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Lippmann-Schwinger description of multiphoton ionization

I. A. lvanov*'" and A. S. Kheifets
Research School of Physical Sciences and Engineering, The Australian National University, Canberra ACT 0200, Australia
(Received 31 October 2004; published 14 April 2D05

We outline a formalism and develop a computational procedure to treat the process of multiphoton ionization
(MPI) of atomic targets in strong laser fields. We treat the MPI process nonperturbatively as a decay phenom-
enon by solving a coupled set of the integral Lippmann-Schwinger equations. As basic building blocks of the
theory, we use a complete set of field-free atomic states, discrete and continuous. This approach should enable
us to provide both the total and differential cross sections of MPI of atoms with one and two electrons. As an
illustration, we apply the proposed procedure to a simple model of MPI from a square-well potential and to the
hydrogen atom.
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I. INTRODUCTION phenomenon was made by Gabal. [18] and Chenet al.
_ ~ [19], who refined the original GAC theory by including the
In recent years, the process of multiphoton ionizationngnlaser modes of the electromagnetic field.
(MPI) of atomic and molecular species has been a subject of Thjs fully QED approach, although solving the problem
intensive experimental and theoretical studisse reviews in principle, was found to be rather difficult to implement in
by Protopapaet al. [1], Lambropouloset al. [2], Chu and  practice even for the simplest atomic targets such as one- or
Telnov [3], and Posthumug4], and references thergin two-electron atoms. For instance, Chenhal. [19] had to
Rapid progress in this field has been largely driven by admake further drastic approximations in order to carry out
vancement in high-power short-pulse laser techniques. Thiaeir calculation of MPI on atomic hydrogen.

laser intensities which may go beyond*3 0V cmi? make it One possible solution to this problem is to use some suit-
possible to observe many striking phenomena such as MRble square-integrable basis to represent the Green functions
and above-threshold ionization. occurring in the theory. Such an approach, using ideas of the

Accurate theoretical description of ionization processe$0omplex rotation method, has been proposed by Magtiet
occurring in laser fields of such intensities should necessaril§ll- [20]. Another solution is to use the field-free atomic states
go beyond a simple perturbative picture. The first nonpertur@S Puilding blocks of the theory. Such a choice is particularly
bative theory of MPI was proposed by Keldygs], Faisal advantageous when theory is applied to complex atomic sys-

: : tems with more than one target electron. Such an approach
[6], and Reisg7]. Their theory(known as KFR treated the S .
process of MPI as a transition of an electron from an initialWlthln the context of the complex rotation method has been

sed by Mercouris and Nicolaid¢21] and Nicolaides and

E’/glllj(r(')d Staati fm:]?:tgnf”jlf?’]leslt(alia gesﬁg'gsﬁ ?g .tgg d Cslﬁs'lﬁ\f/lercouris[zz]. Description of the quantum-mechanical evo-
vV wave function. pp provi IMP'€ | ution of an atom coupled to a laser field is also possible in

analytical formulas for the MPI rate which were found in the framework of this methof23]
q_ualltat|ve agreement with experiment. Vapous modifica- In the present paper, we outline a quantum formalism for
tions of the KFR theory were made, in particular those 3CMPI which we intend to use for practical computations on

counting for the rescattering procel£s9]. complex atomic systems. The formalism is not entirely new

The KPR theory treated the laser field_ purely c_:lassically.and is based on the ideas expressed earlier in the literature.
The MP! problem can also be formulated in an entirely Quan-The main emphasis of this work is on the pracical implemen-

tum form. The properties of the scattering matrix in this for- .00 o¢ the formlism and turning it into an efficient compu-

mulation of the MPI process have been studied starting from,_ -, procedure. In this development, we are inspired by a

the works of Mower[10,11], Gontieret al. [12,13, Faisal series of works b ;
y Burke and collaborators, who combined
and Moloney[14], and Jackson and Swa[d5]. More re- o Floquet description of the laser field with tRematrix

cently, Guo and Aber§l6] and Guo, Aberg, and Crasemann ; : - :
scattering theory. Following the seminal wd&4], this ap-
[17] put forward an MPI thepry(_refgrred to hereafter as roach has been successfully implemented for calculating the
GAC) \.Nh'Ch treats the ph0t0|0n|zat|on process as a QERutal MPI rate and the level shift in atomic hydrogg2b],
scattering phenomenon. The emphasis in this theory Wageiym [26], the negative hydrogen iof27], and molecular
placed on a proper QED description of an electron interacty 4,oqen[28]. Most recently, theR-matrix Floquet theory
ing with the laser fieldthe quantum version of the Volkov was combined with the basis spline technique to describe the
state$. Further development of the QED picture of the MPI two-electron MPI from the helium atom in the groufzp]
and excited statef30]. In addition to the total MPI rate,
some differential cross sections can also be calculated within
*Corresponding author. Email address: Igor.lvanov@.anu.edu.aihe Floquet formalism, as was demonstrated for atomic hy-
Ton leave from the Institute of Spectroscopy, Russian Academy oflrogen by Potvliege and ShakesH&1] and Potvliegd32].
Sciences. It is the most detailed fully differential cross sections that are
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of particular interest to experimentalists and that we intend to R p? N S Ny
i |
evaluate in our approach. Haom=2> = - > —+ > —,
In the present paper, we employ the operator formalism i=1 2 =T =iz Tl

