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Calculations of high Rydberg states for the lithium atom
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We present calculations of high Rydberg states for the lithium atom by two different theoretical methods.
The first method is based on tiematrix theory to obtain the energy levels and the quantum defects for the
12nd?D and 1?nf °F states and their adjacent continuum states. Then the quantum defect functions of the
two channels are obtained which vary smoothly with energy based on quantum defect theory. The second
method is based on the full core plus correlation method. Our results are compared with data in the literatures;
especially the results of tHe-matrix method are in excellent agreement with microwave measurements for the

lithium atom.
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[. INTRODUCTION rounding errors is a formidable task. Therefore it is difficult

In recent years, some advances have been made in the@- OPtain an accurate energy level of a high Rydberg state
retical and experimental research into the higRydberg with a traditional variational method. Quantum defect theory
states of the lithium atonf1,2]. The Rydberg states of (QDT) [7-12 has been developed and applied successfully
lithium consist of a two-electron core and a distant Rydbergn the field of spectroscopy and collision phenomena in
electron, and are nearly hydrogenic. However, the moré&tomic and molecular systems. In the framework of QDT, the
subtle features of their spectra deviate from the hydrogeni#ifinite excited states are classified as channels; e.g., in the
features. Such differences between the alkali-metal and hyD channel of the lithium atom, there are infinite bound
drogenic spectra arise from the interaction between the exts’nd°D excited stateg3<n=<) and adjacent £ed “D
cited electron and the alkali-metal core instead of a poingontinuum states. In the energy range studied in this work,
Coulomb charge. The most obvious effect is the depressioanly the single-channel quantum defect theory is needed to
of the energies of the lowdrstates, which arises from the deal with the energy levels of the Rydberg states for the
polarization and penetration of the core by the Rydberg eledithium atom. The physical parameters of the charles.,
tron [3]. Cookeet al. [4] used a laser-excitation, optical- the quantum defeqt) are smooth functions of the energy, so
detection scheme to observe microwave transitions from thRydberg energy levels can be calculated through the quan-
nd to thenf level for the lithium atom with principal quan- tum defect function(QDF) which depends weakly on the
tum numbem from 7 to 11. They obtained accurate transi- energy. In this work, QDFs of Rydberg states for the lithium
tion frequencies and fine-structure intervals of thiestates.  atom are obtained by two different theoretical methods.

In Ref. [5], there are also some experimental spectroscopic The first method is based dirmatrix theory[13-18. In
results of the energy levels fad andnf Rydberg states with  this method, the interactions of the scattered electron and the
n from 7 to 9. Jaffé and Reinharfi] used a core potential target(i.e., the electron-electron correlatiorege considered
constructed from a static Hartree-Fock term, a semiclassicd detail by coupling the target-state wave functions with the
exchange approximation, and a polarization term to calculatgcattered electron wave functions. The energy levels and the
quantum defects. Using an adapted pseudopotential, they nguantum defects for thesind?D and ¥°nf °F states and
merically integrated the Schrodinger equation to calculatgheir adjacent continuum states are calculatedRayatrix
quantum defects for the lithium atom. Using these reportedheory. Then the QDFs of the two channels are obtained,
qguantum defects, Cooket al. [4] have also calculated the which vary smoothly with energy based on the QDT. The
d-f intervals of the lithium atom witm from 7 to 11, within  traditional variational method has an advantage in the calcu-
about 15% with results in comparison with their microwavelation of low excited states, so our second method is based
measurements. Here we present our calculations of high Rgn the full core plus correlatiofFCPQ method[19-24.
dberg states for the lithium atom by two different theoreticalThe quantum defects of thes?5l (I=d,f) states are calcu-
methods; especially the results of tRematrix method are in  lated, which will calibrate previous QDFs. We will also make
excellent agreement with the microwave measurementsalibrations using the experimental dgfd. Different sets of
within —0.5%. QDFs can be used to calculate energy levels of all the Ryd-

