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We present calculations of high Rydberg states for the lithium atom by two different theoretical methods.
The first method is based on theR-matrix theory to obtain the energy levels and the quantum defects for the
1s2nd 2D and 1s2nf 2F states and their adjacent continuum states. Then the quantum defect functions of the
two channels are obtained which vary smoothly with energy based on quantum defect theory. The second
method is based on the full core plus correlation method. Our results are compared with data in the literatures;
especially the results of theR-matrix method are in excellent agreement with microwave measurements for the
lithium atom.
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I. INTRODUCTION

In recent years, some advances have been made in theo-
retical and experimental research into the high-l Rydberg
states of the lithium atomf1,2g. The Rydberg states of
lithium consist of a two-electron core and a distant Rydberg
electron, and are nearly hydrogenic. However, the more
subtle features of their spectra deviate from the hydrogenic
features. Such differences between the alkali-metal and hy-
drogenic spectra arise from the interaction between the ex-
cited electron and the alkali-metal core instead of a point
Coulomb charge. The most obvious effect is the depression
of the energies of the lower-l states, which arises from the
polarization and penetration of the core by the Rydberg elec-
tron f3g. Cooke et al. f4g used a laser-excitation, optical-
detection scheme to observe microwave transitions from the
nd to thenf level for the lithium atom with principal quan-
tum numbern from 7 to 11. They obtained accurate transi-
tion frequencies and fine-structure intervals of thed,f states.
In Ref. f5g, there are also some experimental spectroscopic
results of the energy levels fornd andnf Rydberg states with
n from 7 to 9. Jaffé and Reinhardtf6g used a core potential
constructed from a static Hartree-Fock term, a semiclassical
exchange approximation, and a polarization term to calculate
quantum defects. Using an adapted pseudopotential, they nu-
merically integrated the Schrödinger equation to calculate
quantum defects for the lithium atom. Using these reported
quantum defects, Cookeet al. f4g have also calculated the
d-f intervals of the lithium atom withn from 7 to 11, within
about 15% with results in comparison with their microwave
measurements. Here we present our calculations of high Ry-
dberg states for the lithium atom by two different theoretical
methods; especially the results of theR-matrix method are in
excellent agreement with the microwave measurements
within −0.5%.

Configuration-interactionsCId theory and variational
method have been very successful for low excited states of
atomic and molecular systems. However, in the calculation
of high Rydberg states, one encounters great difficulties.
Countless Rydberg states and continuum states near the
threshold must be taken into account in CI and variational
calculations, and the problem of convergence induced by

rounding errors is a formidable task. Therefore it is difficult
to obtain an accurate energy level of a high Rydberg state
with a traditional variational method. Quantum defect theory
sQDTd f7–12g has been developed and applied successfully
in the field of spectroscopy and collision phenomena in
atomic and molecular systems. In the framework of QDT, the
infinite excited states are classified as channels; e.g., in the
2D channel of the lithium atom, there are infinite bound
1s2nd 2D excited statess3ønø`d and adjacent 1s2«d 2D
continuum states. In the energy range studied in this work,
only the single-channel quantum defect theory is needed to
deal with the energy levels of the Rydberg states for the
lithium atom. The physical parameters of the channelse.g.,
the quantum defectmd are smooth functions of the energy, so
Rydberg energy levels can be calculated through the quan-
tum defect functionsQDFd which depends weakly on the
energy. In this work, QDFs of Rydberg states for the lithium
atom are obtained by two different theoretical methods.

