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The early study of SchwartgAnn. Phys.(N.Y.) 6, 156 (1959] led to an explicit expression for the
ground-state electron densipyr) of He-like atomic ions with nuclear charge in the limit of largeZ. Much
later, Gal, March, and NagyChem. Phys. Lett305 429 (1999] derived a third-order linear homogeneous
differential equation satisfied by the Schwartz limiting density. Our aim here has been to solve a still correlated
model more closely related to the He atom itself. Motivated by semiclassical s{adibg Handk¢Phys. Rev.
A 50, R3561(1994]), we have solved a fully quantal model in which the Coulomb repulsion eréfgy, of
the two electrons at separatiop, is expanded in a one-center form about the atomic nucleus and only the
s-wave term is retained. From the resulting analytical ground-state density, a differential equation has been
derived, which is contrasted with that satisfied by the ledieiting form of Schwartz. Suggestions are finally
made as to the way the density of the He atomic ion series may be characterized, the ionization p@gntial
being proposed as crucial input data.
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[— S =+ = Wy, rp) =EW(ry,ry).
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Since the advent of quantum mechanics some eight de-
cades ago, multifarious attempts have been made to solve the (2.3
Schrddinger equation for the ground state of the He atom. To
date, however, an exact solution has not been discovere@hus, as an example, fof>r, we have
Therefore, it is relevant background to the present analytical
considerations to note that, in semiclassical studies of the V2 V: oz z 1
above problem, some attention has been directed towards a |~ ~ 5 ~ "t W(ry,ry) =EW(ry,ry).

R o - r{ r, g
simplified Hamiltonian, as exemplified by the work of

Handke[1] (see also earlier references cited theta this 2.2
Hamiltonian[see Eq.(2.1) below for its explicit forni the
electron-electron Coulombic repulsion energy/r,, be-  Explicitly, this has the separable structure
tween the twdspin-compensatedlectrons at separation,
is approximated by the lowest-ordexwave-like) term in a vZ (Z-1) Vs Z
“one-center” expansion. B N W(ry,rp) =EW(ry,ry),

What is demonstrated here is that the resulting simplified ! 2
Hamiltonian is amenable to exact solution in terms of hydro- (2.3
genic functions. This solution is set out for the symmetric
spatial Schrodinger wave functiok(r ;,r») in Sec. Il below. SO the solution is of the form
From this, the ground-state electron density is derived. Sec-
tion 1l is concerned with the differential equation satisfied W(ry,ro) = eon(Z = 1,r)eom(Z,r2), (2.9
by this density. The limiting Schwartz form yields a third-
order linear homogeneous differential equation derived byhere ¢g,(Z,r) is an1=0 solution for the hydrogen atom.
Gél, March, and Nagy2], and in Sec. IV the equation is The energyE is then
compared and contrasted with the new differential equation
derived in the present study. Section V constitutes a sum- (z-1?2 Z2

i = —. 2.
mary plus some suggestions for future work. o ot (2.9
IIl. He SWAVE HAMILTONIAN: EXACT ANALYTICAL Forr,>r, we have then, of course,
SOLUTION FOR GROUND-STATE ELECTRON
DENSITY W(ry,ra) = eom(Z,r)eon(Z—1,rp). (2.6)

The Schrodinger equation of this model has the explicitTherefore the ground-state solutiGéymmetric and not nor-
form [1] (atomic units are used throughput malized is
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(z-1)3 |2 78|12 It follows that the ground-state density can be written
W(ry,rp) = exgd— (Z-1rq] P
Xexp(—Zry) (ri>ry)
3 |1/2 _1\3 [1/2
= [Z—] exp(— Zl’l){ -1 } p(ry) = f W(ry,r,)dr,
v a
rl
X -(z- > .
exf~ (2= Dra] (rz> 1), 27 = ¢5(Z - 1,r1)f At 505,(Z,1)dr,
r2=0
with energy + 91(Z,r) 4mtiee(Z = 1,rp)dr, (2.9)
r2=ri
Z2 (2-1)? 1
E:———u:—<zz+—)+z. (2.8) or
2 2 2
|
z-1?® 2 (" z z-1°% (7
p(ry) = z-1) exg-2(Z- 1)r1]—47rf riexp(— 2Zr,)dr, + —exp(- ZZrl)( ) 477J riexg— 2(Z - 1r,]dr,.
w T r2=0 m m r2=ri
(2.10
Explicitly, the ground-state densityinnormalizedlis therefore of the form
(z-1)° - Z8
p(ry) = exgd—2(Z-1)ryJ[1 - (1 +2Zry + 2Z°r))exp(— 2Zr,) ] + — exp(— 2Zry)exd— 2(Z - Dr,]
a
X[1+2Z-Dry+2Z-1)%r?). (2.11