Configuration-interaction(Cl) theory and variational berg states. To compare with experimental data in the litera-
method have been very successful for low excited states dfire, intervals of thend and nf levels (n=7-11) for the
atomic and molecular systems. However, in the calculationithium atom are calculated. Thed-nf intervals based on the
of high Rydberg states, one encounters great difficultiesQDFs of theR-matrix method, the FCPC method, and the
Countless Rydberg states and continuum states near tHexperimental-calibration” method are in agreement with mi-
threshold must be taken into account in Cl and variationatrowave measurementd] within —0.5%, —-1%, and 2.3%,
calculations, and the problem of convergence induced byespectively; we will discuss this in detail later. It is indicated
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that the combination of th&-matrix method and quantum For the lithium atom, the quantum defectcan be deter-
defect theory is a very efficient method to study high Ryd-mined from the formula

berg states of the lithium atom. 1
,lL =n- [~ (3)
Il. THEORY V= 2¢

Detailed descriptions oR-matrix theory were given in Wwheren is the principal quantum number. The second term
Refs.[13-18; only a brief outline of this method will be on the right-hand side of E¢3) denotes the effective prin-
given here. InR-matrix theory, a value of the radial vari- cipal quantum number. Combining E¢&) and(3), we can
abler is chosen such that the exchange interactions betweetpnstruct an equation to calculate all the energy levels of
the scattered electron and the target electrons are negligibks’nd and I’nf Rydberg states for the lithium atom. This
for r=a, wherea is the R-matrix box radius. Within the equation is in the following form:

reaction zondr <a), the interactions between the scattered 1
electron and target electrons involve static electron-electron e+ 5 5=0. (4)
screening, dynamic polarizations, etc. It is a many-body [n-p(e)]

problem, which is solved variationally for the whole system  The advantage dR-matrix theory is that the whole chan-

to obtain the logarithmic derivative boundary matRkE).  nel can be treated in an analytical unified manner and it gives
Outside the reaction zoné=a), the scattered electron the quantum defect the tendency to vary smoothly with the
“feels” mainly the Coulomb potential. The preséfimatrix  energy; the advantage of the traditional variational method is
code allows us to take the long-range static polarization pothat it can give accurate results for the ground state and low
tentials into account. The excited electron moves in the longexcited states of atomic systems. The quantum defects of
range multipole potential of theN—-1)-electron core, whose 18%5| (I1=d,f) states for the lithium atom are calculated with
wave function is obtained by matching the boundary condithe FCPC method, which will calibrate the previous QDFs;
tions. Therefore, the wave functiong of the energy eigen- namely, using the difference of the quantum defect of the

states for the system can be expanded as 1?51 (1=d,f) states between thB-matrix method and the
FCPC method to calibrate the coefficieng in Eqg. (2). In
lﬂk:AZ i (r) + 2 Dike;., (1) this work, the FCPC method is used to construct trial wave
1] J

functions of &2nl (I=d,f) low excited states for the lithium

whereA is the antisymmetrization operator which accountsatom. This method has been given in detail by Ch[i#,
for electron exchange between the target electrons and trand here we only give it a brief description. The nonrelativ-
scattered electronb; are the channel functions obtained by istic HamiltonianH, and the perturbation operatdss (rela-
coupling the target-state wave functions with the angular antivistic correction to the kinetic energyH, (Darwin term,
spin functions of the scattered electron, the continuum orbitHs (electron-electron contact tejrH, (mass polarization
als u; represent the motion of the scattered electron, gnd and Hs (orbit-orbit interaction are the same as those pre-
are formed from the bound orbitals to ensure completenessented by Chung, and they will not be repeated here. These
and to include the short-range correlation effects. perturbation operators are used for the calculation of relativ-

