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The early study of SchwartzfAnn. Phys. sN.Y.d 6, 156 s1959dg led to an explicit expression for the
ground-state electron densityrsrd of He-like atomic ions with nuclear chargeZe in the limit of largeZ. Much
later, Gál, March, and NagyfChem. Phys. Lett.305, 429 s1999dg derived a third-order linear homogeneous
differential equation satisfied by the Schwartz limiting density. Our aim here has been to solve a still correlated
model more closely related to the He atom itself. Motivated by semiclassical studies(as by HandkefPhys. Rev.
A 50, R3561s1994dg), we have solved a fully quantal model in which the Coulomb repulsion energye2/ r12 of
the two electrons at separationr12 is expanded in a one-center form about the atomic nucleus and only the
s-wave term is retained. From the resulting analytical ground-state density, a differential equation has been
derived, which is contrasted with that satisfied by the large-Z limiting form of Schwartz. Suggestions are finally
made as to the way the density of the He atomic ion series may be characterized, the ionization potentialIsZd
being proposed as crucial input data.
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I. BACKGROUND AND OUTLINE

Since the advent of quantum mechanics some eight de-
cades ago, multifarious attempts have been made to solve the
Schrödinger equation for the ground state of the He atom. To
date, however, an exact solution has not been discovered.
Therefore, it is relevant background to the present analytical
considerations to note that, in semiclassical studies of the
above problem, some attention has been directed towards a
simplified Hamiltonian, as exemplified by the work of
Handkef1g ssee also earlier references cited thered. In this
Hamiltonian fsee Eq.s2.1d below for its explicit formg the
electron-electron Coulombic repulsion energye2/ r12 be-
tween the twosspin-compensatedd electrons at separationr12
is approximated by the lowest-orderss-wave-liked term in a
“one-center” expansion.

What is demonstrated here is that the resulting simplified
Hamiltonian is amenable to exact solution in terms of hydro-
genic functions. This solution is set out for the symmetric
spatial Schrödinger wave functionCsr 1,r 2d in Sec. II below.
From this, the ground-state electron density is derived. Sec-
tion III is concerned with the differential equation satisfied
by this density. The limiting Schwartz form yields a third-
order linear homogeneous differential equation derived by
Gál, March, and Nagyf2g, and in Sec. IV the equation is
compared and contrasted with the new differential equation
derived in the present study. Section V constitutes a sum-
mary plus some suggestions for future work.

II. He s-WAVE HAMILTONIAN: EXACT ANALYTICAL
SOLUTION FOR GROUND-STATE ELECTRON

DENSITY

The Schrödinger equation of this model has the explicit
form f1g satomic units are used throughoutd

F−
¹1

2

2
−

¹2
2

2
−

Z

r1
−

Z

r2
+

1

r.
GCsr1,r2d = ECsr1,r2d.

s2.1d

Thus, as an example, forr1. r2 we have
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Explicitly, this has the separable structure
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so the solution is of the form

Csr1,r2d = w0nsZ − 1,r1dw0msZ,r2d, s2.4d

where w0nsZ,rd is an l =0 solution for the hydrogen atom.
The energyE is then

E = −
sZ − 1d2

2n2 −
Z2

2m2 . s2.5d

For r2. r1 we have then, of course,

Csr1,r2d = w0msZ,r1dw0nsZ − 1,r2d. s2.6d

Therefore the ground-state solutionssymmetric and not nor-
malizedd is
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Csr1,r2d = F sZ − 1d3
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It follows that the ground-state density can be written

rsr1d =E C2sr1,r2ddr 2
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or

rsr1d =
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Explicitly, the ground-state densitysunnormalizedd is therefore of the form

rsr1d =
sZ − 1d3

p
expf− 2sZ − 1dr1gf1 − s1 + 2Zr1 + 2Z2r1

2dexps− 2Zr1dg +
Z3

p
exps− 2Zr1dexpf− 2sZ − 1dr1g

3f1 + 2sZ − 1dr1 + 2sZ − 1d2r1
2g. s2.11d

A. Verification of Kato’s theorem

One must have, at the nucleus, the electron-nuclear cusp
condition f3g

U ]rsrd
]r

U
r=0

= − 2Zrsr = 0d. s2.12d

From thesas-yet unnormalizedd form s2.11d, we find almost
immediately that

rsr = 0d =
Z3

p
. s2.13d

Since we shall require the result below when we derive the
differential equation satisfied byrsrd in Eq. s2.11d, let us
write the derivative]rsrd /]r explicitly as

