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Lie-algebra contraction approach to problems of molecular symmetry: The double-potential-
minimum problem
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The applicability of an approach to the calculation of tunneling splittings in a one-dimensional potential with
symmetrically disposed minima is presented. The method is based on the concept of contraction of a Lie
algebrgdMol. Phys. 93, 441(1998], recently extended to encompass the case where more than one symmetry-
related minima is present. The method is validated against highly precise published calculations using other
approaches and also against the tunneling energy levels of lower inversion vibrational levelg. in NH
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[. INTRODUCTION ously published calculations, verifyor otherwise approxi-
mate limiting formulas reported in the literature, and apply
The calculation of the energy levels of a particle movingthe method to the familiar case of the ammonia molecule.
in a potential field possessing symmetry-related minima is a
venerable and classic problem of quantum mechanics, with
Hund probably the first to provide a qualitative description of
the one-dimensional cagé]. This system is illustrated in
Fig. 1. The quantitative solution to this problem is often pre- . . I
segnted as g standard application of tphe WentzeI—Krarl;ers- The gen_e_ral form_of a potential fur_1ct|on exh|t_)|t|ng sym-
Brillouin (WKB) method[2], although, as pointed out by metrical minima atx=zc, of the sort illustrated in Fig. 1,
Garg[3], the textbook exposition given by Landau and Lif- may be written
shitz[4] does not in fact provide a numerically correct for-
mulation. Other approaches of an essentially perturbation
character have been advanced by Rosen and Mdgke
Swalen and Ibergs], and Harmon;[?])j among others. ﬁﬁre where the coefficient of the linear terfx’—c?) in the Taylor

recently, the so-called “instanton” approach has been adapté§'1€S expansion dfis constrained to zero. By far the most
to provide splitting formulags,d). widely investigated case is limited to a quadratic term in

The accurate calculation of very small inversion splittings,(xz_cz) [14-17, although a few studies of the quadratic plus
has recently assumed renewed significance in the light dfiverted Gaussian form have been reported. In |, we showed
attempts to identify the origin of chiral preferences in natu-that the quartic Hamiltoniatwe setm=7=1 to yield unitless
rally occurring molecules such as amino acids. Factors sucgnergies to facilitate comparison with the results of others
as the electroweak interaction have been adduced and sophy¥orkers
ticated calculations carried out to demonstrate potentially
measurable energy splittings in suitable molec(iled. For
practical spectroscopists, the principal focus of many calcu-
lations has been the determination of the height of the energy
barrier separating the minima; however, as we shall demon-
strate below, this is not the most significant factor influencing
the magnitude of splittings.

We have recently shown that the concept of contraction of
a Lie algebra, first developed by Inéni and Wighkt] and
Saletan[12], may be extended to the case of multiple
symmetry-related minima by means of an appropriate many-
to-one variable transformatigiRef. [13], hereafter called)!
Resolution of states otherwise lost in this transformation is
accomplished by casting the original Hamiltonian to act
within manifolds of differing discrete symmetries before
transformation; after transformation, this leads to a different T
Hamiltonian for each manifold. While the basis of this
method was laid out in I, numerical results were not explored <
in detail. In the present work, we show that the method does
indeed provide a simple and accurate approach to the calcu- FIG. 1. General form of the potential energy discussed in this
lation of inversion splittings. We also compare with previ- work.

II. APPLICATION OF THE LIE ALGEBRA
CONTRACTION METHOD

V(x) = f(x? - c?), (1)

Potential energy

0 +c
Position
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1 d? 1,9 o0 TABLE |. Operator action matriceé\, for the Hamiltonians
H=—§d—xz+§(x -c9) 2 .
may be usefully reexpressed in terms of the variable Element Operator action
_ X2 - c? 3 Ann c(n+1/2)
N ) Ann-2 —1/2cyn(n-1)
i Ann-1 -1/Vcyn(nF1/2)
to yield the forms Aansa 1/ V‘JEE’(M 1)(2n+251/2)
d? 1/ d d _d A —-1/\c\(n+1)(n+2)(n+3)
th‘% c(——y2> +7<2—y— e _) . n.n+3 / \
dy? Vel dy’dy  dy

