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Chaos and localization in the wave functions of complex atoms Ngd Pmi, and Smi

Dilip Angom and V. K. B. Kota
Physical Research Laboratory, Navarangpura, Ahmedabad 380 009, India
(Received 7 December 2004; published 21 April 2005

Wave functions of complex lanthanide atoms IN&mi, and Sm, obtained via multiconfiguration Dirac-
Fock method, are analyzed for density of states in terms of partial densities, strength fuifgti&ns number
of principal component§é,(E)], and occupancie€n,)F) of single-particle orbits using embedded Gaussian
orthogonal ensemble of one plus two-body random matrix ensefB@&OH1+2)]. It is seen that density of
states are in general multi-mod&l,(E)’s exhibit variations as function of the basis states energyéatt)’s
show structures arising from localized states. The sources of these departures fronilBEQCdte investi-
gated by examining the partial densities, correlations betwg€s), £,(E), and(n,)F and also by studying the
structure of the Hamiltonian matrices. These studies point out the operation of E&QBbut at the same
time suggest that weak admixing between well separated configurations should be incorporated into
EGOH1+2) for more quantitative description of chaos and localization in,Nkimi, and Sm.
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I. INTRODUCTION Following the successful applications in nucjé0-13,
mesoscopic physidd4], in the context of quantum comput-
Lanthanide atoms exhibit complicated configuration mix-ers[15], and as suggested more recently, for example, in the
ing and have complex specira] as consequence of partially dynamics of cold atomsL6], a better random matrix hypoth-
filled high angular momentumf4and 5l valence shells. The esis for atoms is to consider the interactfafter subtracting
general form of the ground state configuration isthe single particle field generated by the Coulomb Hamil-
[Xe]6s?4f™5d", wherem and n are the shell occupancies. tonian; see Eq(5) ahead for the Hamiltonigrto be random.
Across the periodn increases from 1 to 14, whereasgs 1 This gives rise to embedded GOE of one plus two-body in-
for Cer and Gd which are located at the beginning and teracﬂons[EGOE(l+2)]. See Sec. Il ahead for details of.
middle of the period and is O for the remaining lanthanide EGOE1+2) and here it suffices to say that the ensemble is
atoms. Along the period the number of configurations andH}=h(1)+A{V(2)}, whereh(1) is the mean-field one-body
mixing increases as f4shell occupancy increases, and Part and{V(2)} is a GOE in two-particle space with the
reaches a maximum around the middle. Lanthanide atomi&teraction strength. An extreme limit, with strong interaction
are appropriate to study complexities emerging from two-A—%), of EGOH1+2) is two-body random matrix en-
body interactions and a comparative study along the period€mble(TBRE). Recently we demonstrated that $ifi7],

could provide insights to the implications of increasing par-"hich has three more active electrons compared 1o ¢ar-
ticle number to the nature of the complexity. ries TBRE signatures which include Gaussian state densities,

Detailed studies of Cewave-function structure, first car- SIre€ngth functions having Gaussian form, number of princi-
ried out by Flambaum and collaboratdi2,3] showed the pal components as a function of energy is of Gaussian form,

smoothedwith energy strength function§F,(E)] and num- local level fluctuations follow GOE, etc. Going beyond this

L . . limiting situation, EGOEL+2) with increasing interaction
ber of principle components;(E)], which measure chaotic- strength(equivalently with increasing particle number if the

ity, can be understood in terms of banded random matricegeraction is fixet strength functions exhibit Breit-Wigner
(BRMs) with the local level and strength fluctuations follow- 1 Gaussian transition. It is important to stress that
ing the predictions of Wigner's Gaussian orthogonal enEGOH1+2) at the weak limit(\ smal) shares features with
mings and collaborators on Prand also Ce) [4], the  explains partly the applicability of BRM for Geand Pn). In
element next to Cein the lanthanide series, showed resultsa recent papef18], an interpolating function, analogous to
in agreement with Flambauret al. studies of Ce. Flam-  the Brody distribution for nearest neighbor spacing distribu-
baum and collaborators further developed, using the BWion, representing the BW to Gaussian transition of the
form for Fy(E) and &(E) in terms of the BW spreading strength function is reportedee Eq.(23)] and it is used to
widths which are a result of many body chaos, a statisticalinderstand this transition in rare-earth atotas the spec-
theory for the distribution of occupation numbgEgs6], and  trum’s center as we go from Ceto Smi with valence elec-
also for electromagnetic transition strengths in atoms withtrons changing from 4 to 8. In addition, it is noticed in Nd
complex (or chaotig spectra[7]. Applying this statistical Pmi, and Sm studies that the eigenfunctions exhibit local-
spectroscopy for complex states, energy-averaged cross seézation properties. The presence of localized states is also
tions are obtained in terms of sums over single electron orevident in the study of Ceand Pn by Cummings and col-
bitals and using this Flambauet al. [8] and Gribakinet al.  laboratorg4].

[9] explained the observed, and quite puzzling, low-energy As shown in Ref.[19], the number of allowed #'6s?
electron recombination rate of Atf. - 4fMes6p and 4™M-4f™15d dipole transitions of the rare-
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earth atoms is larg€or example, in Pr the number of al- CSFs are constructed in two steps: first couple the identical
lowed 4f36s°—4f36s6p dipole transitions is 7402and it is  electrons in each subshellk; to give X, and second couple
difficult to study the transitions individually. However, sta- X; to obtainJ. The construction of the CSFs are better de-
tistical spectroscopy, based on TBRE and many-body chaoscribed in second quantized notations, ziéji;n and a,;,, be
provides a means to understand the smoothed part of thesesation and annihilation operators of the single electron
transitions(with fluctuations following GOE In this paper states. Then, thea;ﬁjm operators form a complete set of
we consider Nd, Pmi, and Sm with six, seven, and eight spherical tensors of rank However, for the annihilation
valence electrons and examine in some detgilthe extent operators
to which EGOEL1+2) applies for these atomsj) localiza- 3. = (1) 2
tion properties of wave functiongiii) the structure of the 8njm = n,-m

Hamiltonian matrix. Foxi) and(ii), wave functions are ana- form a complete set and nat,,,. The operators satisfy the
lyzed in terms of density of states as sum of partial densitiesnodified anticommutation relation

strength functions, number of principal components, and oc- o i+i7=3 ot ~ 1M

cupancies of single particle orbits and correlations between [@nj X g 17+ (= D a0 X ]

them. These results form Sec. IV of the paper. Section V D 1181 5SS 3)
discusses the structure of the Hamiltonian matrices and the =Vl 1j" F30EMO%nn

modifications to be incorporated in EGOE-2) for a more Where[“éana;,_r]JM represents tensor coupling of the opera-
quantitative description of chaos and localization in lan-ors to rankJ ]and component. In absence of external
thanide atoms. For completeness, Sec. Il gives the method gfagnetic field, like in the present calculations, the CSFs are
atomic structure calculations and Sec. Il gives the def'”'t'orljegenerate it and each CSF can be identified withdt

and a brief discussion of some of the basic results foraslyPJ).ACSFWPJ} havingp subshells is created from the
EGOH1+2). Finally Sec. V gives conclusions and future \,5cuum state

outlook. . "
|yPJ> = [(ap)qpi Vpxp[(ap—l)qp_la Vp—lxp—l
Il. METHOD OF ATOMIC CALCULATIONS X[...[(@)%, v, X 1] ... P11 0), (4)
A. Multi-configuration Dirac-Fock method whereq; is the number of electrons in theh subshell and;

is the seniority quantum number, which identify identical

subshell total angular momentuX uniquely. It is also pos-

sible to use an ordering index instead gffor details see
ef.[25].