r8srd = − 2sZ − 1dA0 expf− 2sZ − 1drg

− s4Z − 2dfA1 + A2r + A3r
2gexpf− s4Z − 2drg

+ fA2 + 2A3rgexpf− s4Z − 2drg, s2.14d

where the coefficientsAi are determined by rewriting Eq.
s2.11d as

rsrd = A0 expf− 2sZ − 1drg + fA1 + A2r + A3r
2g

3expf− s4Z − 2drg. s2.15d

Settingr =0 in Eq.s2.14d and using Eq.s2.13d plus the form
of the coefficientsAi given in Table I, it is readily verified
that Eq.s2.12d is obeyed.

B. Normalization of r„r… to two electrons

We next note that

C =E
0

`

4pr2rsrddr =
2Z3s10 + 16Z2 − 25Zd

5s7Z5 − 16Z4 + 16Z3 − 8Z2 + 2Zd − 1
,

s2.16d

sorsrd in Eq. s2.11d must be multiplied by 2/C to normalize
to two electrons.

TABLE I. CoefficientsAi in the ground-state densityrsrd given
in Eq. s2.15d.

A0=sZ−1d3/p

A1=fZ3−sZ−1d3g /p

A2=2ZsZ−1ds2Z−1d /p

A3=2Z2sZ−1d2/p
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C. Plots of r„r… for Z=2 and Z=92

Figures 1 and 2 show plots ofr2rsrd versusr in atomic
units sa.u.d for Z=2 andZ=92, respectively. Of course, the
K-shell electrons in the uranium atom move quite fast, but
throughout we shall restrict ourselves entirely to properties
which follow from the nonrelativistic Schrödinger equation.
Figure 1 compares the “Hes-wave” model ground-state den-
sity with the hydrogenic limit, both curves being normalized
such thate0

`4pr2rsrddr=2. Obviously, screening plays a ma-
jor role. In contrast, asZ increases to 92, Figure 2 shows that
the hydrogenic density is graphically the same as for the
He-like sequence with averaged electron-electron interaction,
as in Eq.s2.1d.

III. DIFFERENTIAL EQUATION FOR GROUND-STATE
DENSITY r„r…

The purpose of this section is to derive the differential
equation satisfied by the exact ground-state densityrsrd
given in Eq.s2.15d for the Hes-wave model. One straight-
forward way to proceed is to multiply Eq.s2.15d throughout
by 2sZ−1d and then to add the result to Eq.s2.14d. One then
removes from the sum thereby obtained the term expf−2sZ
−1drg and with it the coefficientA0. The explicit form then
found is

r8srd + 2sZ − 1drsrd = fs2ZA1 + A2d + 2sZA2 + A3dr

+ 2ZA3r
2gexpf− 2s2Z − 1drg.

s3.1d

Multiplying both sides of Eq.s3.1d by expf2s2Z−1drg and
differentiating once more then yields

expf2s2Z − 1drghfr9srd + 2sZ − 1dr8srdg + 2s2Z − 1dfr8srd

+ 2sZ − 1drsrdgj = f2sZA2 + A3d + 4ZA3rg. s3.2d

Bringing the exponential factor in Eq.s3.2d back to the right-
hand side, this can then be removed from the resulting equa-
tion by employing Eq.s3.1d. The outcome is a differential
equation forr of the formoi=0

2 Pisrdrsidsrd=0 where thePisrd
denote polynomials which are given explicitly in Table II.

Equations3.2d is a central finding of the present study and
demonstrates that the ground-state density of the Hes-wave
model satisfies a second-order linear homogeneous equation.