In Eg. (4), the two formsH. operate within manifolds of bined with standard operator actiofi9]. However, this is
states of even and odd parity ¥ respectively, thus accom- not the case; while such functions are orthonormal on the
modating this distinction that is otherwise lost in the two-to-interval (-, +), from the definition ofy in Eq. (3) we see
one mapping ofx onto y. The formH, arises from direct that its range is restricted o-3\cc, +%). Thus the matrix
transformation of Eq(2) according to Eq(3). The second elements of Eq(4) in the harmonic oscillator basis set would
form in Eq.(4) arises from allowing Eq.2) to operate within  have to account for this. This leads to very complex expres-
the manifold of odd parity, defined by functions of the form sions, and it is more convenient to acknowledge this fact at
xf(x?); after transformation, this yields_. Effectively, this  the outset and work with a more tractable nonorthonormal
corresponds to transformation of E@) by (1/x)Hx. This  set. We have chosen the closely related set
formulation therefore provides explicitly for the tunneling

s .. . na-y</2
splitting of such states as well as the anharmonicity associ- Iny = ye 5)
ated with a quartic or higher potential. Furthermore, it is
readily apparent from the dependence of Ed4) that both o ) ) )
splitting and anharmonic effects become negligible in theWVithin which operator actions are simply
limit of very largec (separation between the minimas we d _
would anticipate. If necessary, E@) may be further gener- yjn)=v(n+1)|n+1), —|ny=+vnjn—-1)—(n+1)|n+1).
alized by expansion d¥(y) in Eq. (1) as a Taylor series and dy
incorporating the coefficient of the leading termyfinto the (6)

usual scaling foy. a‘,’he general secular equation for the extraction of the eigen-

This approach may be contrasted with more convention values\ within a set of nonorthogonal basis functions reads
methods, where states from all symmetry manifolds must be

included in calculations to provide accurate results; the rea- |[H-S\|=0, (7)

son is, of course, that any recasting of the Hamiltoririn . )

a linear form centered around one or other minimum obWhere H;=(i|H[j) and the symmetrical overlap matr§;
scures the inversion symmetry. The second advantage of oii|i). This is readily reduced to a computationally more
transformation is that Eq4) provides a natural framework convenient form by noting that

for calculation within the well-knowrg(0,1) algebra, iso- o )

morphic with familiar harmonic oscillator algebis [18]. Hij = (iH[) = 2 ([Aglk =X SiAgorH=S-A. (8)
Since all operator effects in common Lie algebras are known, k k

it is unnecessary to derive them afresh for any particulain Eg. (8), A is the “operator action” matrix of the Hamil-
application. In I, we showed that the above process can btnianH in Eq. (4) on a suitable basis se$.is nonsingular
viewed as a contraction of the global symmetry of the har{since the basis functions are chosen to be linearly indepen-
monic oscillator(including inversion symmetjyonto the lo-  dend, so that Eq(7) reduces to

cal symmetry of the immediate neighborhoodbafth poten-

tial minima simultaneously. Effectively, this constitutes a [A-\1]=0, 9)
contraction of continuous elements of symmetry onto a poyith 1 the identity matrix. The complication of calculating
tential minimum combined with a many-to-one homomor-5yeriap integrals is thus avoided entirely, and the problem is
phic mapping of discrete elementimversion, exchange of requced to one of evaluating the operator action mahrix
identical particlesonto the identity. It is, of course, the con- ihis is straightforwardly accomplished using E6), and the

cept of contraction onto the local symmetry odiaglemini-  yegyits are listed in Table 1. Howeveh is not symmetric,
mum that underllles our intuitive understanding of m°|eCU|arnecessitating the computation of eigenvalues through less fa-
structure, enantiomeric forms, etc. miliar methods, as described below.

