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The applicability of an approach to the calculation of tunneling splittings in a one-dimensional potential with
symmetrically disposed minima is presented. The method is based on the concept of contraction of a Lie
algebrafMol. Phys. 93, 441s1998dg, recently extended to encompass the case where more than one symmetry-
related minima is present. The method is validated against highly precise published calculations using other
approaches and also against the tunneling energy levels of lower inversion vibrational levels in NH3.

DOI: 10.1103/PhysRevA.71.042502 PACS numberssd: 33.15.Hp

I. INTRODUCTION

The calculation of the energy levels of a particle moving
in a potential field possessing symmetry-related minima is a
venerable and classic problem of quantum mechanics, with
Hund probably the first to provide a qualitative description of
the one-dimensional casef1g. This system is illustrated in
Fig. 1. The quantitative solution to this problem is often pre-
sented as a standard application of the Wentzel-Kramers-
Brillouin sWKBd method f2g, although, as pointed out by
Garg f3g, the textbook exposition given by Landau and Lif-
shitz f4g does not in fact provide a numerically correct for-
mulation. Other approaches of an essentially perturbation
character have been advanced by Rosen and Morsef5g,
Swalen and Ibersf6g, and Harmonyf7g, among others. More
recently, the so-called “instanton” approach has been adapted
to provide splitting formulasf8,9g.

The accurate calculation of very small inversion splittings
has recently assumed renewed significance in the light of
attempts to identify the origin of chiral preferences in natu-
rally occurring molecules such as amino acids. Factors such
as the electroweak interaction have been adduced and sophis-
ticated calculations carried out to demonstrate potentially
measurable energy splittings in suitable moleculesf10g. For
practical spectroscopists, the principal focus of many calcu-
lations has been the determination of the height of the energy
barrier separating the minima; however, as we shall demon-
strate below, this is not the most significant factor influencing
the magnitude of splittings.

We have recently shown that the concept of contraction of
a Lie algebra, first developed by Inönü and Wignerf11g and
Saletan f12g, may be extended to the case of multiple
symmetry-related minima by means of an appropriate many-
to-one variable transformationsRef. f13g, hereafter called Id.
Resolution of states otherwise lost in this transformation is
accomplished by casting the original Hamiltonian to act
within manifolds of differing discrete symmetries before
transformation; after transformation, this leads to a different
Hamiltonian for each manifold. While the basis of this
method was laid out in I, numerical results were not explored
in detail. In the present work, we show that the method does
indeed provide a simple and accurate approach to the calcu-
lation of inversion splittings. We also compare with previ-

ously published calculations, verifysor otherwised approxi-
mate limiting formulas reported in the literature, and apply
the method to the familiar case of the ammonia molecule.

II. APPLICATION OF THE LIE ALGEBRA
CONTRACTION METHOD

The general form of a potential function exhibiting sym-
metrical minima atx= ±c, of the sort illustrated in Fig. 1,
may be written

Vsxd = fsx2 − c2d, s1d

where the coefficient of the linear termsx2−c2d in the Taylor
series expansion off is constrained to zero. By far the most
widely investigated case is limited to a quadratic term in
sx2−c2d f14–17g, although a few studies of the quadratic plus
inverted Gaussian form have been reported. In I, we showed
that the quartic Hamiltonianswe setm="=1 to yield unitless
energies to facilitate comparison with the results of others
workersd

FIG. 1. General form of the potential energy discussed in this
work.
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H = − 1
2

