10d

The form of the latter equation suggests the possibility of an
iterative scheme for the determination of the level shift.
Equations s8d–s10d provide the basis of our calculation
scheme for evaluating the rates of various multiphoton pro-
cesses.

In the alternative formalismf31g, when the MPI process is
treated as a scattering phenomenon, the expression for theT
operator must be corrected for the virtual transitions between
various photodetachment channels. This correction comes
from a careful examination of the boundary conditions which
must be imposed on a scattering wave function in the Flo-
quet representation. In its simplest form, this can be achieved
by dividing the conventional expression for the matrix ele-
ment of theT operator by a Bessel functionJ0 f31g. The

problem outlined by Eqs.s8d–s10d is a decay, or an initial
state, problem. As such, it requires an accurate evaluation of
the initial state which subsequently decays into various open
channels. Indeed, Eq.s8d is a result of evaluation of the
quantum-mechanical amplitudekb uCstdl, where Cstd
evolves from the stateual at t=0 f33g. Therefore, no addi-
tional correction to the transition amplitudess9d is needed.

By introducing in Eq.s9d a complete set of states ofĤ0,
this equation can be rewritten in the form of a spectral rep-
resentation,

Tba = Ĥint
ba + X

gÞa

Ĥint
bgTga

Ea + DEa − Eg + ie
. s11d

Here the sign ofie gives the rule of bypassing the pole when
performing the integration over the continuum spectrum.

The shift of the energy of the initial state is explicitly
included into the set of Eqs.s11d. This circumstance may be
especially important for the atomic systems with more that
one electron. When the escaping electron leaves the atomic
system, the remaining ion still interacts with the electromag-
netic field; the energy shift in Eqs.s11d takes into account
effects of this interaction.

In Fig. 1, we give a graphical representation of Eq.s11d.
Here a straight line with an arrow to the right represents a
target atom and the dashed lines are used to depict the pho-
tons. A vertex with two electron lines and one photon line
represents a dipole matrix elements7d which incorporates
many-electron correlation in the target. For simplicity, we do
not show the quadrupole and monopole matrix elementss11d
which are parametrically small for not very strong fieldsF
,1. A rectangular block stands for theT matrix s11d. In the
low-field regime, the integral term on the right-hand side of
Eq. s11d can be ignored and the atomic ionization is de-

scribed by the bare matrix elementka,nuĤintub,n±1l. The
strong field effects are incorporated in the integral term and
include multiple absorption and emission of the laser pho-
tons.

The sum over the spectrum ofĤ0 in Eq. s11d includes
summation over various number of photons as well as sum-
mation over bound atomic states and integration over the
continuous spectrum of the atom. Computation of the inte-
gral in Eq. s11d can be greatly simplified by introducing a
discrete set of target pseudostates which provides an ad-
equate quadrature rule. As the result of such a discretization,
the set of equationss11d becomes a linear system on the
unknown elements of theT matrix. Once this linear system is

FIG. 1. Diagram representation of the Lippmann-Schwinger
equation for multiphoton ionization. The graphical symbols are de-
scribed in the text.
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solved, all information about the integral and differential fea-
tures of the MPI process can be obtained from the matrix
elements of theT operator taken at the energy corresponding
to the shifted energy of the final state as in Eq.s8d sthe
so-called on shell matrix elementsd. We note that in the
weak-field limit, summation in Eq.s11d can be restricted to
the atomic variables and we arrive at the expression for the
dipole matrix element given by Eq.s12d of Kheifets and
Bray f35g.