Numerical evaluation of the eigenvalues of H¢) re-
quires the identification of a suitable basis set and the corre-
sponding operator effects. At first sight, it might appear that
standard harmonic oscillatdnormalized Hermite polyno- An interactive program incorporating the analysis de-
mial times Gaussianfunctions ofy are appropriate, com- scribed above was written in Visual Basic. The program pro-

Ill. COMPUTATIONAL DETAILS
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TABLE II. Lowest two eigenvalues of Ed4) for various basis A number of approximate formulas, usually based on
sizes forc=10. All entries in cm’ relative ton,=0+. Vibrational  WKB or perturbation approaches, have been advanced for
levels labeled by inversion vibration quantum numbgand parity.  the calculation of tunneling splittings. However, there does
Observations weighted by experimental uncertainties. Referencgot seem to have been a systematic evaluation of these for-
[15] gives ~615.020 090 902 757 816 566 22 and mylas against exact numerical calculations. According to the
-615.020 090 902 757 816 565 01, respectively. recent review of Garg3], the splitting of the lowest pair of
levels in terms of our parameteris given by

N EO El 3/2
5/2,-c323

20 —-615.020 091 024 276 -615.020 090 894 909 AE«cte ' (10)
25 -615.020 090 941 919 -615.020 090 952915 This form differs slightly from that given by Garg], who
30 ~615.020 090 904 113 -615.020 090 905 460 defines the Hamiltonian to containd®dx? rather than
35 -615.020 090 902 744 -615.020 090 902 865 _%dZ/dXZ; moreover, we have eliminated the dependence on
40 —615.020 090 902 751 —615.020 090 902 756 other factorgsuch as magso facilitate comparison with the

' ' results of other authors. We have calculated the splitting us-
45 615020090 902 756 ~615.020 090902 757 ing our approach for various values@fand these results are
50 —-615.020 090 902 758 -615.020 090 902 758

listed in Table IIl. In Fig. 2, we show results determined with
the use of Eq(10) as a function of the true values calculated

. ) ) i . as above. As the splittings calculated cover a range of 11
vides for variable matrixbasis setsize; it also allows for a orders of magnitude, a log-log plot has been used. As may be
variety of potential forms and parameters, espeC|aIIy_ the QU3shserved, the correlation coefficie®? of this plot is
dratic of Eq.(2) and the harmonic oscillator+Gaussian bar-5 999 999 5 for values of2= 6. for which a trend line has
rier model. Routines for balancing and reducing the nonsympeen piotted; deviations at smaller valuescdfare clearly
metrical matrices and for the extraction of real elgenvalue%pparem in the inset of the figure. Evidently, then, the WKB
were adapted from thBORTRAN recipesBALANCE, ELMHES,  formylation provides an excellent description of very small
andHQR described in the standard work of Pressal. [20].  gpjittings, as expected, but cannot be applied to practical

Nonsymmetrical matrices may have complex eigenvaluegaseqsuch as that of Niidiscussed belowhere splittings
and care must be taken to avoid false identifications in anYre larger. A similar result comes from application of the

predicted results. For the purposes of determining the begtstanton model Eq2) [3,8,9.

values of parameters from the observed experimental data for

NH; as reported here, a standard iterative damped linear

least-squares fitting procedure was also implemented. Re- V. APPLICATION TO NH 3
sults are reported to the limit of double precision in machine
accuracy(approximately 15 significant figurgs

There is a large body of experimenf@1-24 and theo-
retical [2,7,25-29 work on the inversion doubling of the
IV. NUMERICAL RESULTS AND DISCUSSION vibrational levels of NH and its isotopic variants. Much of

_ this work has focused on the determination of the height of
In the first instance, the accuracy and performance of th'{_‘he barrier to inversion and to thab initio calculation of

apglrpﬁcz outI|r|1ted ;‘tb‘?Ve dwe_:ﬁ vg:ldatedthagdaln's; prevb'OUSIEwersion potentials capable of reproducing all observed
published results obtained with other methods. A NUMDEr Ofj4i5 |n the most recent investigations, Rajamaki, Miani, and

authors have calculated the eigenvalues of @.for the Halonen[29] calculated a full six-dimensional potential en-

equivalent ofc= .10 at increasing Ievels of precision, gnd we ergy surfacgcovering all vibrational modgsand were able
have chosen this value for initial testing. As shown in Table,

: ) to fit vibrational levels up to 4, for a range of isotopes with
II, the lowest two eigenvalues converge to machine accuracy average deviation of 4.64 ch These calculations con-

?r:_almatlrlﬁ dlmensuirr: Oc]; 5?; and no tshpllttlng |sddettetct<'t;1ble al’firmed the experimental evidence of extensive Fermi and Co-
this level. In our method, or course, the ground-state Wnnely, ¢ interactions, and are further complicated by coordinate
ing splitting between positive- and negative-parity states