An appropriate relativistic Hamiltonian to describe high
atoms such as lanthanides is Dirac-Coulomb Hamiltonian
"HPC, which includes only the electrostatic interactions. Ror

electron atom

The earlier works on lanthanide atorf&0] have shown
that the multiconfiguration Dirac-FockMCDF) method is
suitable for studying the structure and calculating propertie
of these atoms. The method is the relativistic equivalent o
multiconfiguration Hartree-Fock21] used extensively in
nonrelativistic atomic calculations. For a detailed descriptio
of MCDF see Ref.[22] and several groups have imple-
mented it to study atoms and molecul@8,24]. All our cal-

culations are carried out using tkerAsP92code[23]. For N zrn] < <
completeness and continuity important features of the H°°=2 | cay 'pi+C2(:8i_1)_T +2 2 r—r’
method are described in this section. The essence of MCDF =1 ' I=1j=ien

is the calculation of orbitals in a mean field arising from a (5)

linear combination of configurations. Then, the single par- here & and 8 are Dirac matricesp. is the electron mo-
ticle states are the eigenstates of variationally Calcume&,enturﬁZ(r-) i@ the nuclear-charae g,ltandN is the number
single-electron Schrddinger equations and these are repre: ol Y

sented afn«), wheren is the principal quantum number. The of electrons. The first two terms are single electron Dirac
quantum numbek= +(I+s)+1/2 issimilar to the total an. Hamiltonian, the third and last terms are electron-nucleus

. - and electron-electron Coulomb interactions, respectively.
gular momentum quantum numbjetl s, however, unlike DG e - . '
it is unique for each orbital symmetry. The single electron-rhe'—| is diagonal in the total angular momentuhstates

L i . : ITPJ), the atomic state function®SFs. Here,I is a quan-
wave function is the two-component Dirac spinor tum number to identify each ASF uniquely and pafys a

Prc(D) X m( 6, &) good quantum number &PC is invariant under parity trans-
Q1 (N Xorr(6:) formation. The ASFs are linear combination of C$f$J)
Nk —KM\ ¥y

whereP,,(r) andQ,(r) are large and small component ra- ITPY) = cir| % PJ). (6)
dial functions, respectively, angd..,(6, ¢) andx_,.(6, ¢) are '

the spinor spherical harmonics in thg coupling scheme. The ASFs satisfy the Schrddinger equation

The many electron basis functions of the method are the DC| _

configuration state function€CSF3 [21]. Each CSF is rep- H>CPY) = Er[TPJ), @)
resented agyPJM), whereP, J, andM are the parity, total whereE; is the eigenvalue.

angular momentum, and magnetic quantum numbers,yand  The starting point of the MCDF method is the variational
is a quantum number to identify each CSF uniquely. Theoptimization of an energy functional defined in termg-51©

1
1) = (1) = ;(
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and Lagrange multipliers with respect to one or more ASFssingle and double replacements among the active valence
The parameters of variational optimization are the coeffisubshells of the ground configuration. The CSFs considered
cientsc, and orbitalsi,,(r). In general, the energy func- have the form

tional is extremized with respect to the ground state. Another

class of MCDF calculations is the extended optimal level, %P = [(aly)P, vsgXsdl (ag9), vesXes

where the energy functional is extremized using a set of Far 3513513

ASFs. We use the later method in our calculations and the X[(@a)" varXa W21 o), (19

advanta_ges over the general _method is_ explaineo_l in _the ”e?ﬁherepi, g, andr; are the subshell occupancies and satisfy
subsection. The energy functional of this calculation is the conditionp;+g;+r;=2+m+n. Further, the conditions
Ne Ny Ne N1 ny =r;=m-2, 2=q;=0, andn=p,=n-2 are imposed to se-
WPC = dHRC+ >, D diq@e+ > > SapeaN(@b), lect single and double replacement CSFs within the ground
rs a=1r=1 a=1 b=a+1 configuration. Then, a MCDFRwith extended optimal level
method calculation of the the lowest multiplet levels is car-
(8) . . ) .
ried out. Valence orbital & is generated in another calcula-
whered,; andd,, are the weight fac:toré:lf’sC are the matrix tion with frozen core approximation, where the orbitals of
element ofHP® between the CSHy,PJ) and|ysPJ), andn,,  the ground configuration generated in the previous calcula-
is the number of the orbitals. The quantityab) is the over-  tion are held fixed. The CSF space of the calculation consists
lap integral between thath andbth orbitals ande, ande,,  of single excitation from the ground configuration to. @he
are the Lagrange multipliers to enforce orthonormality be-orbital 5d is generated in a similar calculation if it is unoc-
tween orbitals of the same symmetry but different principalcupied(n=0) in the ground configuration. Thus, in relativis-
guantum numbers. The weight factors can be chosen in seie notations, the orbital set consists ofl-6)s;,

eral ways, in extended optimal level calculation (2-6)p1/2.3/3 (3=5)d3/255 and 45, 7> Out of these 6,
n, 4fspp 72 BP1j2.3/2 and Hlgp, 5, are valence shells, then the
d.= iz 9 number of valence shell¥, and core shell\. are 7 and 17,
rs— Crr.Cer.» ( ) . . . .
n_ i respectively. All the orbitals are made spectroscopic, that is,

) ) each orbital has—1-1 (wheren andl are the principal and
property calculations are carried out using a hierarchy ofodes. The other possibility is calculating the orbitals with-
eigenstates: orbitals, configuration state functions and atomigyt imposing the constraint on the number of nodes. Orbitals

state functions. of this type are referred to as correlation orbitals. These are
usually contracted, state specific and represent correlation
B. Orbital calculation and configuration interaction effects of specific states very well. For statistical properties

calculations, the spectroscopic orbitals are appropriate. The
é\/ICDF calculations to generate the orbitals include important
intravalence correlation effects but it is incomplete within the
8rbital basis considered. A configuration interacti@) cal-

The calculation of an appropriate set of orbitalgr)} is
crucial in atomic structure and properties calculations. In th
present work we calculate the orbitals using the MCDF
method described in the previous subsection. This metho X T i DC X
can include strong configuration mixing, however, the orbit-CUIat:gln* é"g'FCh 1S :Iagotnfhzt?]norn rcri]ﬂ inirTatm;’r cl)ft?"nth?f t
als generated are state specific, this is undesirable for stati ossible S can capture the remaining correfation efiects.