A. Square-well model

To illustrate the feasibility of our approach, we first apply
it to a model problem of an MPI process from a one-
dimensional square well. It is this model system that was
considered by Burkeet al. f24g in their seminal paper which
gave rise to the spectacular success of theR-matrix Floquet
theory. We consider here an electron bound initially in a
square-well potentialV=−2.5 a.u. for 0,x,1 andV=0 for
x.1, with the boundary conditionRs0d=0 imposed on the
wave functions. This potential supports only one bound state
a with an energyE=−0.4657 a.u. We consider an MPI pro-
cess when the electric field with the frequencyv=0.2 is
applied such that at least three photons are needed to ionize
the system. To solve this problem, we follow the steps out-
lined in Sec. II. The set of Eqs.s11d is converted into a linear
system on theT-matrix elements by choosing a suitable dis-
cretization procedure for the continuous spectrum integra-
tion. The summation over a set of intermediate statesg in
Eq. s11d is a sum over various numbers of photonsng and
summation and integration over the set of variables specify-
ing the field-free electron states. For the square-well model,
the latter are determined by a single quantum numbersmo-
mentum of the states belonging to the continuous spectrum
or energy of the discrete spectrumd. For a given number of
photons in the set of intermediate statesg, we first determine
if there is a pole in the integral over the continuous spectrum.
Similarly to the electron scattering calculations of Brayf34g,
we divide the momentum integration intervals0,̀ d into five
subintervals.

If the pole is present in the integral, the first two subinter-
vals are chosen to bes0,kpoled andskpole,2kpoled with a typical
number of 60 momentum points in each interval. Then the
d-function singularity is isolated and the remaining principal
value integral is evaluated by a modified Simpson’s rule
f34g. The remaining part of the momentum integral is di-
vided as follows:s2kpole,4d s50 integration pointsd, s4, 10d
s40 pointsd, and s10, 350d s40 pointsd. These intervals are
pole-free and the integration is performed by using a conven-
tional Simpson’s rule. If there is no pole in a given channel,
the integration procedure remains essentially the same except
for the boundary of the first and second intervals, which is
chosen at one atomic unit of momentum. In this case, the
conventional Simpson’s rule is used throughout.

We retained various numbers of photons in the intermedi-
ate state of Eq.s11d. For simplicity, we count this number
from the baseline of three photons in the initial state, which
we denote asa= ua,3l. In the intermediate and final states,
we can then have negative numbers of photons. For example,

n=−1 in the final stateugl would mean that four photons
have been absorbed. Using this convention, the calculations
we performed can be denoted assnmin,nmaxd, meaning that
the number of photons in the intermediate and final states
ranges fromnmin to nmax.

The problem which arises immediately when one tries to
apply Eqs.s11d for the square-well model is the singularity

of the matrix elementsĤint
ba when both statesa, b lie in the

continuum. This is, of course, a consequence of the choice of
the gauge of the vector potential in formulass3d. Fortunately,
as we shall show in the section, this problem can be avoided
for real atomic systems by choosing the interaction Hamil-
tonian in the Kramers-Hennerbergersaccelerationd form. For
the square-well potential, such a choice of the interaction
Hamiltonian is not possible due to the singular character of
the potential. We shall have, therefore, to devise a suitable
procedure of the regularization of the matrix elements of
operators3d when both states belong to the continuous spec-
trum. There is a vast amount of literature devoted to the
study of such matrix elements for various potentialsse.g.,
f39–41gd. We dealt with this problem along the lines de-
scribed in the paper by Mercouriset al. f23g. One can show
that for any potential for which the asymptotic behavior of
the continuous wave function is given byRk~sinskr+dd, the
following result holds:

E
0

`

Rki
srd

d

dr
Rkf

srddr = Vski,kfd +
cossdi − d fd

2
P

1

ki − kf
.

s12d

HereVski ,kfd is a regular function and the symbol P has
the usual meaning of the principal value integral. Note that
this divergence is present only when the velocity formsas in
the present paperd or the length form are used for the elec-
tromagnetic interaction operator; it is absent if the accelera-
tion form is used. The presence of the singularity in the
matrix elements in the velocity and length gauges is a con-
sequence of the use of the spectral representation for the
Green function in Eq.s11d and should disappear from the
final result after the summation over the whole spectrum is
carried out. A convenient way to deal with such integrals is
to introduce a suitable regularization procedure. Different
procedures of this sort can be devised. We shall illustrate the
use of the two simplest methods.

