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The van der Waals coefficients, fromC11 through toC16 resulting from second-, third-, and fourth-order
perturbation theory are estimated for the alkali-metalsLi, Na, K, and Rbd atoms. The dispersion coefficients are
also computed for all possible combinations of the alkali-metal atoms and hydrogen. The parameters are
determined from sum rules after diagonalizing a semiempirical fixed core Hamiltonian in a large basis. Com-
parisons of the radial dependence of theCn/ rn potentials give guidance as to the radial regions in which the
various higher-order terms can be neglected. It is seen that including terms up toC10/ r10 results in a dispersion
interaction that is accurate to better than 1% whenever the inter-nuclear spacing is larger than 20a0. This level
of accuracy is mainly achieved due to the fortuitous cancellation between the repulsivesC11,C13,C15d and
attractivesC12,C14,C16d dispersion forces.
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I. INTRODUCTION

The experimental realization of Bose-Einstein condensa-
tion sBECd for the alkali-metal atoms Li, Na, Rb and atomic
hydrogenf1,2g has resulted in an upsurge of interest in the
area of cold atom physics. One consequence of this is the
increased importance in determining the interaction poten-
tials between alkali-metal and alkaline-earth atoms. For ex-
ample, the stability and structure of BECs depends on the
sign sand magnituded of the scattering length, and the scat-
tering length depends sensitively on the fine details of the
interaction potentialf3,4g.

One can try and determine the interaction potential by
either explicit calculationf5–7g, or by analysis of high-
precision spectroscopic experiments of the dimerf8–10g.
These approaches are most suited to determining the poten-
tial at small to intermediate values of internuclear distance
se.g.,r ,25a0d. At large distances, one relies on the approach
pioneered by Dalgarno and collaboratorsf11–13g, namely,
using oscillator strength sum rules to determine the so-called
dispersion coefficients.

The long-range interaction between two spherically sym-
metric atoms can be written in the general form

Vsr → `d = − V6srd − V8srd − V10srd − V11srd − V12srd − ¯ ,

s1d

where the dispersion potentialVnsrd of ordern is written

Vnsrd =
Cn

rn . s2d

The Cn parameters are the van der Waals dispersion coeffi-
cients. The evensn=6,8, . . .d dispersion coefficients are cal-
culated using oscillator-strength sum rules derived from
second-order perturbation theory and provide an attractive
interaction. The oddsn=11,13, . . .d terms come from third-

order perturbation theory, and are repulsivef14g. Contribu-
tions from fourth-order perturbation theory start atn=12
f14,15g. The calculations were stopped atn=16 since the
contributions from fifth- and sixth order perturbation theory
start atn=17 andn=18, respectively.

It has been customary in previous systematic studies of
dispersion coefficients to restrict the calculations to just the
C6, C8, andC10 termsf16g. With the recent interest in deter-
mining the scattering lengths ofA-A systems to high preci-
sion f4,9,17–20g, it is now worthwhile to evaluate the higher
n dispersion coefficients with a view to determining whether
these make a significant contribution to the interatomic po-
tential for those radial separations at which the long-range
form of the potential is first applied.

The recent spectrum analyses have typically an internu-
clear distance of about 20a0 as the boundary point used to
join the explicitly determined potential with the asymptotic
form given in terms of the dispersion forcesf8–10g. Taking
the Rb-Rb potential as a specific example, explicit calcula-
tions have shown thatC6=4.6353103 a.u., C8=5.701
3105 a.u.,C10=7.9163107 a.u., andC12=1.42731010 a.u.
f21g. At a radius of 20a0 the ratios of the contributions from
the various terms are 1:0.308:0.1068:0.0481. The contribu-
tion of the highest multipole potential is about 5% of the
dipole-dipoleC6 term.

In this article, theC11 to C16 dispersion coefficients and
related parameters are computed using a semiempirical ap-
proach for the alkali atoms. The method adopted utilizes os-
cillator strengths calculated within a semiempirical frame-
work f21g. Comparisons with previous high accuracyab
initio calculationsf21–26g of the C6, C8, andC10 dispersion
coefficients suggests the methodology is able to generate co-
efficients that are accurate to about 1–2 % for the lighter
alkali-metal atoms.

