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Symmetric and nonsymmetric muonic three-body systems have been predicted to form in collisions between
muonic atoms and hydrogen molecules. The hyperspherical adiabatic expansion is a representation for the
investigation of muonic three-body bound states. In this research we have used hyperspherical “surface”
functions for muonic helium hydride ionssisotopes of helium-tritium-muon moleculesd. Through this ap-
proach, the binding energy and lowest eigenpotentials for the muonic molecular ions are calculated in an
extreme adiabatic approximation. The obtained results are close to the calculations of others.
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I. INTRODUCTION

In connection with muon-catalyzed fusion, energy levels
of muonic molecules have extensively been studied with
various calculational methodsf1–3g. The hyper spherical
harmonics formalism is a powerful approach for bound-state
calculations of three-body systemsf4–6g. In this work we
mainly consider muonic helium hydride ions liketm 3He and
tm 4He, shelium-tritium-muon nonsymmetric moleculesd.
There are strong indications that these muonic molecules can
form molecular three-body resonances. One of these indica-
tions is thattmHe resonances were seen in collisions oftm
atom with 3He and4He f7–9g. Also, in the muon-catalyzed
fusion process, helium impurities gradually accumulate in
D-T targets. The muon less process due to muon transfer
from muonic hydrogen atoms through the intermediate
tm 3He andtm 4He muonic molecules to the accumulated he-
lium nuclei is an important factor in understanding actual
mCF process and stripping probability in DT mixtures
f10,11g. The role of the formation of a muonic molecule in a
charge-exchange reaction was confirmed in a number of ex-
perimentsf12g. In thetmHe system, a Coulomb interaction is
not able to bind the systems under consideration due to the
repulsion in themHe+t channel. Only a three-body resonant
state can be formed. States like that are supported by the
attractive polarization potential in thetm+He channel and
therefore are clustered.

Our goal in this research is to study systematical calcula-
tions of energy levels fortm 3He andtm 4He systems in hy-
perspherical coordinates. In order to do this, the Hamiltonian
of the system, interacting only via the Coulomb force, in
Jacobi coordinatessr ,Rd as shown in Fig. 1, and the nonrel-
ativistic Schrödinger equation for the three particles is writ-
ten. In practice, for the numerical calculation of this infinite
set of coupled equations, they are truncated to a finite set.

The approach, using the hyperspherical “surface” function
methodf13g, has been applied in this paper. The hyperspheri-
cal method allows one to separate the hyperradial motion
from the angular part. Physical boundary conditions for their
solution can be easily formulated. Moreover, coupling of
channels turns out to be rather small in our case and allows
one to use the decoupled one-level approximation.

The formulation of the problem in hypercoordinates and
adiabatic expansion is given in Secs. II and III. In Sec. IV,
the behavior of effective potential and surface functions for
different hyperradiiR is discussed. Finally, in Sec. V, the
numerical results are given, leading to a discussion and con-
clusions.

II. THEORETICAL DESCRIPTION
OF MUONIC MOLECULES

In this section we explain the treatment of the nonsym-
metric three-body Coulomb problem. Since we have two
heavy particles and one light particleshelium, tritium, and
muond, it seems that the Born-Oppenheimer approach will be
reasonable to explain this system. But within the framework
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FIG. 1. Jacobi coordinatessRi ,r id; mi, mj, andmk are the mass
of particles in muonic molecules.
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of the Born-Oppenheimer approach, it is very difficult to
treat the contribution from the continuum spectra of the two-
center problem correctly. Thus, to avoid these difficulties we
have used another adiabatic formulation: namely, the hyper-
spherical adiabatic approachf14g. This method is based on
an expansion of the three-body wave function into the so-
called surface functions.