The first method is based onR-matrix theoryf13–18g. In
this method, the interactions of the scattered electron and the
targetsi.e., the electron-electron correlationsd are considered
in detail by coupling the target-state wave functions with the
scattered electron wave functions. The energy levels and the
quantum defects for the 1s2nd 2D and 1s2nf 2F states and
their adjacent continuum states are calculated byR-matrix
theory. Then the QDFs of the two channels are obtained,
which vary smoothly with energy based on the QDT. The
traditional variational method has an advantage in the calcu-
lation of low excited states, so our second method is based
on the full core plus correlationsFCPCd method f19–26g.
The quantum defects of the 1s25l sl =d, fd states are calcu-
lated, which will calibrate previous QDFs. We will also make
calibrations using the experimental dataf5g. Different sets of
QDFs can be used to calculate energy levels of all the Ryd-
berg states. To compare with experimental data in the litera-
ture, intervals of thend and nf levels sn=7–11d for the
lithium atom are calculated. Thend-nf intervals based on the
QDFs of theR-matrix method, the FCPC method, and the
“experimental-calibration” method are in agreement with mi-
crowave measurementsf4g within −0.5%, −1%, and 2.3%,
respectively; we will discuss this in detail later. It is indicated
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that the combination of theR-matrix method and quantum
defect theory is a very efficient method to study high Ryd-
berg states of the lithium atom.

II. THEORY

Detailed descriptions ofR-matrix theory were given in
Refs. f13–18g; only a brief outline of this method will be
given here. InR-matrix theory, a valuea of the radial vari-
abler is chosen such that the exchange interactions between
the scattered electron and the target electrons are negligible
for r ùa, where a is the R-matrix box radius. Within the
reaction zonesr øad, the interactions between the scattered
electron and target electrons involve static electron-electron
screening, dynamic polarizations, etc. It is a many-body
problem, which is solved variationally for the whole system
to obtain the logarithmic derivative boundary matrixRsEd.
Outside the reaction zonesr ùad, the scattered electron
“feels” mainly the Coulomb potential. The presentR-matrix
code allows us to take the long-range static polarization po-
tentials into account. The excited electron moves in the long-
range multipole potential of thesN−1d-electron core, whose
wave function is obtained by matching the boundary condi-
tions. Therefore, the wave functionsck of the energy eigen-
states for the system can be expanded as

ck = Ao
i j

aijkFiuijsrd + o
j

bjkw j , s1d

whereA is the antisymmetrization operator which accounts
for electron exchange between the target electrons and the
scattered electron,Fi are the channel functions obtained by
coupling the target-state wave functions with the angular and
spin functions of the scattered electron, the continuum orbit-
als uij represent the motion of the scattered electron, andw j
are formed from the bound orbitals to ensure completeness
and to include the short-range correlation effects.

We can easily perform an eigenchannel treatment of
R-matrix theoryf27–29g. We start with the logarithmic de-
rivative boundary matrixRsEd, the physical eigenchannel pa-
rametersseigen quantum defectsm and orthogonal transfor-
mation matrix Uiad, and the corresponding eigenchannel
wave functions are calculated directly. Based on the compact
set of eigenchannel parameters, atomic perturbed discrete
Rydberg series, autoionizing states, and their adjacent con-
tinuum can be treated in an analytical unified manner without
any numerical integration outside theR-matrix box. The de-
tailed description of the eigenchannel treatment ofR-matrix
theory was given in Ref.f28g.

According to QDT, the quantum defectm should be a
smooth function of the energy, and can be expressed in the
following form:

ms«d = m0 + m08« + m09«
2, s2d

where« is the energy relative to the first ionization threshold
in a.u. The energy levels and the quantum defects for the
1s2nd 2D and 1s2nf 2F states and their adjacent continuum
states are calculated byR-matrix theory. Then the QDFs of
the two channels are obtained, which vary smoothly with the
energy based on Eq.s2d.

For the lithium atom, the quantum defectm can be deter-
mined from the formula

m = n −
1

Î− 2«
, s3d

wheren is the principal quantum number. The second term
on the right-hand side of Eq.s3d denotes the effective prin-
cipal quantum number. Combining Eqs.s2d and s3d, we can
construct an equation to calculate all the energy levels of
1s2nd and 1s2nf Rydberg states for the lithium atom. This
equation is in the following form:

« +
1

2fn − ms«dg2 = 0. s4d

The advantage ofR-matrix theory is that the whole chan-
nel can be treated in an analytical unified manner and it gives
the quantum defect the tendency to vary smoothly with the
energy; the advantage of the traditional variational method is
that it can give accurate results for the ground state and low
excited states of atomic systems. The quantum defects of
1s25l sl =d, fd states for the lithium atom are calculated with
the FCPC method, which will calibrate the previous QDFs;
namely, using the difference of the quantum defect of the
1s25l sl =d, fd states between theR-matrix method and the
FCPC method to calibrate the coefficientm0 in Eq. s2d. In
this work, the FCPC method is used to construct trial wave
functions of 1s2nl sl =d, fd low excited states for the lithium
atom. This method has been given in detail by Chungf19g,
and here we only give it a brief description. The nonrelativ-
istic HamiltonianH0 and the perturbation operatorsH1 srela-
tivistic correction to the kinetic energyd, H2 sDarwin termd,
H3 selectron-electron contact termd, H4 smass polarizationd,
and H5 sorbit-orbit interactiond are the same as those pre-
sented by Chung, and they will not be repeated here. These
perturbation operators are used for the calculation of relativ-
istic and mass-polarization corrections. The total energy
Etots1s2nld can be obtained by the variational principle with a
trial wave function that is constructed with the FCPC method
in the LS coupling scheme as follows:

Cs1,2,3d = AFF1s2 1Ss1,2do
i

dir3
i exps− br3dYlsids3dxs3d

+ o
j

CjFns jd,ls jds1,2,3dG , s5d

whereA is an antisymmerization operator.F1s2 1Ss1,2d is a
predetermined 1s2 core wave function, which is represented
by a CI basis set,

F1s2 1Ss1,2d = Ao
kn,l

Cknlr1
kr2

n exps− blr1 − rlr2dYls1,2dxs1,2d.

s6d

The angular part is

Yls1,2d = o
m

kl,m,l,− mu0,0lYlmsu1,w1dYl−msu2,w2d. s7d

In Eq. s6d, xs1,2d is a two-electron singlet spin function. The
linear and nonlinear parameters in Eq.s6d are determined by
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optimizing the energy of the core; furthermoreEtots1s2d can
be calculatedf19g. The factor multiplied byF1s2 1Ss1,2d is a
linear combination of the Slater orbitals for the valance elec-
tron. The second term on the right-hand side of Eq.s5d de-
scribes the inner-shell electron-electron correlation, dipole
and quadrupole polarization effects of the core, etc., in the
three-electron system.

In the FCPC method, the orbital energy«nl can be calcu-
lated by subtracting the core energy from the energy of the
three-electron system,

«nl = Etots1s2nld − Etots1s2d, s8d

and the quantum defectm can be calculated through Eq.s3d.
For the 1s2nl state, the fine-structure intervals come from

the spin-orbit and spin–other-orbit interactions. The opera-
tors are

HSO=
3

2a2o
i=1

3
lWi ·sWi

r i
3 , s9d

HSOO= −
1

2a2o
iÞ j

3 F 1

r ij
3 srWi − rW jd 3 pW iG · ssWi + 2sW jd, s10d

where a is the fine-structure constant. Then the total fine-
structure intervals for the 1s2nl state are defined as

DEFS
J = k1s2nl2LJuHSOu1s2nl2LJl + k1s2nl2LJuHSOOu1s2nl2LJl.

s11d

III. RESULTS AND DISCUSSION

For theR-matrix calculations of Li, we use the following
set of basis orbitals calculated from theCIV3 codef30g. The
target set is 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f, 5s, 5p, 5d,
5f, where nl snø4,l ø3d are spectroscopy orbitals,5l sl
ø3d are polarized pseudo-orbitals including static polariza-
tion effectsf29–32g. In order to obtain accurate results, we
choose 27 target functions carefully, and take into account
the long-range multipole potentials sufficiently. Then the en-
ergy levels and the quantum defects for the 1s2nd 2D and
1s2nf 2F states and their adjacent continuum states are cal-
culated. Table I lists the quantum defects of 1s2nd sn
=3–5d and 1s2nf sn=4–5d states byR-matrix calculations.
In Table I the quantum defects of these states calculated by
the FCPC methodf19g and results derived from experimental
dataf5g are also listed and compared withR-matrix results.
The experimental quantum defects are derived from the dif-
ferences between the energy levels of 1s2nl states and the
first ionization threshold. Such differences may lose some
significant figures so as to influence the accuracy of the
quantum defects, which will be discussed later. Note that the
reduced Rydberg constant of Li of 109 728.73 cm−1 is
adopted in our calculations. In the FCPC calculations, vari-
ous perturbation operators are used for the calculation of
relativistic and mass-polarization corrections. These pertur-
bation operators are considered for both the 1s2 core and the
1s2nl state. For example, our calculated contribution from
various perturbation operators to the total energy of the 1s2