II. CALCULATION OF THE DISPERSION PARAMETERS

All the dispersion coefficients computed in this paper
were computed by first diagonalizing the semiempirical
Hamiltonian f21g in a large mixed Laguerre-type orbital or
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Slater-type orbital basis set. Next various sum rules involv-
ing oscillator strengths or reduced matrix elements were
summed over the set of physical and pseudostates.

The respective formulae for the various coefficients are
now given. The notationCn is used to denote the total dis-
persion coefficient for a givenn. So fornù12,Cn is the sum
of Cn

s2d andCn
s4d, whereCn

s2d arises from second-order pertur-
bation theory andCn

s4d arises from fourth-order perturbation
theory.

A. The second-order contributions toC12 and C14

While the highern dispersion coefficients for the H-H
system have been determined to high precisionf27–29g, only
a few calculations ofC12 and C14 have been done for the
alkali-metal atomsf14,30g. The calculations of Ovsiannikov,
Guilyarovski, and LopatkosOGLd f14,27g used an approxi-
mate expression for the Greens function and can only be
expected to be accurate at the 20% level. Explicit compari-
sons with theC8 andC10 values of Patil and TangsPTd f30g
in Refs. 21 and 25 reveal discrepancies of order 10% for
Na2, K2, and Rb2. Recursion rules exist for estimatingCn at
high n from data tabulations ofCn for lower values ofn f28g.

The polarization and dispersion parameters can be com-
puted from their respective oscillator strength sum rules
which are well known. The oscillator strength,f0i

sld from the
ground stateswith orbital and spin angular momentum equal
zerod to the ith excited state is defined as

f0i
sld =

2ukc0ir lClsr̂ dicilu2e0i

s2l + 1d
. s3d

In this expressionCl is the spherical tensor of rankl, the
Wigner-Eckart theorem is defined according to Ref. 31, and
e0i is the excitation energy of the transition. The sum rule for
the adiabatic multipole polarizability,asld is

asld = o
i

f0i
sld

e0i
2 = Sslds− 2d. s4d

The second-order contributions toC12 andC14 are defined

C2n
s2d = o

l i l j

s2n − 2d!
2l i!2l j!

o
i j

f0i
sl idf0j

sl jd

e0ie0jse0j + e0id
, s5d

with l i + l j +1=n. The sum rules are a generalized sum which
implicitly includes a sum over excitations to bound states
and an integration taking into account excitations to con-
tinuum states.

The sum rules involve contributions from both core and
valence excitations. The valence contributions were evalu-
ated by diagonalizing the model Hamiltonian in a very large
basis. Determination of thef-value distribution for the core
was handled by using the properties off-value sum rules and
an approach that gives a reasonable estimate of thef-value
distribution with a minimum of computationf21g. We use the
sum rule for the polarizability, Eq.s4d and

lNkr2l−2l = o
i

f i
sld = Sslds0d, s6d

f21,32g to estimate anf sld-value distribution function of rea-
sonable accuracy. This expression reduces to the well-known
Thomas-Reiche-Kuhn sum rule forl =1, viz.

N = o
i

f i
s1d = Ss1ds0d. s7d

In these expressionsN is the total number of electrons and
kr2l−2l is an expectation value of the ground-state wave func-
tion.

The coref sld-value distribution was determined by assum-
ing each closed subshell made a contribution ofNiri

2l−2 to the
sum rules, whereNi the number of electrons in the subshell
and r i

2l−2 is the kr2l−2l Hartree-FocksHFd expectation value.
Next, the excitation energy for each subshell is set to the HF
single particle,ei plus an energy shift. The energy shift,Dsld

was set by using the core multipole polarizability,acore
sld and

the relation

acore
sld = o

i

lNir i
2l−2

sei + Dsldd2 . s8d

A full description of the details and core polarizabilities used
to fix Dsld for l =1, 2, and 3 has been publishedf21g. The
contribution from the core was omitted forl =4 and 5 since
there are no reliable estimates of these core polarizabilities
and, in addition, thelr i

s2l−2d weighting factors lead to the core
becoming less important for largerl. The core contribution to
as3d was less than 0.2% for Rb and most of the core contri-
bution toC2n

s2d comes from thef s1d distribution.