tical studies involving several excited states. To strike a bal; owever, Sl.JCh a calculation is _|mpos_3|ble as the size of t_he
ance between these two features of MCDF method, orbitaIgSF space increases exponentially with the number of active

are generated within selected CSF space and the ener 'e"?ce eIectrons ar,. In our calcylatllons the CSF space

functional is optimized with respect to several states usin n§|sts O.f single and double excitations from the ground

MCDF with extended optimal level method. The orbitals onfiguration

generated are less state specific as these are calculated in th ot D g

potential of several states self-consistently. The orbital set of v = [(a6p)"", vepXepl (250): vsaXsa

each atom are generated in a series of calculations described X[ (al)"t, vesXed (@)%, varXar "1 ]2 % | Dy,

in this section. (12)

The calculations are relativistic, however, for compact no-

tation we define configurations in nonrelativistic notations.yhere p, +q;+r,+s=2+m+n and impose the conditions

The Xe-like core is considered as reference gt and in >s5=m-2,2=r,=0,n=q=n-2, andp,<2. Thus, all the

nonrelativistic notations CSFsszconsidered are connected to the ground configuration

—T(at \6[(at )2 T2 [Xe]6s°4f™5d". The CSF space has ten nonrelativistic con-

[®o) = ({8 (@5 L@ JN0, (A0 Fo o ions, among thesef5c? and 4™ *6s5d6p together

where|0) is the vacuum state. The intermediate angular mocontribute more than half of the CSFs. The maximum num-

mentaJ; are zero as all the subshells are completely filledber of CSFs arises fromf# 16s5d6p, which has the largest

The orbitals of the ground state configurat{ote]6s?4f™5d”  number of open shells. The number of CSFs arising from

are then generated treating, 8if, and & orbitals as active each non-relativistic —configuration and range of

valence shells. The calculation is in the CSF manifold of all{yPJHPC|yPJ) are given in Table I.
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TABLE I. The number of relativistic CSFBlcsg arising from  terminantal states i(s’,:‘,“) and the two-electron Coulomb in-
each of the non-relativistic configurations. The range of the diagoteraction couples each Slater determinant to

nal elements ore™ and '™ are also given, thes values are

defined relative to the lowest, in the CSF space. In the table, the K'=1+NaNo + Na(Na = 1)(No) (N, = 1)/4 (13

configurations are defined relative to the ground Conﬁgurationdeterminants which include itself and others with shell occu-
m H .

4fM6s?, wherem is 4, 5, and 6 for Nd, Pm, and Sm, respectively. pancies different by 1 and 2. In a single determinant approxi-

mation of the ground stat& is also the number of determi-

Nd Pm Sm nants in the manifold which includes the single and double

excitations. This is the determinantal equivalent of the CSF

Confi N min_ _max N min_g’nax N min_ _max - > A -

g CSF €k "€ TICSF €& "6 TNCSF & manifold chosen in our calculations. For further analysis,
4fMps? 19 0.0-0.25 29 0.0-0.28 46 0.0-0.38 consider thes&k determinants as the manifold chosen for
4fM6s5d 288 0.31-0.64 521 0.09-053 748 0.03-05gCalculations. As mentioned in the context of CSFs, the rep-

resentation of two-electron Coulomb interaction is incom-

m-1 | _ —|
af™las’gp 40 0.38-0.69 92 0.33-065 172 0.35-0.85 plete in such a determinantal manifold. This is because, the

Afm5d? 608 0.63-1.08 1090 0.24-0.69 1579 0.18-0.86cqylomb interaction couples pairs of determinants which
4f™1es5d6p 684 0.67-1.04 1619 0.43-0.87 3014 0.44-1.00djiffer by one or two occupancies. Hence, for the singly ex-
4fMBp2 236 0.97-1.30 409 0.83-1.25 602 0.87-1.38cited determinants, the zeroth order description of Coulomb
4f™1gp 172 1.11-1.50 241 1.02-1.40 276 1.09-1.e1interaction is incomplete without the triply excited ones. The

119-158 quadruply excited are similarly needed for the doubly ex-
' " cited determinants. Among th€ determinants, the fraction
coupled to a singly excited one is

4f™26s?%6p? 31 1.14-1.30 91 1.09-1.42 234
4fM265d> 78  1.38-1.64 240 1.01-1.34 608 1.03-1.56

4fm+2 46 1.56-1.90 46 1.61-1.97 46 1.74-2.10
_ K- (Na - 1)(Na_ 2)(No - 1)(No - 2)/4
Ks=
K
ConsidemN, andN,, as the number of active valence elec- 1
trons and single particle states, respectively. Tigris 6, 7, ~— whenN, > N,. (14
and 8 for Nd, Pm, and Sm, respectively axig=32 since the Na

valence space consists &, 6p1/2 32 5ds2 512 and 451272 The last term in the numerator is the number of triply excited
(each orbital contributesj21 number of single particle states coupled to a singly excited determinant but absent in
stateg. In addition, define the number of unfilled single par- the manifold. Similarly, the fraction of the determinants
ticle states a®l,=N,—N,. Then, the number of possible de- coupled to double excited determinant is

_K=[(N=2)(N,=2) + (Na—K2><Na- HNo= 2N~ 3/4] = whenN, > N, (15)

Ky

That is, each of the states considered are directly coupled tour choice of configuration space has important double exci-
~1/N, of the total number. However, higher order two- tation states as well as selected higher excitati@ss ex-
electron Coulomb interaction connects all the determinantplained abovg In addition, configurations of higher excita-
within the same) manifold. ForN,~ 3, theKs andK; scal- tions from the ground configuration such as triple excitations
ing show the number of determinants mixed at first order isare energetically well separated from the single and double
close to the GOE predicted value 8f(E). Similar scalings  excitations. These configurations require excitations frém 4
apply to the CSFs as these are linear combinations of Slatehel|l and perturbative analysis shows these configurations do

determinants. This implies that a CSF space consisting ot contribute significantly to correlation effects.
single and double excitations can provide a good representa-

tion of the eigenvalues and eigenfunction properties. This 1. EIGENFUNCTION PROPERTIES IN EGOE (1+2)

choice of the configuration space is also adequate for the ] ) o )

excited states. As discussed in Rgf6], for open-shell sys- This section gives a brief introduction to EGAE-2) and
tems a large portion of the correlation effects of an atomic@ summary, for later use, of the results known for this ran-
state is well represented by the single and double excitation@om matrix ensemble; see Réfl1] for a review on this
with respect to the leading configuration. The contributionsubject and also Ref18].

from the triple and quadruple excitations is small, however,
these are essential for precise calculations. To study statisti-
cal properties, the single and double excitations provide a Let us start with two-body embedded GOE, i.e., EGDE
good description. For the excited states in our calculationsor TBRE defined for spinless fermion systems. The EGDE

A. Definition of EGOE(1+2)
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for m (m>2) fermion with the particles distributed say CHAOS MARKERS FOR EGOE(1+2)
single particle statel;), i=1,2,... N) is generated by de- H=A h(1)+A.{V(2)}
fining the HamiltoniarH, which is two-body, to be GOE in (m,N,A})

the two-particle space and then propagating it to the
m-particle spaces by using the geometdirect product
structure of the m-particle spaces. The operator form for a | fctuations l:‘ I y Wigner-Dyson (GOE)

two-body HamiltonianH=V(2) is defined by | | | |
I

State density | Gaussian

o I I i Y
% Ao e h

V)= X (myVQ)|uralal a,a,, w T !

