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Triangular symmetric molecules with mirror symmetry perpendicular to the threefold axis are forbidden to
have a fixed electrical dipole moment. However, if the ground state is orbitally degenerate and lacks inversion
symmetry, then a “quantum” dipole moment does exist. The system of three electrons inD3h symmetry is our
example. This system is realized in triatomic molecules like Na3. Unlike the fixed dipole of a molecule like
water, the quantum moment does not point in a fixed direction, but lies in the plane of the molecule and takes

quantized values ±m0 along any direction of measurement in the plane. An electric fieldFW in the plane leads to

a linear Stark splitting ±m0uFW u. We introduce a toy model to study the effect of Jahn-Teller distortions on the
quantum dipole moment. We find that the quantum dipole property survives when the dynamic Jahn-Teller
effect is included if the distortion of the molecule is small. Linear Stark splittings are suppressed in low fields
by molecular rotation, just as the linear Stark shift of water is suppressed, but will be revealed in moderately
large applied fields and low temperatures. Coulomb correlations also give a partial suppression.
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I. INTRODUCTION

Moro et al. sde Heer’s groupf1,2gd found an unexpected
low-temperature electrical dipole, apparently not classical, in
nearly all clusters ofN niobium atoms with 2,N,150.
Here we use theX3 molecule to propose an answer to the
question as to what a nonclassical electrical dipole might be.
Our model electrical dipole bears a close analogy to the non-
classical magnetic moment of a spin-1/2 particle. It is mean-
ingless to ask the direction of the moment of an isolated
electron, because different components of the moment opera-

tor do not commute. In a fieldBW the degeneracy with respect
to spin degrees of freedom is lifted and the ground state has

energyE0=−mBuBW u and is characterized by having maximal

projection of the momentmW M =k0umŴ Mu0l=mBB̂ along the
magnetic field.

If the electron is not isolated but in contact with a heat
bath, the statistical average of the moment ismW M

=mB tanhsmBuBW u /kBTdB̂. The susceptibility has the Curie
form x=mB

2 /kBT. The thermal behavior at weak applied
fields is classicalf3g, with a well-defined linear response

mW M =xBW . The operational definition of a dipole is a Curie
response of the isolated system, and the moment is found
from ÎxT. Classically we know that the moment points at
some angleu to the field and precesses. Quantum mechanics
forces a more abstract view, which replaces the direction of
the moment by the “quantization axis.”

Usually we think of an electrical dipole momentmW on a
molecule in classical terms. When rigidly fixed in space, the
moment has a value which is not quantized in atomic units
eaB. Its value is an accidental result of chemistry. In the
frame of the molecule, the components of the electric dipole
moment operator commute, so a direction can be defined in
this frame. A thermalized vapor of molecules has moments

randomly oriented. In an electric fieldFW there is a net polar-

ization proportional toFW , corresponding to an average dipole

per moleculexFW , with the Curie formx=m2/3kBT f3g. Quan-
tum mechanics enters in the usual picture whenkBT is small
enough that the spacing of quantized rotational levelsErot
=s"2/2IdLsL+1d is no longer negligible. The ground state
L=0 has full rotational symmetry with zero average dipole,
and the Curie divergence is cut off, replaced byx
→m2/ s"2/2Id f3,4g.

More interesting quantum effects, including noncommu-
tation of the relevant matrix elements of the electric dipole
operator, may occur when the molecule has an orbitally de-
generate ground state and lacks an inversion center. We con-
sider the simplest case, with equilateral triangularsD3hd sym-
metry. Afixedsclassicald electrical dipole is inconsistent with
D3h symmetry. To quote Townes and Schawlow, “there can
be no dipole moment perpendicular to the axis of a symmet-
ric top” f5g. This statement is also true in quantum mechan-
ics if the ground state is nondegenerate. However, there is a
nonzero electrical dipole matrix in the doubly degenerateE
representation ofD3h. This matrix has noncommuting Carte-
sian components. The moment exhibits quantum behavior
similar to the spin of an electron. Further quantum effects
suppress this moment, similar to the way zero-point rotation
suppresses the usual molecular momentf3,4,6g, but there are
very interesting differences. Orbital magnetic moments also
occur in this model and are discussed in Appendix A.

Our modelsSec. IId is a simplified picture of an alkali-
metal trimer like Na3. We start with a rigid equilateral tri-
angle geometry, fixed in space, representing, for example,
three atoms. All electrons except the outer three valence elec-
trons sone per atomd are frozen. One alternate realization is
the “R center” in an alkali-metal halide crystalf7g. In crys-
talline NaF, for example, the center has three adjacent F−

vacancies with equilateral triangular symmetry in as111d
plane. Each vacancy binds one electron donated by neighbor-
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ing Na+ ions. Another alternate realization is a quantum well
with triangular shapef8g, gated to hold three electrons or
three identical closely coupled quantum dots in triangular
geometry, gated to hold one electron each.

Because we want our model to be relevant to NbN clus-
ters, we must add some additional physics. We consider all
distortions of the triangle in linear approximationsSec. IIId.
These have a particular importance because of a Jahn-Teller
instability and a Longuet-Higgins-Berry phase that inverts
the order of singly and doubly degenerate levelssSec. IVd
and restores the ground-state degeneracy. We also consider
rotations in space, but, for simplicity, only in two dimensions
sSec. Vd. Additional complications coming from higher-order
couplings, from rotations in the third dimensionsthese do not
alter anything fundamentald, and from antisymmetry of the
nuclear wave functionsthe Na nucleus is a spin-3/2 fermiond
are omitted for now. We plan to discuss some of these in a
subsequent paperf9g which will focus on the Na3 trimer.