due to Goldberger and Wats83]. In this formalism, the
MPI process is treated as a decay phenomenon. The partial - N
decay rates and the energy level shifts are evaluated via the Hiield = Ne. (2)
matrix elements of the transition operator which are found byl_ . S . L
solving a coupled set of the integral Lippmann-Schwinger he atomic Ham|ltor1|an is taken in a nonrelativistic form.
equations. In this approach, the matrix elements of the tranFhe number operatdX refers to the laser photons only.
sition operator should be taken between the field-free atomic The corresponding states of the system consisting of the
states accompanied by an integer number of the laser phaoninteracting atom and the field are denotedags |a,n),
tons. where a set of quantum numbexslefines a state of the atom
For one-electron targets, evaluation of the field-free stateand n is the number of the laser photons. The following
is trivial. For two-electron targets, an accurate set of targenotations will be kept throughout the paper: Greek letters
states, both discrete and continuous, can be generated by thél be used to designate the states of a whole system “the
so-called convergent-close-coupling©CC) method. This atom plus external field,” while the Latin letters will be used
method has been extensively tested for processes with twior the atomic states. The atomic system of units is in use
electrons in the continuum such as electron scattering owith e=m=A=1.
atomic hydrogeri34] and low-field double ionization of he-  The part of the Hamiltoniati;,, which describes the in-
lium [35,36. We intend to use the same set of target stategeraction of the atom and the linearly polarized laser field
for MPI of He in the nonperturbative strong-field regime.  characterized by angular frequenay wave vectork, and
In our approach, we ignore all the processes of spontangyolarization vector can be written agsee, e.g., Sobelman
ous emission of photons, which is justified as we are interj3g])
ested in processes induced by strong fields. Since the work of
Shirley [37], it is known that if one neglects spontaneous R 1N A2
processes in the quantum description of the interaction of Him=——2 Apb-—=3]1, (3)
laser light and atom, then the quantum picture and the Flo- Ci=1 2c
quet method of solving the time-dependent Schrodinger A .
equation become equiavalent. Therefore, the present afherep is the momentum operator andl is a quantized
proach and those based on the Floquet ansaizh ag24], vector potential normalized to the unit volume
for example are completely equivalent. However, recasting
the MPI description in the form presented below may have ~ ZLCZ aTakT 4 5e ik
some practical advantages, especially if we have good means A= ® e@e™ +ae™). (4)
of representing the field-free atomic states for complex
atomic systems. This includes, of course, the states belongtere 8" anda have the usual meaning of the operators cre-
ing to the continious spectrum. Such means do exist. Aating and annihilating a photon. As mentioned above, we are
mentioned above, the CCC method turned out to be verjnterested in sufficiently strong field intensities, when all pro-
efficient at representing field-free states of atomic systems. tesses of spontaneous emission of photons can be neglected.
was the desire to exploit fully the possibilities provided by For this reason, only one mode corresponding to the wave
the CCC technique that largely motivated us to give a forwvector of the incident laser field is kept in E¢). Therefore,

mulation of the MPI process presented below. here and belowA describes the laser photons only. We also
The rest of the paper is organized as follows. In Sec. llyegtrict ourselves to the dipole approximation in which the
we give a formulation of the MPI theory in terms of the ~ . .
|operatorA does not act on the atomic coordinates.

field-free atomic states. In Sec. Il A, we consider a mode The matrix elements of the vector potential operator taken
square-well problem, and in Sec. Il B, the MPI of hydrogen. . . p P .
between the noninteracting states of the system “atom plus

We conclude in Sec. Il by outlining a set of problems we laser photons” are given by the well-known formulage
intend to consider in the immediate future. P 9 y ’
e.g., Sobelmaf38])

II. NONPERTURBATIVE FRAMEWORK FOR THE

DESCRIPTION OF THE MPI PROCESS ~ L 2mc’n n
(a,n|A-ab,n-1)=+/ (ale- by,
Let us consider a system which consists of a number of @

photons with a given frequenay and momentum vectdc

corresponding to an incident plane wave and a tafgfetm ) 2n(n+ 12
or ion). We shall describe the field fully quantum mechani- (a,n|A-ab,n+1)=+/———(ale-ab), (5
w

cally and write the Hamiltonian of the system as

H= ﬁat0m+ |:|fie|d+ |:|im_ (1) Wherea is an arbirtary vector operator acting only on the
) ) coordinates of the atomic sub-system.
Here H,iom and Hselg have the usual meaning of the Hamil-  In strong fieldn=n-1>1 and the coefficients in Eq&)
tonians of the atom and the field, can be simplified to
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\/ancz _ \/2w(n+ 1)c? _ E, ®)
0 w 2w

