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Quantum electrical dipole in triangular systems:
A model for spontaneous polarity in metal clusters
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Triangular symmetric molecules with mirror symmetry perpendicular to the threefold axis are forbidden to
have a fixed electrical dipole moment. However, if the ground state is orbitally degenerate and lacks inversion
symmetry, then a “quantum” dipole moment does exist. The system of three electidgsspmmetry is our
example. This system is realized in triatomic molecules likg. Nlnlike the fixed dipole of a molecule like
water, the quantum moment does not point in a fixed direction, but lies in the plane of the molecule and takes
quantized values g, along any direction of measurement in the plane. An electric it the plane leads to
a linear Stark splitting p0||5|. We introduce a toy model to study the effect of Jahn-Teller distortions on the
guantum dipole moment. We find that the quantum dipole property survives when the dynamic Jahn-Teller
effect is included if the distortion of the molecule is small. Linear Stark splittings are suppressed in low fields
by molecular rotation, just as the linear Stark shift of water is suppressed, but will be revealed in moderately
large applied fields and low temperatures. Coulomb correlations also give a partial suppression.
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. INTRODUCTION ization proportional td, corresponding to an average dipole

Moro et al. (de Heer’s groug1,2]) found an unexpected per moleculeyF, with the Curie formy=u2/3ksT [3]. Quan-
low-temperature electrical dipole, apparently not classical, ifum mechanics enters in the usual picture wkghis small
nearly all clusters ofN niobium atoms with 2N<150.  engugh that the spacing of quantized rotational lew&ls
Here we use thé&; molecule to propose an answer to the:(ﬁ2/2|)L(|_+1) is no longer negligible. The ground state

question as to what a .nonclassical electrical dipole might bel;:o has full rotational symmetry with zero average dipole
Our model electrical dipole bears a close analogy to the NON: 4 the Curie divergence is cut off, replaced by '
classical magnetic moment of a spin-1/2 particle. It is mean- W21(72121) [3.4] '

ingless to ask the direction of the moment of an isolated M int " i frects. includi
electron, because different components of the moment oper?— More interesting quantum efiects, including noncommu-
ation of the relevant matrix elements of the electric dipole

tor do not commute. In a fielB the degeneracy with respect onerator, may occur when the molecule has an orbitally de-
to spin degreesaof freegom is Ilfteq and the grgund sta.te ha&enerate ground state and lacks an inversion center. We con-
energyEy=—ug|B| and is characteqzed by having maximal sider the simplest case, with equilateral triang(l2g,) sym-
projection of the momentiy=(0|uy|0)=ugB along the metry. Afixed(classical electrical dipole is inconsistent with
magnetic field. D, symmetry. To quote Townes and Schawlow, “there can
If the electron is not isolated but in contact with a heatbe no dipole moment perpendicular to the axis of a symmet-
bath, the statistical average of the moment /g, ric top” [5]. This statement is also true in quantum mechan-
=g tanh(MB\I§|/kBT)I§. The susceptibility has the Curie ics if the ground state is nondegenerate. However, there is a

form X:ME/kBT- The thermal behavior at weak applied nonzero electrical dipole matrix in the doubly degenetate

) ; . . X . representation oD, This matrix has noncommuting Carte-
fields is classical3], with a well-defined linear response _. o .
sian components. The moment exhibits quantum behavior

#m=xB. The operational definition of a dipole is a Curie simjjar to the spin of an electron. Further quantum effects
response of the isolated system, and the moment is foung{,ppress this moment, similar to the way zero-point rotation
from VxT. Classically we know that the moment points at syppresses the usual molecular moni8rt, 6], but there are
some angle to the field and precesses. Quantum mechanicgery interesting differences. Orbital magnetic moments also
forces a more abstract view, which replaces the direction ofccur in this model and are discussed in Appendix A.
the moment by the “quantization axis.” A Our model(Sec. 1) is a simplified picture of an alkali-
Usually we think of an electrical dipole momeaton a  metal trimer like Na. We start with a rigid equilateral tri-
molecule in classical terms. When rigidly fixed in space, thegngle geometry, fixed in space, representing, for example,
moment has a value which is not quantized in atomic unitghree atoms. All electrons except the outer three valence elec-
eas. Its value is an accidental result of chemistry. In thetrons (one per atormare frozen. One alternate realization is
frame of the molecule, the components of the electric dipol@nhe “R center” in an alkali-metal halide crysthl]. In crys-
moment operator commute, so a direction can be defined ipyjline NaF, for example, the center has three adjacént F
this frame. A thermalized vapor of rpolecules has momentszcancies with equilateral triangular symmetry in(i1)
randomly oriented. In an electric field there is a net polar- plane. Each vacancy binds one electron donated by neighbor-
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(@ (b) 2
& Hei= - E (tn,n+1cgcn+1 +cC.Cc) + Hin, (1)
n=0
20 --- wherec, is the annihilation operator of an electron on te
orbital of thenth atom. Coulomb interactions are mostly ig-
&) nored. The effects of an on-site Hubbard interactip are

considered in Appendix B. The hopping matrix elements
t,n+1 depend on the distance between atdisr.4|.