II. DIPOLE MOMENT OF UNDISTORTED TRIMER

The minimal toy model has three electrons which reside
in a Hilbert space of threes orbitals unl , n=0,1,2, located
on “atoms” which define vertices of a triangle. This crudely
represents the outer electrons of an alkali- or noble-metal
trimer X3. The subsequent paper will make contact with the
specific case of Na3.

We define positions ofX nuclei asRW n, n=0,1,2. Wewrite

RW n=V̂rWn, where rWn=rWn0+uWn give positions of nuclei in an
internal reference frame of the molecule. The orientation of
the molecular frame with respect to the laboratory frame is

given by an SOs3d matrix V̂ which can be parametrized by
three Euler angles. We choose the internal coordinatesx,y,z
such that the molecule lies in thexy plane. The atoms have
small displacementsuWn relative to equilateral triangular po-

sitions rWn0=r0ĵn. The equilateral vertices are labeled by the

unit vectorsĵn whereĵ0 lies in the molecularx̂ direction, and
1,2 are rotated by ±120° aroundẑ as shown in Fig. 1.

The electrons are described by the tight-binding model

Hel = − o
n=0

2

stn,n+1cn
†cn+1 + c.c.d + Hint, s1d

wherecn is the annihilation operator of an electron on thes
orbital of thenth atom. Coulomb interactions are mostly ig-
nored. The effects of an on-site Hubbard interactionHint are
considered in Appendix B. The hopping matrix elements
tn,n+1 depend on the distance between atomsurWn−rWn+1u.

The interaction with the external electric fieldFW can be
represented by

HF = − FW · sV̂mW d = − sV̂−1FW d · mW = − FW m · mW , s2d

where the electric dipole moment in the molecule reference
frame is given by

mW = − o
n=0

2

erWncn
†cn. s3d

The factorFW m=V̂−1FW is the electric fieldFW as seen in the
molecule reference frame.

For the rest of this section we take the molecule to be
stationary, so that the laboratory frame coincides with the

molecule framesV̂=1d, and neglect distortionssuWn=0d.
Thereforetn,n+1 is a constant,t0. For Na3, the hopping matrix
elementt0 is about 0.4 eVf10g. Equations1d is theN=3 case
of the symmetricN-atom ring, treated in Hückel theory. The
states follow fromN-fold rotational symmetry:

ukl =
1

ÎN
o
n

ei2pkn/Nunl. s4d

The dimensionless wave numberk=−1,0,1,definedmodulo
N=3, labels the energy levels. The energy eigenvalues are
ek=−2t0 coss2pk/Nd. The lowest statek=0, of energy −2t0,
is bondingshas no nodesd and is twice occupied. The other
two statesk= ±1 are degenerate with energy +t0 and hold
one electron.

Now consider the electrical dipole operators3d. For a
single electron in the orbitalunl, the dipole operator has ex-
pectation valueknumW unl=−erWn0. The eigenstatesukl have
equal charge on all atoms and therefore zero net dipole.
However, there are off-diagonal matrix elements obeying a
selection ruleDk= ±1,

kk + 1umW ukl = − m0sx̂ − iŷd, s5d

where m0=er0/2 and x̂, ŷ are unit vectors in the molecule
reference frame. The matrix elementkkumW uk+1l is the com-
plex conjugate of the one shown. A special property of the
trimers with half-filled valence shells is that there are partly
filled degenerate states withk= ±1. The selection ruleDk
= ±1 does not exclude the matrix elementkk=−1umW uk=1l
because −1 is the same as 2. Thus there is an off-diagonal
dipole matrix element in the degenerate electronic ground-

state manifold. The −mW ·FW m coupling term, Eq.s2d, is a 2
32 matrix in the subspaceuk=−1l, uk=1l: namely,

FIG. 1. sad The unit vectorsĵn which locate the undistorted
positions in the molecular frame.sbd The conventional real basis
function c2 andscd c3 for the doubly degenerateE8 orbitals which
diagonalizeHel when the molecule is undistorted. Nodal planes are
shown as dashed lines. If either of these states is occupied once and
the other is empty, the atom will have a dipole moment ±m0, where
m0=er0/2 andr0 is the radial distance from the center to any atom.
This dipole is shown as the bold vector.

ALLEN, ABANOV, AND REQUIST PHYSICAL REVIEW A 71, 043203s2005d

043203-2



HF
undist= − m0sW ·FW m, s6d

wheresW =sxx̂+syŷ andsx andsy are the usual off-diagonal

Pauli matrices. The eigenvalues split linearly,De= ±m0uFW u,
where it is important that the componentFmz of FW perpen-

dicular to the plane of the molecule is omittedfthat is,uFW u is
sFmx

2 +Fmy
2 d1/2g.

One might expect that other ring molecules with odd
numbers of atoms, like C5H5, would also have this effect.
Indeed, there is a dipole in the degenerate manifolduk=2l,
uk=−2l for this casessince −2 is the same as 3modulo5d,
but this level is empty and there is no dipole in the partly
filled uk=1l, uk=−1l manifold. One might also be surprised
that the Cartesian elements of the electrical dipole operator
are represented by noncommuting 232 matrices, since these
are commuting operators in a full theory. In the full three-
dimensional space of the threes states, the matrices
mx,my,mz commute, but in thek= ±1 degenerate subspace
relevant to low-energy physics, they do not.

