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Wave functions of complex lanthanide atoms NdI, PmI, and SmI, obtained via multiconfiguration Dirac-
Fock method, are analyzed for density of states in terms of partial densities, strength functionsfFksEdg, number
of principal componentsfj2sEdg, and occupanciessknalEd of single-particle orbits using embedded Gaussian
orthogonal ensemble of one plus two-body random matrix ensemblesfEGOEs1+2dg. It is seen that density of
states are in general multi-modal,FksEd’s exhibit variations as function of the basis states energy andj2sEd’s
show structures arising from localized states. The sources of these departures from EGOEs1+2d are investi-
gated by examining the partial densities, correlations betweenFksEd, j2sEd, andknalE and also by studying the
structure of the Hamiltonian matrices. These studies point out the operation of EGOEs1+2d but at the same
time suggest that weak admixing between well separated configurations should be incorporated into
EGOEs1+2d for more quantitative description of chaos and localization in NdI, PmI, and SmI.
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I. INTRODUCTION

Lanthanide atoms exhibit complicated configuration mix-
ing and have complex spectraf1g as consequence of partially
filled high angular momentum 4f and 5d valence shells. The
general form of the ground state configuration is
fXeg6s24fm5dn, where m and n are the shell occupancies.
Across the periodm increases from 1 to 14, whereasn is 1
for CeI and GdI which are located at the beginning and
middle of the period andn is 0 for the remaining lanthanide
atoms. Along the period the number of configurations and
mixing increases as 4f shell occupancy increases, and
reaches a maximum around the middle. Lanthanide atoms
are appropriate to study complexities emerging from two-
body interactions and a comparative study along the period
could provide insights to the implications of increasing par-
ticle number to the nature of the complexity.

Detailed studies of CeI wave-function structure, first car-
ried out by Flambaum and collaboratorsf2,3g showed the
smoothedswith energyd strength functionsfFksEdg and num-
ber of principle componentsfj2sEdg, which measure chaotic-
ity, can be understood in terms of banded random matrices
sBRMsd with the local level and strength fluctuations follow-
ing the predictions of Wigner’s Gaussian orthogonal en-
semblesGOEd of random matrices. Later studies of Cum-
mings and collaborators on PrI sand also CeId f4g, the
element next to CeI in the lanthanide series, showed results
in agreement with Flambaumet al. studies of CeI. Flam-
baum and collaborators further developed, using the BW
form for FksEd and j2sEd in terms of the BW spreading
widths which are a result of many body chaos, a statistical
theory for the distribution of occupation numbersf5,6g, and
also for electromagnetic transition strengths in atoms with
complex sor chaoticd spectraf7g. Applying this statistical
spectroscopy for complex states, energy-averaged cross sec-
tions are obtained in terms of sums over single electron or-
bitals and using this Flambaumet al. f8g and Gribakinet al.
f9g explained the observed, and quite puzzling, low-energy
electron recombination rate of Au25+.

Following the successful applications in nucleif10–13g,
mesoscopic physicsf14g, in the context of quantum comput-
ersf15g, and as suggested more recently, for example, in the
dynamics of cold atomsf16g, a better random matrix hypoth-
esis for atoms is to consider the interactionfafter subtracting
the single particle field generated by the Coulomb Hamil-
tonian; see Eq.s5d ahead for the Hamiltoniang to be random.
This gives rise to embedded GOE of one plus two-body in-
teractionsfEGOEs1+2dg. See Sec. III ahead for details of
EGOEs1+2d and here it suffices to say that the ensemble is
hHj=hs1d+lhVs2dj, wherehs1d is the mean-field one-body
part andhVs2dj is a GOE in two-particle space withl the
interaction strength. An extreme limit, with strong interaction
sl→`d, of EGOEs1+2d is two-body random matrix en-
semblesTBREd. Recently we demonstrated that SmI f17g,
which has three more active electrons compared to PrI, car-
ries TBRE signatures which include Gaussian state densities,
strength functions having Gaussian form, number of princi-
pal components as a function of energy is of Gaussian form,
local level fluctuations follow GOE, etc. Going beyond this
limiting situation, EGOEs1+2d with increasing interaction
strengthsequivalently with increasing particle number if the
interaction is fixedd, strength functions exhibit Breit-Wigner
to Gaussian transition. It is important to stress that
EGOEs1+2d at the weak limitsl smalld shares features with
BRM, for example the BW form for strength functionssthis
explains partly the applicability of BRM for CeI and PrId. In
a recent paperf18g, an interpolating function, analogous to
the Brody distribution for nearest neighbor spacing distribu-
tion, representing the BW to Gaussian transition of the
strength function is reportedfsee Eq.s23dg and it is used to
understand this transition in rare-earth atomssat the spec-
trum’s centerd as we go from CeI to SmI with valence elec-
trons changing from 4 to 8. In addition, it is noticed in NdI,
PmI, and SmI studies that the eigenfunctions exhibit local-
ization properties. The presence of localized states is also
evident in the study of CeI and PrI by Cummings and col-
laboratorsf4g.

As shown in Ref.f19g, the number of allowed 4fm6s2

−4fm6s6p and 4fm−4fm−15d dipole transitions of the rare-
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earth atoms is largesfor example, in PrI the number of al-
lowed 4f36s2−4f36s6p dipole transitions is 7402d and it is
difficult to study the transitions individually. However, sta-
tistical spectroscopy, based on TBRE and many-body chaos,
provides a means to understand the smoothed part of these
transitionsswith fluctuations following GOEd. In this paper
we consider NdI, PmI, and SmI with six, seven, and eight
valence electrons and examine in some detail:sid the extent
to which EGOEs1+2d applies for these atoms,sii d localiza-
tion properties of wave functions,siii d the structure of the
Hamiltonian matrix. Forsid andsii d, wave functions are ana-
lyzed in terms of density of states as sum of partial densities,
strength functions, number of principal components, and oc-
cupancies of single particle orbits and correlations between
them. These results form Sec. IV of the paper. Section V
discusses the structure of the Hamiltonian matrices and the
modifications to be incorporated in EGOEs1+2d for a more
quantitative description of chaos and localization in lan-
thanide atoms. For completeness, Sec. II gives the method of
atomic structure calculations and Sec. III gives the definition
and a brief discussion of some of the basic results for
EGOEs1+2d. Finally Sec. V gives conclusions and future
outlook.

