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Calculation of binding energy for nonsymmetric muonic helium hydride ions
in the hyperspherical approach
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Symmetric and nonsymmetric muonic three-body systems have been predicted to form in collisions between
muonic atoms and hydrogen molecules. The hyperspherical adiabatic expansion is a representation for the
investigation of muonic three-body bound states. In this research we have used hyperspherical “surface”
functions for muonic helium hydride ion@sotopes of helium-tritium-muon molecu)esThrough this ap-
proach, the binding energy and lowest eigenpotentials for the muonic molecular ions are calculated in an
extreme adiabatic approximation. The obtained results are close to the calculations of others.

DOI: 10.1103/PhysRevA.71.042507 PACS nuntber36.10.Dr

I. INTRODUCTION The approach, using the hyperspherical “surface” function

In connection with muon-catalyzed fusion, energy IeveIsmethOd[13]' has been applied in this paper. The hypersphgri—
of muonic molecules have extensively been studied wit cal method allows one to 'separate the hype'rrad|al mot|qn
various calculational methodgl—3]. The hyper spherical rom the angular part. Physical boundary conditions for their

harmonics formalism is a powerful approach for bound-:stateSOIUtIon can be easily formulated. Moreover, coupling of

calculations of three-body systerfé—6]. In this work we channels turns out to be rather small in our case and allows
mainly consider muonic helium hydride ions like *He and one to use the Qecoupled one—Ieve_I apprOX|mat|qn.

tw *He, (helium-tritium-muon nonsymmetric molecujes The formulatlo_n Of thg problem in hypercoordinates and

There are strong indications that these muonic molecules ¢ diabatic expansion is given in Secs. Il and lll. In Sec. IV,

form molecular three-body resonances. One of these indic ne behavior of eff_ect!ve potentlal an(_j surfa_ce functions for

tions is thattuHe resonances were seen in collisionst of different hyperradiiR is discussed. Finally, in Sec. V, the

atom with *He and“He [7—9]. Also, in the muon-catalyzed numerical results are given, leading to a discussion and con-

fusion process, helium impurities gradually accumulate inCIUS'OnS'

D-T targets. The muon less process due to muon transfer
from muonic hydrogen atoms through the intermediate Il. THEORETICAL DESCRIPTION

tu *He andtu *He muonic molecules to the accumulated he- OF MUONIC MOLECULES

lium nuclei is an important factor in understanding actual ) ) ]

uCF process and stripping probability in DT mixtures In_ this section we explain the treatme_nt of the nonsym-
[10,11]. The role of the formation of a muonic molecule in a Metric three-body Coulomb problem. Since we have two
charge-exchange reaction was confirmed in a number of eXl€avy particles and one light particlbelium, tritium, and
perimentg12]. In thetuHe system, a Coulomb interaction is muon), it seems that the Born-Oppenheimer approach will be
not able to bind the systems under consideration due to th&asonable to explain this system. But within the framework
repulsion in theuHe+t channel. Only a three-body resonant

state can be formed. States like that are supported by the ¢ m

attractive polarization potential in thigw+He channel and
therefore are clustered.

Our goal in this research is to study systematical calcula-
tions of energy levels fotu *He andtu *“He systems in hy- i
perspherical coordinates. In order to do this, the Hamiltonian
of the system, interacting only via the Coulomb force, in L R
Jacobi coordinate§ ,R) as shown in Fig. 1, and the nonrel-
ativistic Schrodinger equation for the three particles is writ-
ten. In practice, for the numerical calculation of this infinite
set of coupled equations, they are truncated to a finite set.