The interaction with the external electric fiekd can be
represented by

FIG. 1. (@) The unit vectorsjg’n which locate the undistorted
positions in the molecular framéb) The conventional real basis
function ¢, and(c) i for the doubly degenerate’ orbitals which > A PN >
diagonalizeH¢ when the molecule is undistorted. Nodal planes are He=-F-(Qu)=-(Q7F) - p=-Fy-p, (2)
shown as dashed lines. If either of these states is occupied once an% L .
the other is empty, the atom will have a dipole momepgwhere ~ Where _the_electrlc dipole moment in the molecule reference
Lo=€ro/2 andr, is the radial distance from the center to any atom. frame is given by
This dipole is shown as the bold vector. 2

- _ = F
ing Na" ions. Another alternate realization is a quantum well H gerncncn. &
with triangular shapd8], gated to hold three electrons or
three identical closely coupled quantum dots in triangularrpe factorﬁm:ﬁ—lﬁ is the electric fieldE as seen in the
geometry, gated to hold one electron each. molecule reference frame.

Because we want our model to be relevant tq Mhus- For the rest of this section we take the molecule to be
ters, we must add some additional physics. We consider atationary, so that the laboratory frame coincides with the
distortions of the trlanglg in linear approximati¢gec. IlI). molecule frame(Q=1), and neglect distortiong,=0).
These have a particular importance because of a Jahn-TeIIt]a. ereforet is a constantt,. For N : .

o+l 0- &, the hopping matrix

instability and a Longuet-Higgins-Berry phase that mvertselememto is about 0.4 e\ 10]. Equation(1) is theN=3 case

the order of singly and doubly degenerate levdsc. IV) .Gof the symmetridN-atom ring, treated in Hiickel theory. The
and restores the ground-state degeneracy. We also consi &L : )
states follow fromN-fold rotational symmetry:

rotations in space, but, for simplicity, only in two dimensions
(Sec. ). Additional complications coming from higher-order 1
couplings, from rotations in the third dimensitthese do not k) = ==, &2™™N|n). (4)
alter anything fundamentaland from antisymmetry of the VN n

nuclear wave functiothe Na nucleus is a spin-3/2 fermion
are omitted for now. We plan to discuss some of these in
subsequent pap&®] which will focus on the Natrimer.

The dimensionless wave number-1,0, 1,definedmodulo
"N:S, labels the energy levels. The energy eigenvalues are
€.=—2t; cos(27k/N). The lowest stat&=0, of energy -8,
is bonding(has no nodgsand is twice occupied. The other
two statesk=+1 are degenerate with energy,+and hold
one electron.
The minimal toy model has three electrons which reside Now consider the electrical dipole operat(). For a

in a Hilbert space of three orbitals|n), n=0,1,2,located ~ Single electron in the orbitdh), the dipole operator has ex-
on “atoms” which define vertices of a triangle. This crudely Pectation value(n|in)=—-ef,. The eigenstatesk) have
represents the outer electrons of an alkali- or noble-meta#qual charge on all atoms and therefore zero net dipole.
trimer X;. The subsequent paper will make contact with theHowever, there are off-diagonal matrix elements obeying a
specific case of Na selection ruleAk=+1,
. vatla»defme pOfItI_OPS 0{( nu_clel asR.n,. n=0,1,2. ngx{nte k102K = g% ~1§). 5)

Z=Qr,, wherer,=r+U, give positions of nuclei in an
internal reference frame of the molecule. The orientation ofyhere 4 =er,/2 andX,y are unit vectors in the molecule
the molecular frame with respect to the laboratory frame ieference frame. The matrix elemelitzilk+1) is the com-
given by an S@) matrix ) which can be parametrized by plex conjugate of the one shown. A special property of the
three Euler angles. We choose the internal coordingtgz  trimers with half-filled valence shells is that there are partly
such that the molecule lies in they plane. The atoms have filled degenerate states witk= +1. The selection ruleAk
small displacgmentén relative to equilateral triangular po- =+1 does not exclude the matrix elemefkt=—1u|k=1)
sitions F,o=rq&,. The equilateral vertices are labeled by thebecause -1 is the same as 2. Thus there is an off-diagonal
unit vectors¢, whereg, lies in the moleculak direction, and ~ dipole matrix element in the degenerate electronic ground-
1,2 are rotated by +120° arourzdas shown in Fig. 1. state manifold. The &-F,, coupling term, Eq.(2), is a 2

The electrons are described by the tight-binding model X 2 matrix in the subspadi&=-1), |k=1): namely,

II. DIPOLE MOMENT OF UNDISTORTED TRIMER
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-

HE = = o6+ P, ®)

whereo=o,%+ 0,y andoy, andoy are the usual off-diagonal ‘
Pauli matrices. The eigenvalues split lineamye= + u|F|, Vi
where it is important that the componehrt,, of F perpen- £,

dicular to the plane of the molecule is omittgtat is,|F| is
(Ft Fny 21

One might expect that other ring molecules with odd E,
numbers of atoms, like 85, would also have this effect.
Indeed, there is a dipole in the degenerate manifioteR), v,
|k=-2) for this case(since -2 is the same asrBodulo5),
but this level is empty and there is no dipole in the partly
filled |k=1), |k=—1) manifold. One might also be surprised
that the Cartesian elements of the electrical dipole operator
are represented by noncommuting 2 matrices, since these
are commuting operators in a full theory. In the full three- FIG. 2. Geonletry of the distorted trimer. Atoms are at coordi-
dimensional space of the thres states, the matrices natesf,=(ro+Q;)&,+Qo,. WhenQ=0 the molecule has fulDg,
My My, (4, COMMUte, but in thek=+1 degenerate subspace symmetry. When the angle=0, the vectors, lie along the dashed

relevant to low-energy physics, they do not. lines and describe a symmetric stretch which makes an isosceles
One can visualize this dipole moment by using the reafistortion. This isﬁthe_ mode calle®, b)_/ Van Vleck. Whena
linear combinationsy,=(lk=1)—|k=-1))/\2i and ¢3=(|k =m/2, the vectors, give the asymmetric stretcQ;. These two