One can visualize this dipole moment by using the real
linear combinationsc2=suk=1l− uk=−1ld /Î2i and c3=suk
=1l+ uk=−1ld /Î2, the conventionalE8 basis states with am-
plitudes s0,1,−1d /Î2 and s2,−1,−1d /Î6 on atomss0,1,2d
shown on Fig. 1. These states have diagonal dipole expecta-
tion values ±m0x̂ and off-diagonal elementsm0ŷ.

It is worth commenting on the magnetic properties of this
model. The unpaired electron has a net spin. This couples
weakly, through the spin-orbit interaction, to orbital angular
momentum. The undistorted molecule has a large orbital
magnetic moment. If the discrete three-membered ring were
replaced by a one-dimensionals1Dd continuumsin the spirit
of the free-electron approximation for bulk Na metald, the
orbital moment would bemW orb=kmBẑ where k= ±1 is the
quantum number of the outer unpaired electron. The free-
electron approximation gives the right symmetry and order
of magnitude, but is not quantitatively correct. A correct cal-
culation will give mW orb=kgmBẑ where we estimateg<0.3
since the moment must be approximately 2pevA with A the
area of the molecule and 2pv the classical frequency of
electron rotation, approximatelyv= t0/Î3". In the next sec-
tions we find that distortions quench the orbital magnetic
moment. For this reason we are not concerned with comput-
ing g which would have required additions to the model.
Unlike the magnetic dipole moment, distortions reduce the
electrical dipole moment only by a factor of 2. The “Bloch
sphere” gives a convenient representation of the magnetic
and electric dipoles in this model, and is discussed in Appen-
dix A.

III. STATIC DISTORTIONS AND ADIABATIC
LONGUET-HIGGINS PHASE

To describe small distortions, consider the first-order ex-

pansion inuWn=rWn−r0ĵn. The hopping matrix is expanded to
first order around the undistorted atom separationÎ3r0,

tn,n+1 = t0 −
g
Î3

surWn − rWn+1u − Î3r0d

= t0 −
g

3
suWn+1 − uWnd · sĵn+1 − ĵnd, s7d

whereg is the electron-phonon coupling.

To completely specify three atomic coordinatesRW n re-
quires nine numbers. Three give the position of the center of
mass and describe rigid translations of the molecule which
separate out and do not contribute to Eq.s7d. Three se.g.,
Euler anglesd locate the spatial orientation of the plane of the
molecule and the rotation angle of the molecule in the plane.
These rotations, which also do not contribute to Eq.s7d, will
be discussed later. Finally, three parameters, chosen as am-
plitudes of three orthogonal normal modes of distortion, give
the vibrations which do appear in Eq.s7d.

The normal modes of an equilateral triangle comprise a
symmetricsA18 or “breathing”d mode and a doubly degener-
ate sE8d mode. Their amplitudes are conventionallyf11,12g
calledsQ1,Q2,Q3d. Figure 2 introduces a second trio of unit

vectorsv̂n. Like the previously introduced setĵn, these vec-
tors lie at 120° to each other; they add to zero and are or-
thogonal to all translations and rotations and to the breathing

mode eigenvectorsĵn.
The atomic coordinates omitting rotations and translations

are

FIG. 2. Geometry of the distorted trimer. Atoms are at coordi-

natesrWn=sr0+Q1dĵn+Qv̂n. When Q=0 the molecule has fullD3h

symmetry. When the anglea=0, the vectorsvWn lie along the dashed
lines and describe a symmetric stretch which makes an isosceles
distortion. This is the mode calledQ2 by Van Vleck. Whena
=p /2, the vectorsvWn give the asymmetric stretchQ3. These two
patterns form the conventional basis for the doublet-E8 vibrations.
Rather thansQ2,Q3d, we use the parameterssQ,ad to describe the
E8 vibrations. Note that the three vectorsvWn lie at 120° and add to
zero, independent ofa. Note also that whena=120°, the distortion
is isosceles with atom 2 at the vertex, and whena=240°, the isos-
celes distortion has atom 1 at the vertex.

QUANTUM ELECTRICAL DIPOLE IN TRIANGULAR… PHYSICAL REVIEW A 71, 043203s2005d

043203-3



rWn = sr0 + Q1dĵn + Qv̂n, s8d

ĵn = „coss2pn/3d,sins2pn/3d,0…†, s9d

v̂n = „cossa − 2pn/3d,sinsa − 2pn/3d,0…†, s10d

where the dagger indicates the transpose of the row vector,
which is a column vector. The amplitudeQ=ÎQ2

2+Q3
2 f13g

and anglea=tan−1sQ3/Q2d, shown in Fig. 2, parametrize the
E8 distortion. We will also assume thatQ1,Q! r0 so that
molecule is close to its symmetric “equilibrium”ssee belowd
configurationQ1=Q=0 or rWn0=r0ĵn.