II. METHOD OF ATOMIC CALCULATIONS

A. Multi-configuration Dirac-Fock method

The earlier works on lanthanide atomsf20g have shown
that the multiconfiguration Dirac-FocksMCDFd method is
suitable for studying the structure and calculating properties
of these atoms. The method is the relativistic equivalent of
multiconfiguration Hartree-Fockf21g used extensively in
nonrelativistic atomic calculations. For a detailed description
of MCDF see Ref.f22g and several groups have imple-
mented it to study atoms and moleculesf23,24g. All our cal-
culations are carried out using theGRASP92code f23g. For
completeness and continuity important features of the
method are described in this section. The essence of MCDF
is the calculation of orbitals in a mean field arising from a
linear combination of configurations. Then, the single par-
ticle states are the eigenstates of variationally calculated
single-electron Schrödinger equations and these are repre-
sented asunkl, wheren is the principal quantum number. The
quantum numberk= 7 sl ±sd+1/2 is similar to the total an-
gular momentum quantum numberj = l ±s, however, unlikej
it is unique for each orbital symmetry. The single electron
wave function is the two-component Dirac spinor

cnksrd = kr unkl =
1

r
S Pnksrdxkmsu,fd

iQnksrdx−kmsu,fd
D , s1d

wherePnksrd andQnksrd are large and small component ra-
dial functions, respectively, andxkmsu ,fd andx−kmsu ,fd are
the spinor spherical harmonics in thelsj coupling scheme.
The many electron basis functions of the method are the
configuration state functionssCSFsd f21g. Each CSF is rep-
resented asugPJMl, whereP, J, andM are the parity, total
angular momentum, and magnetic quantum numbers, andg
is a quantum number to identify each CSF uniquely. The

CSFs are constructed in two steps: first couple the identical
electrons in each subshellniki to give Xi, and second couple
Xi to obtainJ. The construction of the CSFs are better de-
scribed in second quantized notations, letanjm

† and anjm be
creation and annihilation operators of the single electron
states. Then, theanjm

† operators form a complete set of
spherical tensors of rankj . However, for the annihilation
operators

ãnjm = s− 1d j−manj,−m s2d

form a complete set and notanjm. The operators satisfy the
modified anticommutation relation

fãnj 3 an8 j8
† gJM + s− 1d j+j8−Jfan8 j8

†
3 ãnjgJM

= Î2j + 1d j j 8dJ0dM0dnn8, s3d

wherefãnj3an8 j8
† gJM represents tensor coupling of the opera-

tors to rankJ and componentM. In absence of external
magnetic field, like in the present calculations, the CSFs are
degenerate inM and each CSF can be identified withoutM
asugPJl. A CSF ugPJl havingp subshells is created from the
vacuum state

ugPJl = †sap
†dqp,npXpfsap−1

† dqp−1,np−1Xp−1

3†. . .fsa1
†dq1,n1,X1gJ1

‡ . . . gJp−1
‡

Ju0l, s4d

whereqi is the number of electrons in theith subshell andni
is the seniority quantum number, which identify identical
subshell total angular momentumXi uniquely. It is also pos-
sible to use an ordering index instead ofn; for details see
Ref. f25g.

An appropriate relativistic Hamiltonian to describe highZ
atoms such as lanthanides is Dirac-Coulomb Hamiltonian
HDC, which includes only the electrostatic interactions. ForN
electron atom

HDC = o
i=1

N Fcai ·pi + c2sbi − 1d −
Zsr id

r i
G + o

i=1

N

o
j=i+1

N
1

ur i − r ju
,

s5d

whereai and bi are Dirac matrices,pi is the electron mo-
mentum,Zsr id is the nuclear-charge atr, andN is the number
of electrons. The first two terms are single electron Dirac
Hamiltonian, the third and last terms are electron-nucleus
and electron-electron Coulomb interactions, respectively.
The HDC is diagonal in the total angular momentumJ states
uGPJl, the atomic state functionssASFsd. Here,G is a quan-
tum number to identify each ASF uniquely and parityP is a
good quantum number asHDC is invariant under parity trans-
formation. The ASFs are linear combination of CSFsugrPJl

uGPJl = o
r

crGugrPJl. s6d

The ASFs satisfy the Schrödinger equation

HDCuGPJl = EGuGPJl, s7d

whereEG is the eigenvalue.
The starting point of the MCDF method is the variational

optimization of an energy functional defined in terms ofHDC
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and Lagrange multipliers with respect to one or more ASFs.
The parameters of variational optimization are the coeffi-
cients crG and orbitalscnksrd. In general, the energy func-
tional is extremized with respect to the ground state. Another
class of MCDF calculations is the extended optimal level,
where the energy functional is extremized using a set of
ASFs. We use the later method in our calculations and the
advantages over the general method is explained in the next
subsection. The energy functional of this calculation is

WDC = o
r,s

nc

drsHrs
DC + o

a=1

nw

o
r=1

nc

drrqsadea + o
a=1

nw−1

o
b=a+1

nw

dabeabNsabd,

s8d

wheredrs anddrr are the weight factors,Hrs
DC are the matrix

element ofHDC between the CSFsugrPJl andugsPJl, andnw
is the number of the orbitals. The quantityNsabd is the over-
lap integral between theath andbth orbitals andea andeab
are the Lagrange multipliers to enforce orthonormality be-
tween orbitals of the same symmetry but different principal
quantum numbers. The weight factors can be chosen in sev-
eral ways, in extended optimal level calculation

drs =
1

nL
o

i

nL

crGi
csGi

, s9d

where nL is number of ASFs. Thus, atomic structure and
property calculations are carried out using a hierarchy of
eigenstates: orbitals, configuration state functions and atomic
state functions.

B. Orbital calculation and configuration interaction

The calculation of an appropriate set of orbitalshcsrdj is
crucial in atomic structure and properties calculations. In the
present work we calculate the orbitals using the MCDF
method described in the previous subsection. This method
can include strong configuration mixing, however, the orbit-
als generated are state specific, this is undesirable for statis-
tical studies involving several excited states. To strike a bal-
ance between these two features of MCDF method, orbitals
are generated within selected CSF space and the energy
functional is optimized with respect to several states using
MCDF with extended optimal level method. The orbitals
generated are less state specific as these are calculated in the
potential of several states self-consistently. The orbital set of
each atom are generated in a series of calculations described
in this section.

The calculations are relativistic, however, for compact no-
tation we define configurations in nonrelativistic notations.
The Xe-like core is considered as reference stateuF0l and in
nonrelativistic notations

uF0l = †sa5p
† d6fsa5s

† d2
†. . .fsa1s

† d2g‡ . . . g‡u0l, s10d

whereu0l is the vacuum state. The intermediate angular mo-
mentaJi are zero as all the subshells are completely filled.
The orbitals of the ground state configurationfXeg6s24fm5dn

are then generated treating 6s, 4f, and 5d orbitals as active
valence shells. The calculation is in the CSF manifold of all

single and double replacements among the active valence
subshells of the ground configuration. The CSFs considered
have the form