d2

dx2 + 1
8sx2 − c2d2 s2d

may be usefully reexpressed in terms of the variable

y =
x2 − c2

2Îc
s3d

to yield the forms

H± = − 1
2HcS d2

dy2 − y2D +
1
Îc

S2
d

dy
y

d

dy
7

d

dy
DJ . s4d

In Eq. s4d, the two formsH± operate within manifolds of
states of even and odd parity inx, respectively, thus accom-
modating this distinction that is otherwise lost in the two-to-
one mapping ofx onto y. The form H+ arises from direct
transformation of Eq.s2d according to Eq.s3d. The second
form in Eq.s4d arises from allowing Eq.s2d to operate within
the manifold of odd parity, defined by functions of the form
xfsx2d; after transformation, this yieldsH−. Effectively, this
corresponds to transformation of Eq.s2d by s1/xdHx. This
formulation therefore provides explicitly for the tunneling
splitting of such states as well as the anharmonicity associ-
ated with a quartic or higher potential. Furthermore, it is
readily apparent from thec dependence of Eq.s4d that both
splitting and anharmonic effects become negligible in the
limit of very largec sseparation between the minimad, as we
would anticipate. If necessary, Eq.s4d may be further gener-
alized by expansion ofVsyd in Eq. s1d as a Taylor series and
incorporating the coefficient of the leading term iny2 into the
usual scaling fory.

This approach may be contrasted with more conventional
methods, where states from all symmetry manifolds must be
included in calculations to provide accurate results; the rea-
son is, of course, that any recasting of the Hamiltonians2d in
a linear form centered around one or other minimum ob-
scures the inversion symmetry. The second advantage of our
transformation is that Eq.s4d provides a natural framework
for calculation within the well-knowngs0,1d algebra, iso-
morphic with familiar harmonic oscillator algebrah4 f18g.
Since all operator effects in common Lie algebras are known,
it is unnecessary to derive them afresh for any particular
application. In I, we showed that the above process can be
viewed as a contraction of the global symmetry of the har-
monic oscillatorsincluding inversion symmetryd onto the lo-
cal symmetry of the immediate neighborhood ofbothpoten-
tial minima simultaneously. Effectively, this constitutes a
contraction of continuous elements of symmetry onto a po-
tential minimum combined with a many-to-one homomor-
phic mapping of discrete elementssinversion, exchange of
identical particlesd onto the identity. It is, of course, the con-
cept of contraction onto the local symmetry of asinglemini-
mum that underlies our intuitive understanding of molecular
structure, enantiomeric forms, etc.

Numerical evaluation of the eigenvalues of Eq.s4d re-
quires the identification of a suitable basis set and the corre-
sponding operator effects. At first sight, it might appear that
standard harmonic oscillatorsnormalized Hermite polyno-
mial times Gaussiand functions of y are appropriate, com-

bined with standard operator actionsf19g. However, this is
not the case; while such functions are orthonormal on the
interval s−` , +`d, from the definition ofy in Eq. s3d we see
that its range is restricted tos−1

2
Îcc, +`d. Thus the matrix

elements of Eq.s4d in the harmonic oscillator basis set would
have to account for this. This leads to very complex expres-
sions, and it is more convenient to acknowledge this fact at
the outset and work with a more tractable nonorthonormal
set. We have chosen the closely related set

unl =
yne−y2/2

În!
, s5d

within which operator actions are simply

yunl = Îsn + 1dun + 1l,
d

dy
unl = Înun − 1l − Îsn + 1dun + 1l.

s6d

The general secular equation for the extraction of the eigen-
valuesl within a set of nonorthogonal basis functions reads

uH − Slu = 0, s7d

where Hij =ki uHu jl and the symmetrical overlap matrixSij

=ki u jl. This is readily reduced to a computationally more
convenient form by noting that

Hij = ki uHu jl = o
k

ki uAkjukl = o
k

SikAkj or H = S ·A . s8d

In Eq. s8d, A is the “operator action” matrix of the Hamil-
tonianH in Eq. s4d on a suitable basis set.S is nonsingular
ssince the basis functions are chosen to be linearly indepen-
dentd, so that Eq.s7d reduces to

uA − l1u = 0, s9d

with 1 the identity matrix. The complication of calculating
overlap integrals is thus avoided entirely, and the problem is
reduced to one of evaluating the operator action matrixA;
this is straightforwardly accomplished using Eq.s6d, and the
results are listed in Table I. However,A is not symmetric,
necessitating the computation of eigenvalues through less fa-
miliar methods, as described below.