Vibrations are especially important because the orbitally
degenerate ground state is Jahn-Teller unstable. The doublet-
E8 distortions lift the degeneracy, lowering the energy of one
of the doublet-E8-electron states. The latter is singly occu-
pied in the ground state, thus lowering the energy of the
molecule. In this section we make the static approximation.
We assume that the trimer is distorted so thatQ1,2,3Þ0 and
solve electronic part of the problem in the presence of this
static distortion. First, project Hamiltonians1d onto the dou-
bly degenerate ground state of an undistorted trimer. This
projected Hamiltonian gives the electron-phonon term acting
in the subspace ofsuk=−1l , uk= +1ld states as

Hep= gQ11 − gsQ2sx − Q3syd. s11d

The “breathing” amplitudeQ1 shifts the degenerate levels
uniformly. It also shifts the doubly occupieduk=0l level.
Both these shifts will be absorbed into redefining the sizer0
to be the true radius of the molecule. ThesQ2,Q3d vibrations
split the degenerate single-particle energies by ±gQ whereQ
is the magnitude of thesQ2,Q3d distortion. The splitting does
not depend on the anglea. The “lower Jahn-Teller” electron
orbital fwhich is the lower eigenstate of Eq.s11d, occupied
with unit probability in adiabatic approximationg has the
wave function

cad=
1
Î2

se−ia/2uk = 1l + eia/2uk = − 1ld

= sinsa/2dc2 + cossa/2dc3. s12d

Here the first form ofcad uses the basis of Eq.s4d while the
second form uses the basis of real functions shown in Fig. 1.
For a=0 the distortion is an acute isosceles triangle and the
lower Jahn-Teller state isc3 as shown in Fig. 1, panelscd.
For a=180°, the distortion is obtuse and the lower state is
c2. The node of the lower state cuts the longer bond, leaving
the shorter bond nodeless.

The effective interaction with the external electric field
can be obtained from Eqs.s6d and s12d as

HF = kcaduHF
rigid gsucadl = − m0FW m · s− xW cosa + yW sinad.

s13d

The statecad has an electrical dipolekcadumW ucadl=m0P̂,

where the unit vectorP̂ is s−Q2x̂+Q3ŷd /Q. A correction of
ordersQ/ r0dcoss3ad to the dipole will also occur because the
values of the vectorsrWn in Eq. s3d change under distortion.

However, effects ignored in our model make similar size
corrections, so we ignore this. The dipole magnitudem0 is
the same as for the undistortedD3h case, but it points in a
fixed direction. Fora=0, the distortion is acute and the
ground-state wave function the same as Fig. 1scd, with mW in
the −x̂ direction. Asa increases in a counterclockwise sense,
the negative charge of the last electron circulates clockwise
scorresponding to current moving counterclockwised. The di-
polemW counterrotates asa rotates. We have lost the quantum
nature of the dipole, which now orients classically. However,
quantizing the distortional degrees of freedom will restore
the quantum aspect. The orbital magnetic dipole is quenched
in the adiabatic ground state, since thek= ±1 components
are included incad with equal magnitude. Quantizing distor-
tions will restore the magnetic dipole only very weakly.

Notice that the adiabatic wave function, Eq.s12d, changes
sign when the molecule is taken once around the pointQ
=0 of “conical intersection” of the upper and lower Jahn-
Teller energy surfaces. That is, whena increases by 2p, cad
changes sign. This adiabatic phasep picked up bycad is
known as the Longuet-Higgins phasef14g or Berry’s phase
f15g. Important consequences of this for the quantized dis-
tortional states and for the electric dipole are worked out in
the next section.

IV. QUANTIZED VIBRATIONS ALTERED BY THE
LONGUET-HIGGINS PHASE

The full Hamiltonian of the molecule can be written as

H = Hions+ Hpot + Hel + HF, s14d

where

Hions= −
"2

2M
o
n=0

2
]2

]RW n
2

s15d

is the kinetic energy of the Na+ ions. The potential energy is
approximated by central springs,

Hpot = o
n=0

2
K

2
surWn − rWn+1u − Î3r0d2 <

K

2
F3Q1

2 +
9

2
Q2G .

s16d

We use cyclic notationsn+3;n; Hel,HF are Hamiltonians
s1d and s2d of the valence electrons and of coupling to an

external electric fieldFW .
In the adiabatic approximation one looks for the total

wave function of electrons and ions in the form of a product

CsRW ndcad. Then the effective Hamiltonian acting onCsRW nd is
obtained from Eqs.s11d, s15d, and s16d. It acquires an in-
duced “potential energy”kcaduHepucadl=gQ1−gQ and can be
written in the reference frame of the molecule as the sum of
the kinetic and potential energy of vibrational modes,

Had= HA + HE8,

HA =
3M

2
Q̇1

2 +
3K

2
Q1

2 + gQ1 → 3M

2
Q̇1

2 +
3K

2
Q1

2 −
g2

6K
,

s17d
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HE8 =
3M

2
sQ̇2

2 + Q̇3
2d +

9K

4
Q2 − gQ, s18d

whereM is the mass of the Na atom. The second form ofHA,
Eq. s17d, results from the redefinitionr0−g/3K→ r0 of the
size of the trimer and the corresponding redefinitionQ1
+g/3K→Q1. The breathing-mode frequencyvA in this
model isÎK /M; in Na3, multireference configuration inter-
action calculations give this to be about 17 meVf16g, while
experiment f17g suggests 16 meV, which impliesK
<1.5 eV/Å2.