b
where F is the electric field strength related to the energy {; | T //J )
density asF?=8mnw. This leads to the following formulas "=z
for the matrix elements of the operatdy,;:
- F N . . . .
(a,n|Him|b,ni1):—Z<a|e-p\b>, FIG. 1. Diagram representation of the Lippmann-Schwinger

equation for multiphoton ionization. The graphical symbols are de-
scribed in the text.
- F2
(a,nHjb,n+2) = F(a|b), , , L
1) problem outlined by Eqs(8)—(10) is a decay, or an initial
state, problem. As such, it requires an accurate evaluation of
- F2 the initial state which subsequently decays into various open
<aln|Hint|bun>:E<a|b>- (1) channels. Indeed, Eq8) is a result of evaluation of the
quantum-mechanical amplitudgg|W¥(t)), where W(t)
We shall treat the MPI process as a decay phenomenasvolves from the statgn) at t=0 [33]. Therefore, no addi-
within the framework of the quantum decay theory as detional correction to the transition amplitudé®) is needed.
scribed by Goldberger and WatsfB3]. We shall be inter- By introducing in Eq.(9) a complete set of states &0’
ested in the following process. At the momer, the sys-  this equation can be rewritten in the form of a spectral rep-
tem “atom plus externaAI fle|fi" is pfepared in the eigenstatgasentation,
|a) of the HamiltonianHy=H yom*Hiielg- Then interaction

. . . By Tye
H;.. between atomic and photon subsystems is switched on. The = [yBe 4 $ Hind T _ (11)
Our aim is to describe possible outcomes of this event. The M FaE,+ AE, - E,+ie
partial rates of the decay of the initial state$ into various

open channel§3) are given by the expressions

Here the sign ofe gives the rule of bypassing the pole when
performing the integration over the continuum spectrum.
I s = 27(TP(E)|%dp(E), (8) The shift of the energy of the initial state is explicitly

) i i included into the set of Eq$11). This circumstance may be
Where p(E) denotes the density of states in the final stateggpecially important for the atomic systems with more that

and the transition operatdr satisfies the operator equation yne electron. When the escaping electron leaves the atomic
[33] system, the remaining ion still interacts with the electromag-
~ ~ R R 1 - netic field; the energy shift in Eq$11l) takes into account
T(E) =H;; + Hj, (1 - P,) —T(E). (9) effects of this interaction.
E-Hg In Fig. 1, we give a graphical representation of ELf).
Here a straight line with an arrow to the right represents a

HereP,, is a projection operator on the initial stdte. In Eq. . ;
(8), both the matrix element of the transition operator and th arget atom and _the dashed lines are used to depict the_pho-
ons. A vertex with two electron lines and one photon line

density of states are to be computed at the energy, corre- i dipol trix el hich i t
sponding to the shifted energy of the initial state: E represents a dipole matrix elemef® which incorporates

—E,+AE,. Finally, the energy sShifAE, of the final state is many-electron correlation in the target. For simplicity, we do

related to the diagonal matrix element of the transition op-n%t. Sr?ow the quad:qpollle and T?nopole matr|>t< elemfél_ Iélji
erator via the implicit equatiof3)] which are parametrically small for not very strong fiels

< 1. A rectangular block stands for tAHematrix (11). In the
AE,=ReT*(E). (10 low-field regime, the integral term on the right-hand side of
. . Eq. (11) can be ignored and the atomic ionization is de-
The form of the latter equation suggests the possibility of an . ) ~
iterative scheme for the determination of the level shift.5cibed by the bare matrix elemefd,n/H,|b,n+1). The
Equations (8)—(10) provide the basis of our calculation Strong field gffects are |r_1corporated.|n_the integral term and
scheme for evaluating the rates of various multiphoton proinclude multiple absorption and emission of the laser pho-
cesses. ton A

In the alternative formalisf81], when the MPI process is The sum over the spectrum &f, in Eq. (11) includes
treated as a scattering phenomenon, the expression fdr thesummation over various number of photons as well as sum-
operator must be corrected for the virtual transitions betweemation over bound atomic states and integration over the
various photodetachment channels. This correction comesontinuous spectrum of the atom. Computation of the inte-
from a careful examination of the boundary conditions whichgral in Eq. (11) can be greatly simplified by introducing a
must be imposed on a scattering wave function in the Flodiscrete set of target pseudostates which provides an ad-
guet representation. In its simplest form, this can be achievedquate quadrature rule. As the result of such a discretization,
by dividing the conventional expression for the matrix ele-the set of equation$ll) becomes a linear system on the
ment of theT operator by a Bessel functiody [31]. The  unknown elements of thE matrix. Once this linear system is
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solved, all information about the integral and differential fea-n=-1 in the final statdy) would mean that four photons
tures of the MPI process can be obtained from the matrihave been absorbed. Using this convention, the calculations
elements of th@ operator taken at the energy correspondingwe performed can be denoted @s"",n™®), meaning that
to the shifted energy of the final state as in E§) (the the number of photons in the intermediate and final states
so-called on shell matrix elemehtsWe note that in the ranges frorn™" to n™
weak-field limit, summation in Eq11) can be restricted to The problem which arises immediately when one tries to
the atomic variables and we arrive at the expression for thepply Eqgs.(11) for the square-well model is the singularity
dipole matrix element given by Eq12) of Kheifets and  of the matrix element$i£2 when both states, 4 lie in the
Bray [35]. continuum. This is, of course, a consequence of the choice of
the gauge of the vector potential in formul@s. Fortunately,
as we shall show in the section, this problem can be avoided
for real atomic systems by choosing the interaction Hamil-