B. The third- and fourth-order potentials

The dispersion coefficientsC11 andC13 arise from third-
order perturbation theoryf13–15,27,29,33g. The standard ex-
pressions are given in terms of sums of products of reduced
matrix elements. The expressions derived by OGLf14,27g
are used. Given the complexity of the expressions, it is not
surprising there have been relatively few calculations of
these coefficients for any atoms. Accurate values forC11

s3d

through toC31
s3d for the H-H system have recently been pub-

lished f27,29g.
For the alkali-metal atoms, the only estimates ofC11 have

been obtained from the relatively small calculations of OGL
f14g and Patil and Tangf30g. There have been someC11 and
C12 estimates for Csf34g, but that atom is deemed too heavy
to accurately describe with the present nonrelativistic method
and is not discussed any further here.

The dispersion coefficientsC12 andC14 both have contri-
butions that arise from fourth-order perturbation theory.
However, there have been very few calculations of the
fourth-order term for any systems. Bukta and Meathf15g
made an explicit calculationC12

s4d for the H-H dimer. In ad-
dition to deriving a general expression, OGLf14,27g also
made some estimates ofC12

s4d for combinations of hydrogen
and the alkali atoms. Finally, the present authors made a
comprehensive calculation ofCn

s4d up to n=32 for the H-H
interactionf27g using the OGL formalism.
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Although the core has not been taken explicitly into ac-
count in the evaluation of the third- and higher-order disper-
sion parameters their impact is expected to be smaller than
second order due the third- and fourth-order sum rules have
an energy denominator involving the square or cube of the
excitation energy.

III. RESULTS OF THE CALCULATION

A. Sensitivity of calculations to the ground-state wave function

One aspect of the calculations that warrants particular
mention was the sensitivity of the higher-l polarizabilities
slisted in Table Id and thusC12

s2d, C14
s2d, andC16

s2d to the repre-
sentation of the ground-state wave function. While there are
many advantages to representing the wave function with a
linear combination of convenient basis functions, there are
some negative features. One of those negative features re-
lates to the behavior at large distances from the nucleus.
Unlike a grid based calculation, the correct asymptotics are
not imposed and so the large-r part of the wave function,
which has a weak influence on the total binding energy can
be inaccurate.

This is best illustrated by a specific calculation. Our initial
calculations for theas4d andas5d polarizibilities Na used a 3s
wave function written as a linear combination of 12 Slater
type orbitalssSTOsd. This wave function had a binding en-
ergy against ionization of 0.1888532 Hartree. The resulting
polarizabilities were as4d=3.463106 a.u. and as5d=6.42
3108 a.u.. When the STO basis was replaced by a large
Laguerre type orbitalsLTOd basissthis was necessary for the
evaluation ofC11d and the energy driven to convergence the
resulting binding energy was 0.1888549 Hartree. However
there were dramatic changes in the polarizabilities, with the
new values being as4d=2.973106 a.u. and as5d=2.45
3108 a.u.srefer to Table Id. The polarizabilityas5d decreased
by a factor of about 2.5 when the binding energy changed by
1.7310−6 Hartree. The dispersion parametersC12

s2d and C12
s4d

were also sensitive to the representation of the ground-state
wave function. The initialC14

s2d of 4.0431011 a.u. was de-
creased to 2.60231011 a.u. when the ground-state basis was
made exhaustively large. The impact of the basis set on the
dispersion coefficients was was not so extreme as for the
polarizability but was still substantial.