=1)+|k=-1))/\2, the conventionaE’ basis states with am- patterns form the conventional basis for the douﬁibvibra}tions.
Iit>ud|es © >])_ 1])/ % and 2,-1,-1/ %6 on atoms(0,1,2 Rather thanQ,,Q3), we use the parametef®, a) to describe the
P Y | Y v ik E’ vibrations. Note that the three vectars lie at 120° and add to

shown on Fig. 1. These states have diagonal dipole eXpea"i‘éro, independent af. Note also that whew=120°, the distortion

tion values ok and off-diagonal elementaoy. _ _is isosceles with atom 2 at the vertex, and when240°, the isos-
It is worth commenting on the magnetic properties of thiSceles distortion has atom 1 at the vertex.

model. The unpaired electron has a net spin. This couples

weakly, through the spin-orbit interaction, to orbital angular

momentum. The undistorted molecule has a large orbital tnn+l:t0_%(|rn_Fn+l|_\“Ero)

magnetic moment. If the discrete three-membered ring were ' V3

replaced by a one-dimensiondD) continuum(in the spirit . .

of the free-electron approximation for bulk Na metehe =ty- Q(Jml_ Un) - (Ene1— &), (7)

orbital moment would beu,,=kugZz where k=+1 is the 3

quantum number of the outer unpaired electron. The free-

electron approximation gives the right symmetry and order )

of magnitude, but is not quantitatively correct. A correct cal-whereg is the electron-phonon coupling. R

culation will give gy,=kyugz where we estimatey~0.3 To completely specify three atomic coordinates re-

since the moment must be approximatetyeA with Athe  quires nine numbers. Three give the position of the center of

area of the molecule andn2 the classical frequency of mass and describe rigid translations of the molecule which

electron rotation, approximateky:to/@h. In the next sec- separate out and do not contribute to Efg). Three (e.g.,

tions we find that distortions quench the orbital magneticEuler angleslocate the spatial orientation of the plane of the

moment. For this reason we are not concerned with computolecule and the rotation angle of the molecule in the plane.

ing y which would have required additions to the model. These rotations, which also do not contribute to &g, will

Unlike the magnetic dipole moment, distortions reduce thebe discussed later. Finally, three parameters, chosen as am-

electrical dipole moment only by a factor of 2. The “Bloch plitudes of three orthogonal normal modes of distortion, give

sphere” gives a convenient representation of the magnetithe vibrations which do appear in E().

and electric dipoles in this model, and is discussed in Appen- The normal modes of an equilateral triangle comprise a

dix A. symmetric(A; or “breathing’) mode and a doubly degener-
ate (E’) mode. Their amplitudes are conventiongliyl,12]
called(Q1,Q,,Q3). Figure 2 introduces a second trio of unit

lll. STATIC DISTORTIONS AND ADIABATIC vectorso,,. Like the previously introduced séf, these vec-
LONGUET-HIGGINS PHASE tors lie at 120° to each other; they add to zero and are or-
thogonal to all translations and rotations and to the breathing
To describe small distortions, consider the first-order exmgde eigenvectors,.

pansion inﬁn:r*n—roén. The hopping matrix is e@anded to  The atomic coordinates omitting rotations and translations
first order around the undistorted atom separati8ry, are

043203-3



ALLEN, ABANOV, AND REQUIST PHYSICAL REVIEW A 71, 043203(2005

> _ p - However, effects ignored in our model make similar size

Fo=(rn+ +Qu,, 8 s . . . . .

n= o+ Qén+ QU ® corrections, so we ignore this. The dipole magnituggis
the same as for the undistort@&x, case, but it points in a

&= (cog2mm/3),sin(27m/3),0)", (9 fixed direction. Fora=0, the distortion is acute and the
R ) N ground-state wave function the same as Fig),with & in
vy = (coda — 2m/3), sin(e - 27/3),0) ", (100 the — direction. Asw increases in a counterclockwise sense,

where the dagger indicates the transpose of the row vectdf)® Negative charge of the last electron circulates clockwise

which is a column vector. The amplitud@= \m [13] (correispondlng to current moving counterclockwiséhe di-

and anglex=tarr’(Q4/Q,), shown in Fig. 2, parametrize the pole u counterr_otates as rotates. We have Io§t the quantum

E' distortion. We will als,o assume thad ,Q<r so that hature of the dipole, which now orients classically. However,
. 1y 0

molecule is cl i mmetric “equilibri I quantizing the distortional d(_egrees of free<_jom \_/viII restore
olecule Is close to its symmetric “equ briungsee below the quantum aspect. The orbital magnetic dipole is quenched

configurationQ, =Q=0 or Frp=Toé _in the adiabatic ground state, since tke+1 components
Vibrations are espema_lly important because the orbitally; e included iny,s With equal magnitude. Quantizing distor-

deggnerqte gr(_)und state is Jahn-TeIIer_unstabIe. The doublgisns will restore the magnetic dipole only very weakly.