The first regularization scheme consists in computing all
the divergent integrals over some finite intervals0,Dd, hop-
ing that the final results depend only very weakly uponD if
its value is suitably chosen. That this is indeed so can be seen
from the results for the level shift presented in Table I. Ac-
cording to Eq.s10d, this quantity is related to the real part of
the diagonal matrix element of theT operator.

To determine the shift, we devised a simple iterative pro-
cedure, based on Eq.s10d. The linear systems11d was solved
with a trial valueDEa=0, then the value given by the right-
hand side of Eq.s10d was adopted as a new trial value for
DEa. The procedure was repeated until convergence was
achieved. Typically, three iterations were sufficient to
achieve convergence on the level of a fraction of a percent.
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The results of as24,4d calculation using this strategy are
shown in Table I. The calculation was performed for differ-
ent values of the cutoff parameterD. As one can see, the
values for the level shift are fairly stable with respect to the
variations of the regularization parameterD. The stability of
the results withD becomes somewhat worse for very strong
fields sF=0.2 a.u. in Table Id. This, however, is to be ex-
pected as for such strong fields thes24,4d calculation is
probably too small and a larger number of photons should be
included to obtain more accurate results. Results in Table I
should be compared with the plot illustrating the level shift
as a function of the electric field strength from the time-
dependentR-matrix calculation of Burke and Burkef42g.
Although the numerical values are not reported in this paper,
a visual comparison of our data with the plot is quite satis-
factory.

Another regularization scheme, which we found to give
somewhat more stable results for the ionization rates, is
based on the regularization formula for a principal value in-
tegral,

P
1

ki − kf
= lim

e→0

ki − kf

e2 + ski − kfd2 . s13d

Again, one can hope that if the regularization is properly
implemented, the final results do not depend upon the regu-
larization parametere. We analyze these results in the form
of the partial ionization rates computed according to Eq.s8d.
The momentumkf of the final state is determined via the

energy of the initial statea, number of photons in the final
statenf, and the energy shiftDE, given by Eq.s10d,

kf
2

2
= Ea + DE − nfv. s14d

The total ionization rate is the sum of the partial rates over
all the open channels.

In Table II, we show the partial ionization ratesG3,G4,G5
from our s23,3d calculation. The data presented in the table
clearly indicate convergence ase→0. In Table III, we
present the partial ionization ratesGi, where i denotes the
number of absorbed photons for the field strengthF
=0.1 a.u. We used a different number of laser photons
snmin,nmaxd, with nmax=3,4 and nmin=−4,23,22,21,0. In
these calculations, the number of open channels may differ.
For example, in thes24,3d calculation, one may have the
final states with three, four, five, six, or seven photons ab-
sorbed. We remind the reader that we count the number of
photons from the baseline of three photons in the initial state.

As one can see, the partial rates corresponding to pro-
cesses with a large number of photons absorbedsfour and
fived show a certain stability with respect to the number of
photons included in the calculation, which gives us confi-
dence in the results obtained for these partial rates. One may
note, in particular, that forF=0.1 a.u., the partial rateG5
becomes larger than the rateG4.

The partial contribution of various open channels to the
total ionization rate can be judged from the data presented in
Fig. 2, where we plot the branching ratios for the channels
with various numbers of photons in the final state. Again,
one can see that for not very large field strengthssF
,0.05 a.u.d, the contributions of the channels with more
than three photons absorbedslabeledn=4 andn=5 in the
figured can be neglected, though for larger fields their effect
is becoming increasingly important.

TABLE II. Convergence of the partial ionization ratesG3,G4,G5

from the s23,3d calculation with respect to the regularization pa-
rametere in 13. The field strength isF=0.1 a.u.

e3102 G3s10−4 a.u.d G4s10−6 a.u.d G5s10−6 a.u.d

100 1.582 1.7958 5.584

50 1.829 0.9439 5.866

25 2.045 0.2198 6.165

12.5 2.216 0.1252 6.518

6.25 2.334 0.4667 6.552

3.125 2.404 0.7188 6.529

1.563 2.441 0.8496 6.547

0.781 2.454 0.9187 6.578

0.390 2.456 0.9537 6.610

0.195 2.460 0.9682 6.622

TABLE I. Dependence of the level shift from thes24,4d calculation upon the regularization parameterD
sin a.u.d.