We can easily perform an eigenchannel treatment ofstic and mass-polarization corrections. The total energy
R-matrix theory[27—-29. We start with the logarithmic de- Ey(1s’nl) can be obtained by the variational principle with a
rivative boundary matriR(E), the physical eigenchannel pa- trial wave function that is constructed with the FCPC method
rametergeigen quantum defecis and orthogonal transfor- in the LS coupling scheme as follows:
mation matrix U;,), and the corresponding eigenchannel .
wave functions are calculated directlﬁ Base% ongthe compact V(1,23 =Al &5 18(1’2)2 dirs exp(= Bra) Y (3)x(3)
set of eigenchannel parameters, atomic perturbed discrete '
Rydberg series, autoionizing states, and their adjacent con- +> qu’n(j),l(i)(l’z':g)]* (5)
tinuum can be treated in an analytical unified manner without j
any numerical integration outside tiRematrix box. The de- . . o .
tailed description of the eigenchannel treatmenReahatrix whereA |s.an antisymmerization Qperata?'lSZ.lS(l’z) IS a
theory was given in Ref28]. predetermm_ed & core wave function, which is represented

According to QDT, the quantum defegt should be a PY & Cl basis set,

smooth function of the energy, and can be expressed in thgb _ k.n
- . 1216(1,2) = A Cyarirh exp(= Biry = pir2) Yi(1,2x(1,2).
following form: o 12

u(e) = po + poe + pge?, 2 (6)
whereeg is the energy relative to the first ionization threshold The angular part is
in a.u. The energy levels and the quantum defects for the B
1nd 2D and 1nf 2F states and their adjacent continuum ~ "(1:2) ‘zm: (m,1,=m[0,0)Yin(61, 1) Yi-n( b2, 02) . (7)
states are calculated Bmatrix theory. Then the QDFs of
the two channels are obtained, which vary smoothly with thdn Eqg. (6), x(1,2) is a two-electron singlet spin function. The
energy based on E@2). linear and nonlinear parameters in E6) are determined by
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TABLE I. The quantum defects ofsind (n=3-5 and %°nf  where « is the fine-structure constant. Then the total fine-
(n=4-5 states for the lithium atom of different theories and structure intervals for thestnl state are defined as

experiment.
AELs= (15°nIPL j|Hgg 12n12L 5) + (15°nlPL j|Hgod 182n12L ).
1s3d ~ 1s’4d  1s’5d 1s%4f 1s5f (12)

R matrix 0.001388 0.001554 0.001630 0.000112 0.000125
FCPC  0.001489 0.001703 0.001829 0.000253 0.000284 Il RESULTS AND DISCUSSION
Expt®  0.001475 0.001675 0.001766 0.000227 0.000270

For theR-matrix calculations of Li, we use the following
“Referencd5]. set of basis orbitals calculated from the/3 code[30]. The
target set is §, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f, 5s, 5p, 5d,
optimizing the energy of the core; furthermdgg(1s?) can  5f, wherenl (n<4,1<3) are spectroscopy orbital§l (I
be calculated19]. The factor multiplied byb,2141,2) isa  <3) are polarized pseudo-orbitals including static polariza-
linear combination of the Slater orbitals for the valance election effects[29-32. In order to obtain accurate results, we
tron. The second term on the right-hand side of &j.de- choose 27 target functions carefully, and take into account
scribes the inner-shell electron-electron correlation, dipoléhe long-range multipole potentials sufficiently. Then the en-
and quadrupole polarization effects of the core, etc., in thergy levels and the quantum defects for tren#i’D and
three-electron system. 1s’nf %F states and their adjacent continuum states are cal-
In the FCPC method, the orbital energy can be calcu- culated. Table | lists the quantum defects of*rd (n
lated by subtracting the core energy from the energy of the3—5 and ¥°nf (n=4-5 states byR-matrix calculations.
three-electron system, In Table | the quantum defects of these states calculated by
the FCPC methofil9] and results derived from experimental
data[5] are also listed and compared wiamatrix results.
en = E(15°n1) — Ey(187), () The experimental quantum defects are derived from the dif-
ferences between the energy levels sfnl states and the
first ionization threshold. Such differences may lose some
significant figures so as to influence the accuracy of the
guantum defects, which will be discussed later. Note that the
reduced Rydberg constant of Li of 109 728.73¢nis
adopted in our calculations. In the FCPC calculations, vari-
ous perturbation operators are used for the calculation of

and the quantum defegt can be calculated through E@®).