.mj

*FAX: IRAN-711-2284594. Electronic address: FIG. 1. Jacobi coordinate®;,r;); m;, m;, andm are the mass
eskandari@physics.susc.ac.ir of particles in muonic molecules.
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of the Born-Oppenheimer approach, it is very difficult to X=pcosw, y=psinw,

treat the contribution from the continuum spectra of the two-

center problem correctly. Thus, to avoid these difficulties we X .y

have used another adiabatic formulation: namely, the hyper- Xx=—, y=-—, 9)

spherical adiabatic approa¢h4]. This method is based on X ly

an expansion of the three-body wave function into the sothe nontatios being andy used forx=(6,,¢,) and fory

called surface functions. =(6y,¢,), respectively, with 8p<w and O<w<m/2. In
The motion of three particles in their center-of-mass systhe ~hyperspherical coordinate$p, Q)= (p,w,X,¥), the

tem can be described as Jacobi coordin&teR), as shown Hamiltonian can be written as

in Fig. 1. In this variable the Hamilton operator of the three- 2

body Coulomb system is given by H= —p_5/2ip5/2+ A + m

(10
p? 02

H=T+Ve. (1) where the grand angular momentum operat@f)) is given
The kinetic-energy operatdr and the sum of the three two- by
body Coulomb interactiond/,, are given by 1 P
A (Q)=-———coswsinw
1 1 COSw SIN w dw
T=-—Ar= A, ) ; ;
2m 2M |_)A(2 |_)72 1
+ +t—— -, 11
cosw’ sinw® 4 (3
_zé @ 5 L
T T B + B il ©) wherel; andLy are the orbital angular momentum operators
IR=p IR= ] corresponding to the variablés=x/|x| andy=y/|y|, respec-
where tively, as
~1_ -1, -l S -1 Li—)lev* L=V X }V* (12)
mT=m +m,;5 M7T=my +(m,+my)~, %= i Ve g=Y vy
The angular part of the three-body Coulomb potential reads
Bz y=1-4 (4) . .
L 131(Q)z_z{cos +Z| y sin X COSw|
. ® inw— BX
andm,, m, m,, andZ denote the masses of the muon, tri- aysine—p @
tium, helium isotopes, and the charge of the particle, respec- _ 1 (13)
tively. Z|ay sinw + yX cosw| |

Introducing dimensionless variables according to o
The five angles symbolized By =(w,X,y) together with hy-

_F _ R perradiusp=yx?+y? (a measure for the size of the three-
X= a y= ' (5) body systemprovide a complete set of variables to describe

the positions of all three particles.
with @=Vm/M and a being the Bohr radius of thé¢Zu)
subsystema=(zme)™%. L . . I .

Then the kinetic-energy operatdr and the sum of the The six-dimensional Schrodinger equation in hyperspheri-

IIl. HYPERSPHERICAL ADIABATIC EXPANSION

three two-body Coulomb interactiong,, are changed, cal coordinates is
- P A(Q)  9(Q)
T=-(2ma) Az +Af] (6) [— 5/2(?—p2p5/2+ 2 T, V(p,Q2) =E¥(p,).
and (14)

4|2 2 2 We are using surface functions as a basis for the solutions
Vo=~ (2m&) o Zay-pR Zay+ o] 7)  W(p,Q) of Eq.(14). Then, we consider first the Hamiltonian
y yry (10) for fixed values of the hyperradius,
Taking (2ma)~ as our energy unit, the Hamiltonian can be AQ)  9(Q)
read H(Q)=—F—+—. (15
p p
_ 2 2 2 The corresponding eigenvalue equation
He A dg=fm ot o (®)
X Zlay-p¥|  Zlay+ A H,(@)®4(p, ) = Un(p)Dy(p, ) (16
by defining the hyperradius and the hyperangle instead is a differential equation containing only the angular part of
of the variables< andy, via the Hamiltonian. Therefore, the eigenvalugs(p), referred
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to as eigenpotentials, and its eigenfunctidngp,()) are the

so-called surface functions. Since the surface functions form
a complete set on the sphere of constant values of the hyper-

radius, the three-body wave functidf(p,(2) is expanded in
the complete orthogonal set df,(p,{}) as follows:

V(p,Q) =p 2 £ (p)Pn(p, Q).