A. Verification of Kato's theorem

p(r) = Agexp— 2(Z = Dr]+[As + Agr + Agr?]
One must have, at the nucleus, the electron-nuclear cusp xXexd-(4Z-2r]. (2.15
condition[3]

Settingr=0 in Eq.(2.14 and using Eq(2.13 plus the form

ap(r) of the coefficientsA; given in Table |, it is readily verified
o =-2Zp(r=0). (2.12 that Eq.(2.12) is obeyed.
r=0
B. Normalization of p(r) to two electrons

_From the(as-yet unnormalizeédorm (2.11), we find almost We next note that
immediately that

o, 275%(10 + 1622 - 257)

p(r:O):Z—. (2.13 0 5(72°- 162"+ 162°-82°+27) - 1
r

(2.19

Since we shall require the result below when we derive thesop(r) in Eq. (2.11) must be multiplied by 2C to normalize
differential equation satisfied by(r) in Eqg. (2.1, let us  to two electrons.
write the derivativedp(r)/dr explicitly as

TABLE |. CoefficientsA, in the ground-state densip(r) given

p'(r) = - 2(Z- DAy exp- 2(Z - Dr] in Eq. (2.19.
—(4Z - 2)[AL + Aor + AgrZlexd - (4Z - 2)r] Ag=(2-1)% =
+[A,+ 2A5r lexd - (4Z - 2)r], (2.149 A=[Z8-(z-1)%In

A=22(2-1)(22-1)I =
where the coefficientg\, are determined by rewriting Eq. Ag=27%(Z- 12/ =
(2.11) as
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0.18 TABLE II. PolynomialsP;s(r) in second-order differential equa-
016 1 f%b\ tion (4.2 for p(r) of the Hes-wave modef:

R Y AN
oiad § i\ Poc(r) =2ZAgr2+ 2(ZA— Ag)r — Ay
0.12 - kS Z=2 P1(r)=4Z(3Z-2)r?+4[Z(3Z-2)A,— 2(2Z- 1) A3lr +4[Z(3Z-2) A,
o0 1 % He s-wave model -(2Z2-1)A]

' —o— Hydrogenic limit Pos(1) =8Z(2Z-1)(Z- 1) Agr?+ 4[-2(Z - 1)(3Z- 1) Ag+2Z(Z~ 1)

X(2Z-1)As]r
+4[2Z(Z-1)(2Z2-1)A; - (3Z-1)(Z- 1) A+ (Z-1)A5]

*Note that coefficient#y; are entered in earlier Table I.
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00 05 10 15 20 25 30 35 40 The purpose of this section is to derive the differential
rau) equation satisfied by the exact ground-state dengity
FIG. 1. Plot of the ground-state densjifr) from Eq.(2.11) for given in Eq.(2.19 for thg Hes—wa_ve model. One straight-
Z=2. The hydrogenic density is shown for comparison, and the rolgorward way to proceed is to multiply E¢2.19 throughout
of screening is seen to be crucial. by 2(Z-1) and then to add the result to E&.14). One then
removes from the sum thereby obtained the term €@
—-1)r] and with it the coefficienf,. The explicit form then

C. Plots of p(r) for Z=2 and Z=92 found is
Figures 1 and 2 show plots ofp(r) versusr in atomic p' (1) +2(Z-1p(r) =[(2ZA, + Ay) + 2(ZA, + Ag)r
units (a.u) for Z=2 andZ=92, respectively. Of course, the + 27Ag?lex - 2(2Z - 1)r]