For the ¥°nl state, the fine-structure intervals come from
the spin-orbit and spin—other-orbit interactions. The opera
tors are

3 30 .g relativistic and mass-polarization corrections. These pertur-
Hso= =52 5 (9)  bation operators are considered for both tsecbre and the
2075 T 1s’nl state. For example, our calculated contribution from

various perturbation operators to the total energy of tsfe 1
core is -599.68 a.u. and of the £3d state is -599.88 a.u.
1371 The contributions of these perturbation operators to the total
Hsoo= - —22 {_3@ - Fj) X 5& (5 + 2§j), (10) energies of other<nl states are similar to those of the?3d
2077 ij state; therefore we will not list them here. For the FCPC

TABLE IlI. Intervals calculated from different theoretical and experimental QDFs and the center-of-
gravity results from Table IV of Ref4] of thend andnf levels(n=7-11) for the lithium atom, and the data
in parentheses are the relative differences between the present results and microwave meagdigiinents
GH2z). (LS coupling scheme is used in our calculations.

n R-matrix QDF FCPC QDF “Expt.” QDE  Expt® Expt®  Other theor§

7 30.0753(-0.44%) 30.8451(2.11% 29.9043(-1.01% 30.2088 31.85%) 35.5(17.5%
8 20.3473(-0.36%) 20.8628(2.17%9 20.2326(-0.92% 20.4199 23.116% 23.8(16.6%
9 14.3873(-0.28%) 14.7493(2.23% 14.3067(-0.84%) 14.4275 16.212% 16.7(15.8%
10 10.5391(-0.24%) 10.8029(2.26% 10.4803(-0.79%) 10.5640 12.215.5%
11 7.947(-0.16%) 8.145(2.32% 7.902(-0.73%) 7.960 9.14(14.8%

Calculated from quantum defects of?%l (I=d,f) states derived from the experimental dg&
bCenter-of-gravity results calculated from transition frequencies and fine-structure intervals of microwave
measurementt].

“Center-of-gravity results calculated from the differences between the energy levelsofahdnf states of

the experimenf5s].

dCenter-of-gravity results calculated from RES).

042503-3



CHEN, HAN, AND LI PHYSICAL REVIEW A 71, 042503(2009
TABLE lIl. Theoretical and experimental fine-structure intervals the 1s2ed 2D and 12ef 2F continuum states, which vary
AE=Es,~Eg, for 1s°nd (n=3-5) states andAE=E;;,~Esp; for  smoothly with energy as follows:

1s?nf (n=4-5) states of the lithium atorfin cm™). 5
wu(e:°D)=0.001 783 1 + 0.007 958&6+ 0.016 5462,
State FCPC  Other thedty Expt® Expt®  Moore® (15)

1s?3d  0.03616 0.03607 0.039 0.03608 0.04

2Fy — 2
1s%4d  0.01518 0.01522 0.015 0.01519 0.02 p(2;°F)=0.000 148 1 +0.001 10+ 0.000 778 4.