(17)
n=1
Substituting Eq(17) into Eq. (14) we have
ey & 1
{- p S’Za—p2p5’2+ Hp(Q)} (PT’ZE fn(P)(Dn(PvQ)>
E o]
= pT,ZE fa(p)Pn(p,2) (18)
n=1
and
_5/2(9 (2 fa(p)®n(p, Q)) +tp 5/22 fn(P)H Dn(p,€2)
P n=1
= p D fo(p)Dy(p. ). (19
n=1
Then,

©

7
—2[ D0 51o(p) + Flp) 5

2
Dy(p, Q)

©

D(p, Q) |+ 2 Un(p)a(p)P(p, Q)

J
+ 2_fn( )
dp n=1

o

= E Efn(P)q)n(PaQ) )
n=1

(20)

and by multiplying Eq(20) in ®_(p,Q) and integrating over
Q) we have

[’

(92 *
-2 —fulp) J D(p, Q)P (p,2)dQ
n=1 9P
” * (92
=2 fulp) f P, 2)— 5 Pr(p, V)AD
n=1 P
- 22 —fn(p) f m(p,Q) D,(p,Q2)dO)
+ > Un(p)fa(p) J D(p, D) D7 (p,Q2)dQ
n=1

== fulp) f Dy(p, Q) P(p, 2)dO. (21)
n=1
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o0

&
|:_ 0_p2 +Uy(p) - E] falp) = E [Qnm"' 2an ] fa(p).

m=1

(22)
The coupling matrix elements are given by
. &
Qnmlp) = f dQ(I)n(P:Q)&_pgq)m(p:Q) (23
and
* a
an(p):JdQCI)n(p,Q)&—pq)m(p,Q). (24)

From the normalization condition of the wave function
(¥ |¥), we have

<(Dn(p,ﬂ)|q)m(p,ﬂ)> :J dQCI);(I)m(p,Q) =om (29

and the bound-state solution of Ed4) is reduced to

(26)

» j dplfn(p)i2=1
m=1Y0

Up to this point we have introduced no approximations. In a
practical numerical integration, Eq22), the infinite set of
coupled equations must be truncated to a finite set. Instead of
solving the coupled system of differential equati@®2), we
have only treated the so-called extreme adiabatic approxima-
tion (EAA), which is given by ignoring the derivatives of the
surface functions with respect to the hyperradius. For this
mean, each of the eigenfunctiodg(p,{2) can be expand for
any given value ofp in the complete set of hyperspherical
harmonicsP,,(Q):

Dn(p, Q) = 2 Xican(p)Pral ). (27)
ka

The x,, are real numbers which for a givenconstitute the
coordinates of a vecto®,(p,{2) in the Hilbert space and
fulfill the orthonormalization conditions

2 Xka, n(p)Xka n’ (P) (28)

ka

nn’

For the coupling matrix element$,.(p) and P,,(p) we
have

* (92
Dpnlp) = f dOP, ()P () Xka,n(p)[?_pz)(ka,m(p)
ko
(29

by considering

f dQP,(Q)P,(Q) = 1. (30)

Then we have a system of coupled differential equations aghen,

042507-3



ESKANDARI, MAHDAVI, AND KHAJEH-AZAD PHYSICAL REVIEW A 71, 042507(2005

i Y((©) =N cosx o sirly wPp* Y (cos 20) Y1) (%
Dorl) =2t pinlp) @) (@TNecostesime (Cos V%9
ko p (40)
and also whereP("(x) is a Jacobi polynomial,
. i gk

Pam(p) = EXka n(p) Xkam(P) (32 PL’J(X)—% d —[(x= DM (x + 1],

Differentiating Eq.(28) with respect tg once, one obtains (41)
and YI Jy M(%,9) is an eigenfunction of the squared total mo-