D F=0.06 a.u. F=0.1 a.u. F=0.14 a.u. F=0.2 a.u.

30 20.023307 20.065753 20.13132 20.28124

40 20.023305 20.065704 20.13045 20.27645

50 20.023311 20.065794 20.13245 20.29102

60 20.023316 20.065743 20.13386 20.29239

70 20.023313 20.065749 20.13193 20.29839

TABLE III. Ionization rates forF=0.1 a.u.

nmin,nmax G3s10−4 a.u.d G4s10−6 a.u.d G5s10−6 a.u.d

22,3 2.4586 1.0628 6.7172

23,3 2.4562 0.9537 6.6101

24,3 2.4569 0.9644 6.5025

22,4 2.3228 0.8676 6.6303

23,4 2.3208 0.7817 6.5132
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Incidentally, one may note that even thes0,3d calculation
would not correspond exactly to the third-order perturbation
theory. Indeed, solution of the coupled set of Eq.s11d
amounts effectively to summation of an infinite subset of the
perturbation theory terms, as is illustrated in Fig. 1.

The situation becomes somewhat more complicated for
stronger fieldssF.0.1 a.u.d where the level shift is so large
that the channel closing may occur. A look at the data for the
shift presented in Table I shows that whenF<0.14 a.u., the
energy of the initial bound statea is E<−0.6 a.u. and ab-
sorption of the three photons is no longer sufficient to ionize
the system. A more precise value of the field for which the
channel corresponding to absorption of the three photons
closes isF<0.1435 a.u., as shown by Burke and Burkef42g.
A rich variety of phenomena may occur when the field ap-
proaches this critical valuesand larger ones, corresponding
to closing of other channelsd, in particular ionization rates as
functions of electric field intensity may have discontinuities
f42g.

In Fig. 3, we plot the total ionization rate as a function of
the field strength from thes24,3d calculation. The same data
for the total ionization rate are presented in Table IV. In the
figure, we make a comparison with the time-dependent

R-matrix calculation byf42g which was found to be almost
identical to the earlier FloquetR-matrix results by Brukeet
al. f24g.

Our data show a certain trend to deviate from those ob-
tained in Bruke and Brukef42g and Brukeet al. f24g for
smaller field intensities, aroundF>0.02 a.u. This deviation
could probably be attributed to difficulties of numerical char-
acter which are due to the necessity to manipulate the diver-
gent integrals. These are most difficult to cope with for
smaller fields when rates are small. These difficulties may
easily be avoided for “real world” problems. For any realistic
atomic system, writing the electromagnetic interaction opera-
tor in the acceleration form would make all the integrals
well-defined and convergent.

B. Hydrogen atom

We turn now to a more realistic system—the hydrogen
atom in the presence of a monochromatic linearly polarized
laser field. As we mentioned above, this system is in some
sense simpler than the model square-well problem, as we can
use the Kramers-Henneberger form of the interaction Hamil-
tonianf43,44g, which, as we shall see, allows us to avoid all
the problems of divergence of the matrix elements.

If the electromagnetic field is treated classically, the
Kramers-Henneberger Hamiltonian can be obtained from the

minimal-coupling HamiltonianĤmin given by Eqs.s2d and

s3d by means of a canonical transformationĤKH

=eiT̂Ĥmine
−iT̂−]T̂/]t generated by the operatorf44g

T̂ = −
1

c
E

0

t

Astdp dt +
1

2c2E
0

t

A2stddt, s15d

whereA is the vector potential andp is the momentum op-
erator.

In the present approach, when the electromagnetic field is
described quantum mechanically, we need a quantum analog
of the transformations15d. Such a transformation is known
as the Pauli-Fierz canonical transformationf45g. For the case
of the sufficiently intense linearly polarized monochromatic
light, when all the processes of spontaneous radiation are
neglected and the quantized vector potential is given by Eq.
s4d, with only the laser mode photons preserved in the ex-
pansion, this transformation assumes the formf46g

r = r8 +
a

v
Q̂,

p = p8,

FIG. 2. Branching ratios of the partial ionization rate to the total
rate for various open channels in the square-well model.