1s%5d 0.00784 0.00779 0.008 0.00776 0.01 (16)
1s%4f  0.00761 0.00761 The quantum defects of thes’bl(I=d,f) states calculated
1s’5f  0.00390 0.00390 from the FCPC method are used to calibrate the above
dCalculated from hydrogenic theofRef. [3]). QDFs. The FCPC QDFs are

"Referencd5]. u(e;?D) = 0.001 982 1 + 0.007 9586+ 0.016 5462,
‘Referencd 34].

dReference{35]. 17

u(e;%F) =0.000 307 1 +0.001 120+ 0.000 778 42.
(18

The quantum defects ofs?5l (I=d,f) states derived from

WhereEtot(lsz) is the Corresponding energy of the?Lore in the experimental da@] are also used to calibraiRmatrix
the three-electron calculations, which may be different fromQDFS. The “experimental” QDFs are

Ewol(18°) in the Li* calculations, w(e;?D) =0.001919 1 +0.007 9586+ 0.016 5462,
Eo(189) = E(18) + 8 (13) (19)

where 6 is a negative difference due to the contribution of M(S.zF) =0.000 293 1 + 0.001 1Z0+ 0.000 778 42
the trial three-electron wave function shown as the second ' ’ ' ' '
term of the right-hand side of E@5) because of three iden- (20)

tical electron properties. Therefore the true orbital energy In Table Il the intervals of thend and nf levels (n

should be expressed as =7-11) for the lithium atom are calculated by different sets
€n = & — 0. (14) of QDFs and compared with the center-of-gravity results
_ listed in Ref.[4]. The center-of-gravity results derived from
Although & is only a tiny fraction inE(1s%), it should be the differences between the experimental energy lefdls
significant toe, or e, in Eq. (8). The true orbital energy,, are larger than microwave experimental res{dtkby more
is higher than the orbital energy,. Thus, the FCPC quan- than 5%. It should be very careful to take the differences
tum defects are overestimated and provide the upper limits dietween the energy levels because of significant figure
the quantum defects. THe-matrix method avoids the issue losses. It is interesting to note that the intervals of the “ex-
mentioned above and provides the lower limits of quantunperimental” QDF are less than the microwave data within
defects. about —1%. The “experimental” QDF provides better quan-
Based on theR-matrix method, the QDFs ofD and?F  tum defects in comparison with the quantum defects of the
channels are obtained through the quantum defects of thed andnf levels (n=7-9 derived directly from the differ-
finite 1s?nd °D and &°nf F bound states and phase shifts of ences between the energy levels and the first ionization

method, based on E5), E,(1s’nl) can be defined as

Eoi(182N1) = Eyg((152) + 2y, (12

TABLE IV. Theoretical and experimental fine-structure intervals &l (n=7-11|=d, f) states for the
lithium atom(in MHz). (LS coupling scheme is used in our calculations.

d splittings f splittings
n This work Other theory Expt® This work Other theory Expt®
7 85.14 85.18 84.87 42.58 42.59 41.99
8 57.02 57.07 56.97 28.53 28.53 28.05
9 40.04 40.08 40.04 20.04 20.04 19.96
10 29.18 29.22 28.60 14.61 14.61 13.60
11 21.92 21.95 10.97 10.98

Calculated from hydrogenic theofRef. [3]).
bReference{4].
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TABLE V. Theoretical and experimental transition frequencies betweemdrend nf levels (n=7-11)
for the lithium atom, and the data in parentheses are experimental4jdia MHz).

n a2 fs2 ds/2-fs2 ds/>- 712

7 30102.05 (30235.31 30016.91 (30151.04 30059.49 (30193.03
8 20365.21 (20437.67 20308.19 (20381.18 20336.72 (20409.23
9 14399.87 (14440.08 14359.83 (14400.12 14379.87 (14420.08
10 10548.26 (10572.64 10519.08 (10545.2 10533.69 (10558.61
11 7953.9 7932.0 7942.9 (7956.3