E’ distortions lift the degeneracy, lowering the energy of one  Ngtice that the adiabatic wave function, E2), changes

of the doublete’-electron states. The latter is singly occu- sign when the molecule is taken once around the p@int

pied in the ground state, thus lowering the energy of the-g of “conical intersection” of the upper and lower Jahn-

molecule. In this section we make the static approximationsg|jer energy surfaces. That is, wherincreases by 2, i,q

We assume that the trimer is distorted so Qat ;#0 and changes sign. This adiabatic phasepicked up by g is

solve electronic part of the problem in the presence of thigown as the Longuet-Higgins phakk4] or Berry's phase

static distortion. First, project Hamiltonigd) onto the dou- [15]. Important consequences of this for the quantized dis-

bly degenerate ground state of an undistorted trimer. Thigyrional states and for the electric dipole are worked out in
projected Hamiltonian gives the electron-phonon term actinghe next section.

in the subspace dfk=-1),|k=+1)) states as
_ IV. QUANTIZED VIBRATIONS ALTERED BY THE
Hep=09Qi1 ~9(Qe0~ Qaey). (11) LONGUET-HIGGINS PHASE

The “breathing” amplitudeQ, shifts the degenerate levels  The fyl| Hamiltonian of the molecule can be written as
uniformly. It also shifts the doubly occupief=0) level.

Both these shifts will be absorbed into redefining the sjze H =Hions+ Hpot + Her + He, (14)
to be the true radius of the molecule. Ti@,,Q5) vibrations
split the degenerate single-particle energies §@QvhereQ
is the magnitude of th&Q,, Q3) distortion. The splitting does 22 2
not depend on the angte The “lower Jahn-Teller” electron Hions= ~ M= =
orbital [which is the lower eigenstate of E¢L1), occupied n=0 IR}
with unit probability in adiabatic approximatigrhas the s the kinetic energy of the Néons. The potential energy is
wave function approximated by central springs,

2
Hpot= > §(|Fn = Frea = \3rg)> = 5{3(?% + ng] .

n=0
=sin(al2) i, + coL al2) i3. (12 (16)

Here the first form of/,4 uses the basis of E¢4) while the
second form uses the basis of real functions shown in Fig.
For =0 the distortion is an acute isosceles triangle and th ST
lower Jahn-Teller state ig5 as shown in Fig. 1, pandt). ~ external electric field-. o

For @=180°, the distortion is obtuse and the lower state is !N the adiabatic approximation one looks for the total
4. The node of the lower state cuts the longer bond, leaving/ave function of electrons and ions in the form of a product

where

(15

1 ) .
Vaa= (€1 k=1 +&k=-1))
N

We use cyclic notations+3=n; Hg,Hr are Hamiltonians
1) and (2) of the valence electrons and of coupling to an

the shorter bond nodeless. WV (R,) ¥.¢ Then the effective Hamiltonian acting d!(ﬁn) is
The effective interaction with the external electric field obtained from Eqs(11), (15), and (16). It acquires an in-
can be obtained from Eq&6) and(12) as duced “potential energyyad Hed ¥ad =9Q; ~gQ and can be
_ rigid g B - . - written in the reference frame of the molecule as the sum of
He = (Yad HE Mhag = — poFm - (- X cOSa +y sina). the kinetic and potential energy of vibrational modes,
(13) Hog=Ha+ Her,

The state,y has an electrical dipold yud il ¥ad = poP,

here the uni - $+0.0)/ ion of 3M -, 3K , M-, 3K , ¢
where the unit vectoP is (TQ2X+(_93V) Q. A correction o Hp= 7Q1+ ?Ql +9Q, — 7Q1 + 7Q1‘ oK’
order(Q/rgy)coq3a) to the dipole will also occur because the 6
values of the vectorsg, in Eq. (3) change under distortion. (17)
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3M -, o, 9K, numberm must t.ake half-integer values. This is because the
He = T(QZ +Q3) + 7 Q9Q (18)  total wave functionyps.o{Q, @)y Must be a single-valued
function of the coordinatex. We already noticed that the
adiabatic electron wave function, Ed.2), changes sign un-
der one pseudorotational cycle. Therefore the funciign.
must also change sign whed is increased by 2. The
ground state, with pseudorotational quantums+1/2, is

L . . o thus still doubly degenerate. The electronic orbital degen-

model is K/M; in Nag, multireference configuration inter- o a0y \was lifted by the Jahn-Teller distorti@h— Q,;, but
action calculations give this to be about 17 migde], while ¢ 2nd right-pseudorotating states restore the degeneracy of
experiment [17] suggests 16 meV, which implieX  yhe combined electronic and atomic system. This restoration

~1.5eV/R. . . :
; o ... of degeneracy is the discrete system analog of restoration of
Unllke Ea. (17), Eq. (18.) cannot be S'mP“f'ed by a shift wanslation invariance by phase solitons in one-dimensional
of origin. Rather than being a simple shifted parabola, th‘?nolecular chaing20].

two-dimensional potential surface of E{.8) has a cusp at The wave functionsy, of this adiabatic vibrational

the origin. This is th_e “conical intersection” between the round state are products of the pseudorotational part
lower-energy adiabatic energy surface and the Jahn-Tellef;