Vi<Vj,Vk< V| bk ! functgns & Breilt_l:vwigd:::m | '/’/ [2::::Ii:nndomaln]

defines th ic regl

(e |V(2)| Vi Vi>a =—(ww |V(2)| Vi Vj>a, (uuam'}?imfre"::mi'ﬂ: or:ﬁcol:e)
(V)| viw))a = (v V(2) | ) a. (16)
Now, the HamiltoniarH matrix in m-particle spaces, in the FIG. 1. Chaos markers for EGOE+2).

occupation number bas{sccupation numbers will be 0 or 1

and the basis is generated by distributing theparticles in  ensemble; see Rdfl4] for examples. Th¢V(2)} in Eq. (19)
all possible ways in the single particle statgk is defined in  is EGOH2) with v?=1 in Eq.(18) and X is the strength of
terms of the two-body matrix elemen(tg|V(2)|vv)), (note  the two-body interactioriin units of A). Thus, EGOEL+2)
that the subscript & stands for antisymmetrized two- is defined by the four parametets,N,A,\) and without
particle statesand the nonzero matrix elements are of threeloss of generality we choosed=1. Construction of

types EGOH1+2) follows from Eqgs.(16)—(18) by just adding to
: the diagonal matrix elemen{see the first equality in Eq.
(v v V2)|v1wp - Ve = <2 W V@yp)a, (17] the termZ;¢,,, wherev; are the occupied single particle
Vi VjﬁVm 1

states for the given basis state.
Ym

<VpV2V3‘ " Vm|V(2)|V1V2‘ © Umla= 2 <VpVi|V(2)|V1Vi>a’ B. Basic properties of EGOH1+2)
Vi=v2

Most significant aspect of EGQE+2) is that as\
(vprqra- - Vel V)| 11103+ Ve = <Vqu|V(2)|V1V2>a? changes, in terms of state density, level fluctu_ations, strength
(17) functions, and eqtropy, thg ensemble gdmns_three chaos
markers as described in Fig. 1 and reviewed in R&8].
all other(:--|H|---),=0 due to the two-body selection rules. First, it is well known via the EGOR) results in Refs.
The EGOE?) is defined by the above equations and al10,27 and the fact that generdi(1)’s produce Gaussian
GOE representation fov(2), densities, that the state densitig$™(E)=(s(H-E))™ take

, , ) Gaussian form, for large enough for all A valueg often the
(nw|V(2)|yv)), are independent Gaussian random Va”able%uperscriptsH,m) are droppel]

V@ Ta=0, L e
K || | iVila pH,m(E):T—m exp —?, (203)
V270,
(e[ V) mivp)al” = (L + 8 ) (18) )
where the overbar denotes ensemble averagevdnd a E=[E~ e(m)J/on(m). (20D

constant. Note that(m)=() is the Hamiltonian matrix di- Eq. (20 Y s th 4 and simi
mension and the number of independent two-body matri>!n 9. (20), fH(m)_< st e.spectrum ceptr0| and simi-
elements i(2)[d(2)+1]/2. larly oy(m) is the spectrum width. In practice there will be

Hamiltonian for realistic systems such as atoms consistdeviations from the Gaussian form and they are taken into
of a mean-field one-bodydefined by a finite set of single account by using Edgworth expansif2g] in terms of the

it H
particle statesplus a complexity generating two-body inter- SKEWness(yy) and excesgy,) parameters. Witrp"(E)dE
action. Then the appropriate random matrix ensemble, for 7(E)dE, the 54(E) with lower order Edgeworth corrections

many purposes, is EGQE+2) defined by is

H} = h(1) + M{V(2)}, 19 . . . . .

= @) 19 B = ng(E>{1 + 2 Hey(E) + 22Hey(E) + ﬁHee(E)},
where{--} denotes an ensemble. In E49), the mean-field 6 24 72
one-body Hamiltoniarh(1)=2;€n; is a fixed one-body op- (21)

erator defined by the single particle energiewith average . _ . - .
spacingA (note tham, is the number operator for the single WhereHe.(E) are Hermite polynomials. Wit increasing,
particle statdi)). In general one can chooseto form an  there is a chaos markex, such that forn=\. the level
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fluctuations follow GOE, i.e.\. marks the transition in the m=6, N=12
nearest-neighbor spacing distribution from Poisson to T T T R ARESS AR e R AR
Wigner form. Parametric dependence Xf is A\, 1/m?N 02 [ 1 oa2l =0 15;
[29]. Now let us define strength functions. E A=0.1 ] i =24 ]
To maintain consistency with the notations used in 0.15 |- 8 1 oos | 1,=2.16]
EGOH1+2) literature, from hereafter, we represent CSFs as C %=3.53 | i ]
|ky and ASFs agE). Then, Eq.(6) assumes the forniE) oa 7 006 - ]
=3 chlk). Given the mean-fieldh(1) basis states|k) 005 . ] el 1
:EECE|E>, the strength functiongone for eachk) F.(E) r 1t i
=35 elCP2=|CiAdpH(E)]. As \ increases further from N TS RS ST AOPTTTIA SO
\. the strength functions change from Breit-WigiBW) to c RARRRRRRRRR ALRRRRRRRRRN AR LR RN
Gaussian form and the transition point is dented\pysee g *®[ =02 1 °%F A=0.24
Fig. 1. The BW and Gaussiddenoted byj) forms of F((E) % oo =33 7 qmb a=5.3 ]
are g i Y,=1.01 ] [ %,=042 7
W= 0.04 -{ 0.04 |- —
1 Fk L [ ] [ ]
Frew(B)=———————, 22 ks o ] C ]
k.BW( ) 27T(E— Ek)2+ F§/4 ( a) g) 0.02 C ] 0.02 E ]
g 0_ Ll bl 1 0_ N S N N 1
1 E_ E 2 w 7I LI L L O B B B B I ) I7 7I TTTTTT T T T T T T T TT I7
Frg(E) = — ¢ Zk) , (22b) 006 - A=0.28] 006 | A=0.3 -
\ 270y 204 L 0=9.8 1 L o=17 -
B | B %=0.2 ]
whereE,=(k|H|k). With p= 2 F(E)dE, the spreading width el %0127 004y ? 1
I'=E34—Eva Similarly the variance oF is oz=(k|H?k) L 1 L 1
—((K|H|K))%. For \¢=<\ <\ (this is called BW domainthey ool 1o i
are close to BW form and fax > \ (this is called Gaussian I L 1 L L 1
domain they approach Gaussian form. In fact the BW form o 1 0 1 2 3 "3 2 40 1 2 3
starts in a region below, (as shown in Fig. 1, there is)y
such that below, the strength functions are close to the (E-¢Vo

function form and forn >\ there is onset of BW forinbut
the fluctuations are close to Poisson forA.. Arguments
based on BW spreading widths giwg «1/ym [5,30] and
this result will be used later. Unlike the Poisson to GOE
transition in level fluctuations, which is common for Hamil- I .
tonians with regular and irreguldchaos generatingparts, ~ atio), &(E)={Z/C|*}™, where the subscript “2” fog de-

the BW to Gaussian transition in strength functions is anotes thatitis the second Rényi entrd@{t]; &, (E) gives the
unique signature for the operation of EGQE 2) in finite number of basis states that make up the eigenstate with en-
quantum systems. For the BW to Gaussian transition, a goo@rgy E. Following Ref.[32] one can writef, in terms of the
interpolating function has been constructed recefit8], strength functions

FIG. 2. Strength functions for EGQE+2) as a function of the
interaction strength.