III. COMPUTATIONAL DETAILS

An interactive program incorporating the analysis de-
scribed above was written in Visual Basic. The program pro-

TABLE I. Operator action matricesA± for the Hamiltonians
s4d.

Element Operator action

An,n csn+1/2d
An,n−2 −1/2cÎnsn−1d
An,n−1 −1/ÎcÎnsn71/2d
An,n+1 1/ÎcÎsn+1ds2n+271/2d
An,n+3 −1/ÎcÎsn+1dsn+2dsn+3d
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vides for variable matrixsbasis setd size; it also allows for a
variety of potential forms and parameters, especially the qua-
dratic of Eq.s2d and the harmonic oscillator+Gaussian bar-
rier model. Routines for balancing and reducing the nonsym-
metrical matrices and for the extraction of real eigenvalues
were adapted from theFORTRAN recipesBALANCE, ELMHES,
andHQR described in the standard work of Presset al. f20g.
Nonsymmetrical matrices may have complex eigenvalues
and care must be taken to avoid false identifications in any
predicted results. For the purposes of determining the best
values of parameters from the observed experimental data for
NH3 as reported here, a standard iterative damped linear
least-squares fitting procedure was also implemented. Re-
sults are reported to the limit of double precision in machine
accuracysapproximately 15 significant figuresd.

IV. NUMERICAL RESULTS AND DISCUSSION

In the first instance, the accuracy and performance of the
approach outlined above were validated against previously
published results obtained with other methods. A number of
authors have calculated the eigenvalues of Eq.s2d for the
equivalent ofc=10 at increasing levels of precision, and we
have chosen this value for initial testing. As shown in Table
II, the lowest two eigenvalues converge to machine accuracy
at a matrix dimension of 50, and no splitting is detectable at
this level. In our method, of course, the ground-state tunnel-
ing splitting between positive- and negative-parity states is
the difference between the lowest eigenvalues forH+ andH−,
respectively. It is noteworthy that false splittings are calcu-
lated below convergence. These results agree with those pre-
sented by Balsaet al. f14g fto 12 significant figuressSF’sdg,
Arias de Saavedra and Buendiaf16g s16 SF’sd, Witwit and
Killingbeck f17g s20 SF’sd, and Hodgson and Varshnif15g
s23 SF’sd; moreover, the last of these confirmed that tunnel-
ing splitting is not observable until the 21st SF. However, the
number of basis functions and the computation time required
in our formulation are considerably smaller; the most accu-
rate calculations of Hodgson and Varshnif15g, for example,
required 7–10 iterations of an infinite Taylor series expan-
sion, while Witwit and Killingbeckf17g required a 25th-
order perturbation expression.

A number of approximate formulas, usually based on
WKB or perturbation approaches, have been advanced for
the calculation of tunneling splittings. However, there does
not seem to have been a systematic evaluation of these for-
mulas against exact numerical calculations. According to the
recent review of Gargf3g, the splitting of the lowest pair of
levels in terms of our parameterc is given by

DE ~ c5/2e−c3/2/3. s10d

This form differs slightly from that given by Gargf3g, who
defines the Hamiltonian to contain −d2/dx2 rather than
−1

2d2/dx2; moreover, we have eliminated the dependence on
other factorsssuch as massd to facilitate comparison with the
results of other authors. We have calculated the splitting us-
ing our approach for various values ofc, and these results are
listed in Table III. In Fig. 2, we show results determined with
the use of Eq.s10d as a function of the true values calculated
as above. As the splittings calculated cover a range of 11
orders of magnitude, a log-log plot has been used. As may be
observed, the correlation coefficientR2 of this plot is
0.999 999 5 for values ofc2ù6, for which a trend line has
been plotted; deviations at smaller values ofc2 are clearly
apparent in the inset of the figure. Evidently, then, the WKB
formulation provides an excellent description of very small
splittings, as expected, but cannot be applied to practical
casesssuch as that of NH3 discussed belowd where splittings
are larger. A similar result comes from application of the
instanton model Eq.s2d f3,8,9g.