To illustrate the feasibility of our approach, we first apply tonian in the Kramers-Hennerbergeiccelerationform. For
it to a model problem of an MPI process from a one-the square-well potential, such a choice of the interaction
dimensional square well. It is this model system that wasqamiltonian is not possible due to the singular character of
considered by Burket al.[24] in their seminal paper which the potential. We shall have, therefore, to devise a suitable
gave rise to the spectacular success ofRhmatrix Floquet  procedure of the regularization of the matrix elements of
theory. We consider here an electron bound |n|t|a”y in aoperator(3) when both states be|0ng to the continuous spec-
square-well potentia¥=-2.5 a.u. for 6<x<1 andV=0 for  trym. There is a vast amount of literature devoted to the
x>1, with the boundary conditioR(0)=0 imposed on the study of such matrix elements for various potentiesy.,
wave functions. This potential supports only one bound statg39-41]). We dealt with this problem along the lines de-
a with an energyE=-0.4657 a.u. We consider an MPI pro- scribed in the paper by Mercouri al.[23]. One can show
cess when the electric field with the frequen@y0.2 is  that for any potential for which the asymptotic behavior of
applied such that at least three photons are needed to ionizige continuous wave function is given Byo sin(kr+8), the
the system. To solve this problem, we follow the steps outfol|lowing result holds:
lined in Sec. Il. The set of Eq$11) is converted into a linear
system on th&@-matrix elements by choosing a suitable dis- w
cretization procedure for the continuous spectrum integra- f d =V(k cosg-d), 1
; , ; . . R (N~ R (Ndr = V(k;, k) + P :
tion. The summation over a set of intermediate statdn o o dr 2 ki — ks
Eqg. (12) is a sum over various numbers of photamsand (12)
summation and integration over the set of variables specify-
ing the field-free electron states. For the square-well model, HereV(k;,k;) is a regular function and the symbol P has
the latter are determined by a single quantum nunfb®r-  the usual meaning of the principal value integral. Note that
mentum of the states belonging to the continuous spectrunthis divergence is present only when the velocity fdam in
or energy of the discrete spectrunfror a given number of the present papgor the length form are used for the elec-
photons in the set of intermediate stajesve first determine tromagnetic interaction operator; it is absent if the accelera-
if there is a pole in the integral over the continuous spectrumtion form is used. The presence of the singularity in the
Similarly to the electron scattering calculations of Bfa¥, matrix elements in the velocity and length gauges is a con-
we divide the momentum integration interv@le) into five  sequence of the use of the spectral representation for the
subintervals. Green function in Eq(11) and should disappear from the

If the pole is present in the integral, the first two subinter-final result after the summation over the whole spectrum is
vals are chosen to U@ ,kpge) and (Koo, 2Kq0ie) With @ typical  carried out. A convenient way to deal with such integrals is
number of 60 momentum points in each interval. Then theo introduce a suitable regularization procedure. Different
S-function singularity is isolated and the remaining principal procedures of this sort can be devised. We shall illustrate the
value integral is evaluated by a modified Simpson’s ruleuse of the two simplest methods.
[34]. The remaining part of the momentum integral is di- The first regularization scheme consists in computing all
vided as follows:(2K,e,4) (50 integration points (4, 10 the divergent integrals over some finite inter¢@|D), hop-
(40 pointg, and (10, 350 (40 point3. These intervals are ing that the final results depend only very weakly upiif
pole-free and the integration is performed by using a convenits value is suitably chosen. That this is indeed so can be seen
tional Simpson’s rule. If there is no pole in a given channel,from the results for the level shift presented in Table I. Ac-
the integration procedure remains essentially the same exceparding to Eq.(10), this quantity is related to the real part of
for the boundary of the first and second intervals, which isthe diagonal matrix element of thieoperator.
chosen at one atomic unit of momentum. In this case, the To determine the shift, we devised a simple iterative pro-
conventional Simpson'’s rule is used throughout. cedure, based on EL0). The linear systenill) was solved

We retained various numbers of photons in the intermediwith a trial valueAE,=0, then the value given by the right-
ate state of Eq(11). For simplicity, we count this number hand side of Eq(10) was adopted as a new trial value for
from the baseline of three photons in the initial state, whichAE,. The procedure was repeated until convergence was
we denote asr=|a,3). In the intermediate and final states, achieved. Typically, three iterations were sufficient to
we can then have negative numbers of photons. For examplachieve convergence on the level of a fraction of a percent.