(aB)* YU (a) dE
- ( _ }> [(E-E?+apB]"
Val'| 5

Frew-g(E:a, B)AE=

1 oo
{&(B)g° = [/JTE)]ZJ dE"(EJ[F(E) T,
(23) -
a=1. §GOE (24)
=d/3.
In Fyew-g(E: @, B), B supplies the scale while defines the ?

shape(henceq is the significant parameteas it gives BW
for =1 and Gaussian far— . The variance oF.gy-g IS
oZ(Fk:BW_g):of:a,B/(Za—S), a>3/2. It is important to In writing Eq. (24), it is assumed that the level and strength
stress that in generdla,8) change withk although for fluctuations are of GOE type and hence it is valid only for
EGOH1+2) they are nearly constant except 6 with E, ~ A>A\c. Further,p"(E,) is the density of, energies and it is
very far from their centroid. Figure 2 shows that the interpo-generated by an effective one-body Hamiltonian[32].
lating function (23) fits very well the numerical Also, in generalp"(E,) is also a Gaussian for EGOE+2).
EGOH1+2) results for strength functions; for more detailed Assuming thate and 8 arek independenté,(E) in the BW
discussion see Reff18]. to Gaussian transition domain can be evaluated by substitut-
One important measure of the complexity of eigenstateng Fy.gw-g for Fy(E) in Eq. (24). At the spectrum center the
of interacting systems i§,(E) (also called the participation integral in Eq.(24) can be evaluated and it givg$8]
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o 2 I'(a) 1 and the total angular momentuiris the same as in the Ge
&(E=0)/£59F= 2a-3) N21-0 work [2]. For Pm, which has an odd numkge., 7 of active
r2<a_§> 4 4 valence electrons we chooske9/2" CSFs. The parity is

again equal to the parity of the ground configuratidh64?.
13 (2a-3)(1-2) -1 It_is to be reiterated thz_it, the orbitals of the presen; study are
XU 55 - Za’T , different from our earlier worK17]. As mentioned in Sec.
4 Il B, the orbitals in this work are calculated in a multicon-
figuration potential, whereas in Ref17], the orbitals are
(25) calculated in a single configuration potential. The manifolds
of the Nd, Pm, and Sm have 2200, 4375, and 7325 CSFs,
whereU (---) is hypergeometri¢J function[33]. In Eq.(25),  respectively. The CSFs are generated in the sequence of sub-
the correlation coefficient {=V1-o/of;, where of  shell occupations but later, these are energy ordered. The Cl
=(1/d)Z;.jH; and of,=(1/d)i(E;-€)? are the variance of calculation is carried out within the whole space for Nd and
the off-diagonal Hamiltonian matrix elements and eigenvalPm. For Sm, as mentioned in RgL7], the density of states
ues, respectively. However, in the Gaussian domain, withp(E) is bimodal. We select the first 6300 CSFs which con-
F.(E) being a Gaussian, gives for aiy tribute to the first peak for the CI calculation. The atomic
state|E) of the Nd, Pm, and Sm obtained from the CI calcu-
lations have energy range of 2.20, 2.27, and 1.60 Hartree,
respectively.

2|‘52

E(E)EF=\1-exp- f+ 2

(26)

Instead ofé,(E), it is possible to use the closely related in-
formation entropyS"°(E); S"°(E)=-3¢|CE|2n|CE%. An in- o _ .
teresting recent observation is tH&@4] as we increase: By definition, density of statep(E)=(sH-E)) is a se-
much beyond\g, there is a chaos markey around which — quence ofé functions. For obtaining the smoothédtith re-
different definitions of entropyfor exampleS™, thermody- ~ Spect to energy) density of states and for comparison with
namic entropy defined via"(E), single particle entropy de- the EGOE1+2) predictions of p™™(E), we construct the
fined via occupation numberstemperature, etc., will coin- binned density of states. In our calculations, the energy range
cide and also strength functions 1) and V(2) basis will ~ Of |E) of each atom is divided into sixty bins of equal sizes.
coincide. Thusk ~ X\, region is called the thermodynamic The density of states is then binned and normalized, these are
region and Ref[13] gives first application of this marker. ~ shown in Fig. 3. The Gaussian and Edgeworth corrected
It is important to point out that the eigenstates of atomsGaussian calculated from the centreidvariances?, skew-
carry good angular momentutd) (in some situations even Nessy;, and excess, of p(E) are also shown in the figure
good L, S) and therefore in principle one should consider€& o° 1, and y, values are given in the figureFor Sm
EGOH1+2) preservingd symmetry[called EGOEL+2)-J Gaussian is in good agreement with i) except at and
in Ref.[11]]. Theory for EGOEL+2)-J is not availablgsee, around the centroid. At the centroid the Gaussian-k3%
however, Ref[35,36 for some first attempjsand just as in less than the actual(E). In general allp(E) are multimodal
the nuclear shell model studif®L,37, it is assumed that the in structure and it is most prominent in Nd. TheE) for Nd
forms for p"(E), FW(E), &(E), etc., derived using hasa pronounced peak&t--1.5 and fluctuations are above

EGOH1+2) for spinless fermion systems, extend @  the mean folE between 1.0 and 2.5. Similarly for Pp(E)

spaces. This can be considered to be an aspect of chaosr%gS a pronounced peak Bt-1.4. As discussed ahead. the

atoms and this is the basis for statistical atomic SIOectros’mp%uItimodaI structures correlate with similar structures of the

?jfel?g'nncges(fﬁfrlgﬂed by Flambaum; see RE3s8,38, and number of principal components and observed deviations of
' the strength function from thg dependent variation. Finally

for Smi, there is a peak &~ 2.
The multimodal form ofp™'™(E) can be understood by
In the present study, we select the4* CSF manifold for ~ decomposing it into a sum of partial densities. For each sub-
Nd and Sm atoms. The parity is chosen equal to the paritieshell occupancyh one can define a partial densipf*™(E)
of the ground configurationsf#6s? and 4%6s?, respectively,  with centroidsE.(f) and o%() defined by