ugiPiJil = †sa5d
† dpi,n5dX5dfsa6s

† dqi,n6sX6s

3†sa4f
† dri,n4fX4f‡

J1igJ2i
‡

JiuF0l, s11d

wherepi, qi, andr i are the subshell occupancies and satisfy
the conditionpi +qi +r i =2+m+n. Further, the conditionsm
ù r i ùm−2, 2ùqi ù0, andnùpi ùn−2 are imposed to se-
lect single and double replacement CSFs within the ground
configuration. Then, a MCDFswith extended optimal level
methodd calculation of the the lowest multiplet levels is car-
ried out. Valence orbital 6p is generated in another calcula-
tion with frozen core approximation, where the orbitals of
the ground configuration generated in the previous calcula-
tion are held fixed. The CSF space of the calculation consists
of single excitation from the ground configuration to 6p. The
orbital 5d is generated in a similar calculation if it is unoc-
cupiedsn=0d in the ground configuration. Thus, in relativis-
tic notations, the orbital set consists ofs1−6ds1/2,
s2−6dp1/2,3/2, s3−5dd3/2,5/2, and 4f5/2,7/2. Out of these 6s1/2,
4f5/2,7/2, 6p1/2,3/2, and 5d3/2,5/2 are valence shells, then the
number of valence shellsNv and core shellsNc are 7 and 17,
respectively. All the orbitals are made spectroscopic, that is,
each orbital hasn− l −1 swheren and l are the principal and
orbital angular momentum quantum numbersd number of
nodes. The other possibility is calculating the orbitals with-
out imposing the constraint on the number of nodes. Orbitals
of this type are referred to as correlation orbitals. These are
usually contracted, state specific and represent correlation
effects of specific states very well. For statistical properties
calculations, the spectroscopic orbitals are appropriate. The
MCDF calculations to generate the orbitals include important
intravalence correlation effects but it is incomplete within the
orbital basis considered. A configuration interactionsCId cal-
culation, which is diagonalization ofHDC matrix, of all the
possible CSFs can capture the remaining correlation effects.
However, such a calculation is impossible as the size of the
CSF space increases exponentially with the number of active
valence electrons andNv. In our calculations the CSF space
consists of single and double excitations from the ground
configuration

ugiPiJil = †sa6p
† dpi,n6pX6pfsa5d

† dqi,n5dX5d

3†sa6s
† dri,n6sX6sfsa4f

† dsi,n4fX4fgJ1i
‡

J2igJ3i
‡

JiuF0l,

s12d

where pi +qi +r i +si =2+m+n and impose the conditionsm
ùsi ùm−2, 2ù r i ù0, nùqi ùn−2, andpi ø2. Thus, all the
CSFs considered are connected to the ground configuration
fXeg6s24fm5dn. The CSF space has ten nonrelativistic con-
figurations, among these 4fm5d2 and 4fm−16s5d6p together
contribute more than half of the CSFs. The maximum num-
ber of CSFs arises from 4fm−16s5d6p, which has the largest
number of open shells. The number of CSFs arising from
each non-relativistic configuration and range of
kgPJuHDCugPJl are given in Table I.
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ConsiderNa andNa as the number of active valence elec-
trons and single particle states, respectively. Then,Na is 6, 7,
and 8 for Nd, Pm, and Sm, respectively andNa=32 since the
valence space consists of 6s1/2, 6p1/2,3/2, 5d3/2,5/2, and 4f5/2,7/2
seach orbital contributes 2j +1 number of single particle
statesd. In addition, define the number of unfilled single par-
ticle states asNo=Na−Na. Then, the number of possible de-

terminantal states iss Na

Na
d and the two-electron Coulomb in-

teraction couples each Slater determinant to

K = 1 +NaNo + NasNa − 1dsNodsNo − 1d/4 s13d

determinants which include itself and others with shell occu-
pancies different by 1 and 2. In a single determinant approxi-
mation of the ground state,K is also the number of determi-
nants in the manifold which includes the single and double
excitations. This is the determinantal equivalent of the CSF
manifold chosen in our calculations. For further analysis,
consider theseK determinants as the manifold chosen for
calculations. As mentioned in the context of CSFs, the rep-
resentation of two-electron Coulomb interaction is incom-
plete in such a determinantal manifold. This is because, the
Coulomb interaction couples pairs of determinants which
differ by one or two occupancies. Hence, for the singly ex-
cited determinants, the zeroth order description of Coulomb
interaction is incomplete without the triply excited ones. The
quadruply excited are similarly needed for the doubly ex-
cited determinants. Among theK determinants, the fraction
coupled to a singly excited one is

Ks =
K − sNa − 1dsNa − 2dsNo − 1dsNo − 2d/4

K

,
1

Na
whenNa @ Na. s14d

The last term in the numerator is the number of triply excited
states coupled to a singly excited determinant but absent in
the manifold. Similarly, the fraction of the determinants
coupled to double excited determinant is

Kd =
K − fsNa − 2dsNo − 2d + sNa − 2dsNa − 3dsNo − 2dsNo − 3d/4g

K
,

1

Na
whenNa @ Na. s15d

That is, each of the states considered are directly coupled to
,1/Na of the total number. However, higher order two-
electron Coulomb interaction connects all the determinants
within the sameJ manifold. ForNa,3, theKs andKd scal-
ing show the number of determinants mixed at first order is
close to the GOE predicted value ofj2sEd. Similar scalings
apply to the CSFs as these are linear combinations of Slater
determinants. This implies that a CSF space consisting of
single and double excitations can provide a good representa-
tion of the eigenvalues and eigenfunction properties. This
choice of the configuration space is also adequate for the
excited states. As discussed in Ref.f26g, for open-shell sys-
tems a large portion of the correlation effects of an atomic
state is well represented by the single and double excitations
with respect to the leading configuration. The contribution
from the triple and quadruple excitations is small, however,
these are essential for precise calculations. To study statisti-
cal properties, the single and double excitations provide a
good description. For the excited states in our calculations,

our choice of configuration space has important double exci-
tation states as well as selected higher excitationssas ex-
plained aboved. In addition, configurations of higher excita-
tions from the ground configuration such as triple excitations
are energetically well separated from the single and double
excitations. These configurations require excitations from 4f
shell and perturbative analysis shows these configurations do
not contribute significantly to correlation effects.

III. EIGENFUNCTION PROPERTIES IN EGOE „1+2…

This section gives a brief introduction to EGOEs1+2d and
a summary, for later use, of the results known for this ran-
dom matrix ensemble; see Ref.f11g for a review on this
subject and also Ref.f18g.

A. Definition of EGOE„1+2…

Let us start with two-body embedded GOE, i.e., EGOEs2d
or TBRE defined for spinless fermion systems. The EGOEs2d

TABLE I. The number of relativistic CSFsNCSF arising from
each of the non-relativistic configurations. The range of the diago-
nal elements orek

min and ek
max are also given, theek values are

defined relative to the lowestek in the CSF space. In the table, the
configurations are defined relative to the ground configuration
4fm6s2, wherem is 4, 5, and 6 for Nd, Pm, and Sm, respectively.