The f s2d and f s3d distributions used in earlier calculations
of the Na and K polarizabilities and dispersion coefficients

f21,35g were affected to a smaller extent by this problem
f26g. The octupole polarizabilities were 3–4 % too large for
these atoms, while the effect uponC10 was to make them
about 1–2 % too large. The impact uponas2d andC8 was an
order of magnitude smaller but it was still discerniblef27g.
Where values ofC8 andC10 are required in the present work,
the revised valuesf26g are used.

B. The homonuclear alkali-metal–alkali-metal systems

The results of the present calculations for the Li, Na, K
and Rb homonuclear alkali atom pairs are listed in Tables I
and II, and compared with the calculations of Ovsiannikovet
al. f14g and Patil and Tangf30g. All of the present values of
C12

s2d are larger than the PT and OGL estimates by amounts
ranging from 10–50 %. This is not a concern since the OGL
and PT estimates ofC6, C8, andC10 are also smaller than the
latest data for these parametersf21,24,25g. The present esti-
mates ofC11 and C13 are also 10–50 % larger than the PT
and OGL estimates.

In Table II,Cn
s2d andCn

s4d are given as separate entries. The
total dispersion parameterCn is given in Table IV which
tabulates the dispersion parameters for all possible atom-
atom combinations. The fourth-order termsC12

s4d are about
4–5 % the size ofC12

s2d. The fourth-order correction toC12 is
about the same size as the correction due to the core. The
size of the fourth-order correction toC14 is larger, with about
25% of the final value ofC14 coming fromC12

s4d. For C16, the
fourth-order terms are almost as large as the 2nd-order terms,
with C16

s4d being 80% the size ofC16
s2d for K2 and Rb2.

The contribution of the core toC12
s2d, C14

s2d, andC16
s2d is rela-

tively small. The contribution is largest for the Rb2 dimer,
but even here the effect is 4.2% forC12

s2d, 3.2% forC14
s2d, and

2.5% forC16
s2d.

C. Critical radius for dispersion formula

The LeRoy radius is often used as an estimate of the
critical radius beyond which the interaction can be described
by the use of a dispersion formulaf36,37g. It is defined for
two atomsA andB as

RLR = 2sÎkr2lA + Îkr2lBd, s9d

where kr2lA is evaluated for the ground state. The LeRoy
radius for the homonuclear dimers are given in Table III.

We introduce some parameters so that the range of valid-
ity of the dispersion formula can be discussed in a quantita-
tive manner. First, the partial sum of the dispersion energy up
to thenth term is defined as

Wnsrd = o
m=6

m=n

Vmsrd. s10d

One would then consider the relative size ofWnsrd to W`srd
as a measure of the accuracy of the truncated dispersion po-
tential to the exact potential. There are of course problems
associated with the evaluation ofW`, and so we identify
W`srd with W16srd. It is natural to stop the analysis atn

TABLE I. The higher multipole polarizabilities for the lighter
alkali atoms. All values are in atomic units.

Method

10−6as4d 10−9as5d 10−9as6d

Present PTf30g Present Present

Li 1.999 1.947 0.1551 17.04

Na 2.973 2.828 0.2450 28.53

K 11.82 10.69 1.204 172.4

Rb 16.57 14.49 1.762 259.6
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=16 since the contributions from fifth and sixth-order pertur-
bation theory start atn=17 andn=18, respectively.

Figure 1 shows the ratiouW10srd−W16srdu / uW16srdu as a
function of r for the Li, Na, K, and Rb dimers. This ratio is
seen to be smaller than 1% for all values ofr greater than
20a0. The curves for Li2 and Na2 are very similar, as are the
curves for K2 and Rb2. The existence of two sets of two very
similar curves is probably related to the fact that the lowest
lying d excitations for Li and Na involve a change in princi-
pal quantum number whereas those for K and Rb do not.

There is a sign change infW10srd−W16srdg near 20a0 for
all four dimers. The magnitude ofW10srd is generally smaller
than W16srd for small separations, but for large separations
W10srd is generally larger in magnitude thanW16srd. This is
caused by the repulsiveV11srd, V13srd, and V15srd interac-
tions.