V. APPLICATION TO NH 3

There is a large body of experimentalf21–24g and theo-
retical f2,7,25–29g work on the inversion doubling of the
vibrational levels of NH3 and its isotopic variants. Much of
this work has focused on the determination of the height of
the barrier to inversion and to theab initio calculation of
inversion potentials capable of reproducing all observed
data. In the most recent investigations, Rajamaki, Miani, and
Halonenf29g calculated a full six-dimensional potential en-
ergy surfacescovering all vibrational modesd and were able
to fit vibrational levels up to 4n2 for a range of isotopes with
an average deviation of 4.64 cm−1. These calculations con-
firmed the experimental evidence of extensive Fermi and Co-
riolis interactions, and are further complicated by coordinate
dependence of the reduced mass for the inversion vibrational
normal mode. Bearing these factors in mind, we have at-
tempted to fit only the lowersn2ø1d vibrational levels for
the five isotopic variants investigated, using a simple one-
dimensional potential expression; it must be emphasized
again that this is unlikely to reproduce higher-order effects.
We modify the Hamiltonians2d to feature explicitly the re-
duced massm and the two potential parameters described by
Garg f3g:

H = −
1

2m

d2

dx2 +
V0sx2 − c2d2

c4 . s11d

Now the inversion barrier height isV0, and the limiting
single-well harmonic oscillator frequency isÎ8V0/mc2. The

TABLE II. Lowest two eigenvalues of Eq.s4d for various basis
sizes forc=10. All entries in cm−1 relative ton2=0+. Vibrational
levels labeled by inversion vibration quantum numbern2 and parity.
Observations weighted by experimental uncertainties. Reference
f15g gives −615.020 090 902 757 816 566 22 and
−615.020 090 902 757 816 565 01, respectively.

N E0 E1

20 −615.020 091 024 276 −615.020 090 894 909

25 −615.020 090 941 919 −615.020 090 952 915

30 −615.020 090 904 113 −615.020 090 905 460

35 −615.020 090 902 744 −615.020 090 902 865

40 −615.020 090 902 751 −615.020 090 902 756

45 −615.020 090 902 756 −615.020 090 902 757

50 −615.020 090 902 758 −615.020 090 902 758
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reduced massm is dependent on the masses of the hydrogen
atoms,mH, and nitrogen atom,mN, as well as the angleg
between the N-H bond and the threefold symmetry axisf30g:

m =
3mHhmN + 3mH sin2sg − 90 °dj

mN + 3mH
. s12d

It therefore varies during the inversion motion in a manner
that depends on the definition of the inversion coordinate.
For NH3, for example,m ranges between approximately 3.00
and 2.47 amu asg runs from 0° to 90°. However, for the
simple fitting of the lower levels described here, we have
fixed m at that calculated for the experimentally determined
equilibrium valuef31g of g of 112.14°. With these limita-
tions in mind, we have found that the Hamiltonians11d re-
produces the experimental data shown in Table IV with a rms
deviation of 2.6 times the experimental uncertainties
sweightings have been set at 0.1 cm−1 for the ground-state
splittings and 1 cm−1 for n2=1d. The barrier heightV0 was

found to be 1984 cm−1, with a standard deviation of 2 cm−1,
and the relative minimum separationc is 0.0721s1d. Very
little improvement was found on extending the potential to
harmonic+Gaussian or any other form.

The most comparable analysis is the early work of Swalen
and Ibersf6g, who fitted all observed levels of NH3 and ND3
with a harmonic oscillator+Gaussian barrier. They found a
potential barrier of 2020 cm−1; for this same set of levels, we
find a barrier of 2012 cm−1. More recently, Spirko and Krae-
mer f32g have found isotope-dependent effective barriers
varying between 2023 cm−1 for NH3 and 1946 cm−1 for
NT3, using the so-called nonrigid invertor Hamiltonian
swhere the N-H bond length varies during the inversion mo-
tiond f21g. High-level ab initio calculations have generally
predicted values within ±100 cm−1 of the rigid invertor
sfixed N-H bond lengthd figure of 1874 cm−1 f29g. The re-
sults of the contracted Hamiltonian approach are very similar
to those found using other methods, clear assurance of the
validity of the approach in a practical sense.