The motion of three particles in their center-of-mass sys-

tem can be described as Jacobi coordinatessrW ,RW d, as shown
in Fig. 1. In this variable the Hamilton operator of the three-
body Coulomb system is given by

H = T + Vc. s1d

The kinetic-energy operatorT and the sum of the three two-
body Coulomb interactions,Vc, are given by

T = −
1

2m
DrW −

1

2M
DRW , s2d

Vc = −
Ze2

r
−

e2

uRW − brWu
+

e2

uRW − grWu
, s3d

where

m−1 = mm
−1 + mz

−1, M−1 = mt
−1 + smm + mzd−1,

b =
mz

mm + mz
, g = 1 −b, s4d

and mm, mt, mz, andZ denote the masses of the muon, tri-
tium, helium isotopes, and the charge of the particle, respec-
tively.

Introducing dimensionless variables according to

xW =
rW

a
, yW =

RW

aa
, s5d

with a=Îm/M and a being the Bohr radius of thesZmd
subsystem,a=sZme2d−1.

Then the kinetic-energy operatorT and the sum of the
three two-body Coulomb interactions,Vc, are changed,

T = − s2ma2d−1fDxW + DyWg s6d

and

Vc = − s2ma2d−1F2

x
+

2

ZuayW − bxWu
−

2

ZuayW + gxWuG . s7d

Taking s2ma2d−1 as our energy unit, the Hamiltonian can be
read

H = − DxW − DyW −
2

x
−

2

ZuayW − bxWu
+

2

ZuayW + gxWu
, s8d

by defining the hyperradiusr and the hyperanglev instead
of the variablesx andy, via

xW = r cosv, yW = r sinv,

x̂ =
xW

uxu
, ŷ =

yW

uyu
, s9d

the nontatios beingx̂ and ŷ used for x̂;sux,wxd and for ŷ
;suy,wyd, respectively, with 0ør,` and 0øvøp /2. In
the hyperspherical coordinatessr ,Vd;sr ,v , x̂, ŷd, the
Hamiltonian can be written as

H = − r−5/2 ]2

]r2r5/2 +
L2sVd

r2 +
qsVd

r
, s10d

where the grand angular momentum operatorLsVd is given
by

L2sVd = −
1

cosv sinv

]2

]v2 cosv sinv

+
Lx̂
W 2

cosv2 +
Lŷ
W 2

sinv2 −
1

4
, s11d

whereLW x̂ andLW ŷ are the orbital angular momentum operators
corresponding to the variablesx̂=xW / uxu and ŷ=yW / uyu, respec-
tively, as

Lx̂
W = xW 3

1

i
¹x
W , Lŷ

W = yW 3
1

i
¹y
W . s12d

The angular part of the three-body Coulomb potential reads

qsVd = − 2F 1

cosv
+

1

Zuaŷ sinv − bx̂ cosvu

−
1

Zuaŷ sinv + gx̂ cosvuG . s13d

The five angles symbolized byV=sv , x̂, ŷd together with hy-
perradiusr=Îx2+y2 sa measure for the size of the three-
body systemd provide a complete set of variables to describe
the positions of all three particles.

III. HYPERSPHERICAL ADIABATIC EXPANSION

The six-dimensional Schrödinger equation in hyperspheri-
cal coordinates is

F− r−5/2 ]2

]r2r5/2 +
L2sVd

r2 +
qsVd

r
GCsr,Vd = ECsr,Vd.

s14d

We are using surface functions as a basis for the solutions
Csr ,Vd of Eq. s14d. Then, we consider first the Hamiltonian
s10d for fixed values of the hyperradius,

HrsVd =
L2sVd

r2 +
qsVd

r
. s15d

The corresponding eigenvalue equation

HrsVdFnsr,Vd = UnsrdFnsr,Vd s16d

is a differential equation containing only the angular part of
the Hamiltonian. Therefore, the eigenvaluesUnsrd, referred
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to as eigenpotentials, and its eigenfunctionsFnsr ,Vd are the
so-called surface functions. Since the surface functions form
a complete set on the sphere of constant values of the hyper-
radius, the three-body wave functionCsr ,Vd is expanded in
the complete orthogonal set ofFnsr ,Vd as follows:

Csr,Vd = r−5/2o
n=1

`

fnsrdFnsr,Vd. s17d

Substituting Eq.s17d into Eq. s14d we have

F− r−5/2 ]2

]r2r5/2 + HrsVdGS 1

r5/2o
n=1

`

fnsrdFnsr,VdD
=

E

r5/2o
n=1

`

fnsrdFnsr,Vd s18d

and

− r−5/2 ]2

]r2So
n=1

`

fnsrdFnsr,VdD + r−5/2o
n=1

`

fnsrdHrFnsr,Vd

= r−5/2Eo
n=1

`

fnsrdFnsr,Vd. s19d

Then,

− o
n=1

` FFnsr,Vd
]2

]r2 fnsrd + fnsrd
]2

]r2Fnsr,Vd

+ 2
]

]r
fnsrd

]

]r
Fnsr,VdG + o

n=1

`

UnsrdfnsrdFnsr,Vd

= o
n=1

`

EfnsrdFnsr,Vd, s20d

and by multiplying Eq.s20d in Fm
* sr ,Vd and integrating over

V we have

− o
n=1

`
]2

]r2 fnsrd E Fnsr,VdFm
* sr,VddV

− o
n=1

`

fnsrd E Fm
* sr,Vd

]2

]r2Fnsr,VddV

− 2o
n=1

`
]

]r
fnsrd E Fm

* sr,Vd
]

]r
Fnsr,VddV

+ o
n=1

`

Unsrdfnsrd E Fnsr,VdFm
* sr,VddV

= − o
n=1

`

fnsrd E Fnsr,VdFm
* sr,VddV. s21d

Then we have a system of coupled differential equations as

F−
]2

]r2 + Unsrd − EG fnsrd = o
m=1

` FQnm+ 2Pnm
]

]r
G fnsrd.

s22d

The coupling matrix elements are given by

Qnmsrd =E dVFn
*sr,Vd

]2

]r2Fmsr,Vd s23d

and

Pnmsrd =E dVFn
*sr,Vd

]

]r
Fmsr,Vd. s24d

From the normalization condition of the wave function
kC uCl, we have

kFnsr,VduFmsr,Vdl =E dVFn
*Fmsr,Vd = dnm s25d

and the bound-state solution of Eq.s14d is reduced to

o
m=1

` E
0

`

drufmsrdu2 = 1. s26d

Up to this point we have introduced no approximations. In a
practical numerical integration, Eq.s22d, the infinite set of
coupled equations must be truncated to a finite set. Instead of
solving the coupled system of differential equations22d, we
have only treated the so-called extreme adiabatic approxima-
tion sEAAd, which is given by ignoring the derivatives of the
surface functions with respect to the hyperradius. For this
mean, each of the eigenfunctionsFnsr ,Vd can be expand for
any given value ofr in the complete set of hyperspherical
harmonicsPkasVd:

Fnsr,Vd = o
ka

xka,nsrdPkasVd. s27d

The xka are real numbers which for a givenn constitute the
coordinates of a vectorFnsr ,Vd in the Hilbert space and
fulfill the orthonormalization conditions

o
ka

xka,nsrdxka,n8srd = dn,n8. s28d

For the coupling matrix elementsFnmsrd and Pnmsrd we
have

Fnmsrd =E dVPkasVdPka
* sVdo

ka

xka,nsrd
]2

]r2xka,msrd

s29d

by considering

E dVPkasVdPka
* sVd = 1. s30d

Then,
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Fnmsrd = o
ka

xka,nsrd
]2

]r2xka,msrd s31d

and also

Pnmsrd = o
ka

xka,nsrd
]

]r
xka,msrd. s32d

Differentiating Eq.s28d with respect tor once, one obtains

o
ka
Fxka,nsrd

]

]r
xka,msrd + xka,msrd

]

]r
xka,nsrdG = 0.

s33d

Differentiating once again forn=m leads to

o
ka

xka,nsrd
]2

]r2xka,nsrd = − o
ka

Uxka,nsrd
]

]r
xka,msrdU2

.

s34d

Substituting Eqs.s33d ands34d into Eq.s22d, then Eq.s22d is
simplified to f15g

]2

]r2 fnsrd = fUnsrd + kFn8uFn8l − Eg fnsrd. s35d

Neglecting the derivatives of the surface functions with re-
spect to the hyperradiusscalled the EAAd, we shall have

]2

]r2 fnsrd = fUnsrd − Eg fnsrd. s36d

For the calculation of the binding energies, we restrict our-
selves to the EAA, and the lower bound for the exact ener-
gies are determinedf16g.