threshold because of more significant figure lossen & results in Tables Il and IV. Our calculated transition frequen-
creases. The quantum defects of the Rydlubsgates calcu- cies are in good agreement with the microwave measure-
lated by FCPC QDF are overestimated, so the intervals of theents[4] within —0.5% which is consistent with the accu-
FCPC QDF are a little larger than microwave experimentaracy of Table II.
results within about 2.2%. In the FCPC calculations, most of It is natural to consider whether the present approach is
the relativistic effects have been taken into account, givinguitable for highed quantum numbers. In our method, the
very accurate results for energies of various levels. Otheguantum defect is the most important physical parameter
corrections like Lamb shift and retardation are omitted in ourused to calculate energies of Rydberg states. For Rydberg
calculations. Bhatia and DrachmdB3] have used third- states of lithium with highel quantum numbers, the spectra
order perturbation theory to calculate the effect of the Breit-are almost hydrogenic; therefore the quantum defects of
Pauli relativistic interaction on the dipole polarizability of these states are very small. It is difficult to ensure enough
the Li* core. In addition, the retardatiofCasimip correc-  significant figures in the calculation to obtain accurate quan-
tions to singly excited £nl states of neutral lithium have tum defects of highed quantum numbers; therefore our
been computed. These two corrections together bring theonpethod encounters great difficulties when extended to Ryd-
and experimenf1,2] into almost perfect agreement, to just berg states of lithium with highérquantum numbers. Drach-
outside their combined errors. Addition of radiatiteamb- ~ man and Bhati&2] have used an effective potential method
shift) corrections produces essentially exact agreement. Thi@ calculate Rydberg levels of singly excited lithium with
energies of high Rydberg states calculated from FCPC QDHRigher! (I=4) quantum numbers; they also made high-order
with inclusion of the contributions of these high-order cor-relativistic corrections[33], and their calculation results
rections are helpful to obtain more accurate energies, whichgree with experimental values very wil]. The method of
may improve the comparison with the experimental resultsDrachman and Bhatia is the more effective method to calcu-
The intervals of th&R-matrix QDFs are a little less than those late Rydberg levels of singly excited lithium with higher
of microwave experimental data within —0.5%. It is indicated! (I=4) quantum numbers.
that the presenR-matrix QDF is the most effective method  In summary, theR-matrix method is effective for the cal-
to calculate the intervals of energy levels of high Rydbergculation of high Rydberg states of lithium with lowkequan-
states for Li. tum numbers; especially the calculatedtnf intervals by the
According to the theory of Condof8], the product of R-matrix method are in excellent agreement with the micro-
fine-structure intervals ana® should be a constant. In prac- wave measurements within —0.5%. Although the present cal-
tical calculations, this constant turns to be a fine-structureulated quantum defects by thematrix method have not
function varying smoothly with the energy. Using the previ- been converged absolutely yet, the differences of the quan-
ous FCPC wave functions, fine-structure intervals oftum defects can be calculated precisely, with the evidence of
1s’nd (n=3-5 and ¥’nf (n=4-5) states are calculated and the excellent agreement with “microwave measurements” for
compared with other theoretical and experimental data irthe nd-nf intervals. The subtle features of alkali-metal spec-
Table IIl. Our calculation results are in good agreement withtra deviate from the hydrogenic one, because of factors like
the available data. Then the fine-structure functions of théhe polarization and penetration of the core by the Rydberg
1s’nd and 1°nf Rydberg series can be obtained based orelectron, which can be described as a quantum defect. There-
FCPC results. In Table IV the calculated fine-structure interfore the topic of absolute convergence for the quantum de-
vals of 1&nl (n=7-11)=d,f) states are compared with data fect by theR-matrix method deserves further study, which is
in the literature. Our calculations are all between the interbeyond the scope of the present paper and will be reported in
vals of hydrogenic theory3] and experimental data]. In  future.
particular the calculated fine-structure intervals ofnf
states agree with the intervals of hydrogenic theory very ACKNOWLEDGMENTS
well. Note that the experimental fine-structure interval of the This work was supported partially by the National High-
1s?10f state is 13.60 MHz which might be a misprint. Table Tech ICF Committee in China and the National Nature Sci-
V lists the calculated transition frequencies betweenriie ence Foundation of ChindGrants No. 10404017, No.
and nf levels (n=7-11) of the lithium atom based on our 10347114, and No. 101340110
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