Unlike Eq. s17d, Eq. s18d cannot be simplified by a shift
of origin. Rather than being a simple shifted parabola, the
two-dimensional potential surface of Eq.s18d has a cusp at
the origin. This is the “conical intersection” between the
lower-energy adiabatic energy surface and the Jahn-Teller-
split higher-energy surface, which replaces −gQ by +gQ in
Eq. s18d. The higher surface does not enter in adiabatic ap-
proximation. The potential energy of Eq.s18d is cylindrically
symmetric aroundQ2=Q3=Q=0 and has the form of a
“Mexican hat.” The valueQmin=2g/9K minimizes this po-
tential in the radial direction insQ2,Q3d space, and the en-
ergy is lowered by the Jahn-Teller energy −g2/9K. The fre-
quency of radial oscillation isvQ=Î3K /2M, but for angular
motion there is no restoring force,va=0. The free motion of
the variablea is called “pseudorotation.” When the coordi-
natea increases monotonically, the molecular coordinatesrn
of the atoms move in counterclockwise paths in the molecu-
lar x,y planessee Fig. 2d accompanied by no collective rota-
tion, but by true angular momentum, which of course must
be quantized.

Quantum chemical calculations for Na3 give a somewhat
different picture, because the distortions,10%d is not very
small, and as a result there is significant warping of the path
of least energy on the energy surface in theQ2, Q3 plane
surrounding the conical intersection at the origin. Most cal-
culations find the minimum to be an obtuse isosceles triangle
sa=180° or equivalentlya= ±60° in Fig. 2d. Saddle points,
representing barriers for pseudorotation, occur at the acute
positionssa=0° or equivalently ±120°d f18g. The calculation
of von Buschet al. f16g gives the average distortionQmin
=2g/9K<0.25 Å, which implies that the coupling constant
g is about 1.7 eV/Å. The same calculation gives the energy
minimum to be 97 meV and the barrier height to be 25 meV,
higher than the breathing phonon energy and sufficient to
strongly inhibit pseudorotation. In our model the energy
minimum −g2/9K is about 200 meV, twice the quantum
chemical value, and there is no barrier in leading order.

The kinetic part of Eq.s18d can be written ass3M /2dQ̇2

+sIQ/2dȧ2, in separated radial and pseudorotational parts,
with pseudorotational moment of inertiaIQ=3MQ2. The
zero-point amplitude of radial oscillationss"2/6KMd1/4 is
small enough compared withQmin that we can approximate
the pseudorotational moment of inertia by the constantIQ
=3MQmin

2 . Then the pseudorotational wave functionsin our
approximation with no restoring forced is cps-rot=expsimad
and the energy is"2m2/2IQ. As pointed out long ago by
Longuet-Higginset al. f19g, the pseudorotational quantum

numberm must take half-integer values. This is because the
total wave functioncps-rotsQ,adcad must be a single-valued
function of the coordinatea. We already noticed that the
adiabatic electron wave function, Eq.s12d, changes sign un-
der one pseudorotational cycle. Therefore the functioncps-rot
must also change sign whena is increased by 2p. The
ground state, with pseudorotational quantumm= ±1/2, is
thus still doubly degenerate. The electronic orbital degen-
eracy was lifted by the Jahn-Teller distortionQ→Qmin, but
left- and right-pseudorotating states restore the degeneracy of
the combined electronic and atomic system. This restoration
of degeneracy is the discrete system analog of restoration of
translation invariance by phase solitons in one-dimensional
molecular chainsf20g.

The wave functionscm of this adiabatic vibrational
ground state are products of the pseudorotational part
expsimad times the electronic partcad fEq. s12dg, also mul-
tiplied by the ground-state harmonic oscillator functions for
breathingQ1 and radial oscillationQ. The dipole operator in
this 2D manifold is obtained by projecting Eq.s13d onto
um= ±1/2l,

HF
ad vib gs= −

m0

2
tW ·FW m, s19d

wheretW =txx̂+tyŷ are Pauli matrices acting in the space of
pseudorotational statesum=1/2l and um=−1/2l. The eigen-
states ±1/2 of pseudo angular momentums−i]ad have left-
and right-circulating dipolar charge currents. Unlike the un-
distorted molecule, the frequency of circulation is no longer
t0/", but is now" / IQ, a much smaller number. Therefore the
orbital magnetic dipole moment is restored, except with a
much smaller value. There is no diagonal expectation value
of the electric dipole, only an off-diagonal value, just as in
the undistortedD3h case, but reduced by 2, fromm0 to m0/2.
Thus the half-filled outer orbital of the symmetric triangular
molecule has a quantum dipole which persists under quanti-

zation of molecular distortions. A fieldFW m applied in the

plane of the molecule splits the levels linearly, ±m0uFW mu /2.
The eigenstates in the field are linear combinations of the left
and right pseudorotators whose moment is distributed in the
plane of the molecule with probability distribution cos2saFd
whereaF is the angle measured from the projection of the
field onto the plane of the molecule. This cosine distribution
is what causes the reduction ofm0 by 2.

In principle this is not fundamentally altered by a warping
potential like sV0/2df1+coss3adg, because tunneling along
the pseudorotational minimum-energy path preserves three-
fold symmetry and guarantees a degenerate ground state
f21g. Pseudorotational quantum numbersm are still half-
integer quantized, but definedmodulo3, so that, for example,
m=3/2 andm=−3/2 are the same and this state is singly
degenerate, whilem= ±5/2 is adoublet belonging to them
= 71/2 representation. The splitting"vpseudorotbetween the
m= ±1/2 ground state and them=3/2 excited state gets re-
duced in frequency fromv=" / IQ by a Franck-Condon-type
overlap factor governing the tunneling probability. Thus,
warping can greatly reduce the orbital magnetic dipole,
which is proportional to the pseudorotational splitting. Also,
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thermal mixing of pseudorotational states will smear any ef-
fect for kBT."vpseudorot.