FIG. 3. Total ionization rate as a function of the field strength.
The solid line shows the presents24,3d calculation. Results of the
time-dependentR-matrix calculation of Burke and Burkef42g are
shown as points.

TABLE IV. Total ionization rate from thes24,3d calculation.

F sa.u.d G sa.u.d F sa.u.d G sa.u.d

0.025 0.192310−7 0.14 0.237310−1

0.05 0.135310−5 0.15 0.119310−2

0.075 0.291310−4 0.16 0.358310−2

0.1 0.254310−4 0.175 0.356310−1

0.125 0.279310−2
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Q̂ = Q̂8,

P̂ = P̂8 −
ap8

v
, s16d

wherea=2eÎp /v, e is the polarization vector, and the op-

eratorsQ̂8 and P̂8 are expressed in terms of creation and
annihilation operators in Eq.s4d via

âk =
1
Î2

sP̂ + iQ̂d,

âk
† =

1
Î2

sP̂ − iQ̂d. s17d

In Eqs.s16d ands17d, primed quantities refer to the origi-
nal slaboratoryd frame, and nonprimed to the Kramers-
Henneberger frame.

Under the transformations16d, the minimal-coupling
Hamiltonians2d becomes

ĤKH =
p2

2
−

1

r
+ Ĥfield + ĤintKH, s18d

where Ĥfield has the same meaning as in Eq.s2d and the
interaction Hamiltonian has the form

ĤintKH = −
1

ur + âu
+

1

r
, s19d

where the operatorâ=F̂ /v2 is related to the operator of the

electric field intensityF̂.
A certain amount of care should be taken when physically

relevant information is to be extracted from the transformed

HamiltonianĤKH, in particular when our aim is to study the
time evolution of a quantum system prepared at the moment
t=0 in a given eigenstate of the field-free Hamiltonian. The
Kramers-Henneberger transformation consists, basically, in
transforming the Schrödinger equation into a noninertial
frame moving with an electron oscillating in the fieldfin the
quantum version of this transformation, this can be seen
from the first of Eqs.s16d, the quantity on the right-hand side
of this equation being essentially an electric field operatorg.
Both the initial- and final-state vectors must then be trans-
formed accordinglyf47,48g. This circumstance may intro-
duce additional complexity in the problem. Below, we report
results on the total ionization rate for multiphoton ionization
of a hydrogen atom. One can present the following argument
showing that if we are interested in integral characteristics,
such as total ionization rate, one need not transform initial
and final states. Indeed, the solution of the set of Eqs.s11d
with the Kramers-Henneberger Hamiltonians18d ands19d is
essentially a study of the singular points of the resolvent

operatorsE−ĤKHd−1 swe will be looking, of course, for the
points lying on the unphysical sheets of the Riehmann sur-
faced. The total ionization rate from the ground state of hy-
drogen obtained below from such a study of the Hamiltonian

ĤKH is in fact related to an imaginary part of one such sin-

gular point. On the other hand, the total ionization rate ob-
tained using the minimal-coupling Hamiltonian is related to

a singular point of the resolvent operatorsE−Ĥmind−1, which

is connected to the resolvent operatorsE−ĤKHd−1 by means
of the canonical transformations16d. The latter transforma-
tion does not change the position of singular points, hence a
study of the singular pointsHKH alonefby means of solving
the set of Eqs.s11dg should give us a correct value for the
total ionization rate.

To apply the strategy based on Eqs.s11d to the system
described by the Kramers-Henneberger Hamiltonian, one
should be able to compute the matrix elements of the opera-
tor s19d. The procedure which we devised for this purpose is
described below.