Config

Nd Pm Sm

NCSF ek
min−ek

max NCSF ek
min−ek

max NCSF ek
min−ek

max

4fm6s2 19 0.0–0.25 29 0.0–0.28 46 0.0–0.38

4fm6s5d 288 0.31–0.64 521 0.09–0.53 748 0.03–0.58

4fm−16s26p 40 0.39–0.69 92 0.33–0.65 172 0.39–0.85

4fm5d2 608 0.63–1.08 1090 0.24–0.69 1579 0.18–0.86

4fm−16s5d6p 684 0.67–1.04 1619 0.43–0.87 3014 0.44–1.00

4fm6p2 236 0.97–1.30 409 0.83–1.25 602 0.87–1.38

4fm+16p 172 1.11–1.50 241 1.02–1.40 276 1.09–1.61

4fm−26s26p2 31 1.14–1.30 91 1.09–1.42 234 1.19–1.58

4fm−26s25d2 78 1.38–1.64 240 1.01–1.34 608 1.03–1.56

4fm+2 46 1.56–1.90 46 1.61–1.97 46 1.74–2.10
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for m sm.2d fermion with the particles distributed say inN
single particle statesunil, i =1,2, . . . ,Nd is generated by de-
fining the HamiltonianH, which is two-body, to be GOE in
the two-particle space and then propagating it to the
m-particle spaces by using the geometrysdirect product
structured of the m-particle spaces. The operator form for a
two-body HamiltonianH=Vs2d is defined by

Vs2d = o
ni,n j,nk,nl

knknluVs2dunin jlaanl

† ank

† ani
an j

,

knknluVs2dun jnila = − knknluVs2dunin jla,

knknluVs2dunin jla = knin juVs2dunknlla. s16d

Now, the HamiltonianH matrix in m-particle spaces, in the
occupation number basissoccupation numbers will be 0 or 1
and the basis is generated by distributing them particles in
all possible ways in the single particle statesnrd, is defined in
terms of the two-body matrix elementsknknluVs2dunin jla snote
that the subscript “a” stands for antisymmetrized two-
particle statesd and the nonzero matrix elements are of three
types

kn1n2 ¯ nmuVs2dun1n2 ¯ nmla = o
ni,n jønm

knin juVs2dunin jla,

knpn2n3 ¯ nmuVs2dun1n2 ¯ nmla = o
ni=n2

nm

knpniuVs2dun1nila,

knpnqn3 ¯ nmuVs2dun1n2n3 ¯ nmla = knpnquVs2dun1n2la;

s17d

all other k¯uHu¯ la=0 due to the two-body selection rules.
The EGOEs2d is defined by the above equations and a

GOE representation forVs2d,

knknluVs2dunin jla are independent Gaussian random variables,

knknluVs2dunin jla = 0,

uknknluVs2dunin jlau2 = v2s1 + dsi j d,skldd, s18d

where the overbar denotes ensemble average andv2 is a
constant. Note thatdsmd= s N

m
d is the Hamiltonian matrix di-

mension and the number of independent two-body matrix
elements isds2dfds2d+1g /2.

Hamiltonian for realistic systems such as atoms consists
of a mean-field one-bodysdefined by a finite set of single
particle statesd plus a complexity generating two-body inter-
action. Then the appropriate random matrix ensemble, for
many purposes, is EGOEs1+2d defined by

hHj = hs1d + lhVs2dj, s19d

whereh¯j denotes an ensemble. In Eq.s19d, the mean-field
one-body Hamiltonianhs1d=oieini is a fixed one-body op-
erator defined by the single particle energiesei with average
spacingD snote thatni is the number operator for the single
particle stateuild. In general one can chooseei to form an

ensemble; see Ref.f14g for examples. ThehVs2dj in Eq. s19d
is EGOEs2d with v2=1 in Eq. s18d and l is the strength of
the two-body interactionsin units of Dd. Thus, EGOEs1+2d
is defined by the four parameterssm,N,D ,ld and without
loss of generality we chooseD=1. Construction of
EGOEs1+2d follows from Eqs.s16d–s18d by just adding to
the diagonal matrix elementsfsee the first equality in Eq.
s17dg the termoieni

, whereni are the occupied single particle
states for the given basis state.

B. Basic properties of EGOE„1+2…

Most significant aspect of EGOEs1+2d is that as l
changes, in terms of state density, level fluctuations, strength
functions, and entropy, the ensemble admits three chaos
markers as described in Fig. 1 and reviewed in Ref.f18g.
First, it is well known via the EGOEs2d results in Refs.
f10,27g and the fact that generalhs1d’s produce Gaussian
densities, that the state densitiesrH,msEd=kdsH−Edlm take
Gaussian form, for large enoughm, for all l valuesfoften the
superscriptssH ,md are droppedg,

rH,msEd =
1

Î2psHsmd
exp −

Ê2

2
, s20ad

Ê = fE − eHsmdg/sHsmd. s20bd

In Eq. s20d, eHsmd=kHlm is the spectrum centroid and simi-
larly sHsmd is the spectrum width. In practice there will be
deviations from the Gaussian form and they are taken into
account by using Edgworth expansionf28g in terms of the
skewnesssg1d and excesssg2d parameters. WithrHsEddE

=hsÊddÊ, thehGsÊd with lower order Edgeworth corrections
is

hEDsÊd = hGsÊdH1 +
g1

6
He3sÊd +

g2

24
He4sÊd +

g1
2

72
He6sÊdJ ,

s21d

whereHersÊd are Hermite polynomials. Withl increasing,
there is a chaos markerlc such that forlùlc the level

FIG. 1. Chaos markers for EGOEs1+2d.
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fluctuations follow GOE, i.e.,lc marks the transition in the
nearest-neighbor spacing distribution from Poisson to
Wigner form. Parametric dependence oflc is lc~1/m2N
f29g. Now let us define strength functions.

To maintain consistency with the notations used in
EGOEs1+2d literature, from hereafter, we represent CSFs as
ukl and ASFs asuEl. Then, Eq.s6d assumes the formuEl
=okck

Eukl. Given the mean-fieldhs1d basis statesukl
=oECk

EuEl, the strength functionssone for eachkd FksEd
=obPEuCk

E,bu2= uCk
Eu2fdrHsEdg. As l increases further from

lc, the strength functions change from Breit-WignersBWd to
Gaussian form and the transition point is dented bylF; see
Fig. 1. The BW and Gaussiansdenoted byGd forms ofFksEd
are

Fk:BWsEd =
1

2p

Gk

sE − Ekd2 + Gk
2/4

, s22ad

Fk:GsEd =
1

Î2psk

exp −
sE − Ekd2

2sk
2 , s22bd

whereEk=kkuHukl. With p=e−`
Ep FksEddE, the spreading width

Gk=E3/4−E1/4. Similarly the variance ofFk is sk
2=kkuH2ukl

−skkuHukld2. For lcølølF sthis is called BW domaind they
are close to BW form and forl.lF sthis is called Gaussian
domaind they approach Gaussian form. In fact the BW form
starts in a region belowlc sas shown in Fig. 1, there is al0
such that belowl0, the strength functions are close to thed
function form and forl.l0 there is onset of BW formd but
the fluctuations are close to Poisson forl,lc. Arguments
based on BW spreading widths givelF~1/Îm f5,30g and
this result will be used later. Unlike the Poisson to GOE
transition in level fluctuations, which is common for Hamil-
tonians with regular and irregularschaos generatingd parts,
the BW to Gaussian transition in strength functions is a
unique signature for the operation of EGOEs1+2d in finite
quantum systems. For the BW to Gaussian transition, a good
interpolating function has been constructed recentlyf18g,

Fk:BW−GsE:a,bddE=
sabda−1/2Gsad

ÎpGSa −
1

2
D

dE

fsE − Ekd2 + abga ,

s23d
a ù 1.