A. Square-well model
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TABLE |. Dependence of the level shift from tiie-4,4) calculation upon the regularization parameer

(in a.u).

D F=0.06 a.u. F=0.1 a.u. F=0.14 a.u. F=0.2 a.u.
30 —0.023307 —0.065753 —0.13132 —0.28124
40 —0.023305 —0.065704 —0.13045 —0.27645
50 —0.023311 —0.065794 —0.13245 —0.29102
60 —0.023316 —0.065743 —0.13386 —0.29239
70 —0.023313 —0.065749 —0.13193 —0.29839

The results of d—4,4) calculation using this strategy are energy of the initial stater, number of photons in the final
shown in Table |. The calculation was performed for differ- staten;, and the energy shifhE, given by Eq.(10),
ent values of the cutoff paramet&. As one can see, the
values for the level shift are fairly stable with respect to the
variations of the regularization paramefzr The stability of
the results withD becomes somewhat worse for very strong
fields (F=0.2 a.u. in Table)l This, however, is to be ex- The total ionization rate is the sum of the partial rates over
pected as for such strong fields tlie4,4) calculation is all the open channels.
probably too small and a larger number of photons should be In Table II, we show the partial ionization rat€g,I"4,I's
included to obtain more accurate results. Results in Table from our (—3,3) calculation. The data presented in the table
should be compared with the plot illustrating the level shiftclearly indicate convergence as—0. In Table IIl, we
as a function of the electric field strength from the time-present the partial ionization raté$, wherei denotes the
dependentR-matrix calculation of Burke and Burkf42].  number of absorbed photons for the field strendth
Although the numerical values are not reported in this paper0.1 a.u. We used a different number of laser photons
a visual comparison of our data with the plot is quite satis{n™",n™®), with N"™*=3,4 andn™"=-4,-3,—2,—1,0. In
factory. these calculations, the number of open channels may differ.

Another regularization scheme, which we found to giveFor example, in th€—4,3) calculation, one may have the
somewhat more stable results for the ionization rates, ifinal states with three, four, five, six, or seven photons ab-
based on the regularization formula for a principal value in-sorbed. We remind the reader that we count the number of
tegral, photons from the baseline of three photons in the initial state.

As one can see, the partial rates corresponding to pro-
p =lim ki~ ki _ (13)  cesses with a large number of photons absortiedr and
ki—ki e—0€+ (k —ki)? five) show a certain stability with respect to the number of
photons included in the calculation, which gives us confi-
dence in the results obtained for these partial rates. One may
uﬁote, in particular, that foF=0.1 a.u., the partial raté’g
becomes larger than the rdfg.

The partial contribution of various open channels to the
total ionization rate can be judged from the data presented in
Fig. 2, where we plot the branching ratios for the channels

TABLE II. Convergence of the partial ionization ratg'sI's  with various numbers of photons in the final state. Again,
from the (.—3,3) calcullation with re;pect to the regularization pa- gne can see that for not very large field strengths
rametere in 13. The field strength i=0.1 a.u. <0.05 a.u), the contributions of the channels with more
than three photons absorbéldbeledn=4 andn=5 in the
figure) can be neglected, though for larger fields their effect

k2
Ef:Ea+AE—nfw. (14)

Again, one can hope that if the regularization is properly
implemented, the final results do not depend upon the reg
larization parametee. We analyze these results in the form
of the partial ionization rates computed according to @y.

The momentumk; of the final state is determined via the

exX 107 I'3(107 a.u) I',(10°% a.u) I's(10%a.u)

100 1.582 1.7958 5584 is becoming increasingly important.

50 1.829 0.9439 5.866

25 2.045 0.2198 6.165 TABLE Ill. lonization rates forF=0.1 a.u.

crn 25 ouer s PP T10taw 00w T10tau)
3.125 2.404 0.7188 6.529 -2,3 2.4586 1.0628 6.7172
1.563 2.441 0.8496 6.547 -3,3 2.4562 0.9537 6.6101
0.781 2.454 0.9187 6.578 —-4,3 2.4569 0.9644 6.5025
0.390 2.456 0.9537 6.610 —-2,4 2.3228 0.8676 6.6303
0.195 2.460 0.9682 6.622 -3,4 2.3208 0.7817 6.5132
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1.0 0.030 TABLE IV. Total ionization rate from thé—4,3) calculation.
- 0.025 & F (a.u) T (a.u) F (a.u) T (a.u)
o ')
2 0020F  0.025 0192107 0.4 0.23% 107!
3 < 005 0.135¢10°® 0.15 0.11% 102
s 0.015 .3 0.075 0.29 104 0.16 0.358< 1072
g o1 0.254¢10*  0.175 0.356¢ 1071
£ 0.010 &
9 = 0.125 0.27% 1072
< [¥]
& 0.005 &

@

10.000 R-matrix calculation by[42] which was found to be almost
0.8 0.02 0.03 0.04 0.05 0.06 0.07 0.08 009 010 identical to the earlier FloqueR-matrix results by Brukest
F (a.u) al. [24].