L . i xp(ima) times the electronic pant,4 [Eq. (12)], also mul-
split higher-energy surface, which replacesQ-by +gQ in o ) . . :
Eq. (18). The higher surface does not enter in adiabatic apt|p||ed by the ground-state harmonic oscillator functions for

proximation. The potential energy of E48) is cylindrically breathingQ, and radial oscillatior®. The dipole operator in

symmetric aroundQ,=Q;=Q=0 and has the form of a Tmi le/zTameId s obtained by projecting £¢L3) onto

“Mexican hat.” The valueQ,i,=29/9K minimizes this po-
tential in the radial direction ifQ,,Q;) space, and the en-
ergy is lowered by the Jahn-Teller energg?/9K. The fre-
quency of radial oscillation i&xo=13K/2M, but for angular o . . o
motion there is no restoring force,,=0. The free motion of ~Wwhere 7=rX+ 7y are Pauli matrices acting in the space of
the variablea is called “pseudorotation.” When the coordi- pseudorotational states=1/2) and|m=-1/2. The eigen-
natea increases monotonically, the molecular coordinates states +1/2 of pseudo angular moment@siv,) have left-
of the atoms move in counterclockwise paths in the molecuand right-circulating dipolar charge currents. Unlike the un-
lar x,y plane(see Fig. 2 accompanied by no collective rota- distorted molecule, the frequency of circulation is no longer
tion, but by true angular momentum, which of course musto/#, butis now#i/l, a much smaller number. Therefore the
be quantized. orbital magnetic dipole moment is restored, except with a
Quantum chemical calculations for Ngive a somewhat much smaller value. There is no diagonal expectation value
different picture, because the distortibr10%) is not very  of the electric dipole, only an off-diagonal value, just as in
small, and as a result there is significant warping of the patithe undistorted3, case, but reduced by 2, fropy to uo/2.
of least energy on the energy surface in g Q; plane  Thus the half-filled outer orbital of the symmetric triangular
surrounding the conical intersection at the origin. Most cal-molecule has a quantum dipole which persists under quanti-
culations find the minimum to be an obtuse isosceles triangleation of molecular distortions. A fieltﬂ?m applied in the

(@=180° or equivalentlyx=260° in Fig. 3. Saddle points, pane of the molecule splits the levels linearlysgF,|/2.
representing t;arners for pseudorot?tmn, occur at the acuigng gjgenstates in the field are linear combinations of the left
positions(a=0° or equivalently £120°[18]. The calculation  4nq right pseudorotators whose moment is distributed in the
of von Buschet al. [1_6] gives the average distortioQmi, plane of the molecule with probability distribution é6sg)
=29/9K=0.25 A, which implies that the coupling constant y oo ar is the angle measured from the projection of the
9 !s.about 1.7 eV/A. The same calc.ulat|o!"| gives the energyio|y gnto the plane of the molecule. This cosine distribution
minimum to be 97 meV_and the barrier height to be 2_5_ meVig what causes the reduction af by 2.
higher than the breathing phonon energy and sufficient 0, inciple this is not fundamentally altered by a warping
strongly '”h'zb” pseudorotation. In our model the energy,qantia| fike (V,/2)[1+co$3a)], because tunneling along
minimum =g /9K is about_ 200 me\(, twice the quantum pseudorotational minimum-energy path preserves three-
chemical value, and there is no barrier in leading ord_er. fold symmetry and guarantees a degenerate ground state
The kinetic part of Eq(18) can be written a§3M/2)Q*  [21]. Pseudorotational quantum numbersare still half-
+(Io/2)c?, in separated radial and pseudorotational partsinteger quantized, but defin@dodulo3, so that, for example,
with pseudorotational moment of inertigy=3MQ2% The m=3/2 andm=-3/2 are the same and this state is singly
zero-point amplitude of radial oscillationd?/6KM)¥* is  degenerate, whilen=+5/2 is adoublet belonging to then
small enough compared wiQ,, that we can approximate =3 1/2 representation. The splittinfgopse,dorotb€tween the
the pseudorotational moment of inertia by the constgnt m=+1/2 ground state and then=3/2 excited state gets re-
:3MQ2mm. Then the pseudorotational wave function our  duced in frequency fronrm=%/14 by a Franck-Condon-type
approximation with no restoring forgés i~ explima) overlap factor governing the tunneling probability. Thus,
and the energy isﬁszIZIQ. As pointed out long ago by warping can greatly reduce the orbital magnetic dipole,
Longuet-Higginset al. [19], the pseudorotational quantum which is proportional to the pseudorotational splitting. Also,

whereM is the mass of the Na atom. The second forrqf
Eq. (17), results from the redefinitiony—g/3K—rq of the
size of the trimer and the corresponding redefinitiQn
+9/3K— Q. The breathing-mode frequency, in this