In Fk:BW−GsE:a ,bd, b supplies the scale whilea defines the
shapeshencea is the significant parameterd as it gives BW
for a=1 and Gaussian fora→`. The variance ofFk:BW−G is
s2sFk:BW−Gd=sk

2=ab / s2a−3d, a.3/2. It is important to
stress that in generalsa ,bd change withk although for
EGOEs1+2d they are nearly constant except forFk with Ek

very far from their centroid. Figure 2 shows that the interpo-
lating function s23d fits very well the numerical
EGOEs1+2d results for strength functions; for more detailed
discussion see Ref.f18g.

One important measure of the complexity of eigenstates
of interacting systems isj2sEd salso called the participation

ratiod, j2sEd=hokuCk
Eu4j−1, where the subscript “2” forj de-

notes that it is the second Rènyi entropyf31g; j2sEd gives the
number of basis states that make up the eigenstate with en-
ergy E. Following Ref.f32g one can writej2 in terms of the
strength functions

hj2sEd/j2
GOEj−1 =

1

frHsEdg2E
−`

`

dEkr
hsEkdfFksEdg2,

s24d
j2

GOE= d/3.

In writing Eq. s24d, it is assumed that the level and strength
fluctuations are of GOE type and hence it is valid only for
l.lc. Further,rhsEkd is the density ofEk energies and it is
generated by an effective one-body Hamiltonianh f32g.
Also, in generalrhsEkd is also a Gaussian for EGOEs1+2d.
Assuming thata andb arek independent,j2sEd in the BW
to Gaussian transition domain can be evaluated by substitut-
ing Fk:BW−G for FksEd in Eq. s24d. At the spectrum center the
integral in Eq.s24d can be evaluated and it givesf18g

FIG. 2. Strength functions for EGOEs1+2d as a function of the
interaction strengthl.
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j2sE = 0d/j2
GOE= 5Î 2

s2a − 3d
G2sad

G2Sa −
1

2
D

1
Îz2s1 − z2d

3 US1

2
,
3

2
− 2a,

s2a − 3ds1 − z2d
2z2 D6

−1

,

s25d

whereU s---d is hypergeometric-U functionf33g. In Eq.s25d,
the correlation coefficient z=Î1−sk

2/sH
2 , where sk

2

=s1/ddoiÞ jHij
2 and sH

2 =s1/ddoisEi −ed2 are the variance of
the off-diagonal Hamiltonian matrix elements and eigenval-
ues, respectively. However, in the Gaussian domain, with
FksEd being a Gaussian, gives for anyE,

j2sEd/j2
GOE= Î1 − z4 exp −

z2Ê2

1 + z2 . s26d

Instead ofj2sEd, it is possible to use the closely related in-
formation entropySinfosEd; SinfosEd=−oEuCk

Eu2lnuCk
Eu2. An in-

teresting recent observation is thatf34g as we increasel
much beyondlF, there is a chaos markerlt around which
different definitions of entropysfor exampleSinfo, thermody-
namic entropy defined viarHsEd, single particle entropy de-
fined via occupation numbersd, temperature, etc., will coin-
cide and also strength functions inhs1d andVs2d basis will
coincide. Thusl,lt region is called the thermodynamic
region and Ref.f13g gives first application of this marker.

It is important to point out that the eigenstates of atoms
carry good angular momentumsJd sin some situations even
good L, Sd and therefore in principle one should consider
EGOEs1+2d preservingJ symmetryfcalled EGOEs1+2d-J
in Ref. f11gg. Theory for EGOEs1+2d-J is not availablessee,
however, Ref.f35,36g for some first attemptsd, and just as in
the nuclear shell model studiesf11,37g, it is assumed that the
forms for rHsEd, FksEd, j2sEd, etc., derived using
EGOEs1+2d for spinless fermion systems, extend toJ
spaces. This can be considered to be an aspect of chaos in
atoms and this is the basis for statistical atomic spectroscopy
as being developed by Flambaum; see Refs.f3,8,38g, and
references therein.

IV. RESULTS FOR rH
„E…, Fk„E…, j2„E…, AND Šna‹

E

In the present study, we select theJ=4+ CSF manifold for
Nd and Sm atoms. The parity is chosen equal to the parities
of the ground configurations 4f46s2 and 4f66s2, respectively,

and the total angular momentumJ is the same as in the CeI

work f2g. For Pm, which has an odd numbersi.e., 7d of active
valence electrons we chooseJ=9/2− CSFs. The parity is
again equal to the parity of the ground configuration 4f56s2.
It is to be reiterated that, the orbitals of the present study are
different from our earlier workf17g. As mentioned in Sec.
II B, the orbitals in this work are calculated in a multicon-
figuration potential, whereas in Ref.f17g, the orbitals are
calculated in a single configuration potential. The manifolds
of the Nd, Pm, and Sm have 2200, 4375, and 7325 CSFs,
respectively. The CSFs are generated in the sequence of sub-
shell occupations but later, these are energy ordered. The CI
calculation is carried out within the whole space for Nd and
Pm. For Sm, as mentioned in Ref.f17g, the density of states
rsEd is bimodal. We select the first 6300 CSFs which con-
tribute to the first peak for the CI calculation. The atomic
stateuEl of the Nd, Pm, and Sm obtained from the CI calcu-
lations have energy range of 2.20, 2.27, and 1.60 Hartree,
respectively.

A. Density of statesrH
„E…

By definition, density of statesrsEd=kdsH−Edl is a se-
quence ofd functions. For obtaining the smoothedswith re-
spect to energyEd density of states and for comparison with
the EGOEs1+2d predictions ofrH,msEd, we construct the
binned density of states. In our calculations, the energy range
of uEl of each atom is divided into sixty bins of equal sizes.
The density of states is then binned and normalized, these are
shown in Fig. 3. The Gaussian and Edgeworth corrected
Gaussian calculated from the centroide, variances2, skew-
nessg1, and excessg2 of rsEd are also shown in the figures
e, s2, g1, and g2 values are given in the figured. For SmI

Gaussian is in good agreement with thersEd except at and
around the centroid. At the centroid the Gaussian is,13%
less than the actualrsEd. In general allrsEd are multimodal
in structure and it is most prominent in Nd. ThersEd for Nd

has a pronounced peak atÊ,−1.5 and fluctuations are above

the mean forÊ between 1.0 and 2.5. Similarly for Pm,rsEd
has a pronounced peak atÊ,1.4. As discussed ahead, the
multimodal structures correlate with similar structures of the
number of principal components and observed deviations of
the strength function from theek dependent variation. Finally

for SmI, there is a peak atÊ,2.
The multimodal form ofrH,msEd can be understood by

decomposing it into a sum of partial densities. For each sub-
shell occupancym̃ one can define a partial densityrH,m̃sEd
with centroidsEcsm̃d ands2sm̃d defined by

FIG. 3. Binned density of statesrsEd of Nd,
Pm, and Sm. The dashed and dash-dot curves are
the Gaussian and Edgeworth corrected Gaussian
representations.
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Ecsm̃d = kHlm̃, s2sm̃d = ksH − Ecsm̃dd2lm̃. s27d