core is −599.68m a.u. and of the 1s23d state is −599.88m a.u.
The contributions of these perturbation operators to the total
energies of other 1s2nl states are similar to those of the 1s23d
state; therefore we will not list them here. For the FCPC

TABLE I. The quantum defects of 1s2nd sn=3–5d and 1s2nf
sn=4–5d states for the lithium atom of different theories and
experiment.

1s23d 1s24d 1s25d 1s24f 1s25f

R matrix 0.001388 0.001554 0.001630 0.000112 0.000125

FCPC 0.001489 0.001703 0.001829 0.000253 0.000284

Expt.a 0.001475 0.001675 0.001766 0.000227 0.000270

aReferencef5g.

TABLE II. Intervals calculated from different theoretical and experimental QDFs and the center-of-
gravity results from Table IV of Ref.f4g of thend andnf levelssn=7–11d for the lithium atom, and the data
in parentheses are the relative differences between the present results and microwave measurementsf4g sin
GHzd. sLS coupling scheme is used in our calculations.d

n R-matrix QDF FCPC QDF “Expt.” QDFa Expt.b Expt.c Other theoryd

7 30.0753s−0.44%d 30.8451s2.11%d 29.9043s−1.01%d 30.2088 31.8s5%d 35.5 s17.5%d
8 20.3473s−0.36%d 20.8628s2.17%d 20.2326s−0.92%d 20.4199 23.7s16%d 23.8 s16.6%d
9 14.3873s−0.28%d 14.7493s2.23%d 14.3067s−0.84%d 14.4275 16.2s12%d 16.7 s15.8%d
10 10.5391s−0.24%d 10.8029s2.26%d 10.4803s−0.79%d 10.5640 12.2s15.5%d
11 7.947s−0.16%d 8.145s2.32%d 7.902s−0.73%d 7.960 9.14s14.8%d
aCalculated from quantum defects of 1s25l sl =d, fd states derived from the experimental dataf5g.
bCenter-of-gravity results calculated from transition frequencies and fine-structure intervals of microwave
measurementsf4g.
cCenter-of-gravity results calculated from the differences between the energy levels of thend andnf states of
the experimentf5g.
dCenter-of-gravity results calculated from Ref.f6g.
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method, based on Eq.s5d, Etots1s2nld can be defined as

Etots1s2nld = Ētots1s2d + «̄nl, s12d

whereĒtots1s2d is the corresponding energy of the 1s2 core in
the three-electron calculations, which may be different from
Etots1s2d in the Li+ calculations,

Ētots1s2d = Etots1s2d + d s13d

whered is a negative difference due to the contribution of
the trial three-electron wave function shown as the second
term of the right-hand side of Eq.s5d because of three iden-
tical electron properties. Therefore the true orbital energy«̄nl
should be expressed as

«̄nl = «nl − d. s14d

Although d is only a tiny fraction inĒtots1s2d, it should be
significant to«̄nl or «nl in Eq. s8d. The true orbital energy«̄nl
is higher than the orbital energy«nl. Thus, the FCPC quan-
tum defects are overestimated and provide the upper limits of
the quantum defects. TheR-matrix method avoids the issue
mentioned above and provides the lower limits of quantum
defects.