IV. BEHAVIOR OF THE EFFECTIVE POTENTIAL
AND SURFACE FUNCTIONS

FOR DIFFERENT HYPERRADII

The main task is the determination of eigenpotentials
from Eq. s16d. As can be seen from Eq.s16d, for small hy-
perradii, the grand angular momentum termL2/r2 dominates
over the Coulomb potentialq /r. Hence, Eq.s16d is reduced
to

fL2sVd − r2Unsr,VdgFnsr,Vd = 0, for r → 0. s37d

Comparing this relation with the eigenvalue equation of the
grand angular momentum operator

fL2 − ,s, + 1dgY,sVd = 0, s38d

we obtain

Un → ,s, + 1d
r2 , Fnsr,Vd → Y,, for r → 0. s39d

Therefore, the surface functions in this region should be pro-
portional to eigenfunctions ofL2, which are the well-known
hyperspherical harmonicsY,sVd,

Y,sVd = N, coslx v sinly vPk
slx+1/2,ly+1/2dscos 2vdYlx,ly

L,Msx̂,ŷd,

s40d

wherePk
si,jdsxd is a Jacobi polynomial,

Pk
i,jsxd =

sx − 1d−isx + 1d−j

2kk!

dk

dxkfsx − 1dk+isx + 1dk+jg,

s41d

and Ylxly
LMsx̂, ŷd is an eigenfunction of the squared total mo-

mentum operatorLW2, the so-called bispherical harmonic,

Ylxly
LMsx̂,ŷd = o

mxmy

klxmxlymyuLMlYlxmx
sx̂dYlymy

sŷd, s42d

with the Clebsch-Gordan coefficientsklxmxlymy uLMl and the
usual spherical harmonicYlmsx̂d. The normalization constant
N, is

Nl =Î2k!slx + ly + 2k + 2dGslx + ly + k + 2d

GSlx + k +
3

2
DGSly + k +

3

2
D . s43d

The index flg of the hyperspherical harmonic collectively
denotes the set of quantum numbersflg=hk, lx, ly,L ,Mj. The
eigenvalue in Eq.s38d is given byl = lx+ ly+2k+ 3

2. In case of
degeneracy, instead of a singleYlsVd in Eq. s39d, we have a
linear combination of hyperspherical harmonics for this
value of l.

At large hyperradii and at negative energies, the muon is
bound by one of the positive charges. The surface function
goes over to channel functions—i.e., to products of muonic
two-body states and a free wave function describing the mo-
tion of responding two-body binding energies«m. That is,

Unsrd → «m, for r → `, s44d

and

Fnsr,Vd → Qfmig
sr,Vd

= r3/2Rnlx
sr cosvdsinly vYlx,ly

LM sx̂,ŷd, for r → `.

s45d

Here, Rnlx
sr cosvd, m, and lx represent the hydrogenlike

wave function and quantum and angular quantum numbers,
respectively. The indexi specifies by which of the two nuclei
the muon is bound. To represent the surface functions in the
whole space ofr we use the ansatz

Fnsr,Vd = o
i=1

2

o
m

anfmig
srdQfmig

sr,Vd + o
flg

bnflgsrdYflgsVd,

s46d

which finserted into Eq.s16dg yields a generalized eigen-
value problem for the determination of the coefficientsanfmig
and bnflg and eigenpotentialsUnsrd. In this framework we
treated the systems3Hetm and 4Hetm in the states with the
total angular momentumL=0. In calculations, we use 120
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hyperspherical functionsfEq. s40dg and take 10 channel
functionss46d for muonic molecules.