0= - 25 By (19
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=7.0T,ot The quantum rotator has a dimensionless paramgter
FIG. 3. Spectrum of low-lying energy eigenvalues of the 2D =Tq/ T, which is set to 40.5dashed curve, reasonable for JNa
fixed dipole rotator. The field energy jigF and the rotational quan- and to 200(dotted curve
tum of energy isT,,;=#2/2l. The zero-field axis has dimensionless

eigenvalues equal to¥ for m=0,+1,+2, ... . Each level except c5ic\jjate the observable dipole moment for a statistical en-
m=0 is doubly degenerate, and the degeneracy is split by the fml%emble at temperatufe This is (u)=—dF/dF, where F is
the free energy of the dipole calculated at temperaturdth
thermal mixing of pseudorotational states will smear any efjamiltonian (20). The temperature scales set by rotations
fect for kgT> fiwpseudorot and pseudorotations argy=%?%/2ly<Tpso=h2/2lg. For
V. QUANTIZED ROTATIONS Nag these_ are approximately 0.1 K _and 5 K We assy'fne
>T,o, Which allows us to treat spatial rotations classically,
Now we must deal with real rotations of the molecule inbut T can be either above or beloWg_ o
space, which adds a lot of complexity, as it does even for a Before proceeding to the quantum dipd20) we first
fixed dipole. A full 3D analysis does not fundamentally summarize the well-known results for the classical dipole
change things from a much simpler analysis of rotations irmoment in an external electric field.
2D, so we confine ourselves to 2D rotations in this paper.
Here we describe how 2D rotations alter both a fixed dipole ) _
and our quantum pseudorotator. We work in the limit where A. Classical dipole
the molecule stays in its vibrational ground state, but has The Hamiltonian of a 2D fixed dipole is
pseudorotational excitations.

The Hamiltonian for our pseudorotating quantum dipole 2
- Haop o= 5~ = moF COSY, (21
(PQD) is 2,

h2(m, + 7T¢)2 #2a?

% Vo where |l is the molecule’s moment of inertia. This is the
Hap pop= + +—~(1+cos &)
2y 2 2

pendulum problem. The low-lying quantum eigenenergies of
this system, calculated numerically, are shown in Fig. 3.
~ poF cody+ a). (20) The classical treatment is standard. After evaluating the

Here i is the Euler angle defining the orientation of the Partition functionZ=exg-¥/T) (we use unitskg=1), the

reference frame of the molecule with respect to the laboracl@ssical average dipole is found by differentiatifigo be

tory frame.w, and m, are dimensionless angular momenta 7r

which in quantum theory arei#, and -, and take half- f diy cosye!HoMeosy

integer and integer values correspondingly. The first term of _ -7

Eq. (20) is the kinetic energy of rotation of the trimer as a () = o m ' (22)

whole with 1,=3Mr2. The second term is the kinetic energy f dyj elroF/Meosy

of pseudorotation, and the third term is the simplest model o

for the warped potential energy of pseudorotation, withwhich saturates tq, at high fieldF and equalsyF at low

minima at the obtuse isosceles positions and barriers ofeld, where y=u2/2T is the 2D version of the Debye-

heightV, at the acute positions. The simplest version of our_angevin polarizability[3].

model has/,=0. The last term is the coupling to the external  The results of the quantum treatment of this problem do

electric field. It can be obtained from E@.3) by substituting  not have a simple form. At high fieltuoF > T) the dipole

F=F(cosy,—siny). makes pendulum oscillations around the direction of the
Equation (20), with V, set to zero, models a quantum field. This is seen in the lower right part of Fig. 3 where there

electric dipole moment, free to rotate in 2D space. We noware evenly spaced levels AE=%w® where the pendulum
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frequency w=\ugF/l, increases as the field increases. At 100
low field and low temperature, the quantum ground state is
rotationally symmetric with a dipole induced by second-
order coupling to the first rotationally excited states. In this
limit the polarizability becomewé/(ﬁzlzn. If the field in-
creases to values large compared wiithu,, the eigenstates
are mixtures of rotational levels. These mixtures give a full
dipole moment, saturated at the val{e=u,. We plot the
dependence of dipole moment versus an applied electric field
in Fig. 4. In different limits we have

W
(= (=]

8

eigenenergy/(rotational quantum)

()20 cp MoF
=~ T (moF < Trot)
Mo rot

—_
W
S

50 100 150 200 250

-200

< oF <) 0
T ™© Field energy/(twice rotational quantum)
~1 T T< T FIG. 5. Spectrum of low-lying energy eigenvalues of the 2D
T HoF < ipol he fiel j h ional
o ot guantum dipole rotator. The field energygF and the rotational

) quantum of energy iﬁ2/6Mr§. The zero-field axis has dimension-
~1- } ZLrot( Es T_) (23) less eigenvalues equal t6+m)2+(r o/ Omin) 2N, with the zero-point
4N woF Ko Tt/ pseudorotational quantuniry/gmin)?(1/2)? subtracted out. The
) . . level in red at zerd is the first with pseudorotational quantum
where the subscript “CD” means classical diptee rota-  numperm|>1/2. Each level at zerB is quadruply degenerate, and
tions are treated quantum mechanicallyhe water molecule  the degeneracy is reduced to double by the field.
is a good example. Normally we think of a classical fixed

dipole, but the quantum eigenstates in zero field are rotating OTT
dipoles with no fixed average moment. In a typical chemical (W20 op= Kol 4 _ —'Otz] (25)
or biological environment, the environmental fi€lds large, 2 (uoF/2)

free rotations are hindered, and the dipole is exposed. Notice that the effect of temperatufehen it is less than

the field energyugF) is smaller on the quanturtpseudo-+

real) rotating dipole, Eq.(25), than on the fixed rotating
To emphasize the difference between a quantum dipoldipole, Eq.(23); there is an extra small factdiq/ (uoF/2)