Based on theR-matrix method, the QDFs of2D and 2F
channels are obtained through the quantum defects of the
finite 1s2nd 2D and 1s2nf 2F bound states and phase shifts of

the 1s2«d 2D and 1s2«f 2F continuum states, which vary
smoothly with energy as follows:

ms«; 2Dd = 0.001 783 1 + 0.007 958 6« + 0.016 546«2,

s15d

ms«; 2Fd = 0.000 148 1 + 0.001 170« + 0.000 778 4«2.

s16d

The quantum defects of the 1s25lsl =d, fd states calculated
from the FCPC method are used to calibrate the above
QDFs. The FCPC QDFs are

ms«; 2Dd = 0.001 982 1 + 0.007 958 6« + 0.016 546«2,

s17d

ms«; 2Fd = 0.000 307 1 + 0.001 170« + 0.000 778 4«2.

s18d

The quantum defects of 1s25l sl =d, fd states derived from
the experimental dataf5g are also used to calibrateR-matrix
QDFs. The “experimental” QDFs are

ms«; 2Dd = 0.001 919 1 + 0.007 958 6« + 0.016 546«2,

s19d

ms«; 2Fd = 0.000 293 1 + 0.001 170« + 0.000 778 4«2.

s20d

In Table II the intervals of thend and nf levels sn
=7–11d for the lithium atom are calculated by different sets
of QDFs and compared with the center-of-gravity results
listed in Ref.f4g. The center-of-gravity results derived from
the differences between the experimental energy levelsf5g
are larger than microwave experimental resultsf4g by more
than 5%. It should be very careful to take the differences
between the energy levels because of significant figure
losses. It is interesting to note that the intervals of the “ex-
perimental” QDF are less than the microwave data within
about −1%. The “experimental” QDF provides better quan-
tum defects in comparison with the quantum defects of the
nd and nf levels sn=7–9d derived directly from the differ-
ences between the energy levels and the first ionization

TABLE III. Theoretical and experimental fine-structure intervals
DE=E5/2−E3/2 for 1s2nd sn=3–5d states andDE=E7/2−E5/2 for
1s2nf sn=4–5d states of the lithium atomsin cm−1d.

State FCPC Other theorya Expt.b Expt.c Moored

1s23d 0.03616 0.03607 0.039 0.03608 0.04

1s24d 0.01518 0.01522 0.015 0.01519 0.02

1s25d 0.00784 0.00779 0.008 0.00776 0.01

1s24f 0.00761 0.00761

1s25f 0.00390 0.00390

aCalculated from hydrogenic theorysRef. f3gd.
bReferencef5g.
cReferencef34g.
dReferencef35g.

TABLE IV. Theoretical and experimental fine-structure intervals of 1s2nl sn=7–11,l =d, fd states for the
lithium atom sin MHzd. sLS coupling scheme is used in our calculations.d

n

d splittings f splittings

This work Other theorya Expt.b This work Other theorya Expt.b

7 85.14 85.18 84.87 42.58 42.59 41.99

8 57.02 57.07 56.97 28.53 28.53 28.05

9 40.04 40.08 40.04 20.04 20.04 19.96

10 29.18 29.22 28.60 14.61 14.61 13.60

11 21.92 21.95 10.97 10.98

aCalculated from hydrogenic theorysRef. f3gd.
bReferencef4g.
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threshold because of more significant figure losses asn in-
creases. The quantum defects of the Rydbergd states calcu-
lated by FCPC QDF are overestimated, so the intervals of the
FCPC QDF are a little larger than microwave experimental
results within about 2.2%. In the FCPC calculations, most of
the relativistic effects have been taken into account, giving
very accurate results for energies of various levels. Other
corrections like Lamb shift and retardation are omitted in our
calculations. Bhatia and Drachmanf33g have used third-
order perturbation theory to calculate the effect of the Breit-
Pauli relativistic interaction on the dipole polarizability of
the Li+ core. In addition, the retardationsCasimird correc-
tions to singly excited 1s2nl states of neutral lithium have
been computed. These two corrections together bring theory
and experimentf1,2g into almost perfect agreement, to just
outside their combined errors. Addition of radiativesLamb-
shiftd corrections produces essentially exact agreement. The
energies of high Rydberg states calculated from FCPC QDF
with inclusion of the contributions of these high-order cor-
rections are helpful to obtain more accurate energies, which
may improve the comparison with the experimental results.
The intervals of theR-matrix QDFs are a little less than those
of microwave experimental data within −0.5%. It is indicated
that the presentR-matrix QDF is the most effective method
to calculate the intervals of energy levels of high Rydberg
states for Li.