K-shell electrons in the uranium atom move quite fast, but
throughout we shall restrict ourselves entirely to properties (3.1
which follow from the nonrelativistic Schrodinger equation. \, iioivina both sid f Ea(3.1) b 2(27—1 d
Figure 1 compares the “Hewave” model ground-state den- di#elrre):r):tlirgin Oon; er:o?e th?a.; : izaldz, exi2( Jr]an
sity with the hydrogenic limit, both curves being normalized g y

such thatf{4mr%p(r)dr=2. Obviously, screening plays a ma-  exg2(2z - D)r{[p"(r) + 2Z-1)p’(r)] + 2(2Z - 1)[p’(r)

jor role. In contrast, aZ increases to 92, Figure 2 shows that B _

the hydrogenic density is graphically the same as for the +2AZ=-Dp(N]}=[2ZAr+ Ag) + 4ZAgT]. (3.2
He-like sequence with averaged electron-electron interactiorBringing the exponential factor in E¢B.2) back to the right-

as in Eq.(2.2). hand side, this can then be removed from the resulting equa-

tion by employing Eq.(3.1). The outcome is a differential
equation forp of the form=ZP;(r)p(r)=0 where theP;(r)
denote polynomials which are given explicitly in Table II.
Equation(3.2) is a central finding of the present study and
demonstrates that the ground-state density of the-iWave

5 Z=92
He s-wave model IV. RELATION TO THE LARGE- Z LIMIT OF DENSITY
4 —o— Hydrogenic limit
STUDIED BY SCHWARTZ

Schwartz[4] calculated the limiting density for largg,

Nagy|[2] derived the differential equation satisfied ) as
given by Schwartz. They obtained

od ¢ ' : . .."--...... ..... 0000000000 " " 4 =
0.00 0.02 0.04 0.06 0.08 0.10 P3L(N)p"(r) + Por(r)p"(r) + Py (r)p’(r) + P (r)p(r) =0,
r(a.u.) (4.1

FIG. 2. Nonrelativistic ground-state density for He-like Where the polynomials, (r) are recorded in Table IliL
“swave” model with Eq.(2.11) used forz=92. The result is now denoting the limit of large atomic numb&t
seen to be graphically indistinguishable from the hydrogenic limit-

ing density shown. trast the limiting result(4.1) for large Z with the (second-
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model satisfies a second-order linear homogeneous equation.

from Schrodinger’s equation, for the He atomic ion sequence
under discussion. Almost four decades later, Gal, March, and

Our objective in this section is now to compare and con-
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TABLE lIl. PolynomialsP; (r) in Eq.(4.1) as derived by Gékt 2.0
al. [2].
Pa(r)=—[9(Zr)2+36(Zr)3+40(Zr)*]/ 28 [ Y \
Poy (1) ==2[9(Zr) +54Zr)2+ 144 Zr)3+ 160Zr)*]/ 22 \J\O
P, (r)=2[9-138Zr)2-360Zr)3-400Zr)*]/Z 3 12 \)\ He?S_:Wive, model
PoL(r)=4[9+18(Zr) - 48(Zr)2~ 144Zr)*~ 160Zr)*] g —o— Hydrogenic limit
= 08
ordep differential equation(3.2) obtained here for the He-
atomic-ion ‘sswave” model. This result has the form 0s
Pas()p"(r) + P1(r)p’ (1) + Pos(Np(r) =0, (4.2)
wheres denotes the model employed in the present study. T | L -
make contact with Eq(4.1), we differentiate Eq(4.2) with o 2 4 & & 1
respect tar to find k (a.u.)
Pas()p"(r) + [P1s(r) + Pag(r)1p"(r) + [Pos(r) + P1g(r)]p’ () FIG. 3. X-ray scattering factof(k) derived from the density
+ P(') (Np(r)=0 (4.3 shown in Fig. 1 forz=2, using the Fourier transform relationship
< . .

(A1). The results of Egs(A2) and (A3) for small and largek,
The first point to emphasize is then the considerable similarrespectively, are indicated by the dashed lines.
ity in “shape” between Eqs4.1) and (4.3). In particular,
both are third-order, linear homogeneous differential equa-
tions for the grqund-stgte .denslbfr). Furt_hgrmore, in each V. SUMMARY AND FUTURE DIRECTIONS
case the density derivatives are multiplied by low-order
polynomials. While it seems natural in making further com-

parison to neglect orddtt/Z) “corrections” in the polyno- The mgjor results of the present study, based on the model
mials entering Eq(4.9), to compare with Eq(4.1), it must ~Hamiltonian(2.1), are

be borne in mind that higher values lpfthe orbital angular (i) the exact result2.19 for the nonrelativistic ground-
momentum quantum number, have been dropped from thétate electron denSity for arbitrary atomic numBefor the
one-center-like expansion ef/r,, in reaching Eq(4.3). He-like atomic ions sequence;