Our data show a certain trend to deviate from those ob-
FIG. 2. Branching ratios of the partial ionization rate to the totaltained in Bruke and Bruk¢42] and Brukeet al. [24] for
rate for various open channels in the square-well model. smaller field intensities, arourfel=0.02 a.u. This deviation
could probably be attributed to difficulties of numerical char-
Incidentally, one may note that even tt3) calculation  acter which are due to the necessity to manipulate the diver-
would not correspond exactly to the third-order perturbatiorgent integrals. These are most difficult to cope with for
theory. Indeed, solution of the coupled set of HG1l)  smaller fields when rates are small. These difficulties may
amounts effectively to summation of an infinite subset of thegasily be avoided for “real world” problems. For any realistic
perturbation theory terms, as is illustrated in Fig. 1. atomic system, writing the electromagnetic interaction opera-
The situation becomes somewhat more complicated fofor in the acceleration form would make all the integrals
stronger fieldfF>0.1 a.u) where the level shift is so large well-defined and convergent.
that the channel closing may occur. A look at the data for the
shift presented in Table | shows that whér=0.14 a.u., the B. Hydrogen atom

energy of the initial bound state is E~-0.6 a.u. and ab- We turn now to a more realistic system—the hydrogen
sorption of the three photons is no longer sufficient to ionizeatom in the presence of a monochromatic linearly polarized
the system. A more precise value of the field for which thejaser field. As we mentioned above, this system is in some
channel corresponding to absorption of the three photonsense simpler than the model square-well problem, as we can
closes is=~0.1435 a.u., as shown by Burke and Bufk&].  yse the Kramers-Henneberger form of the interaction Hamil-
A rich variety of phenomena may occur when the field ap-tonian[43,44], which, as we shall see, allows us to avoid all
proaches this critical valugand larger ones, corresponding the problems of divergence of the matrix elements.
to closing of other channelsin particular ionization rates as  |f the electromagnetic field is treated classically, the
functions of electric field intensity may have discontinuities Kramers-Henneberger Hamiltonian can be obtained from the
[42]. . ) S

In Fig. 3, we plot the total ionization rate as a function of minimal-coupling Ham|lton|aer,_n given by Eqs.(?) and
the field strength from thé—4,3) calculation. The same data (3. Py means of a canonical transformatiofy

for the total ionization rate are presented in Table IV. In the=€"Hpise”T—dT/ ot generated by the operatpt4]

figure, we make a comparison with the time-dependent R 1t 1 ,
0 T= Cfo A(7)p dr+ ZCZJOA (ndr, (15
:,5 ey whereA is the vector potential and is the momentum op-
e erator.
g 6l In the present approach, when the electromagnetic field is
8 described quantum mechanically, we need a quantum analog
T 9 of the transformation{15). Such a transformation is known
g as the Pauli-Fierz canonical transformatjds]. For the case
=12 of the sufficiently intense linearly polarized monochromatic
2 . light, when all the processes of spontaneous radiation are
%%_15 - ‘ ‘ ‘ neglected and the quantized vector potential is given by Eq.
- 30 2.5 2.0 1.5 1.0 0.5 (4), with only the laser mode photons preserved in the ex-
log,, electric field strength (a.u.) pansion, this transformation assumes the fo46]
FIG. 3. Total ionization rate as a function of the field strength. r=r’+ EQ,
The solid line shows the presefit4,3) calculation. Results of the w

time-dependenR-matrix calculation of Burke and Burkgt2] are
shown as points. p=p’,
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Q—Q’ gular point. On the other hand, the total ionization rate ob-
' tained using the minimal-coupling Hamiltonian is related to

. ap a singular point of the resolvent opera(E[—Hmin)‘l, which
=P - o (16) s connected to the resolvent operatBrHy,,)~ by means
- of the canonical transformatiofi6). The latter transforma-
wherea=2e\w/ w, € is the polarization vector, and the op- tion does not change the position of singular points, hence a
eratorsQ’ and P’ are expressed in terms of creation andstudy of the singular pointsl alone[by means of solving

annihilation operators in Eq4) via the set of Eqs(11)] should give us a correct value for the
total ionization rate.
ék:#(,sﬂé), To apply the strategy based on Eq$§l) to the system
V2 described by the Kramers-Henneberger Hamiltonian, one

should be able to compute the matrix elements of the opera-

1 ~ tor (19). The procedure which we devised for this purpose is
al= “‘_E(P -iQ). (17)  described below.
\!