V. QUANTIZED ROTATIONS

Now we must deal with real rotations of the molecule in
space, which adds a lot of complexity, as it does even for a
fixed dipole. A full 3D analysis does not fundamentally
change things from a much simpler analysis of rotations in
2D, so we confine ourselves to 2D rotations in this paper.
Here we describe how 2D rotations alter both a fixed dipole
and our quantum pseudorotator. We work in the limit where
the molecule stays in its vibrational ground state, but has
pseudorotational excitations.

The Hamiltonian for our pseudorotating quantum dipole
sPQDd is

H2D PQD=
"2spa + pcd2

2I0
+

"2pa
2

2IQ
+

V0

2
s1 + cos 3ad

− m0F cossc + ad. s20d

Here c is the Euler angle defining the orientation of the
reference frame of the molecule with respect to the labora-
tory frame.pa and pc are dimensionless angular momenta
which in quantum theory are −i]a and −i]c and take half-
integer and integer values correspondingly. The first term of
Eq. s20d is the kinetic energy of rotation of the trimer as a
whole with I0=3Mr0

2. The second term is the kinetic energy
of pseudorotation, and the third term is the simplest model
for the warped potential energy of pseudorotation, with
minima at the obtuse isosceles positions and barriers of
heightV0 at the acute positions. The simplest version of our
model hasV0=0. The last term is the coupling to the external
electric field. It can be obtained from Eq.s13d by substituting

FW m=Fscosc ,−sincd.
Equation s20d, with V0 set to zero, models a quantum

electric dipole moment, free to rotate in 2D space. We now

calculate the observable dipole moment for a statistical en-
semble at temperatureT. This is kml=−]F /]F, whereF is
the free energy of the dipole calculated at temperatureT with
Hamiltonian s20d. The temperature scales set by rotations
and pseudorotations areTrot="2/2I0!Tps-rot="2/2IQ. For
Na3 these are approximately 0.1 K and 5 K. We assumeT
@Trot, which allows us to treat spatial rotations classically,
but T can be either above or belowTps-rot.

Before proceeding to the quantum dipoles20d we first
summarize the well-known results for the classical dipole
moment in an external electric field.

A. Classical dipole

The Hamiltonian of a 2D fixed dipole is

H2D FD =
"2pc

2

2I0
− m0F cosc, s21d

where I0 is the molecule’s moment of inertia. This is the
pendulum problem. The low-lying quantum eigenenergies of
this system, calculated numerically, are shown in Fig. 3.

The classical treatment is standard. After evaluating the
partition functionZ=exps−F /Td swe use unitskB=1d, the
classical average dipole is found by differentiatingF to be

kml = m0

E
−p

p

dc coscesm0F/Tdcosc

E
−p

p

dc esm0F/Tdcosc

, s22d

which saturates tom0 at high fieldF and equalsxF at low
field, where x=m0

2/2T is the 2D version of the Debye-
Langevin polarizabilityf3g.

The results of the quantum treatment of this problem do
not have a simple form. At high fieldsm0F@Td the dipole
makes pendulum oscillations around the direction of the
field. This is seen in the lower right part of Fig. 3 where there
are evenly spaced levels atDE="v where the pendulum

FIG. 3. Spectrum of low-lying energy eigenvalues of the 2D
fixed dipole rotator. The field energy ism0F and the rotational quan-
tum of energy isTrot="2/2I. The zero-field axis has dimensionless
eigenvalues equal tom2 for m=0, ±1, ±2, . . . . Each level except
m=0 is doubly degenerate, and the degeneracy is split by the field.

FIG. 4. Dipole moment of classical and quantum dipoles as a
function of applied electric field, calculated at temperatureT
=7.0Trot. The quantum rotator has a dimensionless parameterp
=TQ/Trot which is set to 40.5sdashed curve, reasonable for Na3d
and to 200sdotted curved.

ALLEN, ABANOV, AND REQUIST PHYSICAL REVIEW A 71, 043203s2005d

043203-6



frequencyv=Îm0F / I0 increases as the field increases. At
low field and low temperature, the quantum ground state is
rotationally symmetric with a dipole induced by second-
order coupling to the first rotationally excited states. In this
limit the polarizability becomesm0

2/ s"2/2Id. If the field in-
creases to values large compared withT/m0, the eigenstates
are mixtures of rotational levels. These mixtures give a full
dipole moment, saturated at the valuekml=m0. We plot the
dependence of dipole moment versus an applied electric field
in Fig. 4. In different limits we have

kml2D CD

m0
<

m0F

Trot
sm0F ! Trotd

<
m0F

2T
sTrot ! m0F ! Td

< 1 −
T

m0F
ST ! m0F !

T2

Trot
D

< 1 −
1

4
Î2Trot

m0F
Sm0F @

T2

Trot
D , s23d

where the subscript “CD” means classical dipolesthe rota-
tions are treated quantum mechanicallyd. The water molecule
is a good example. Normally we think of a classical fixed
dipole, but the quantum eigenstates in zero field are rotating
dipoles with no fixed average moment. In a typical chemical
or biological environment, the environmental fieldF is large,
free rotations are hindered, and the dipole is exposed.