(20) and a fixed dipolé21), we choose the limi¥/,=0—i.e.,  which postpones thermal degradation of the dipole by rota-

a quantum dipole with free pseudorotations. Equati®®  tion. The reason is evident in the difference between the

with Vy=0 is a funny degenerate sort of double pendulumspectra seen in Figs. 3 and 5. At higher fiefdand not too

with two angular degrees of freedom. The quantum states dfigh excitation energy, the fixed dipole has energy levels that

B. Quantum dipole with free pseudorotations

zero fieldF=0 have eigenvalues fan out to larger separations in higher fields, meaning lower
) ) - slopes and lower dipoles in higher excited states, while the
e(€,m) =A7(€ + m)9/2lo+7"m 2 g, (24)  quantum dipole has energy levels whose slopes do not de-

where the angular momentum quantum numbeakes inte- pend on excitation level. The fixed dipole levels correspond

ger values 0%1 and thepseudomomentum quantum to pendulum oscillations of the dipole away from the field

number m takgs’ﬁ.a.llf-integer values 142 +3/2 Be. direction, whereas the quantum dipole levels correspond to
,x e . 2 2

causel <, the low-lying states haven=+1/2. All eigen- free rotations[the energy levels aré“(¢+1/2)</2l,] of a

states are fourfold degenerate, even the ground state, becad@glecule whose dipole is fixed in the direction of the field.

for either choice ofm| there are two ways to get any allowed ' "€ Way this happens is that the dipole is not fixed in the
value of |¢+m|. When the field is applied, each quadruplet 2¥€S of the molecule, but free to pseudorotate around these

level splits into two doublets. There are no allowed matrix@X€S: Real rotations and pseudorotations give compensating
elements of the field in any degenerate manifold of fourchanges in the dipole moment, leaving the moment fixed in
states, so the initial splitting is quadratic in field, just as forSPace. This happens equally well for left and right rotations,
water. If we assume that the temperature is low enough tha© @ll levels are still doublets. The comparison between de-
only the lowest pseudorotational levels +1/2 areexcited, ~Pendences ofu) vs F is presented in Fig. 4.

it is a good approximation to ignore the term in HGO)
involving Io. Then the 2D Hamiltoniari20) separates into
2X 2 matrices acting on subspaces formed |hyn=1/2),
I-1,m=-1/2). The ground-state energy isT{5/4 The main point of the present paper is the possible rel-
—\1+(uoF/(2T,o)?], which implies a ground-state dipole evance to the issue of unusual polarity in metal clugte.

()= (ol 2[(moF 12)1\(uoF12)2+TZ,]. For high fields and  Existing experiments oX; molecules have not seen the ef-

T not too low (ugF>T>T,y) the dipole is fects described here. There are multiple possible reasons, in-

VI. DISCUSSION AND CONCLUSIONS
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cluding (a) not looking for quite the right effectb) need for 4]
lower temperature(c) nuclear exchange symmetry, atd)
suppression by large barriers to pseudorotation. A subsequent
paper will address some of these issues in the context of Na
Here we speculate about the more general issues.

Suppose we discard triangular symmetry altogether, as in
a mixed alkali-metal trimer like LNa[22] or LiNaK. In the
symmetric case, symmetry forced the conical intersection
which preservedby pseudorotationthe degenerate ground
state and its quantum dipole. However, as explained by Von
Neumann and Wigndr4,23), points of degeneracy, or coni-
cal intersections, are generically pres¢dt] if there are
enough free variables. In the last occupied molecular orbital
level of LiNakK, the splitting of the two sublevels can be
tuned to zero by adjustment of two parameters, since the
Hamiltonian matrix can be written in this manifold as real x
symmetric 2< 2. There are three such parameters, the normal

mode amplitude$Q;,Q,,Q3). Thus it is permitted to have @ FIG. 6. In the Bloch sphere parametrization the ground states of
line in configuration space where the higher- and lowerthe two-level system correspond to the points of a unit sphere; i.e.,
energy surfaces touch and away from which they separat@ey can be labeled by a unit vectarFor the undistorted trimer the
linearly. Consider the minimum-energy point on this line andxy projection of this unit vector is proportional to the electric dipole
also the global minimum of the lower-energy surface. Awaymoment while itsz component is proportional to the magnetic mo-
from the global minimum, the energy increases quadraticallynent of the ground state.

with three principal axes defining nearby ellipsoidal energy

surfaces. Now begin moving along the axis of least energ

increase and continue following the bottom of this valle It)éal dipole moment is forbidden for symmetric trimers, it is
9 Y: Mtormed due to the quantum degeneracy of the ground states.