In Egs.(16) and(17), primed quantities refer to the origi- 1. Calculation of matrix elements of kK

nal (laboratory frame, and nonprimed to the Kramers-  \ye shall need the following formula for the matrix ele-

Henneberger frame. , . , ments of the operator of the electromagnetic field, which can
Under the transformation16), the minimal-coupling be obtained analogously to EdS):

Hamiltonian(2) becomes
2

P 1
~ pc 1 - N (a,n|a-F|b,m) = —(ala-F|b), n—w, |m-n=1,
Hin = PR Hiieta + HinticH» (18) a-Fl 2 2-Fl | |
where Hyeq has the same meaning as in H&) and the <a,n|a-|3|b,m):0, Im=n| # 1. (20)

interaction Hamiltonian has the form
In Eq. (20), F is the classical vector of electric field strength
0 _ 1 . 1 (19) anda is an arbitrary vector operator not acting on the photon
IntkH = r+a r’ variables. The correction term to the nonzero matrix element
in Eq. (20) is of the order ofn™2 and is negligible in the

where the operatoit,/:lelw2 is related to the operator of the limit of large intensities, which is of interest to us in the

electric field intensityF. present paper. _
A certain amount of care should be taken when physically Consider first the matrix element
relevant information is to be extracted from the transformed A
Mpmp=(n+pl(@-F)"n). (21)

HamiltonianHy, in particular when our aim is to study the
time evolution of a quantum system prepared at the moment We are interested now only in photonic variables, there-
t=0 in a given eigenstate of the field-free Hamiltonian. Thefore we omitted in Eq(21) any reference to atomic vari-
Kramers-Henneberger transformation consists, basically, iables. It is easy to see thislt,,# 0 only if m=p+2k with an
transforming the Schrodinger equation into a noninertiainteger non-negativk. If this condition is satisfied, it is easy
frame moving with an electron oscillating in the fidid the  to show using Eqs(7) and simple combinatorial analysis
guantum version of this transformation, this can be seemhat

from the first of Eqs(16), the quantity on the right-hand side "

of this equation being essentially an electric field opefator M. = (a-F) m! (22)
Both the initial- and final-state vectors must then be trans- mp 2 m+p) (m-p) '

formed accordingly{47,48. This circumstance may intro- IANEA

duce additional complexity in the problem. Below, we report

results on the total ionization rate for multiphoton ionization We can now compute a more complicated matrix element,
of a hydrogen atom. One can present the following argument -

showing that if we are interested in integral characteristics, (n-plexp{a- F}{n). (23
such as total ionization rate, one need not transform initia
and final states. Indeed, the solution of the set of Ef.

with the Kramers-Henneberger Hamiltoniék8) and(19) is
essentially a study of the singular points of the resolven

|3y expanding the exponential function in the above expres-
sion, with the use of Eq21) and the known series expansion
{or the Bessel functiom,(x) [49],

operator(E—I:|KH)‘1 (we will be looking, of course, for the X %

points lying on the unphysical sheets of the Riehmann sur- x\PZ 2

face. The total ionization rate from the ground state of hy- lo(X) = > > KL k+p+r 1)’ (24)
k=0 K! p+1)

drogen obtained below from such a study of the Hamiltonian
Hyy is in fact related to an imaginary part of one such sin-we can obtain the following expression:

043405-7
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TABLE V. Matrix elements of the operatdB) for F=0.0534 a.u.

Angular (1s,n=1|H;,|2p,n=0) (1s,n=1|H;,/kp,n=0)

frequency Present PT Present PT

0.65 0.03070 0.03118 0.02126 0.02143

0.184 0.04678 0.08261 0.11335 0.26796

(n+ p|exp{a-l5}|n> =l,a-F), (25 grals(a,n+ p||:|im|b,n>. In the case of a hydrogen atom, the

wherel(x) is a modified Bessel function of order[49].

We may now turn to the computation of the matrix ele-

ments of the operatdB). Representing Eq.3) as a Fourier
transform,

1 1 [ eera
——=->| ———da, 26
|I’i + &| 2772f q2 d ( )

using expressioii25) and the known integral representation
for the modified Bessel functiohy(x) [49],

1 o
|p(X) = _f
mJo

one can obtain the following formula:

(S

fi

€% cosph do, (27)

1

Ir,+Flw?

”j
0
1

" |ri+F cos6le?]

cosp0<

r

o

(28)

atomic statega) are characterized by energies and angular
momenta. We computed integrals for a sufficiently dense
grid of energies. As for the range of momenta and a number
of photons retained in the calculation, their upper limits de-
pend on the value of the electric field strength. For moder-
ately high field strength$F~0.1 a.u), it was sufficient to
compute integrals with<<l,,x=3 andp<pma="7. The inte-
grals were computed and stored on a disk.

As one can see from E@28), in the weak field limitp
=1 and the interaction Hamiltonian in the Kramers-

Hennerberger form reduces to the oper&tofr3w?, which is
commonly used in the first-order calculations performed in
the acceleration gauge. The parameter which measures the
departure of the matrix element of operat@8) from the
first-order result is the ratid-/w?. This departure can be
quite significant. To give an illustration of the relative role of
the higher-order corrections in E({8), we present in Table

V few values of the matrix eIemen(&s,n:1|I:|im|2p,n:0>
and(1s,n=1|H;,/kp,n=0) with momenturk=1 a.u. for dif-
ferent frequencies and electric field strength &f

=0.0534 a.u. First-order matrix elements are also given in
Table V (marked as PJ As can be seen, for small frequen-

To proceed further, we use a spherical harmonics expansiaties the deviation of the matrix elements from the first-order

[50],

1 4 rk< K
7 F costia?] 2 \ Zcr 1l S9r(E0sOTYiolD),

<
(29

wherer_(r-) is the smaller(greatey of r; and F cosé/ w?.
Here the fieldF is directed along the axis. Equation(29)

values can be significant.