A useful way to parameterize this information is to define
Rn such that it gives the smallest radius for which the partial
dispersion energyWnsrd is accurate to 1%. In effect,Rn is the
largestr solution of the equation

uWnsrd − W16srdu = 0.010W16srd, n ø 16. s11d

Table III givesRn for the hydrogen and alkali-metal homo-
nuclear dimers. The values ofRn get larger as the atom gets
heavier. A dispersion potential only involvingC6 would not
be accurate to 1% until the separation distance increased to
more than 100a0 in the case of Rb2. This distance shrinks
dramatically with the inclusion of theV8 andV10 potentials.
The size ofR8 indicates that a dispersion interaction with
only V6 andV8 is not good enough to describe these alkali-
metal dimers. TheR10 parameter is smaller than the LeRoy
radius for all systems, and so the use ofW10srd will be ac-
curate to better than 1% as long as the internuclear separation
is greater thanRLR.

Figures 2, 3, 4, and 5 show the ratiouVnsrdu / uW16srdu as a
function of r for all the alkali dimers. One of the most no-
ticeable features of these curves is the existence of a nexus

FIG. 1. The ratio ofuW10srd−W16srdu / uW16srdu as a function of
r sunits of a0d for all the possible homonuclear pairs.

TABLE II. The dispersion coefficients for homonuclear combinations of the lighter alkali atoms. TheCn
s2d

terms have core contributions. All values are in atomic units.

Method 10−6C11 10−9C12
s2d 10−9C12

s4d 10−9C13 10−12C14
s2d 10−12C14

s4d 10−12C15 10−15C16
s2d 10−15C16

s4d

Li

Present −40.44 0.9015 0.0401 −11.05 0.1455 0.04251 −2.873 0.02997 0.01908

PT f30g −37.36 0.8648 −10.11

OGL f14g −36.0 0.648 0.0433 −8.85

Na

Present −61.01 1.500 0.06699 −18.90 0.2602 0.0720 −5.368 0.05736 0.03637

PT f30g −53.32 1.375 −16.46

OGL f14g −39.5 0.917 0.0396 −11.3

K

Present −364.9 9.102 0.4640 −147.2 2.000 0.6807 −53.02 0.5544 0.4480

PT f30g −312.3 7.749 −122.8

OGL f14g −250 5.430 0.361 −89.3

Rb

Present −536.2 14.26 0.6986 −236.5 3.314 1.098 −91.20 0.9656 0.7897

PT f30g −464.4 11.56 −195.1

OGL f14g −376 8.370 0.556 −145.0

TABLE III. Various radial distancessin a0d related to the accu-
racy of different order expansions of the dispersion parameters for
the homonuclear alkali-metal atom dimer.

Atom kr2l RLR R6 R8 R10

Li 17.47 16.72 77.53 25.92 16.30

Na 19.51 17.67 86.24 28.07 17.24

K 27.97 21.16 103.8 32.61 18.82

Rb 30.76 22.18 111.0 34.44 19.54
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point for theV11, V13, V14, V15, andV16 potentials between
s16–21da0 for all alkali dimers. This suggests that a recur-
sion relation of the typeCn+m=AmCn exists between the re-
spective dispersion coefficients.

The biggest correction toW10srd for sufficiently larger
should beV11srd. The C12:C11 ratios for Li2, Na2, K2, and
Rb2 from Table IV are 23.3, 25.7, 26.2, and 27.9, respec-
tively, and for r less than these values it is actuallyV12srd
which is the largest correction toW10srd snote, at sufficiently
small r, V13, V14, . . ., will also be larger thanV11d.

The extent to which mutual cancellations act to minimize
the error can be gauged by adding the magnitudes ofVnsrd at
r =20a0. For Na, theon=11

16 uVnsrdu is equal to 0.0473W16srd
at r =20a0. But, the partial sumuW10srd−W16srdu is equal to
0.00123W16srd at this radius. The alternating signs reduce
the impact of the higher order terms by a factor of about 40.
For Rb, the on=11

16 uVnsrdu sum gives 0.1683W16srd at r
=20a0. The magnitudes ofuVnsrdu / uW10srdu are greater than
0.025 for alln between 11 and 16. The partial sumuW10srd
−W16srdu is equal to 0.00713W16srd at this radius. In this
case, the alternating signs have reduced the impact of the
higher order terms by a factor of more than 20.