I%{ R . . .
! . ependence of the reduced mass for the inversion vibrational
the difference between the lowest eigenvaluesfoandH_, P

. ) e normal mode. Bearing these factors in mind, we have at-
respectively. It is noteworthy that false sphttmgs are calcu-temloted to fit only the lowefn,< 1) vibrational levels for
lated gekl)ow c?nvergl;e[nc?.[These reSl}HtS ag][ee Wgh th())]se Pfhe five isotopic variants investigated, using a simple one-
sented by Balsat al.[14] [to 12 significant figure$SF's)], : . : A !
Arias de Saavedra and Buendisg] (16 SF'S, Witwit and dimensional potential expression; it must be emphasized

. ) again that this is unlikely to reproduce higher-order effects.
Killingbeck [17] (20 SF'9, and Hodgson and Varshfil5] We modify the Hamiltoniar(2) to feature explicitly the re-

(23 SF’9; moreover, the last of these confirmed that tunnel- . ;
ing splitting is not observable until the 21st SF. However, theduced masg and the two potential parameters described by

number of basis functions and the computation time require arg 3}
in our formulation are considerably smaller; the most accu- 1 d® Vyx2-c??
rate calculations of Hodgson and Varshib], for example, H=- Z&z o . (11

required 7-10 iterations of an infinite Taylor series expan-
sion, while Witwit and Killingbeck[17] required a 25th- Now the inversion barrier height i¥, and the limiting
order perturbation expression. single-well harmonic oscillator frequency i8V,/ uc?. The
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TABLE lll. Ground-state tunneling splitting for increasirg All entries in cm? relative ton,=0+. Vibrational levels labeled by
inversion vibration quantum numbep and parity. Observations weighted by experimental uncertainties.

C2

AE (this work)

AE [14]

AE [15] AE [16]

1 2.176 883 196 929 2.176 883 196 93 2.176 883 196 928 590
2 1.575 242 049 577 1.575 242 049 58

3 0.971 155 373 166

4 0.462 427 958 058 0.462 427 958 06

5 0.159 467 398 951 0.159 467 398 95 0.159 467 398 950 594 0.159 467 398 950 592
6 0.041 398 003 493

7 0.008 652 983 823 0.008 652 983 82

8 0.001 516 375 423

9 0.000 227 908 229

10 0.000 029 818 548 0.000 029 818 5 0.000 029 818 547 95
11 0.000 003 433 299

12 0.000 000 350 848

13 0.000 000 032 038

14 0.000 000 002 630

15 0.000 000 000 196 0.000 000 000 2 0.000 000 000 196 06
16 0.000 000 000 013

reduced masg is dependent on the masses of the hydrogeriound to be 1984 cit, with a standard deviation of 2 ¢
atoms,my, and nitrogen atomimy, as well as the angle  and the relative minimum separatianis 0.07211). Very
between the N-H bond and the threefold symmetry B3@: little improvement was found on extending the potential to
harmonic+Gaussian or any other form.

The most comparable analysis is the early work of Swalen
and Iberd 6], who fitted all observed levels of NHand ND;
with a harmonic oscillator+Gaussian barrier. They found a
It therefore varies during the inversion motion in a mannerpotential barrier of 2020 cm; for this same set of levels, we
that depends on the definition of the inversion coordinatefind a barrier of 2012 cit. More recently, Spirko and Krae-
For NH,;, for example u ranges between approximately 3.00 mer [32] have found isotope-dependent effective barriers
and 2.47 amu a¥ runs from 0° to 90°. However, for the varying between 2023 cth for NH; and 1946 crit for
simple fitting of the lower levels described here, we haveNT;, using the so-called nonrigid invertor Hamiltonian
fixed w at that calculated for the experimentally determined(where the N-H bond length varies during the inversion mo-

3my{my + 3my sirf(y-90°)}
w= :

12
my + 3my (12

equilibrium value[31] of y of 112.14°. With these limita-
tions in mind, we have found that the Hamiltoniéti) re-
produces the experimental data shown in Table IV with a rmgfixed N-H bond length figure of 1874 cri* [29]. The re-

deviation of 2.6 times the experimental

(weightings have been set at 0.1 ¢nfor the ground-state
splittings and 1 cmt for n,=1). The barrier height/, was

tion) [21]. High-level ab initio calculations have generally
predicted values within +100 crh of the rigid invertor

uncertaintiessults of the contracted Hamiltonian approach are very similar

to those found using other methods, clear assurance of the
validity of the approach in a practical sense.