IV. RELATION TO THE LARGE- Z LIMIT OF DENSITY
STUDIED BY SCHWARTZ

Schwartzf4g calculated the limiting density for largeZ,
from Schrödinger’s equation, for the He atomic ion sequence
under discussion. Almost four decades later, Gál, March, and
Nagy f2g derived the differential equation satisfied byrsrd as
given by Schwartz. They obtained

P3Lsrdr-srd + P2Lsrdr9srd + P1Lsrdr8srd + P0Lsrdrsrd = 0,

s4.1d

where the polynomialsPiLsrd are recorded in Table III,L
denoting the limit of large atomic numberZ.

Our objective in this section is now to compare and con-
trast the limiting results4.1d for large Z with the ssecond-

TABLE II. PolynomialsPissrd in second-order differential equa-
tion s4.2d for rsrd of the Hes-wave model.a

P2ssrd=2ZA3r
2+2sZA2−A3dr −A2

P1ssrd=4Zs3Z−2dr2+4fZs3Z−2dA2−2s2Z−1dA3gr +4fZs3Z−2dA1

−s2Z−1dA2g
P0ssrd=8Zs2Z−1dsZ−1dA3r

2+4f−2sZ−1ds3Z−1dA3+2ZsZ−1d
3s2Z−1dA2gr

+4f2ZsZ−1ds2Z−1dA1−s3Z−1dsZ−1dA2+sZ−1dA3g
aNote that coefficientsAi are entered in earlier Table I.

FIG. 1. Plot of the ground-state densityrsrd from Eq.s2.11d for
Z=2. The hydrogenic density is shown for comparison, and the role
of screening is seen to be crucial.

FIG. 2. Nonrelativistic ground-state density for He-like
“s-wave” model with Eq.s2.11d used forZ=92. The result is now
seen to be graphically indistinguishable from the hydrogenic limit-
ing density shown.
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orderd differential equations3.2d obtained here for the He-
atomic-ion “s-wave” model. This result has the form

P2ssrdr9srd + P1ssrdr8srd + P0ssrdrsrd = 0, s4.2d

wheres denotes the model employed in the present study. To
make contact with Eq.s4.1d, we differentiate Eq.s4.2d with
respect tor to find

P2ssrdr-srd + fP1ssrd + P2s8 srdgr9srd + fP0ssrd + P1s8 srdgr8srd

+ P0s8 srdrsrd = 0. s4.3d

The first point to emphasize is then the considerable similar-
ity in “shape” between Eqs.s4.1d and s4.3d. In particular,
both are third-order, linear homogeneous differential equa-
tions for the ground-state densityrsrd. Furthermore, in each
case the density derivatives are multiplied by low-order
polynomials. While it seems natural in making further com-
parison to neglect order-s1/Zd “corrections” in the polyno-
mials entering Eq.s4.3d, to compare with Eq.s4.1d, it must
be borne in mind that higher values ofl, the orbital angular
momentum quantum number, have been dropped from the
one-center-like expansion ofe2/ r12 in reaching Eq.s4.3d.

In this latter context, we recall the work of Hoffmann-
Ostenhof and Hoffmann-Ostenhoff5g which writes the
asymptotic form ofrsrd at larger as

rsrd → Ara exps− 2Î2Ir d, s4.4d

whereI is the ionization potential in units ofe2/a0, with r in
units of the Bohr radiusa0="2/me2. Evidently in the present
He-like s-wave model, it follows from Eq.s2.8d that

IsZd =
sZ − 1d2

2
s4.5d

and thata=0. March and Puccif6g have suggested that in
the Schwartz limita has a small negative value proportional
to 1/Z, and this is evidently then a detail of some signifi-
cance which is not captured by thes-wave model underlying
Eq. s4.3d.

In concluding this section, it may be worthy of note that
the density in Eq.s2.16d for the Hes-wave model has two
exponentials with exponents characterized by the ionization
potentialIsZd in Eq. s4.5d, and this may be helpful in repre-
senting the density in the “true” He atomic ion sequence,
though now presumably approximately. In the same context,
a in the asymptotic large-r form s4.4d may perhaps also de-
pend, albeit weakly, on this ionization potential. It seems
worthy of note that the x-ray scattering factorfskd, the Fou-
rier transform ofrsrd, can also be characterized byIsZd when
we use the explicit forms2.8d, as shown in the Appendix.