In this latter context, we recall the work of Hoffmann- (i) the recognition that, for ali, the exponential terms in
Ostenhof and Hoffmann-Ostenhd6] which writes the EQ.(2.15 are characterized by the ionization potentic)
asymptotic form ofp(r) at larger as given in Eq.(4.5); and

— (iii ) the considerable similarity of shape between the new
p(r) — Ar®exp(— 2y2Ir), (4.4

wherel is the ionization potential in units @f/ag, with r in

units of the Bohr radius,=7%2%/me?. Evidently in the present 2ol
He-like sswave model, it follows from Eq(2.8) that i
2
I(Z):% (4.5 1.6
Z=92
and thata=0. March and Pucdi6] have suggested that in . He 's-wave' model
the Schwartz limitx has a small negative value proportional 3 27 —°— Hydrogenic limit
to 1/Z, and this is evidently then a detail of some signifi- =
cance which is not captured by teavave model underlying = 0.8
Eq. (4.3.
In concluding this section, it may be worthy of note that

the density in Eq(2.16 for the Hes-wave model has two 0.4
exponentials with exponents characterized by the ionization
potentiall(Z) in Eq. (4.5), and this may be helpful in repre- ] ____
senting the density in the “true” He atomic ion sequence, 00- - T - T - T ——
though now presumably approximately. In the same context, 0 100 200 (au) 800 400 500

a in the asymptotic large-form (4.4) may perhaps also de-

pend, albeit weakly, on this ionization potential. It seems FiG. 4. X-ray scattering factof(k) derived from the density
worthy of note that the x-ray scattering factidk), the Fou-  shown in Fig. 2 foiz=92, using Eq(A1). Results of Eqs(A2) and
rier transform ofp(r), can also be characterized k) when  (A3) for small and large, respectively, are indicated by the dashed
we use the explicit forn§2.8), as shown in the Appendix. lines.
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differential equation for the ground-state density derived APPENDIX: X-RAY SCATTERING FACTOR

here for the model Hamiltonia(2.1) and that satisfied by the CORRESPONDING TO ELECTRON DENSITY IN Eg. (2.11)
Schwartz limit of largeZ recorded in Eq(4.1). The present
studies suggest that it should be useful for the future to Seellfa
a third-order, linear homogeneous differential equation for
the nonrelativistic ground-state density of the “true” He-like
atomic ions series. This, we suggest, may, at least approxi-
mately, lead to a density(r) which, for allr, may be char-
acterized by théexac) ionization potential (Z). The way«

in Eq. (4.4) also involvesl(Z), but now as a “correction,” (A1)
seems to be a further direction worth pursuing. In that coninserting Eq.(2.11) into Eq. (Al), the integration can be
text, it will be essential to include the term in the expan- performed analytically, but as the detail is considerable we
sion of €/r;, at least—namely, 43 coséy,/r? if r;>r,  shall merely plotf(k) versusk in Figs. 3 and 4 foZ=2 and
etc<> But new methods of solution must then be devised.Z=92. A series expansion dfk) gives

The x-ray scattering factoi(k) is defined as the Fourier
nsform of the electron densip(r) which, with spherical
symmetry, yields

f(k) = | p(rexplik - r)dr = 47 f e )S'”(kr) 2dr.

~ (1287* - 40178 + 4847% - 266Z + 56)
2(642° - 29275 + 5487* — 5417° + 296&7% - 852 + 10)

3 (51275 - 223&7° + 420@* - 43478 + 260Z% - 8557 + 120)

f(k) =2 2

16(256210 1936&7° + 6528 — 12927 + 1661&° — 1450%° + 8702Z* - 3542Z° + 93672 - 14%Z + 10) K+ 0()
(A2)
[

2 4

for smallk. Fork large, we have (k) = (g) . g(g) + Ol (A5)

00 — 167(327° - 807* + 80Z° - 4072 + 102 - 1) o smallk and

(1622 - 252 + 10)k* A .

+O(1/K5). (A3) fr(k) — 32(%) - 256(%) +O(1/K8) (AB)

For comparison, the scattering facthy(k) for the hydro-
genic case is

for largek.
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