B. Quantum dipole with free pseudorotations

To emphasize the difference between a quantum dipole
s20d and a fixed dipoles21d, we choose the limitV0=0—i.e.,
a quantum dipole with free pseudorotations. Equations20d
with V0=0 is a funny degenerate sort of double pendulum
with two angular degrees of freedom. The quantum states at

zero fieldFW =0 have eigenvalues

es,,md = "2s, + md2/2I0 + "2m2/2IQ, s24d

where the angular momentum quantum number, takes inte-
ger values 0,±1, . . . and thepseudomomentum quantum
number m takes half-integer values ±1/2, ±3/2, . . . . Be-
causeIQ! I0, the low-lying states havem= ±1/2. All eigen-
states are fourfold degenerate, even the ground state, because
for either choice ofumu there are two ways to get any allowed
value of u,+mu. When the field is applied, each quadruplet
level splits into two doublets. There are no allowed matrix
elements of the field in any degenerate manifold of four
states, so the initial splitting is quadratic in field, just as for
water. If we assume that the temperature is low enough that
only the lowest pseudorotational levelsm= ±1/2 areexcited,
it is a good approximation to ignore the term in Eq.s20d
involving IQ. Then the 2D Hamiltonians20d separates into
232 matrices acting on subspaces formed byul ,m=1/2l,
ul −1,m=−1/2l. The ground-state energy isTrotf5/4
−Î1+sm0F / s2Trotdd2g, which implies a ground-state dipole
kml=sm0/2dfsm0F /2d /Îsm0F /2d2+Trot

2 g. For high fields and
T not too low sm0F@T@Trotd the dipole is

kml2D QD <
m0

2
F1 −

2TTrot

sm0F/2d2G . s25d

Notice that the effect of temperatureswhen it is less than
the field energym0Fd is smaller on the quantumspseudo-1
real-d rotating dipole, Eq.s25d, than on the fixed rotating
dipole, Eq.s23d; there is an extra small factorTrot/ sm0F /2d
which postpones thermal degradation of the dipole by rota-
tion. The reason is evident in the difference between the
spectra seen in Figs. 3 and 5. At higher fieldsF and not too
high excitation energy, the fixed dipole has energy levels that
fan out to larger separations in higher fields, meaning lower
slopes and lower dipoles in higher excited states, while the
quantum dipole has energy levels whose slopes do not de-
pend on excitation level. The fixed dipole levels correspond
to pendulum oscillations of the dipole away from the field
direction, whereas the quantum dipole levels correspond to
free rotationsfthe energy levels are"2s,+1/2d2/2I0g of a
molecule whose dipole is fixed in the direction of the field.
The way this happens is that the dipole is not fixed in the
axes of the molecule, but free to pseudorotate around these
axes. Real rotations and pseudorotations give compensating
changes in the dipole moment, leaving the moment fixed in
space. This happens equally well for left and right rotations,
so all levels are still doublets. The comparison between de-
pendences ofkml vs F is presented in Fig. 4.

VI. DISCUSSION AND CONCLUSIONS

The main point of the present paper is the possible rel-
evance to the issue of unusual polarity in metal clustersf1,2g.
Existing experiments onX3 molecules have not seen the ef-
fects described here. There are multiple possible reasons, in-

FIG. 5. Spectrum of low-lying energy eigenvalues of the 2D
quantum dipole rotator. The field energy ism0F and the rotational
quantum of energy is"2/6Mr0

2. The zero-field axis has dimension-
less eigenvalues equal tos,+md2+sr0/qmind2m2, with the zero-point
pseudorotational quantumsr0/qmind2s1/2d2 subtracted out. The
level in red at zeroF is the first with pseudorotational quantum
numberumu.1/2. Each level at zeroF is quadruply degenerate, and
the degeneracy is reduced to double by the field.
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cluding sad not looking for quite the right effect,sbd need for
lower temperature,scd nuclear exchange symmetry, andsdd
suppression by large barriers to pseudorotation. A subsequent
paper will address some of these issues in the context of Na3.
Here we speculate about the more general issues.

Suppose we discard triangular symmetry altogether, as in
a mixed alkali-metal trimer like Li2Na f22g or LiNaK. In the
symmetric case, symmetry forced the conical intersection
which preservedsby pseudorotationd the degenerate ground
state and its quantum dipole. However, as explained by Von
Neumann and Wignerf14,23g, points of degeneracy, or coni-
cal intersections, are generically presentf24g if there are
enough free variables. In the last occupied molecular orbital
level of LiNaK, the splitting of the two sublevels can be
tuned to zero by adjustment of two parameters, since the
Hamiltonian matrix can be written in this manifold as real
symmetric 232. There are three such parameters, the normal
mode amplitudessQ1,Q2,Q3d. Thus it is permitted to have a
line in configuration space where the higher- and lower-
energy surfaces touch and away from which they separate
linearly. Consider the minimum-energy point on this line and
also the global minimum of the lower-energy surface. Away
from the global minimum, the energy increases quadratically
with three principal axes defining nearby ellipsoidal energy
surfaces. Now begin moving along the axis of least energy
increase and continue following the bottom of this valley. It
is possible that this valley will return to the global equilib-
rium after circling the line of accidental degeneracy. It is also
possible that the path in this minimum valley lies always
lower than the minimum energy found on the line of degen-
eracy. In this case, there is again a pseudorotation with an
electronic-wave-function sign change. The lowest-energy
pseudorotational state must therefore have a compensating
phase change ofp when orbiting the degenerate line. Time-
reversal symmetry then requires that an inequivalent reverse
pseudorotation with opposite phase is degenerate. These two
states should each drag a dipole moment in opposite direc-
tions once around the degeneracy line as the system moves
adiabatically around the circuit. Thus a quantum dipole is
generically permitted. Larger clusters of metal atoms have
more complex energy surfaces, and both features—conical
intersections and lack of inversion symmetry—are generi-
cally likely. Therefore unusual dipoles whose properties are
not fully classical may be expected. Possibly this is what
Moro et al. f1,2g observed.