Note that s2sm̃d is sum of partial variancess2sm̃→m̃8d,
where

s2sm̃d = o
m̃8

s2sm̃→ m̃8d,

s2sm̃→ m̃8d = hdsm̃dj−1o
a,b

ukm̃auHum̃8blu2 for m̃Þ m̃8,

s2sm̃→ m̃d = Hdsm̃d−1o
a,b

ukm̃auHum̃blu2J − hEcsm̃dj2.

s28d

Usually thes2sm̃→m̃d is called internal variance and others,
partial variancesf39g. In terms of the partial densities the
total density of states is

rH,msEd = fdsmdg−1o
m̃

rH,m̃sEddsm̃d, s29d

wherem is the number of active valence electrons,m̃ repre-
sent the possible subshell occupancies, anddsmd and dsm̃d
are the number of CSFs in the CI calculation and number of
CSFs in them̃ subshell occupancy manifold, respectively.
That is,rH,msEd is the sum of partial densitiesrH,m̃sEd from
the subshell occupations defined in Eq.s12d. It is important
to stress that Eq.s29d is exact. As evident from Eq.s12d,
each of the possible subshell occupations have different an-
gular momentum coupling sequence. It is easily seen that
rH,msEd takes multimodal shape when the partial densities
are well separated with weak mixing between themsi.e., par-
tial variance is much smaller than the internal varianced. The
range ofek si.e., diagonal elements of the Hamiltonian matrix
Hrr

DCd of each nonrelativistic configuration given in Table I,
which is a representation of the partial density spread, is
plotted for Nd in Fig. 4sad. At ,0.62 Hartree, it shows small
overlap between the 4f46s5d and next in energy 4f45d2 and
4f36s5d6p configurations. The separation is also visible in
the Hamiltonian structure discussed aheadsFig. 9 ahead
shows two distinct blocks centered around,0.5 and
,0.8 Hartree, respectivelyd. In addition, the Coulomb mix-
ing k4f46s5du1/r12u4f45d2l and k4f46s5du1/r12u4f36s5d6pl
are weak as the configurations differ by a single occupancy.
The separation between the configurations persists inuEl and
the contributions from 4f46s5d configuration manifests as
the smaller peak of the bimodalrH,msEd. The energy range of
the remaining configurations show large overlaps and con-
tribute to the main peak of the NdrH,msEd. The 4f36s26p
configuration which lie between 4f46s5d and 4f45d2 ener-
getically, is single replacement from 4f45d2 and does not
contribute to smoothing therH,msEd. Figure 4sbd shows the
result of Eq. s29d with partial densities represented by
Gaussians for Nd. The agreement between theory and calcu-
lations is excellent. This demonstrates that it is possible to
construct the total density of states as sums of Gaussian par-
tial densitiesseven though a single Gaussian representation
as shown in Fig. 3 deviates strongly from the calculated re-
sultsd. This result is significant as it is possible to calculate

the centroids and variancessalso partial variancesd without
recourse toH matrix constructionf39g. Similar to the Nd, the
bimodal structure of the Pm’srH,msEd is a consequence of
the small overlap between the partial densities of the
4f46s5d6p and 4f56p2 configurations. However, unlike Nd,
these configurations are in the higher end of the energy
range. In contrast to Nd and Pm, the Sm atom has partial
densities with large overlap and therH,msEd is without
prominent secondary peaks. Now we will turn to strength
functions which are nothing but the partial densities withm̃’s
divided into individual basis states.

B. Strength functions Fk„E…

The FksEd of the individual CSFsukl exhibit large fluc-
tuations and significant variation is observed betweenFksEd
of neighboringukl. This is evident from the selectedukl pre-
sented in our SmI work f17g. For statistical description we
consider the representative strength functionFksEd which is
the average of individualFksEd within the range of energy
ek±De. In the present work, we have chosenêk±.25sk as the
range of averaging to calculateFksEd and the centroids of the
individual FksEd are aligned while averaging. Figure 5 shows
FksEd of Nd, Pm, and Sm calculated atêk=−1.5, −1.0, −0.5,
and 0. For all the three atoms, the interpolating function of
Eq. s23d fits theFksEd very well; theb parameter in Eq.s23d
has been eliminated using the calculatedsk. The best fit
value ofa for Nd, Pm, and Sm forêk=0 are 5, 7.5, and 11,
respectively, thus these are in the Breit-Wigner to Gaussian
transition region with SmI closest to Gaussian. This result is
already reported in Ref.f18g fit should be noted that in this
paperFksEd is constructed by averagingFksEd over 3% of
the basis states aroundêk=0 and this is different from the
procedure used in Fig. 5 and therefore there is slight differ-
ence in thea values extractedg. Moving away fromêk=0,
first it is seen that the parametera in Eq. s23d is k dependent

FIG. 4. sad The energy range of CSFs for Nd arising from a
non-relativistic configuration. The energies are calculated with re-
spect to the lowest CSF energy within the manifold
s−9625.2394 Hartreed. The number of CSFs are given within paren-
theses and the cross marks the location of the centroid.sbd The solid
and dot-dash line are partial Gaussian densitiesrH,m̃sEd of each
nonrelativistic configurations and sum of all the partial densities,
respectively. The histogram is that of the density of statesrHsEd.
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and it changes from a value close to that of BW to a value
giving close to Gaussian form asêk is increasing from −1.5.
For Nd, Pm, and Sma changes from 2 to 5.2, 2.5, to 7.5 and
2.5 to 10.6, respectively. The variation ina seen in Fig. 5 is
understood from the fact that near the Fermi surfacesi.e., for
êk,−1.5 to −1d the levels are well separated and hence the
mixing is weak giving BW form and as we go towards the
center the mixing is strong giving close to Gaussiansor be-
tween BW and Gaussiand form. It should be pointed out that
EGOEs1+2d ensemble do not produce large changes ina as
k changes inFksEd. However, in all the calculations it is seen
that sk is essentially constant as expected from
EGOEs1+2d. Clearly, theFksEd analysis shows that modifi-
cations of EGOEs1+2d are needed.

C. Number of principal componentsj2„E… and localized states

The number of principal components or the inverse par-
ticipation ratioj2sEd of an eigenstate is the effective number
of basis functions contributing to it. It provides a measure for
the presence of chaos in the system. For a GOE with dimen-
sion d, the j2sEd is d/3 independent of energy while for
EGOEs1+2d there is strong energy dependencefit is
Gaussian in the Gaussian domain; see Eq.s26dg. Thej2sEd of
Nd, Pm, and Sm for alluEl are calculated and shown in Figs.
6sad–6scd. The j2sEd of Nd and Pm are multimodal and lo-
calized statesfi.e., states withj2sEd much smaller than GOE
or EGOEs1+2d predicted valuesg are prominent in all the
atoms. We should add that localized states are also observed
in the previous studies on CeI f2g and PrI f4g. In addition,
more recently, localization quite similar to those shown Fig.
6 are also seen inU28+ calculationsf40g. Despite localiza-
tion, Nd and Pm have Breit-Wigner-like envelopes, whereas