30 q

[
L4
.

3
o
—_

FIG. 2. Log-log plot of the ground-state tun-
neling splitting calculated using the WKB for-
mula of Eqg.(10) as a function of the true values
of Table Ill. The correlation line shown is that for
all but the lowest four values; note the deviation
for large splittings at the lower end of the plot
shown in the inset.

y = 0.9249903009x + 1.0824076213
R? = 0.9999995413

- -
(=1 o
N N

o
s

- In(WKB predictted splitting)

-5 0 5 10 15 20 25 30
- In{calculated splitting)
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TABLE IV. Fitting of NH vibrational energy levels with Hamiltoniafi1). All entries in cm® relative ton,=0+. Vibrational levels
labeled by inversion vibration quantum numlmgrand parity. Observations weighted by experimental uncertainties.

Isotope n, Obs. Calc. Obs.-Calc. Weight
1NH, 0- 0.793 0.519 0.274 0.1
1NH, 1+ 932.43 930.76 1.67 1.0
14NH, 1- 968.12 963.53 4.59 1.0
1ND, 0- 0.050 0.021 0.029 0.1
¥ND, 1+ 745.60 748.58 -2.98 1.0
1ND, 1- 749.15 750.72 -1.57 1.0
5NH, 0- 0.760 0.494 0.266 0.1
15NH, 1+ 928.46 927.68 0.78 1.0
15NH, 1- 962.69 959.18 351 1.0
1NT, 0- 0.010 0.003 0.007 0.1
1NT, 1+ 656.37 658.14 -1.77 1.0
UNT, 1- 657.19 658.47 -1.28 1.0
5ND, 0- 0.050 0.019 0.031 0.1
5ND, 1+ 739.53 743.32 -3.79 1.0
5ND, 1- 742.78 745.26 -2.48 1.0
VI. DISCUSSION AND CONCLUSIONS an invariant subalgebra of the total algebra. It has been ob-

The results described above confirm that our approacﬁerved by a number of authors, however, that_ the same state-
based on a many-to-one homomorphic contraction of a Lid"€nt cannot be made about the corresponding subgroup of
algebra yields valid and practical results for the calculatiorfhe contracted grouf83,34). Second, it appears possible that
of energy levels arising from semirigid motions. The methodrecipes may be derivable for the determinatiomlbpossible
illuminates fundamental philosophical puzzleghere do the homomorphically contracted algebras of a given Lie algebra.
elements of global symmetry not apparent in the Born-This would allow, for example, the prediction of all possible
Oppenheimer picture of molecules go xo&s well as explic-  equilibrium symmetries derived from a given global symme-
itly revealing the origin of energy level splittings through Eq. try, and permit generalization of the many-to-one mapping
(4) and allowing for fast and accurate numerical calculationexemplified by[3]. While this may be done by inspection for
We have also verified the form of the WKB approximation simple systems, interest has recently focused on more exotic
for very small tunneling splittings, and we have further species such as the GHion, where possible equilibrium
shown that practical calculations such as the case of &l structures are less obviots Third, it would be useful to
easily accomplished. draw up simple and practical rules for the derivation of use-

A number of questions remain. First, the full mathemati-ful results such as nuclear spin statistical weights or spectro-
cal consequences and implications of the homomorphic corscopic selection rules akin to those of traditional rigid mol-
traction have yet to be explored. It may be that generalizaecule point group theory. Finally, it is not obvious whether
tions about the nature of the symmetry groups of moleculeghere are any unforeseen or novel issues relating to electron
exhibiting nonrigid motion can be drawn from the homomor-spin. The algebra of a single spin of 1/2, for example, is
phic mapping. The homomorphism theorem states, for exsu2) rather than the €8) of ordinary objects, and so it is
ample, that the kernel of the contractithose elements that possible that the contraction process will lead to different
map onto the identity of the contracted algebra and thereforeesults. These and other questions will be explored in future
do not appear explicitly in the rigid molecule pictuferms  work.
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