V. SUMMARY AND FUTURE DIRECTIONS

The major results of the present study, based on the model
Hamiltonians2.1d, are

sid the exact results2.15d for the nonrelativistic ground-
state electron density for arbitrary atomic numberZ for the
He-like atomic ions sequence;

sii d the recognition that, for allr, the exponential terms in
Eq. s2.15d are characterized by the ionization potentialIsZd
given in Eq.s4.5d; and

siii d the considerable similarity of shape between the new

TABLE III. PolynomialsPiLsrd in Eq. s4.1d as derived by Gálet
al. f2g.

P3Lsrd=−f9sZrd2+36sZrd3+40sZrd4g /Z3

P2Lsrd=−2f9sZrd+54sZrd2+144sZrd3+160sZrd4g /Z2

P1Lsrd=2f9−138sZrd2−360sZrd3−400sZrd4g /Z

P0Lsrd=4f9+18sZrd−48sZrd2−144sZrd3−160sZrd4g

FIG. 3. X-ray scattering factorfskd derived from the density
shown in Fig. 1 forZ=2, using the Fourier transform relationship
sA1d. The results of Eqs.sA2d and sA3d for small and largek,
respectively, are indicated by the dashed lines.

FIG. 4. X-ray scattering factorfskd derived from the density
shown in Fig. 2 forZ=92, using Eq.sA1d. Results of Eqs.sA2d and
sA3d for small and largek, respectively, are indicated by the dashed
lines.
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differential equation for the ground-state density derived
here for the model Hamiltonians2.1d and that satisfied by the
Schwartz limit of largeZ recorded in Eq.s4.1d. The present
studies suggest that it should be useful for the future to seek
a third-order, linear homogeneous differential equation for
the nonrelativistic ground-state density of the “true” He-like
atomic ions series. This, we suggest, may, at least approxi-
mately, lead to a densityrsrd which, for all r, may be char-
acterized by thesexactd ionization potentialIsZd. The waya
in Eq. s4.4d also involvesIsZd, but now as a “correction,”
seems to be a further direction worth pursuing. In that con-
text, it will be essential to include thep term in the expan-
sion of e2/ r12 at least—namely, −2r2 cosu12/ r1

2 if r1. r2,
etc.,. But new methods of solution must then be devised.

APPENDIX: X-RAY SCATTERING FACTOR
CORRESPONDING TO ELECTRON DENSITY IN Eq. (2.11)

The x-ray scattering factorfskd is defined as the Fourier
transform of the electron densityrsrd which, with spherical
symmetry, yields

fskd =E rsrdexpsik · r ddr = 4pE
0

`

rsrd
sinskrd

kr
r2dr.

sA1d

Inserting Eq.s2.11d into Eq. sA1d, the integration can be
performed analytically, but as the detail is considerable we
shall merely plotfskd versusk in Figs. 3 and 4 forZ=2 and
Z=92. A series expansion offskd gives

fskd . 2 −
s128Z4 − 401Z3 + 484Z2 − 266Z + 56d

2s64Z6 − 292Z5 + 548Z4 − 541Z3 + 296Z2 − 85Z + 10d
k2

+
3

16

s512Z6 − 2236Z5 + 4200Z4 − 4342Z3 + 2602Z2 − 855Z + 120d
s256Z10 − 1936Z9 + 6528Z8 − 12920Z7 + 16616Z6 − 14505Z5 + 8702Z4 − 3542Z3 + 936Z2 − 145Z + 10d

k4 + Osk6d

sA2d

for small k. For k large, we have

fskd → 16Zs32Z5 − 80Z4 + 80Z3 − 40Z2 + 10Z − 1d
s16Z2 − 25Z + 10dk4

+ Os1/k6d. sA3d

For comparison, the scattering factorfHskd for the hydro-
genic case is

fHskd =
32Z4

s4Z2 + k2d2 , sA4d

with the limiting forms

fHskd . 2 −S k

Z
D2

+
3

8
S k

Z
D4

+ Osk6d sA5d

for small k and

fHskd → 32SZ

k
D4

− 256SZ

k
D6

+ Os1/k8d sA6d

for largek.
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