for Sm it is Gaussian-like. Nd and Pm have Gaussian-like
secondary peaks around,−1.5 and,1.4, respectively, and
it is to be noted that, these are the locations whererH,msEd
has local peaks. For Sm, similar torH,msEd, it is unimodal.
At the centroid of the envelopes, the value ofj2sEd are
,0.39,,0.42, and,0.5 for Nd, Pm, and Sm, respectively.
These should be compared with the EGOEs1+2d values
given by Eq.s25d sfor the Nd, Pm, and Sm atoms,z2 is 0.88,
0.86, and 0.83, respectivelyd and they are 0.44, 0.48, and
0.55, respectively. Here it is assumed thata value at theêk
=0 can be used for allêk’s. However, this is not a good
approximation as seen from Fig. 6. In a better calculation we
use Eq.s24d, where the integral is divided into seven seg-
ments each withêk spread 0.5 in the range −1.75 to 1.75.
Within each segmentFksEd is constructed witha taken for
the mid êk but incorporating exactFksEd centroids and
widths. This calculation gives overall good description for
Sm while for Pm there are deviations forêk.0. This is not

surprising because there is a secondary peak forÊ.0, which
cannot be accounted in the EGOEs1+2d model adopted. For
Nd we have not shown the result as thea for êk=−1.0 is
undetermined. Assuming an interpolating value ofa, it is
seen that the calculations describe reasonably wellj2sEd for

Ê,0.
In Figs. 6sdd–6sfd j2sEd is binned to remove local fluctua-

tions and the resulting histograms are shown. They give at
the center thej2sEd to be 0.27, 0.33 and 0.48 for Nd, Pm,
and Sm, respectively. Finally, though the number of localized
states appear numerous in the plots, they are in fact not that
many. This is seen clearly from Figs. 6sgd–6sid, where the
relative density of localized states is plotted as a histogram.
We classify a state as localized if it hasj2sEd less than or
equal to 20% of the binned value in corresponding energy

FIG. 5. The plots in the three
rows are the averaged strength

function FksÊd for Nd, Pm, and
Sm, respectively. As labeled in the
plots, the plots in the four col-

umns showFksÊd averaged in the
range −1.5±0.25sk, −1.0±0.25sk,
−0.5±.25sk, and 0.0±.25sk,
respectively.
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range. As shown in Figs. 6sgd–6sid the number of localized
states in each energy binrlocsEd is small for all the atoms
studied. This indicates the difference between the envelope
and binnedj2sEd is due to high-frequency fluctuations and
not due to purely localized states. In order to understand
more about localized states an analysis is carried out in terms
of occupancies of single electron orbits and we will turn to
this now.

D. Occupation number Šna‹
E and the localized states

In the statistical description of a many-body quantum sys-
tem, properties of the system are often expressed as functions
of the sub-shell occupation numbersf8g. In this section, we
use subshell occupation numbers to study the nature of the
localized states. By definition the occupation number of the
subshella in ukl is

knalk = kkuaa
†aaukl, s30d

where aa
† and aa are the particle creation and annihilation

operators in the subshella and these are defined in Sec. II A.
Further, we can also define the subshell occupancy of an
atomic state

knalE = kEuaa
†aauEl = o

k

uCk
Eu2knalk. s31d

It is evident fromj2sEd calculations that, there are several
localized states as shown in Figs. 6sgd–6sid. Each of these
havejlocsEd!j2sEd and fewukl can represent these states. A
possible origin of localized states is strong Coulomb mixing

between fewukl of similar subshell occupancies, then the
two-electron Coulomb integral is between same orbitals and
is largesK=0 multipole is allowedd. This is indeed the case
and the signature is the anticorrelation in the trend ofj2sEd
and occupation number of selected subshells shown in Fig. 7.
The figures showj2sEd and knalE of a few uEl around cen-
troid energy. In Fig. 7sad, there is anticorrelation between the
j2sEd and kn5d3/2

lE+kn5d3/2
lE of Nd; a similar trend is ob-

served for Pm in Fig. 7sbd, i.e., the occupancies are large
when j2sEd is small. This shows the localized states of Nd
and Pm within the spectral range considered arise from
strong mixing betweenukl of high 5d occupancy. Whereas,
the localized states of Sm as shown in Fig. 7scd arise from
the strong mixing betweenukl of high 6s or 6p occupancies.

To compare and contrast the chaotic and localized states,
uCk

Eu2 of pair of neighboring chaotic and localized states of
Nd, Pm, and Sm are shown in Fig. 8. The figures clearly
shows that the localized statessenergy states,G=800, G
=2148, andG=2885 of Nd, Pm, and Sm, respectivelyd are
represented by a fewukl, whereas the neighboring chaotic
statessG=801, G=2149, andG=2886 of Nd, Pm, and Sm,
respectivelyd has contributions from severalukl. The uCk

Eu2 of
the chaotic states exhibit a systematic growth and decay, in
contrast localized states show no systematic trends. To show
the anticorrelation betweenknal of selected subshells and
j2sEd, the contributions from each basisuCk

Eu2knalk are plot-
ted. For the localized states the plots are fora that has the
highest value. For the chaotic states, all the subshells show
similar trend and approximately an order of magnitude less
ssee the scales in Fig. 8d than that of the localized states.

FIG. 6. The number of principal components
j2sEd=sokuCk

Eu4d−1 of Nd, Pm, and Sm are plotted
in the first row. The plots in the second row are
binnedj2sEd and the last row is the binned den-
sity of localized statesrlocsEd. In sbd and scd the
continuous curves are from Eq.s24d as described
in the text.
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V. HAMILTONIAN MATRIX STRUCTURE

Understanding the structure of the Hamiltonian matrix is
crucial for developing an appropriate random matrix model
for the Lanthanide atoms. The diagonal Hamiltonian matrix
elementsHkk

DC will have contributions from both the one and
two particle Hamiltonian terms. However, the off diagonal
termsHkk8

DC have nonzero contributions from the Hamiltonian
terms depending on the relative excitation betweenukl and
uk8l. If the two CSFs are singly excited with respect to each
other, then one and two particle terms contributes, whereas
only the two particle term contributes when the two CSFs are
doubly excited with respect to each other. The off diagonal
matrix elements are zero for triple or higher excitations. As a
consequence, the Hamiltonian matrix is sparse. In our
present calculations, several of the CSFs which are doubly
excited with respect to ground configuration are quadruply
excited with respect to each other. For example the configu-
rations 4fm−25dn+26s2 and 4fm5dn6p2 are doubly excited with
respect to the ground configuration 4fm5dn6s2, however, they
are quadruply excited with respect to each other. Hence, all

the matrix elements between CSFs arising from
4fm−25dn+26s2 and 4fm5dn6p2 are zero. There are other con-
figurations similar to these in the CI space considered. Due
to these configurations, the Hamiltonian matrix in our calcu-
lations is sparse, though we consider only the single and
double excitations from the ground state configuration. For
bringing out a coarse grained structure of the Hamiltonian
matrix, the square of matrix elementssHkk8

DCd2 sto remove the
phase factord is calculated and binned in terms of the diago-
nal elementsHkk

DC. The elementWij of the binned Hamil-
tonian for bin sizeD is then

Wij = o
si8−HkkdøD,s j8−Hll døD

Hkl
2 , s32d

where i8= i 3D and j8= j 3D. The plot of binned Hamil-
tonian for Nd, Pm, and Sm are shown in Fig. 9. To improve

FIG. 7. The solid line is the number of principal components
j2sEd of energy statesG around the centroid. The dot-dash line
show the occupation numberknalE of selected shells which anticor-
relate with the localized states. The occupation numbers are scaled
and shifted for better comparison withj2sEd: for Nd the plot shows
kn5d3/2

lE+kn5d5/2
lE−1, for Pm it is 0.2skn5d3/2

lE+kn5d5/2
lEd and for

Sm the dot-dash and dashed lines arekn6s1/2
lE−3 and kn6p1/2

lE

+kn6p3/2
lE−3, respectively.