A. Density of statesp"(E)

IV. RESULTS FOR p"(E), F((E), &(E), AND {n,)E
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EM =T, AM=(H-EMA". @) o gy T
Note thato?() is sum of partial variances?(f— '), reAf265%54% (76)
where oAf6s?6p? (31)  0.08f
e AT%6p (172)
oA(M) =D, A(fh— W), edttp? (236) wosl
m’ \—w__A%s5d6p (684) X
—w_Af4542 (608)
dA(fh— W) = {d@)} 1> [(Fha|H|FY B)|? for P+ ', e—4965%6p (40) 0.02
B +e_At*6s5d (288)
e AT46s2 (19)
oA ) = {d(rnrlE |<ﬁwa|H|mﬁ>|2} SEMP R o
o, E - €)/o
(28)

FIG. 4. (a) The energy range of CSFs for Nd arising from a

partial varianceg39]. In terms of the partial densities the SPeCt to the lowest CSF energy within the manifold
total density of states is (-9625.2394 HartreeThe number of CSFs are given within paren-

theses and the cross marks the location of the centiwidhe solid
PP ME) =[dm) ] pHME)d(), (29)  and dot-dash line are partial Gaussian densitiég(E) of each
@ nonrelativistic configurations and sum of all the partial densities,

) . ~ respectively. The histogram is that of the density of stat§).
wherem is the number of active valence electromsrepre-

sent the possible subshell occupancies, dfid) and d(m) %he centroids and variancéalso partial varianceswithout

érgl;[geinmtlma t’r,“r?rs?jbg:elzlls égéﬁeaitca:ﬁ:ﬁigg arneds nggsi\t;glr Olecourse tt matrix constructiorf39]. Similar to the Nd, the
pancy ! P Y- bimodal structure of the Pm’s™"™E) is a consequence of

. H,m . . oy ,ﬁ']
;Zafsbst;g hell(li))cfuthaeti;g;n d?fiﬁigl?:] (Egml?i ifrlwz)cr:?arrqt the small overlap between the partial densities of the
P : P 4f46s5d6p and 4°6p? configurations. However, unlike Nd,

to stress that Eq(29) is exact. As evident from Eq(19), these configurations are in the higher end of the energy

each of the possible su_bshell occupations have_ different ari: nge. In contrast to Nd and Pm, the Sm atom has partial
gular momentum coupling sequence. It is easily seen th

" : - o
p™"M(E) takes multimodal shape when the partial densities en5|'t|es with large overlap and the .(E) s without

. o : prominent secondary peaks. Now we will turn to strength
are well separated with weak mixing between th@e, par- . ; ; . L T
. . . ) ) functions which are nothing but the partial densities viath
tial variance is much smaller than the internal variantle L . L ;

; : o . divided into individual basis states.

range ofe, (i.e., diagonal elements of the Hamiltonian matrix
HﬁC) of each nonrelativistic configuration given in Table |,
which is a representation of the partial density spread, is B. Strength functions F(E)
plotted for Nd in Fig. 4a). At ~0.62 Hartree, it shows small o .
overlap between thef46s5d and next in energy #5d2 and The Fy(E) of the individual CSFsk) exhibit large fluc-
4f36s5d6p configurations. The separation is also visible intuations and significant variation is observed betwBgi)
the Hamiltonian structure discussed ahe@&iy. 9 ahead ©f neighboringlk). This is evident from the selectgk) pre-
shows two distinct blocks centered around0.5 and Sented in our Smwork [17]. For statistical description we
~0.8 Hartree, respectivelyln addition, the Coulomb mix- consider the representative strength funcig(e) which is
ing (4f*6s5d|1/r,,]4f*5d%) and (4f*6s5d|1/r,,|4f36s5d6p) the average of individuaF,(E) within the range of energy
are weak as the configurations differ by a single occupancye*Ae. In the present work, we have chose# 250 as the
The separation between the configurations persig&)iand ~ range of averaging to calculaig(E) and the centroids of the
the contributions from #6s5d configuration manifests as individual F(E) are aligned while averaging. Figure 5 shows
the smaller peak of the bimodgal™(E). The energy range of F«(E) of Nd, Pm, and Sm calculated gt=-1.5, -1.0, -0.5,
the remaining configurations show large overlaps and conand 0. For all the three atoms, the interpolating function of
tribute to the main peak of the Nd™"™E). The 4%6s%6p  Eq.(23) fits theFy(E) very well; the3 parameter in E(23)
configuration which lie betweenf26s5d and 45d” ener-  has been eliminated using the calculaied The best fit
getically, is single replacement fromf%d? and does not Vvalue ofa for Nd, Pm, and Sm fog,=0 are 5, 7.5, and 11,
contribute to smoothing thg™"™(E). Figure 4b) shows the respectively, thus these are in the Breit-Wigner to Gaussian
result of Eq. (29 with partial densities represented by transition region with Smclosest to Gaussian. This result is
Gaussians for Nd. The agreement between theory and calcaready reported in Ref18] [it should be noted that in this
lations is excellent. This demonstrates that it is possible t®aperF(E) is constructed by averaging(E) over 3% of
construct the total density of states as sums of Gaussian pahe basis states arourgl=0 and this is different from the
tial densities(even though a single Gaussian representatiofprocedure used in Fig. 5 and therefore there is slight differ-
as shown in Fig. 3 deviates strongly from the calculated reence in thea values extracteld Moving away frome,=0,
sultg. This result is significant as it is possible to calculatefirst it is seen that the parameterin Eq. (23) is k dependent
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and it changes from a value close to that of BW to a valudor Sm it is Gaussian-like. Nd and Pm have Gaussian-like
giving close to Gaussian form &g is increasing from —1.5. secondary peaks aroune-1.5 and~1.4, respectively, and
For Nd, Pm, and Sm changes from 2 to 5.2, 2.5, to 7.5 and it is to be noted that, these are the locations whet8(E)
2.5 to 10.6, respectively. The variation énseen in Fig. 5is has local peaks. For Sm, similar p6"™(E), it is unimodal.
understood from the fact that near the Fermi surfaee, for At the centroid of the envelopes, the value §{E) are
&~—1.5to -1 the levels are well separated and hence the~0.39,~0.42, and~0.5 for Nd, Pm, and Sm, respectively.
mixing is weak giving BW form and as we go towards the These should be compared with the EGODE2) values
center the mixing is strong giving close to Gaussianbe-  given by Eq.(25) (for the Nd, Pm, and Sm atom& is 0.88,
tween BW and Gaussiaform. It should be pointed out that 0.86, and 0.83, respectivelyand they are 0.44, 0.48, and
EGOH1+2) ensemble do not produce large changea ims  0.55, respectively. Here it is assumed thatalue at thee,
k changes irF,(E). However, in all the calculations it is seen =0 can be used for alg’s. However, this is not a good
that o, is essentially constant as expected fromapproximation as seen from Fig. 6. In a better calculation we
EGOH1+2). Clearly, theF,(E) analysis shows that modifi- use Eq.(24), where the integral is divided into seven seg-
cations of EGOFL+2) are needed. ments each withg, spread 0.5 in the range -1.75 to 1.75.
Within each segmenf(E) is constructed withy taken for
the mid g but incorporating exact,(E) centroids and
C. Number of principal components £,(E) and localized states  widths. This calculation gives overall good description for
The number of principal components or the inverse parSm while for Pm there are deviations fé{>0 This is not
ticipation ratio&,(E) of an eigenstate is the effective number surprising because there is a secondary peaEIEO which
of basis functions contributing to it. It provides a measure forcannot be accounted in the EGQE 2) model adopted. For
the presence of chaos in the system. For a GOE with dimerNd we have not shown the result as thefor §=-1.0 is
sion d, the &(E) is d/3 independent of energy while for undetermined. Assuming an interpolating value aofit is
EGOH1+2) there is strong energy dependenfi¢ is  seen that the calculations describe reasonably gyéH) for
Gaussian in the Gaussian domain; see(B6).]. The&,(E) of  E<O.
Nd, Pm, and Sm for alE) are calculated and shown in Figs.  In Figs. d)—6(f) &(E) is binned to remove local fluctua-
6(a)—6(c). The &(E) of Nd and Pm are multimodal and lo- tions and the resulting histograms are shown. They give at
calized state§i.e., states witht,(E) much smaller than GOE the center the:,(E) to be 0.27, 0.33 and 0.48 for Nd, Pm,
or EGOE1+2) predicted valuelsare prominent in all the and Sm, respectively. Finally, though the number of localized
atoms. We should add that localized states are also observsthtes appear numerous in the plots, they are in fact not that
in the previous studies on €¢2] and Pn [4]. In addition, many. This is seen clearly from Figs(gs-6(i), where the
more recently, localization quite similar to those shown Fig.relative density of localized states is plotted as a histogram.
6 are also seen i?8* calculations[40]. Despite localiza- We classify a state as localized if it hgs(E) less than or
tion, Nd and Pm have Breit-Wigner-like envelopes, whereagqual to 20% of the binned value in corresponding energy
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¢,(E)/¢ %)