% XkanP ) Xkam(p) Xkam(P)— Xkan(p)] mentum operatot?, the so-called bispherical harmonic,
(33) Vi (%9 = rr%\y<|me|ymy|LM>\(|me($<)\(|ymy(y), (42)

Differentiating once again fon=m leads to
with the Clebsch-Gordan coefficienigm,l,m |LM) and the

2 . A h .
usual spherical harmoni¢,,,(X). The normalization constant

I’
kE xka,n(ma—pzxka,n(p) =->

(9 2
Xka,n(p) _Xka,m(p)

Kar (9p N( is
(34
) N = 2KI (I +1, + 2k + 2T (I +1, + k+ 2) 3
Substituting Eqs(33) and(34) into Eq.(22), then Eq.(22) is ol +k+ 3 L+ k+ 3
simplified to[15] 2
2 . . . .
L _ N/ The index[l] of the hyperspherical harmonic collectively
dJ 21n(p) =[Un(p) +(De| ) = E] fop). (35) denotes the set of quantum numbgis={k,l,,l,,L,M}. The

eigenvalue in Eq(38) is given byl =I,+I,+ 2k+— In case of
degeneracy, instead of a singfg(}) in Eq. (39) we have a
linear combination of hyperspherical harmonics for this
P value ofl.
pfn(p) =[Un(p) —E] fr(p). (36) At large hyperradii and at negative energies, the muon is
P bound by one of the positive charges. The surface function
For the calculation of the binding energies, we restrict ourgoes over to channel functions—i.e., to products of muonic

selves to the EAA, and the lower bound for the exact enertwo-body states and a free wave function describing the mo-
gies are determinefd.6]. tion of responding two-body binding energieg. That is,

Neglecting the derivatives of the surface functions with re-
spect to the hyperradiusalled the EAA, we shall have

U, (p) — &y forp— o, (44)
IV. BEHAVIOR OF THE EFFECTIVE POTENTIAL
AND SURFACE FUNCTIONS and
FOR DIFFERENT HYPERRADII
D(p, ) — Opmy(p, )

The main task is the determination of eigenpotentials

from Eq. (16). As can be seen from E16), for small hy- = p*Ry (p cosw)sirly “’Y'Lx',\fly(xvY)’ for p— .
perradii, the grand angular momentum tekff p> dominates (45)
over the Coulomb potential/ p. Hence, Eq(16) is reduced

to Here, Ry (p cosw), m, and I, represent the hydrogenlike

5 5 wave function and quantum and angular quantum numbers,
[ASD) = pUn(p, )] Pn(p,Q2) =0, forp—0. (37)  respectively. The indekspecifies by which of the two nuclei
the muon is bound. To represent the surface functions in the

Comparing this relation with the eigenvalue equation of the € vhole space op we use the ansatz

grand angular momentum operator
2

2 _ —
[AZ= e+ DIY(2) =0, B8 (0.0 =2 Ay (0)Om(p. Q)+Ebn[.](p>v[.](m
we obtain =
(46)
e+1) . . . . . .
n— 2 Pn(p, Q) —Y, forp—0. (39  which [inserted into Eq.16)] yields a generalized eigen-

value problem for the determination of the coefficiea;¢§1i]

Therefore, the surface functions in this region should be proand by, and eigenpotential&),(p). In this framework we
portional to eigenfunctions of?, which are the well-known treated the system¥etu and *“Hetu in the states with the
hyperspherical harmonicé, (), total angular momenturh=0. In calculations, we use 120

042507-4



CALCULATION OF BINDING ENERGY FOR..

0.0

-0.2 4

-0.4 4

06+
-0.8 —
10
12
1.4

-1.6 1

Lowest eigenpotential, U (p)

-1.8 -

T ¥ T
0 5 10
p(units of

FIG. 2. The lowest eigenpotentiald;(p) and U,(p) of the

15

a)

20

PHYSICAL REVIEW A 71, 042507(2005

TABLE I. Binding energieseV) of tu *He for L=0.