FIG. 8. TheuCk
Eu2 of neighboring localized and chaotic pair of

uEl are shown in the plots in the first column. Even though each pair
are neighboring states, a large difference in the structure is discern-
able. For the localized states, the second column shows the indi-
vidual ukl contribution uCk

Eu2knalk to the subshell of highestknal,
whereas for chaotic states all the subshells have similaruCk

Eu2knalk

and the plots show contribution from a randomly chosen subshell.
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the contrast the plots show lnsWijd instead of theWij . In all
the three atoms:sid bandlike structure is evident, however,
there are also block structures within the band;sii d another
important feature is the prominent streaks of large matrix

elements parallel to the diagonal, these mix two diagonal
blocks and, as mentioned in Ref.f41g, perturbative calcula-
tion can account for these distant elements;siii d the Hamil-
tonian matrices of Nd and Pm have small range of energy
with no states and these are the empty stripes in the figures.

Presence of prominent diagonal blocks in the figures
fpoint sid aboveg is a consequence of the spread of the vari-
ous configurations shown in Fig. 4 and Table I. Though it is
tempting to conclude that there is a BRM-like structure, it
should be noted that the various blocks retain their identity
each with their own internal variances2sm̃→m̃d. Figure 9
clearly shows that the partial variancess2sm̃→m̃8d sexcept
in some special casesd are in general much smaller compared
to the internal variances. It should be pointed out that block
matrix structure as in Fig. 9 is also observed very recently in
nuclear shell model calculationsf42,43g and it is plausible
that such structure is a feature of interacting particle systems.
In Refs. f42,43g it is argued that one of sources for this
structure isJ symmetry. The various blocks are much more
well separated in Nd and Pm as compared to Sm and as a
result Sm is much closer to EGOEs1+2d with Nd and Pm
exhibiting larger localization with departures from
EGOEs1+2d predictions.

To gain better understanding of the off-diagonal matrix
fi.e., sid and sii d aboveg, which will mix the CSFs, let us
consider their structure in some detail. In the present calcu-
lations the off diagonal Hamiltonian matrix elementsHkk8

DC are
largely generated by the interelectron Coulomb interaction
1/r12 than the one electron termsti, where

ti = cai ·pi + c2sbi − 1d −
Zsr id

r i
. s33d

In second quantized notation,HDC can be written as

HDC = o
ab

kautublab
†aa + o

abgd
KgdU 1

r12
UabLag

†ad
†abaa,

s34d

where for short we use Greek alphabets to denote orbitals
and summation is without restrictions. The two-particle ma-
trix element of 1/r12 can be decomposed into multipole com-
ponents

KgdU 1

r12
UabL = o

K

GKsg,d;a,bdRKsg,d;a,bd, s35d

whereGKsg ,d ;a ,bd and RKsg ,d ;a ,bd are angular and ra-
dial integrals, respectively, andK is the multipole. The an-
gular momentum selection rules are consequence of
GKsg ,d ;a ,bd and the radial integral also known as Slater
integralf26g. In total there areNv

2sNc+Nv−1d2/4 matrix ele-
ments of 1/r12 which contribute to the off-diagonal Hamil-
tonian matrix elements;Nv andNc are defined in Sec. II. The
many-particle matrix elements of 1/r12 can be written as

FIG. 9. The binned Hamiltonian matrix of Nd, Pm, and Sm
sfrom top to bottom, respectivelyd.
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KgrPJMU 1

r12
UgsPJML

= o
abgd

o
K

Crs
K,JMsg,d;a,bdRKsg,d;a,bd, s36d

whereCrs
K,JMsg ,d ;a ,bd is the angular factor which transports

the single particle matrix elements to the many-particle
space. TheC’s consists of two components, first the angular
factor in the single electron space and second a component
which propagate from the single electron to many electron
space. These will have complex structure when electrons of
several open shells are coupled and the distribution of the
nonzero Hamiltonian matrix exhibit intricate patterns. Inter-
estingly, nuclear shell model calculations showed that
f42,43g the angular factors generate a part of the GOE struc-
ture of the diagonal blocks. The radial integral is large for
K=0 in Eq. s35d and it is an allowed multipole whenka

=kg andkb=kd. This can couple energetically well separated
configurations strongly and explainsii d above. Finally, from
the matrix structure one can understand qualitatively the de-
partures ofFksEd and j2sEd from EGOEs1+2d. In this ran-
dom matrix ensemble the two-particle matrix elements vari-
ance fthe parameterv2 in Eq. s18dg is independent of its
positionfi.e., independent of the indicessi , j ,k, ld in Eq. s18d
except that the diagonal matrix elements have twice the vari-
ance of the off-diagonal matrix elementsg.

VI. CONCLUSIONS AND FUTURE OUTLOOK

In this paper wave functions of complex lanthanide atoms
Nd, Pm, and Sm are analyzed in terms of strength functions,

number of principal components, occupation numbers, and
also the Hamiltonian matrix structure. Examination ofFksEd
showed that the BW form is dominant in Nd, they are more
towards Gaussian in Pm and quite close to Gaussian in Sm
for the basis states not very far from theek centroids. All
three atoms exhibit BW form forêk,−1. Thus the statistical
spectroscopy developed by Flambaumet al. f5–7g will be
good for as long asFksEd with êk&−1 contribute to observ-
ables of interest. In all these atoms there are localized states
throughout the spectrums though the density is not highd and
this is clearly seen in the measurej2sEd. The structure of the
localized states is closely correlated with the occupation
numbers. All these and the matrix structures showed that
EGOEs1+2d need to be modified. One approach is to parti-
tion the two-particle space and employ different variances
for different block matrices and then propagate the ensemble
to many particle spaces. Very few properties of these parti-
tioned ensemblesfp−EGOEs1+2dg are known f11g and
clearly they should be studied in more detail. The induced
TBRE introduced recentlyf44g are closely related top-
EGOEs1+2d. Another approach is to consider the two-
particle Hamiltonian as a mixture of a regular partfsay de-
termined by the lower order multipoles in Eq.s36dg and a
random part and analyze them as a function of the strength of
the random partfthey are calledK+aEGOEs2d in Ref. f11g,
whereK is a fixed operator, and numerically some studies of
such an ensemble are carried out using nuclear shell model
recently f12gg. Thus an important outcome of the present
detailed analysisspresented in Secs. II–Vd is that for further
progress in understanding the wave function structure in
complex atoms it is necessary to analyze various modified
EGOE’s and this is for future.
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