FIG. 6. The number of principal components
&(E)=(Z,|CE[*) ™t of Nd, Pm, and Sm are plotted
in the first row. The plots in the second row are
binned &, (E) and the last row is the binned den-
sity of localized stateg),.(E). In (b) and(c) the
continuous curves are from E®4) as described
in the text.
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range. As shown in Figs.(§)—6(i) the number of localized between few|k) of similar subshell occupancies, then the
states in each energy bjn,(E) is small for all the atoms two-electron Coulomb integral is between same orbitals and
studied. This indicates the difference between the envelopié large(K=0 multipole is allowed This is indeed the case
and binnedé,(E) is due to high-frequency fluctuations and and the signature is the anticorrelation in the trend0E)

not due to purely localized states. In order to understan@nd occupation number of selected subshells shown in Fig. 7.
more about localized states an analysis is carried out in termEhe figures shows,(E) and(n,) of a few |E) around cen-

of occupancies of single electron orbits and we will turn totroid energy. In Fig. {@), there is anticorrelation between the

this now. &(E) and <n5d3/2>E+<n5d3/2>E of Nd; a similar trend is ob-
served for Pm in Fig. (b), i.e., the occupancies are large
D. Occupation number (n,)E and the localized states when &(E) is small. This shows the localized states of Nd

In th istical d - f bod and Pm within the spectral range considered arise from
n the statistical description of a many-body gquantum SYSstrong mixing betweerk) of high 5d occupancy. Whereas,
tem, properties of the system are often expressed as functio

‘i b-shall i b In thi . e localized states of Sm as shown in Fi¢c)7arise from
ot the ?)u h-SII € occutpa lon m:)m E{fﬂ' tnd |sthsec |<:n, wef ththe strong mixing betweejk) of high 6s or 6p occupancies.
use subshell occupation numbers 1o study the nature of the compare and contrast the chaotic and localized states,

localized states. By definition the occupation number of thETCE|2 of pair of neighboring chaotic and localized states of

subshella in |k is Nd, Pm, and Sm are shown in Fig. 8. The figures clearly
<na>k:<k|azaa|k>: (300  shows that the localized statésnergy states]'=800, I
=2148, andl"'=2885 of Nd, Pm, and Sm, respectivelgre
wherea' and a, are the particle creation and annihilation represented by a feyk), whereas the neighboring chaotic
operators in the subshelland these are defined in Sec. Il A. states(I'=801, '=2149, and'=2886 of Nd, Pm, and Sm,

Further, we can also define the subshell occupancy of afespectively has contributions from severl). The |Cg|? of

atomic state the chaotic states exhibit a systematic growth and decay, in
- + : 12 contrast localized states show no systematic trends. To show
(ny) —<E|aaaa|E>—% |Gl N2 (1) the anticorrelation betweetn,) of selected subshells and

&(E), the contributions from each badisf|Xn,), are plot-
It is evident from&,(E) calculations that, there are several ted. For the localized states the plots are dothat has the
localized states as shown in FigggB-6(i). Each of these highest value. For the chaotic states, all the subshells show
have&,.(E) < &(E) and few|k) can represent these states. A similar trend and approximately an order of magnitude less
possible origin of localized states is strong Coulomb mixing(see the scales in Fig) &han that of the localized states.
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FIG. 7. The solid line is the number of principal components 0006
&(E) of energy stated” around the centroid. The dot-dash line 0.004
show the occupation numbém,)E of selected shells which anticor- 0.002
0.000

relate yvith the localized state_s. The_ occupation numbers are scale 02 04 06 08 0z 04 06 0B 1o
and shifted for better comparison wiga(E): for Nd the plot shows € —€

(Nsg, )E+(Nsg, )E=1, for Pm it is 0.%(nsg, )E+(nsy_)F) and for ko
Sm the dot-dash and dashed lines arngsl/Z)E—S and <n6pl/2>E

- FIG. 8. The|CE|? of neighboring localized and chaotic pair of
+(ngp, )5~ 3, respectively.

|E) are shown in the plots in the first column. Even though each pair
are neighboring states, a large difference in the structure is discern-
V. HAMILTONIAN MATRIX STRUCTURE able. For the localized states, the second column shows the indi-