Moro et al. observed a correlation between unusual di-
poles and metals known in bulk form to have superconduc-
tivity caused by large electron-phonon coupling. Large
electron-phonon coupling derives from a high electronic den-
sity of states and a rapid change of single-particle energy
eigenvalues with deformation. These are conditions favor-
able to the occurrence of the dipole we have described. A
high density of states means plentiful levels whose energies
may accidentally cross at conical intersections. Sensitivity of
eigenvalues to distortion means that the point of the cone of
intersection can lie higher in energy than the surrounding
landscape. Thus our picture contains the right ingredients.
Further experiment and more accurate microscopic modeling
will be needed to confirm it.

To conclude, we studied the formation of an electrical
dipole moment in triangular molecules. Although the classi-

cal dipole moment is forbidden for symmetric trimers, it is
formed due to the quantum degeneracy of the ground states.
This dipole moment survives Jahn-Teller distortion of the
molecule and keeps its “quantum nature” for small distor-
tions. It is interesting to note that the quantum dipole mo-
ment makes a two-level system which can be manipulated by
an external electric field. If it were possible to have a con-
trolled interaction between such trimers, one could investi-
gate the use of this two-level system for quantum computing
purposes similarly to what was done for quantum qubits us-
ing persistent currentsf25g.
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APPENDIX A: BLOCH SPHERE

It is convenient to use the Bloch sphere parametrization of
the degenerate ground stateugl=sa ,bdt=auk=−1l+buk=1l
ssee Fig. 6d. Define the unit vectornW =kgusW ugl. The manifold
of degenerate states of the two-level systemsundistorted tri-
merd is represented then by two-dimensional sphere swept by
the unit vectornW. The electric dipole momentmW in the cor-
responding ground state is proportional to the projectionnW'

of nW on thexy planemW =m0nW'.

FIG. 6. In the Bloch sphere parametrization the ground states of
the two-level system correspond to the points of a unit sphere; i.e.,
they can be labeled by a unit vectornW. For the undistorted trimer the
xy projection of this unit vector is proportional to the electric dipole
moment while itsz component is proportional to the magnetic mo-
ment of the ground state.
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The partly occupied statesuk= ±1l of the static trimer
have an orbital magnetic moment perpendicular to the plane

of the molecule which couples to a magnetic fieldBW . In the
degenerateE8 subspace, the coupling is

HB = − morbszBz, sA1d

where the momentmorb is 2pevA as previously discussed. In
the Bloch sphere parametrization, the magnetic dipole mo-
ment is proportional to the projection ofnW onto thez axis and
is equal tomorbnz.

The value of the momentmorb for Na3 is about 0.3 Bohr
magnetons, if we ignore the barrier to free pseudorotation.
The electrical momenter0/2 is 0.98eÅ or 4.7 D s1 D unit
=0.208eÅd in our naive model. An unpublished density
functional calculationf26g gives 2.3 D. It is not surprising
that the actual result is reduced, because the true molecular
orbitals surely have a significantps component missing
from our model. Also, the on-site Coulomb repulsion causes
a suppression of the dipole as is shown in the next appendix.

APPENDIX B: EFFECT OF A HUBBARD TERM

The Coulomb interaction between electrons is approxi-
mated by a Hubbard term of strengthU,

Hint = U o
n=0,1,2

scn↑
† cn↑ + cn↓

† cn↓d2. sB1d

The Hilbert space has dimension 20. There are 8 basis states
with no vacant sites and 12 with one vacant site. Total spin,
spin ẑ projection, and orbitalselectronicd angular momentum
are conserved. In the eight-dimensionalS=1/2 andSz=1/2
subspace, there are three states with angular momentumk
=1, three withk=−1, and two withk=0 that have higher
energy. Parity symmetry is not broken by the Hubbard term.

The ground state is ak= ±1 doublet, as it was for the non-
interacting model. Figure 7 shows the dependence of the
quantum dipole on the dimensionless Hubbard parameterk
;U / t0. A factor of 2 suppression occurs whenU is of the
same order ast0. For k!1, the doubly degenerate ground-
state energy isE0<−3t0+s13/3dU. The dipole operator has
an off-diagonal matrix elementk−1umW u+1l betweenk=−1
andk= +1 states equal to −msx̂− iŷd with

m < m0F1 −
4

9
kG, for k ! 1. sB2d

This agrees with the noninteracting result, Eq.s5d. For k
@1, the doubly degenerate ground state has energyE0
<3U−3t0

2/U. The magnitudem of the off-diagonal matrix
element falls rapidly as shown in Fig. 7, going asymptoti-
cally as

m <
9

2
k−3m0, for k @ 1. sB3d
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