V. DISCUSSION AND CONCLUSION

In this research we employed the method of hyperspheri-
cal surface functions to calculate the nonsymmetric three-
body Coulomb problem. The hyperspherical method allows
one to separate hyperradial motion from the angular part.
The eigenpotentials and eigenfunctions are calculated for
isotopes of helium and tritium from the angular equation—in

particular, the eigenpotentials which play the role of effective
potentials in the radial equation. The characteristic features
of the respective problem—e.g., the occurrence of bound
states and resonances as well as polarizability effects—can
be inferred immediately from these potential curves. A fur-
ther advantage is that, by solving the radial equation, the
lower bound is obtained for the binding energy of muonic
molecules. The corresponding eigenpotentials of thetm 3He
andtm 4He systems forL=0 are shown in Figs. 2 and 3. The
improved potential curvessL=0d dissociating tom 3He+t
fU1srdg andtm+ 3He fU2srdg for tm 3He are shown in Fig. 2.
Also the improved potential curvesL=0d for tm 4He is
shown in Fig. 3. The lowest potential is purely repulsive, as
expected in view of the Coulomb repulsion between the tri-
tium and mHe subsystems. The attractive character of the
second eigenpotential is a consequence of the polarization of
the tm atom in the Coulomb field of the He nucleus. With the
calculated eigenpotential, by using 120 hyperspherical func-
tions fEq. s40dg, the nonrelativistic energy«JnseVd of the
rotational-vibrational statessJ,nd of muonic helium hydride
stm 3He and tm 4Hed appearing below thetms1sd threshold
are calculated as«00=−72.59,«01=−53.54,«02=−19.48 and
«00=−81.67,«01=−64.28,«02=−32.29 respectively. The val-
ues of «Jn are in agreement with those in Ref.f17g. The
calculated bound-state energies are listed in Tables I and II.
The method of this research gives the lower bound of the
eigenenergy if derivatives of the surface functions with re-
spect to the hyperradiussthe coupling of channelsd is ne-
glected. One can conclude that this fact supports the validity
of the one-level approximation in our approach. The calcu-
lated errors are reduced by considering the coupling of chan-
nels and increasing the number of hyperspherical functions.
The results show that this approach is very appropriate for
studying muonic molecule systems.

It is obvious that this paper treats only three-body systems
without electrons. To extend the discussion to systems of one
or two electrons the Born-Oppenheimer approximation is
good. We know that the lower channel, asymptotically
smHe+td should be bound by either one or two electrons,
since the hydrogen molecule ion and the hydrogen molecule
are bound by energies in the eV range. Of course, both en-

TABLE I. Binding energiesseVd of tm 3He for L=0.

System State Ref.f17g Present

tm 3He s0,0d −72.296 −72.59

s0,1d −53.330 −53.54

s0,2d −19.379 −19.48

TABLE II. Binding energiesseVd of tm 4He for L=0.

System State Ref.f17g Present

tm 4He s0,0d −81.335 −81.67

s0,1d −63.958 −64.28

s0,2d −32.063 −32.29

FIG. 2. The lowest eigenpotentialsU1srd and U2srd of the
tm 3He system. ForL=0 they converge towards the ground-state

energies«sm 3Hed and«stmd, respectively.

FIG. 3. The lowest eigenpotentialsU1srd and U2srd of the
tm 4He system. ForL=0 they converge towards the ground-state

energies«sm 4Hed and«stmd, respectively.
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ergy and distance scales of the electron-free system will dif-
fer from that of the systems with electrons by the ratio of
muon and electron masses. We should mention thattmHe
makes a strong screening on the formedfstmHedeg and the
large distance of atomic electron will have ignorable effect
on thetmHe nucleus. This means that the atomic electron in
formed systems does not have an important role in fusion of
fstmHedeg, and four- or five-body resonant states in the men-

tioned screened low-energy region do not have practical im-
portance in muon-catalyzed fusion.
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