1. Calculation of matrix elements of Hˆ
int

We shall need the following formula for the matrix ele-
ments of the operator of the electromagnetic field, which can
be obtained analogously to Eqs.s5d:

ka,nua · F̂ ub,ml <
1

2
kaua ·F ubl, n → `, um− nu = 1,

ka,nua · F̂ ub,ml = 0, um− nu Þ 1. s20d

In Eq. s20d, F is the classical vector of electric field strength
anda is an arbitrary vector operator not acting on the photon
variables. The correction term to the nonzero matrix element
in Eq. s20d is of the order ofn−1/2 and is negligible in the
limit of large intensities, which is of interest to us in the
present paper.

Consider first the matrix element

Mmp= kn + pusa · F̂dmunl. s21d

We are interested now only in photonic variables, there-
fore we omitted in Eq.s21d any reference to atomic vari-
ables. It is easy to see thatMmpÞ0 only if m=p+2k with an
integer non-negativek. If this condition is satisfied, it is easy
to show using Eqs.s7d and simple combinatorial analysis
that

Mmp= Sa ·F

2
Dm m!

Sm+ p

2
D!Sm− p

2
D!

. s22d

We can now compute a more complicated matrix element,

kn − puexpha · F̂junl. s23d

By expanding the exponential function in the above expres-
sion, with the use of Eq.s21d and the known series expansion
for the Bessel functionIpsxd f49g,

Ipsxd = S x

2
Dp

o
k=0

` S x

2
D2k

k!Gsk + p + 1d
, s24d

we can obtain the following expression:
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kn + puexpha · F̂junl = Ipsa ·Fd, s25d

whereIpsxd is a modified Bessel function of orderp f49g.
We may now turn to the computation of the matrix ele-

ments of the operators3d. Representing Eq.s3d as a Fourier
transform,

1

ur i + âu
=

1

2p2E eiq·sr+âd

q2 dq, s26d

using expressions25d and the known integral representation
for the modified Bessel functionIpsxd f49g,

Ipsxd =
1

p
E

0

p

ex cosu cospu du, s27d

one can obtain the following formula:

Kn + pU 1

r i
−

1

ur i + F̂/v2u
UnL =

1

p
E

0

p

cospuS 1

r i

−
1

ur i + F cosu/v2uDdu.

s28d

To proceed further, we use a spherical harmonics expansion
f50g,

1

ur i + F cosu/v2u
= o

k=0

Î 4p

2k + 1

r,
k

r.
k+1f− sgnscosudgkYk0srd,

s29d

where r,sr.d is the smallersgreaterd of r i and F cosu /v2.
Here the fieldF is directed along thez axis. Equations29d
allows separation of the radial and angular variables. Angular
parts are evaluated analytically using integrals of products of
several spherical functionsf50g,

E Yl1m1
sVdYl2m2

sVdYl3m3
sVddV

=Îs2l1 + ds2l2 + 1ds2l3 + 1d
4p

Sl1 l2 l3
0 0 0

DS l1 l2 l3
m1 m2 m3

D .

s30d

Radial integrals are computed numerically.

2. Numerical results

We first illustrate our procedure of the calculation of the
matrix elements of the interaction Hamiltonian. With the
help of the formulass28d and s29d, we calculated the inte-

grals ka,n+puĤintub,nl. In the case of a hydrogen atom, the
atomic statesual are characterized by energies and angular
momenta. We computed integrals for a sufficiently dense
grid of energies. As for the range of momenta and a number
of photons retained in the calculation, their upper limits de-
pend on the value of the electric field strength. For moder-
ately high field strengthssF<0.1 a.u.d, it was sufficient to
compute integrals withl , lmax=3 andp,pmax=7. The inte-
grals were computed and stored on a disk.

As one can see from Eq.s28d, in the weak field limitp
=1 and the interaction Hamiltonian in the Kramers-

Hennerberger form reduces to the operatorF̂r / r3v2, which is
commonly used in the first-order calculations performed in
the acceleration gauge. The parameter which measures the
departure of the matrix element of operators28d from the
first-order result is the ratioF /v2. This departure can be
quite significant. To give an illustration of the relative role of
the higher-order corrections in Eq.s28d, we present in Table

V few values of the matrix elementsk1s,n=1uĤintu2p,n=0l
andk1s,n=1uĤintukp,n=0l with momentumk=1 a.u. for dif-
ferent frequencies and electric field strength ofF
=0.0534 a.u. First-order matrix elements are also given in
Table V smarked as PTd. As can be seen, for small frequen-
cies the deviation of the matrix elements from the first-order
values can be significant.