TABLE III. Ground-state tunneling splitting for increasingc. All entries in cm−1 relative to n2=0+. Vibrational levels labeled by
inversion vibration quantum numbern2 and parity. Observations weighted by experimental uncertainties.

c2 DE sthis workd DE f14g DE f15g DE f16g

1 2.176 883 196 929 2.176 883 196 93 2.176 883 196 928 590

2 1.575 242 049 577 1.575 242 049 58

3 0.971 155 373 166

4 0.462 427 958 058 0.462 427 958 06

5 0.159 467 398 951 0.159 467 398 95 0.159 467 398 950 594 0.159 467 398 950 592

6 0.041 398 003 493

7 0.008 652 983 823 0.008 652 983 82

8 0.001 516 375 423

9 0.000 227 908 229

10 0.000 029 818 548 0.000 029 818 5 0.000 029 818 547 95

11 0.000 003 433 299

12 0.000 000 350 848

13 0.000 000 032 038

14 0.000 000 002 630

15 0.000 000 000 196 0.000 000 000 2 0.000 000 000 196 06

16 0.000 000 000 013

FIG. 2. Log-log plot of the ground-state tun-
neling splitting calculated using the WKB for-
mula of Eq.s10d as a function of the true values
of Table III. The correlation line shown is that for
all but the lowest four values; note the deviation
for large splittings at the lower end of the plot
shown in the inset.
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VI. DISCUSSION AND CONCLUSIONS

The results described above confirm that our approach
based on a many-to-one homomorphic contraction of a Lie
algebra yields valid and practical results for the calculation
of energy levels arising from semirigid motions. The method
illuminates fundamental philosophical puzzlesswhere do the
elements of global symmetry not apparent in the Born-
Oppenheimer picture of molecules go to?d, as well as explic-
itly revealing the origin of energy level splittings through Eq.
s4d and allowing for fast and accurate numerical calculation.
We have also verified the form of the WKB approximation
for very small tunneling splittings, and we have further
shown that practical calculations such as the case of NH3 are
easily accomplished.

A number of questions remain. First, the full mathemati-
cal consequences and implications of the homomorphic con-
traction have yet to be explored. It may be that generaliza-
tions about the nature of the symmetry groups of molecules
exhibiting nonrigid motion can be drawn from the homomor-
phic mapping. The homomorphism theorem states, for ex-
ample, that the kernel of the contractionsthose elements that
map onto the identity of the contracted algebra and therefore
do not appear explicitly in the rigid molecule pictured forms

an invariant subalgebra of the total algebra. It has been ob-
served by a number of authors, however, that the same state-
ment cannot be made about the corresponding subgroup of
the contracted groupf33,34g. Second, it appears possible that
recipes may be derivable for the determination ofall possible
homomorphically contracted algebras of a given Lie algebra.
This would allow, for example, the prediction of all possible
equilibrium symmetries derived from a given global symme-
try, and permit generalization of the many-to-one mapping
exemplified byf3g. While this may be done by inspection for
simple systems, interest has recently focused on more exotic
species such as the CH5

+ ion, where possible equilibrium
structures are less obvious.35 Third, it would be useful to
draw up simple and practical rules for the derivation of use-
ful results such as nuclear spin statistical weights or spectro-
scopic selection rules akin to those of traditional rigid mol-
ecule point group theory. Finally, it is not obvious whether
there are any unforeseen or novel issues relating to electron
spin. The algebra of a single spin of 1/2, for example, is
sus2d rather than the sos3d of ordinary objects, and so it is
possible that the contraction process will lead to different
results. These and other questions will be explored in future
work.
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