Figures 6 and 7 better illustrate the extent to which mutual
cancellations result inW10 being a very good approximation
to the total dispersion potential for Na and Rb. The combi-
nation fV11srd+V12srdg is much smaller than eitherV11 or

V12, and similarlyfV13srd+V14srdg is smaller thanV13 or V14

while fV15srd+V16srdg is smaller thanV15srd or V16srd. The
combination ofV2n−1srd+V2nsrd falls to 1% ofW16srd about
s5–10da0 closer to the origin than eitherV2n−1srd or V2nsrd.

The rubidium dimer. A recent analysis of three comple-
mentary experiments by van Kempenet al. f9g for the Rb2
dimer resulted in experimental estimates of the dispersion
parametersC6, C8, C10, and C11 and gave estimates of the
scattering length to a precision of about 1% for Rb87.

The present work suggests that their estimates ofC6, C8,
andC10 may be well founded and our previous calculations
agreed with the experimental values to an accuracy of 2%
f21g. However, it is probable that their attempt to determine
C11 was overly ambitious. The present calculation gaveC11
=−5.3623109 a.u. which lies outside the van Kempen esti-
mate ofC11=s−8.6±0.17d3109 a.u.. We believe this differ-
ence is a consequence of the assumptions made by van
Kempenet al. when they performed the fit to extract the
dispersion coefficient.

First, their least squares fit relied on a value ofC12 of
1.1931010 a.u. computed by Patil and Tangf38g. This esti-
mate ofC12 is about 25% smaller than the present second-
plus fourth-orderC12 of 1.49631010 a.u. Second, their esti-
mate is derived from the energies of bound states that have
an outer turning radius of about 20a0. At this radius,V12 is
actually larger thanV11. Furthermore, the higher order terms

FIG. 3. The ratio ofuVnsrdu / uW16srdu as a function ofr sunits of
a0d for the sodium dimer. The decay of the ratio at larger is fastest
for largen.

FIG. 4. The ratio ofuVnsrdu / uW16srdu as a function ofr sunits of
a0d for the potassium dimer. The decay of the ratio at larger is
fastest for largen.

FIG. 5. The ratio ofuVnsrdu / uW16srdu as a function ofr sunits of
a0d for the rubidium dimer. The decay of the ratio at larger is
fastest for largen.

FIG. 2. The ratio ofuVnsrdu / uW16srdu as a function ofr sunits of
a0d for the lithium dimer. The decay of the ratio at larger is fastest
for largen.
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V13, V14, V15, andV16 were all slightly larger thanV11 at a
radius of 20a0. However, as has been noted, the alternating
signs of the successive terms results in a considerable degree
of cancellation. Nevertheless, one can conclude that the van
Kempen estimate ofC11 is sensitive to the accuracy and pres-
ence of the highn terms in the dispersion interaction.

D. The heteronuclear systems including H

The n.10 dispersion parameters for all possible combi-
nations of H, Li, Na, K, and Rb are given in Table IV. The
radial matrix elements for hydrogen were those of theN
=15 calculation used in an earlier calculation of the H-H
dispersion parametersf27g. The C11 and C12 parameters re-

ported by OGLf14g and PT f30g are not listed since the
present calculations are more sophisticated.

IV. CONCLUSIONS

The complete set of dispersion parameters up ton=16 has
been computed for all combinations of hydrogen and the
alkali atoms up to rubidium. The relative importance of the
dispersion potentialsVnsrd increases as the atoms get heavier.
It was found that the dispersion energy given by the first
three terms of Eq.s1d is accurate to 1% wheneverR.20a0.
This degree of accuracy at relatively small internuclear sepa-
rations comes from a fortuitous cancellation between the
terms withn.10 in the dispersion energy. The third-order

TABLE IV. The dispersion coefficientsC11→C16 for all the possible interacting pairs formed by hydrogen and the alkali-metal atoms.
TheC12, C14, andC16 coefficients have contributions from both second- and fourth-order perturbation theory. All values are in atomic units.