According to the theory of Condonf3g, the product of
fine-structure intervals andn3 should be a constant. In prac-
tical calculations, this constant turns to be a fine-structure
function varying smoothly with the energy. Using the previ-
ous FCPC wave functions, fine-structure intervals of
1s2nd sn=3–5d and 1s2nf sn=4–5d states are calculated and
compared with other theoretical and experimental data in
Table III. Our calculation results are in good agreement with
the available data. Then the fine-structure functions of the
1s2nd and 1s2nf Rydberg series can be obtained based on
FCPC results. In Table IV the calculated fine-structure inter-
vals of 1s2nl sn=7–11,l =d, fd states are compared with data
in the literature. Our calculations are all between the inter-
vals of hydrogenic theoryf3g and experimental dataf4g. In
particular the calculated fine-structure intervals of 1s2nf
states agree with the intervals of hydrogenic theory very
well. Note that the experimental fine-structure interval of the
1s210f state is 13.60 MHz which might be a misprint. Table
V lists the calculated transition frequencies between thend
and nf levels sn=7–11d of the lithium atom based on our

results in Tables II and IV. Our calculated transition frequen-
cies are in good agreement with the microwave measure-
mentsf4g within −0.5% which is consistent with the accu-
racy of Table II.

It is natural to consider whether the present approach is
suitable for higherl quantum numbers. In our method, the
quantum defect is the most important physical parameter
used to calculate energies of Rydberg states. For Rydberg
states of lithium with higherl quantum numbers, the spectra
are almost hydrogenic; therefore the quantum defects of
these states are very small. It is difficult to ensure enough
significant figures in the calculation to obtain accurate quan-
tum defects of higherl quantum numbers; therefore our
method encounters great difficulties when extended to Ryd-
berg states of lithium with higherl quantum numbers. Drach-
man and Bhatiaf2g have used an effective potential method
to calculate Rydberg levels of singly excited lithium with
higherl sl ù4d quantum numbers; they also made high-order
relativistic correctionsf33g, and their calculation results
agree with experimental values very wellf1g. The method of
Drachman and Bhatia is the more effective method to calcu-
late Rydberg levels of singly excited lithium with higher
l sl ù4d quantum numbers.

In summary, theR-matrix method is effective for the cal-
culation of high Rydberg states of lithium with lowerl quan-
tum numbers; especially the calculatednd-nf intervals by the
R-matrix method are in excellent agreement with the micro-
wave measurements within −0.5%. Although the present cal-
culated quantum defects by theR-matrix method have not
been converged absolutely yet, the differences of the quan-
tum defects can be calculated precisely, with the evidence of
the excellent agreement with “microwave measurements” for
the nd-nf intervals. The subtle features of alkali-metal spec-
tra deviate from the hydrogenic one, because of factors like
the polarization and penetration of the core by the Rydberg
electron, which can be described as a quantum defect. There-
fore the topic of absolute convergence for the quantum de-
fect by theR-matrix method deserves further study, which is
beyond the scope of the present paper and will be reported in
future.
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TABLE V. Theoretical and experimental transition frequencies between thend andnf levels sn=7–11d
for the lithium atom, and the data in parentheses are experimental dataf4g sin MHzd.

n d3/2-f5/2 d5/2-f5/2 d5/2-f7/2

7 30102.05 s30235.31d 30016.91 s30151.04d 30059.49 s30193.03d
8 20365.21 s20437.67d 20308.19 s20381.18d 20336.72 s20409.23d
9 14399.87 s14440.08d 14359.83 s14400.12d 14379.87 s14420.08d
10 10548.26 s10572.64d 10519.08 s10545.1d 10533.69 s10558.61d
11 7953.9 7932.0 7942.9 s7956.3d
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