To facilitate comparison with the literature, we performed
a series of calculations for the same set of laser field
strengths and frequencies as reported by Boal.[27], who
used a combination of the Floquet ansatz andRkheaatrix
methods. Our results for the level shift and total ionization
rate together with the literature values are summarized in
Table VI.

allows separation of the radial and angular variables. Angular When presenting their data for the level shifts, Detral.
parts are evaluated analytically using integrals of products df27], who performed their calculation in the length gauge,

several spherical function$0],

f YI 1ml(fl)Yl 2mz((L)YI 3m3((2)d(2

e

Radial integrals are computed numerically.

+)(2l,+1)(2153+1)
417

|3>
mg/’

(30)

P
my

ly
m

FRPIE
000

2. Numerical results

subtracted the ponderomotive enefgy=F?/4w? from the
total shift. Since the level shifts in the acceleration and the
length gauge are related A&*=AE--E, [24], the two sets
of data are directly comparable.

We consider first the case of the laser field with
=0.65 a.u. and==0.0534 a.u. As noted by Dost al. [27],
this is still a perturbative regime. In Egdll), we need not,
therefore, retain a very large set of intermediate statés
achieve convergence.

In the sum over the intermediate states we included the
hydrogen atom states with orbital momentlm0,1 and a set
of photonic states with numbers of photons ranging from

We first illustrate our procedure of the calculation of the n,,;,=-2 to n,,,=3. Counting the photons, we use here the

matrix elements of the interaction Hamiltonian. With the
help of the formulag28) and (29), we calculated the inte-

same convention we used in the previous section when deal-
ing with the square-well potential model. We count the total
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TABLE VI. Total ionization rates and shifts for atomic hydrogen in a linearly polarized field of frequency
 and strength Fa.u). Numbers in parentheses represent data of Boal. [27].

Angular Field Total ionization rate Shift
frequency strength  Present Doret al. [27] Present Doret al. [27]
0.65 0.0534  0.00263 0.00256 0.000364 0.000360
0.754 0.13 0.14 0.176 0.195
0.184 0.0169 9.X10° 8.8x 107 —0.002910 —0.002543
0.0534  1.3x%10° 1.40x 1073 —0.0280 —0.0257

number of photons in the system from the minimal numbettions of the Lippmann-Schwinger type. In contrast to the
of photons needed to ionize the initial state. Thus, for thescattering formalism given in the literatuf®,16,17,19, we
angular frequencyw=0.65 and the ground state of the hydro- do not rely on the field modified Volkov states. Instead, we
gen atom, we have one photon in the initial state. The statemploy a more convenient set of the field-free atomic states
with n=-1 will then correspond to the state in which two which is particularly advantageous for complex atomic sys-
photons have been absorbed. tems with more than one target electron. This approach, how-
As one can see from Table VI, we achieve quite a goockver, can only be realized if one is able to generate a com-
agreement with the data of Dcet al.[27], both for the total  plete set of discrete target pseudostates providing an accurate
rate and level shift. For a much larger field and the sameuadrature rule. In this respect, we rely on the CCC method,
frequencyw=0.65 a.u., we need a larger set of intermediatewhich demonstrated its ability to build an efficient pseu-
states to be included, Eq1l1). Convergence was achieved dostate basis for one- and two-electron targets. This gives us
when we included the hydrogen atom states with,,,,=4  confidence that we can implement our computational scheme
and photonic states with numbers of photons ranging fronfor nonperturbative description of MPI in complex atomic
Nin="—2 t0 Nyax=3. systems such as the helium atom. Thus we should be able to
For the process of genuine multiphoton ionizatian  extend a very successful application of the CCC method to
=0.189, we also have reasonably good agreement with thé¢he weak-field double photoionization to the strong-field do-

results of the FloqueR-matrix calculatior{27]. For the field

strengthF=0.0169, we used atomic states with angular mo-

mental <4 and photonic states with,;,=-1 andny=5.
This field value is still in the perturbative regime.

main.

We demonstrated the utility of our approach for a model
problem of a square-well potential and a hydrogen atom.
Also, we demonstrated that the partial ionization rates, com-

Truly nonperturbative effects appear for larger field putation of which is usually the most difficult part of the
strengths. To obtain the values of the shift and total rate foproblem, remain stable with respect to the number of pho-

F=0.0534, we used atomic states withi4 and photonic
states withn,,;,=—2 andn»=>5.

IIl. CONCLUSION

tons retained in the calculation.
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