System C11 C12 C13 C14 C15 C16

H-H f27g −3474.9 1.22733105 −3.26993105 6.36173106 −2.83963107 4.41213108

10−6C11 10−6C12 10−9C13 10−9C14 10−9C15 10−12C16

H-Li −0.2251 21.17 −0.04752 2.735 −9.438 0.4593

H-Na −0.2760 29.43 −0.06269 4.030 −13.25 0.7160

H-K −0.5636 92.69 −0.1635 15.68 −43.10 3.409

H-Rb −0.6619 12.34 −0.2064 21.86 −57.57 4.936

10−6C11 10−9C12 10−9C13 10−12C14 10−12C15 10−13C16

Li-Li −40.44 0.9417 −11.05 0.1880 −2.873 4.906

Li-Na −49.63 1.221 −14.48 0.2512 −3.937 6.819

Li-K −119.4 3.216 −40.67 0.7685 −12.68 24.08

Li-Rb −143.9 4.134 −51.84 1.018 −16.84 32.90

Na-Na −61.01 1.567 −18.90 0.3323 −5.368 9.373

Na-K −146.5 4.015 −52.60 0.9834 −17.04 31.97

Na-Rb −176.5 5.125 −66.85 1.292 −22.54 43.32

K-K −364.9 9.567 −147.2 2.681 −53.02 100.24

K-Rb −442.1 11.99 −186.7 3.449 −69.63 133.0

Rb-Rb −536.2 14.96 −236.5 4.412 −91.20 175.5

FIG. 6. The ratio ofuVnsrdu / uW16srdu for n=6, 8 and 10 as a
function of r sunits of a0d for the sodium dimer. The other curves
show the ratio ofuV2n−1srd+V2nsrdu / uW16srdu for 2n=12,14,16.

FIG. 7. The ratio ofuVnsrdu / uW16srdu for n=6, 8, and 10 as a
function of r sunits ofa0d for the rubidium dimer. The other curves
show the ratio ofuV2n−1srd+V2nsrdu / uW16srdu for 2n=12,14,16.

J. MITROY AND M. W. J. BROMLEY PHYSICAL REVIEW A71, 042701s2005d

042701-6



potentialsV11, V13, and V15 are repulsive, while the even
termsV12, V14, andV16 are attractive. The fourth-order con-
tribution toC16 was almost as large as the second-order con-
tribution to C16. It is worth noting that Dalgarno and Lewis
showed that the second-order multipole expansion of the dis-
persion series was actually divergentf39g. However, the can-
cellations that occur between the terms of different polarities
are consistent with their statement that truncating the disper-
sion series to a finite number of terms can lead to an accurate
interaction potential despite the formal properties of the mul-
tipole expansion.

Whether terms in the dispersion interaction withn.10
are important in the description of alkali dimers is essentially
a question about whether the dispersion interaction has to be
known to a precision of 1.0% or 0.1%. It is clear that addi-
tional terms going beyondC10 should be introduced in pairs.
There is no point in including theV11 potential without also
including the V12 potential. Indeed, inclusion of just one
member of thesV11,V12d would most likely degrade rather

than improve the accuracy of the dispersion potential. Given
that theC6 parameter has been calculated to a precision of
better than 1% for most alkali systemsf21,24,25g, usage of a
dispersion interaction involving thesV11,V12d potentials may
be warranted.

There have been a couple of experimental investigations
of alkali-dimer potentials that have included dispersion
forces withn.10. The value ofC11 for the Rb dimer has
been given by van Kempenet al. f9g. However, this value of
C11 is most likely model dependent for reasons discussed
earlier. Consideration of theV12srd potential has also oc-
curred in analyses of the spectrum of the Cs dimerf40,41g.
In this case, theV11srd potential was omitted so it is doubtful
whether the inclusion ofV12srd was justified in this case.
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