To facilitate comparison with the literature, we performed
a series of calculations for the same set of laser field
strengths and frequencies as reported by Dorret al. f27g, who
used a combination of the Floquet ansatz and theR-matrix
methods. Our results for the level shift and total ionization
rate together with the literature values are summarized in
Table VI.

When presenting their data for the level shifts, Dorret al.
f27g, who performed their calculation in the length gauge,
subtracted the ponderomotive energyEP=F2/4v2 from the
total shift. Since the level shifts in the acceleration and the
length gauge are related asDEA=DEL−EP f24g, the two sets
of data are directly comparable.

We consider first the case of the laser field withv
=0.65 a.u. andF=0.0534 a.u. As noted by Dorret al. f27g,
this is still a perturbative regime. In Eqs.s11d, we need not,
therefore, retain a very large set of intermediate statesg to
achieve convergence.

In the sum over the intermediate states we included the
hydrogen atom states with orbital momentuml =0,1 and a set
of photonic states with numbers of photons ranging from
nmin=−2 to nmax=3. Counting the photons, we use here the
same convention we used in the previous section when deal-
ing with the square-well potential model. We count the total

TABLE V. Matrix elements of the operators3d for F=0.0534 a.u.

Angular
frequency

k1s,n=1uĤintu2p,n=0l k1s,n=1uĤintukp,n=0l
Present PT Present PT

0.65 0.03070 0.03118 0.02126 0.02143

0.184 0.04678 0.08261 0.11335 0.26796
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number of photons in the system from the minimal number
of photons needed to ionize the initial state. Thus, for the
angular frequencyv=0.65 and the ground state of the hydro-
gen atom, we have one photon in the initial state. The state
with n=−1 will then correspond to the state in which two
photons have been absorbed.

As one can see from Table VI, we achieve quite a good
agreement with the data of Dorret al. f27g, both for the total
rate and level shift. For a much larger field and the same
frequencyv=0.65 a.u., we need a larger set of intermediate
states to be included, Eq.s11d. Convergence was achieved
when we included the hydrogen atom states withl , lmax=4
and photonic states with numbers of photons ranging from
nmin=−2 to nmax=3.

For the process of genuine multiphoton ionizationsv
=0.184d, we also have reasonably good agreement with the
results of the FloquetR-matrix calculationf27g. For the field
strengthF=0.0169, we used atomic states with angular mo-
mental ,4 and photonic states withnmin=−1 andnmax=5.
This field value is still in the perturbative regime.

Truly nonperturbative effects appear for larger field
strengths. To obtain the values of the shift and total rate for
F=0.0534, we used atomic states withl ,4 and photonic
states withnmin=−2 andnmax=5.

III. CONCLUSION

We developed a nonperturbative formalism which de-
scribes the MPI process by a set of coupled integral equa-

tions of the Lippmann-Schwinger type. In contrast to the
scattering formalism given in the literaturef9,16,17,19g, we
do not rely on the field modified Volkov states. Instead, we
employ a more convenient set of the field-free atomic states
which is particularly advantageous for complex atomic sys-
tems with more than one target electron. This approach, how-
ever, can only be realized if one is able to generate a com-
plete set of discrete target pseudostates providing an accurate
quadrature rule. In this respect, we rely on the CCC method,
which demonstrated its ability to build an efficient pseu-
dostate basis for one- and two-electron targets. This gives us
confidence that we can implement our computational scheme
for nonperturbative description of MPI in complex atomic
systems such as the helium atom. Thus we should be able to
extend a very successful application of the CCC method to
the weak-field double photoionization to the strong-field do-
main.

We demonstrated the utility of our approach for a model
problem of a square-well potential and a hydrogen atom.
Also, we demonstrated that the partial ionization rates, com-
putation of which is usually the most difficult part of the
problem, remain stable with respect to the number of pho-
tons retained in the calculation.
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