is possible that this valley will return to the global equilib- . . : . )
rium after circling the line of accidental degeneracy. It is aIsoThIS dipole moment ;un:wes Jahn-TeIIer" distortion OT the
molecule and keeps its “quantum nature” for small distor-

possible that the path in this minimum valley lies always:. R ' .
lower than the minimum energy found on the line of degen-t'ons' It is interesting to note that the quantum dipole mo-
eracy. In this case, there is again a pseudorotation with aff€nt makes a two-level system which can be manipulated by
electronic-wave-function sign change. The lowest-energ@" exte_rnal elgctrlc field. If it were_possmle to have a con-
pseudorotational state must therefore have a compensatirﬁ@”ed interaction between such trimers, one could investi-
phase change of when orbiting the degenerate line. Time- gate the use of this two-level system for quantum computing
reversal symmetry then requires that an inequivalent revergeurposes similarly to what was done for quantum qubits us-
pseudorotation with opposite phase is degenerate. These iRy persistent curren{5].
states should each drag a dipole moment in opposite direc-
tions once around the degeneracy line as the system moves ACKNOWLEDGMENTS
adiabatically around the circuit. Thus a quantum dipole is
generically permitted. Larger clusters of metal atoms have We thank W. de Heer for discussions of Ref]. We
more complex energy surfaces, and both features—conicalcknowledge helpful suggestions from T. Baruah, W. Ernst,
intersections and lack of inversion symmetry—are generiK. Lehmann, J. Muckerman, R. Porter, G. Scoles, and A. M.
cally likely. Therefore unusual dipoles whose properties aréStoneham. The work of P.B.A. was supported in part by NSF
not fully classical may be expected. Possibly this is whatGrant No. DMR-0089492 and in part by the J. S. Guggen-
Moro et al.[1,2] observed. heim Foundation. Work at Columbia was supported in part
Moro et al. observed a correlation between unusual di-by the MRSEC Program of the NSF under Award No. DMR-
poles and metals known in bulk form to have superconduc0213574. Work of A.G.A. was supported by the Alfred P.
tivity caused by large electron-phonon coupling. LargeSloan Foundation, NSF Grant DMR-0348358, and the
electron-phonon coupling derives from a high electronic denTheory Institute of Strongly Correlated and Complex Sys-
sity of states and a rapid change of single-particle energjems at Brookhaven.
eigenvalues with deformation. These are conditions favor-
able to the occurrence of the dipole we have described. A APPENDIX A: BLOCH SPHERE
high density of states means plentiful levels whose energies
may accidentally cross at conical intersections. Sensitivity of Itis convenient to use the Bloch sphere parametrization of
eigenvalues to distortion means that the point of the cone dhe degenerate ground std=(a, B)'=alk=-1)+lk=1)
intersection can lie higher in energy than the surroundingsee Fig. 6 Define the unit vectofi=(g|g|g). The manifold
landscape. Thus our picture contains the right ingredientf degenerate states of the two-level sys{emdistorted tri-
Further experiment and more accurate microscopic modelingen is represented then by two-dimensional sphere swept by
will be needed to confirm it. the unit vectom. The electric dipole momeni in the cor-
To conclude, we studied the formation of an electricalresponding ground state is proportional to the projecfipn
dipole moment in triangular molecules. Although the classi-of i on thexy plane = pugh, .
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The partly occupied statelk=+1) of the static trimer 1
have an orbital magnetic moment perpendicular to the plane I

of the molecule which couples to a magnetic figldin the
degenerat&’ subspace, the coupling is

Hg =~ poro B, (A1)

where the momen,,, is 2mewA as previously discussed. In
the Bloch sphere parametrization, the magnetic dipole mo-
ment is proportional to the projection nfonto thez axis and
is equal tougpn,- K

The value of the moment,, for Nag is about 0.3 Bohr FIG. 7. The quantum dipole in uniesy/2 as a function of the

magnetons, if we ignore th.e barrlet&to free pSEUdOrOt.at'ondimensionless Hubbard strengih=U/t,. The intercept coincides
The electrical momengry/2 is 0.98eA or 4.7 D (1 D unit with the noninteracting Huckel model, while far>1 it falls as

=0.208eA) in our naive model. An unpublished density ,-3
functional calculation26] gives 2.3 D. It is not surprising

that the actual result is reduced, because the true molecul@ihe ground state is k=+1 doublet, as it was for the non-
orbitals surely have a significamio component missing interacting model. Figure 7 shows the dependence of the
from our model. Also, the on-site Coulomb repulsion causegjuantum dipole on the dimensionless Hubbard parameter
a suppression of the dipole as is shown in the next appendix= U/t,. A factor of 2 suppression occurs whehis of the
same order a,. For k<1, the doubly degenerate ground-
state energy i€y~ —3t;+(13/3)U. The dipole operator has
an off-diagonal matrix element-1/u|+1) betweenk=-1

The Coulomb interaction between electrons is approxiandk=+1 states equal toX-i§) with
mated by a Hubbard term of strendth

dipole moment, p/u,
(=]
(5]

o
o
-
N
©w
S

APPENDIX B: EFFECT OF A HUBBARD TERM

4

=~ 1-—-k|, fork<l1. B2

Hie=U 3 (el +lycn)?. (B1) # “0{ 9“] « (&2
n=0,1,2

_ . . ) This agrees with the noninteracting result, Ef). For «
The Hilbert space has dimension 20. There are 8 basis states; he doubly degenerate ground state has end&gy
W|t_h o vacant sites and.12 with one vacant site. Total spin,_ 3U-3t3/U. The magnitudeu of the off-diagonal matrix
spinz projection, and orbitalelectronig angular momentum  gjement falls rapidly as shown in Fig. 7, going asymptoti-
are conserved. In the eight-dimensiosal1/2 andS,=1/2 cally as
subspace, there are three states with angular momektum
=1, three withk=-1, and two withk=0 that have higher

9
~ 3 >
energy. Parity symmetry is not broken by the Hubbard term. p=of o for se=1. (B3)
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