System State Ref17] Present
tu °He (0,0 -72.296 -72.59
(0,2) -53.330 -53.54
(0,2) -19.379 -19.48

particular, the eigenpotentials which play the role of effective
potentials in the radial equation. The characteristic features
of the respective problem—e.g., the occurrence of bound
states and resonances as well as polarizability effects—can
be inferred immediately from these potential curves. A fur-
ther advantage is that, by solving the radial equation, the
lower bound is obtained for the binding energy of muonic
molecules. The corresponding eigenpotentials oftjnéHe
andtu *He systems fot.=0 are shown in Figs. 2 and 3. The
improved potential curve$L=0) dissociating tou *He+t
[Uy(p)] andtu+3He[U,(p)] for tu *He are shown in Fig. 2.
Also the improved potential curvéL=0) for tu *He is
shown in Fig. 3. The lowest potential is purely repulsive, as

tu ®He system. FolL=0 they converge towards the ground-state expected in view of the Coulomb repulsion between the tri-

. 3 .
energiess* 19 and s, respectively.

hyperspherical function$Eq. (40)] and take 10 channel

functions(46) for muonic molecules.

V. DISCUSSION AND CONCLUSION

In this research we employed the method of hyperspheriare calculated asy=-72.59,£0;=-53.54,20,=-19.48 and
cal surface functions to calculate the nonsymmetric threegoo=—81.67,60;=—-64.28,20,=—-32.29 respectively. The val-
body Coulomb problem. The hyperspherical method allows/es Of e, are in agreement with those in Réfl7]. The
one to separate hyperradial motion from the angular pargalculated bound-state energies are listed in Tables | and II.
The eigenpotentials and eigenfunctions are calculated fofhe method of this research gives the lower bound of the
isotopes of helium and tritium from the angular equation—in€igenenergy if derivatives of the surface functions with re-
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FIG. 3. The lowest eigenpotentiald;(p) and U,(p) of the
tu *He system. FolL=0 they converge towards the ground-state

. 4 .
energiess® 19 and e, respectively.

20

tium and uHe subsystems. The attractive character of the
second eigenpotential is a consequence of the polarization of
thetu atom in the Coulomb field of the He nucleus. With the
calculated eigenpotential, by using 120 hyperspherical func-
tions [Eqg. (40)], the nonrelativistic energy;,(eV) of the
rotational-vibrational stategl, ») of muonic helium hydride

(tu °He andtu *He) appearing below théu(1s) threshold

spect to the hyperradiughe coupling of channelsis ne-
glected. One can conclude that this fact supports the validity
of the one-level approximation in our approach. The calcu-
lated errors are reduced by considering the coupling of chan-
nels and increasing the number of hyperspherical functions.
The results show that this approach is very appropriate for
studying muonic molecule systems.

It is obvious that this paper treats only three-body systems
without electrons. To extend the discussion to systems of one
or two electrons the Born-Oppenheimer approximation is
good. We know that the lower channel, asymptotically
(uHe+t) should be bound by either one or two electrons,
since the hydrogen molecule ion and the hydrogen molecule
are bound by energies in the eV range. Of course, both en-

TABLE II. Binding energies(eV) of tu “He for L=0.

System State Ref17] Present
tu *He (0,0 -81.335 -81.67
(0,2 -63.958 -64.28
0,2 -32.063 -32.29
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ergy and distance scales of the electron-free system will diftioned screened low-energy region do not have practical im-
fer from that of the systems with electrons by the ratio ofportance in muon-catalyzed fusion.

muon and electron masses. We should mention théte
makes a strong screening on the formégkHe)e] and the
large distance of atomic electron will have ignorable effect
on thetuHe nucleus. This means that the atomic electron in  The authors would like to thank the Shiraz University and
formed systems does not have an important role in fusion ofhe Research Institute for Fundamental Sciences of Tabriz for
[(tuHe)e], and four- or five-body resonant states in the men-their support.
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