Understanding the structure of the Hamiltonian matrix isVidu@! k) contribution ICilna)x to the subshell of highestn,,),
crucial for developing an appropriate random matrix model/Néreas for chaotic states all the subshells have SifGlF(na)
for the Lanthanide atoms. The diagonal Hamiltonian matrixand the plots show contribution from a randomly chosen subshell.
elementd—h?kC will have contributions from both the one and the matrix elements between CSFs arising from
two particle Hamiltonian terms. However, the off diagonal 4f™25d"26s? and 4™5d"6p? are zero. There are other con-
termsHkDf, have nonzero contributions from the Hamiltonian figurations similar to these in the CI space considered. Due
terms depending on the relative excitation betwgenand  to these configurations, the Hamiltonian matrix in our calcu-
|k’y. If the two CSFs are singly excited with respect to eachations is sparse, though we consider only the single and
other, then one and two particle terms contributes, whereadouble excitations from the ground state configuration. For
only the two particle term contributes when the two CSFs aréfinging out a coarse grained structure of the Hamiltonian
doubly excited with respect to each other. The off diagonamatrix, the square of matrix elemeritd,;)? (to remove the
matrix elements are zero for triple or higher excitations. As @hase factoris calculated and binned in terms of the diago-
consequence, the Hamiltonian matrix is sparse. In oupal elementsHpC. The elementW; of the binned Hamil-
present calculations, several of the CSFs which are doubl{pnian for bin sizeA is then
excited with respect to ground configuration are quadruply W = D H2 (32)
excited with respect to each other. For example the configu- L , ki
rations 4™ 25d"26s? and 4™M5d"6p? are doubly excited with (7=Ha0=a,(7=H)=4
respect to the ground configuratiof™sd"6s?, however, they wherei’=i XA and j’'=j X A. The plot of binned Hamil-
are quadruply excited with respect to each other. Hence, atbnian for Nd, Pm, and Sm are shown in Fig. 9. To improve
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0.0 0.5 1.0 1.5

FIG. 9. The binned Hamiltonian matrix of Nd, Pm, and Sm
(from top to bottom, respectively

the contrast the plots show(W;) instead of thew;. In all
the three atoms(i) bandlike structure is evident, however,
there are also block structures within the bafid; another

PHYSICAL REVIEW A 71, 042504(2005

elements parallel to the diagonal, these mix two diagonal
blocks and, as mentioned in R¢#1], perturbative calcula-
tion can account for these distant elemeiliis) the Hamil-
tonian matrices of Nd and Pm have small range of energy
with no states and these are the empty stripes in the figures.

Presence of prominent diagonal blocks in the figures
[point (i) abovg is a consequence of the spread of the vari-
ous configurations shown in Fig. 4 and Table |. Though it is
tempting to conclude that there is a BRM-like structure, it
should be noted that the various blocks retain their identity
each with their own internal varianag?(f— ). Figure 9
clearly shows that the partial variancedm— m’) (except
in some special casgare in general much smaller compared
to the internal variances. It should be pointed out that block
matrix structure as in Fig. 9 is also observed very recently in
nuclear shell model calculatioid2,43 and it is plausible
that such structure is a feature of interacting particle systems.
In Refs.[42,43 it is argued that one of sources for this
structure isJ symmetry. The various blocks are much more
well separated in Nd and Pm as compared to Sm and as a
result Sm is much closer to EGQE+2) with Nd and Pm
exhibiting larger localization with departures from
EGOH1+2) predictions.

To gain better understanding of the off-diagonal matrix
[i.e., (i) and (ii) abovd, which will mix the CSFs, let us
consider their structure in some detail. In the present calcu-
lations the off diagonal Hamiltonian matrix elemehlg(c, are
largely generated by the interelectron Coulomb interaction
1/rq, than the one electron terns where

ti=cai-p+ci(B—-1)- @ (33

In second quantized notatioH ¢ can be written as

l12

a,8> alalasa,,

(34)

HPC =2 (aft| Bafa, + 2 <75
ap

afyd

where for short we use Greek alphabets to denote orbitals
and summation is without restrictions. The two-particle ma-
trix element of 1f,, can be decomposed into multipole com-
ponents

51
I

12

aﬂ> =2 GX(y,8,a,R(y,8;a,8), (35)
K

where GK(y, 8; a, 8) andRX(y, §; a, B) are angular and ra-
dial integrals, respectively, and is the multipole. The an-
gular momentum selection rules are consequence of
GX(y, 8;a,B) and the radial integral also known as Slater
integral[26]. In total there areNﬁ(NC+ N,-1)2/4 matrix ele-
ments of 1f;, which contribute to the off-diagonal Hamil-
tonian matrix elementsy, andN, are defined in Sec. Il. The

important feature is the prominent streaks of large matrixnany-particle matrix elements of fj5 can be written as
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1
<erJM ;

- also the Hamiltonian matrix structure. ExaminationFQfE)
12 showed that the BW form is dominant in Nd, they are more

= > > My, 5,0, 8RNy, 5;a,8), (36)  towards Gaussian in Pm and quite close to Gaussian in Sm

S

PJM> number of principal components, occupation numbers, and
Vs

aBys K for the basis states not very far from tlag centroids. All
K.IM . , three atoms exhibit BW form fog < -1. Thus the statistical
whereC:™"(y, §; a, B) is the angular factor which transports spectroscopy developed by Flambaemal. [5-7] will be

the single particle_ matrix elements to theT many-particlegood for as long a&(E) with & =-1 contribute to observ-
space. TheC's consists of two components, first the angular gples of interest. In all these atoms there are localized states
factor in the single electron space and second a componetiroughout the spectruiithough the density is not higland
which propagate from the single electron to many electronhis is clearly seen in the measuigE). The structure of the
space. These will have complex structure when electrons gbcalized states is closely correlated with the occupation
several open shells are coupled and the distribution of th@umbers. All these and the matrix structures showed that
nonzero Hamiltonian matrix exhibit intricate patterns. Inter-EGOH1+2) need to be modified. One approach is to parti-
estingly, nuclear shell model calculations showed thation the two-particle space and employ different variances
[42,43 the angular factors generate a part of the GOE strucfor different block matrices and then propagate the ensemble
ture of the diagonal blocks. The radial integral is Iarge forto many partic]e spaces. Very few properties of these parti-
K=0 in Eq. (35 a_nd it is an allowed multipole wher,  tioned ensemble§p-EGOH1+2)] are known[11] and
=k, andxz= ;5 This can couple energetically well separatedciearly they should be studied in more detail. The induced
configurations strongly and explaiii) above. Finally, from  TBRE introduced recenthf44] are closely related tq-

the matrix structure one can understand qualitatively the deeGog1+2). Another approach is to consider the two-
partures off(E) and &(E) from EGOE1+2). In this ran-  particle Hamiltonian as a mixture of a regular pgsay de-
dom matrix ensemble the two-particle matrix elements varitermined by the lower order multipoles in E(g6)] and a
ance[the parametev? in Eq. (18)] is independent of its random part and analyze them as a function of the strength of
position[i.e., independent of the indicés j,k,l) in Eq. (18) the random parfthey are calle +a«EGOH?2) in Ref.[11],
except that the diagonal matrix elements have twice the variynerek is a fixed operator, and numerically some studies of

ance of the off-diagonal matrix elemehts such an ensemble are carried out using nuclear shell model
recently [12]]. Thus an important outcome of the present
VI. CONCLUSIONS AND FUTURE OUTLOOK detailed analysigpresented in Secs. 119\s that for further

progress in understanding the wave function structure in
In this paper wave functions of complex lanthanide atomsomplex atoms it is necessary to analyze various modified
Nd, Pm, and Sm are analyzed in terms of strength functiond&GOE’s and this is for future.
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