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The well-known duality relating entangled states and noisy quantum channels is expressed in terms of a
channel keta pure state on a suitable tripartite system, which functions as a pre-probability allowing the
calculation of statistical correlations between, for example, the entrance and exit of a channel, once a frame-
work has been chosen so as to allow a consistent set of probabilities. In each framework the standard notions
of ordinary(classical information theory apply, and it makes sense to ask whether information of a particular
sort about one system is or is not present in another system. Quantum effects arise when a single pre-
probability is used to compute statistical correlations in different incompatible frameworks, and various con-
straints on the presence and absence of different kinds of information are expressed in a set of all-or-nothing
theorems which generalize or give a precise meaning to the concept of “no-cloning.” These theorems are used
to discuss the location of information in quantum channels modeled using a mixed-state environment, the
classical-quantum channels introduced by Holevo, and the location of information in the physical carriers of a
guantum code. It is proposed that both channel and entanglement problems be classified in terms of pure states
(functioning as pre-probabiliti¢son systems ofp=2 parts, with mixed bipartite entanglement and simple
noisy channels belonging to the categgy3, a five-qubit code to the categops6, etc., then by the
dimensions of the Hilbert spaces of the component parts, along with other criteria yet to be determined.
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I. INTRODUCTION noisy quantum channel using ghannel ket an entangled

Understanding entangled states and understanding tHR/re State on a suitable tripartite system; see Sec. Il C for the
properties of quantum channels are two central issues iR'€ciS€ definition. While this idea it least implicit in
quantum information theory. At least in a formal sense theyPrévious work, the main emphasis has been on the duality
are the same problem: the duality mapping one onto th etween a density operator describing a mlxed state of a
other has been discussed explicitly in recent widrk4] and ~ PiPartite system and what we here caliynamical operator
employed for various purposes in a much larger collection of !lowing [3], where the termdynamical matrixis used,
papers; sef5—10] for a few examples in addition to those in closely connected to the superoperator Qescrlplng the :'slcthn
the extensive bibliography if8]. The early work most often Of_ a 9uantum cha_nnel. The chann_el ket is o_btaln_eq _by puri-
cited is[11,12, though the basic idea is not complicated andfYing” the dynamical operator using @ossibly fictitious

has undoubtedly been rediscovered many times. Noneth&€férence system; in turn, the dynamical operator is a partial
less, one has the impression that this duality has yet to b&ace Over the projector corresponding to the channel ket.

fully exploited, and much more could be done to relate the his relationship is well known and frequently exploited in

concepts used in discussing entanglement and the large nu%i/e case of mixed entangled stafese, e.g., p. 110 ¢.9)).

. /hat is less well known is that there are certain advantages,
ber of propo_seq measures of entanglement to the |deas.e_ oth formal and conceptual, in using pure states rather than
ployed for thinking about quantum channels and the deflnl;go

i f i ¢ sorts of ch | itv. Perh or at least in addition fomixed states when discussing the
lons of many ditferent Sorts ol channel capacily. Fernaps g,atjon of quantum information—see Sec. IV—and thus oc-

barrier to its full utilization is the fact that this duality re- .o¢ions when a channel ket provides insights not directly
mains something of a mathematical abstraction whose coryyajlaple from a dynamical operator. It should be noted that
nection with more physical ideas has not been totally cleakne principal role of a channel ket is the same as that of a
One aim of the present paper is to relate this duality to congynamical operator or a density operator: it allows one to
cepts of quanturimformation To be sure, “information” as it calculate probabilities for various properties of a quantum
applies to the quantum domain is not at present a very presystem. These probabilities determine the statistical correla-
cise concept; the appropriate definitions remain the subjegions between events at different times that provide a physi-
of current research and occasional controv¢is}+18. The  ¢a| description of a quantum channel, just as the statistical
term is used here in the very broad sensetatistical cor-  correlations between separate quantum systems at a given
r6|ati0n, an idea familiar in classical phySiCS and ClaSSicalmoment of time provide a physica| description of entang|e_
information theory, which deserves to be better understooghent.
and more widely applied in the quantum domain. The remainder of this paper is structured in the following
The duality under discussion can be formulated in variougyay. After introducing some conventions on notation in Sec.
ways. One which seems particularly helpful characterizes § A  the basic map-ket duality is reviewed in Sec. Il B; our
treatment differs from previous ones mainly in maintaining
what we think is a helpful distinction between operators and
*Electronic address: rgrif@cmu.edu their matrices. Channel kets are defined in Sec. Il C, with
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some simple examples in Sec. II D. Brief remarks on thethe Hilbert spacet, of dimensiond,, with j taking values
inverse problem of turning entangled states into channels angetween 0 ana,—1. Two such base® and 77:{@)} are

found in Sec. INE. . called mutually unbiasedf
Quantum information in the sense of statistical correla-

tions is the topic of Sec. lll. Sample spaces and probabilities Y 1/v’d7,, (4)

for quantum systems are discussed in Sec. Il A and applied

to correlated systems in Il B. The notion pérticular types ~ "dependent of andk. _ L

of information about certain subsystems being present or ab- More generally, we shall be interested ipaijective de-

sent in other subsystems, which is central to our later discu2Mposition of the !dent|tkyf Hp, hereafter called a “decom-

sions, is introduced in Sec. Il C for entangled states and©Sition,” & collection{P*} of projectors summing to the

extended to quantum channels, where the ideas are velgentity I, and mutually orthogonal to each other,

similar modulo a partial transpose, in Sec. lll D. These defi- |=S Pk pkpl = 5 Pk 5)

nitions arequalitativeand do not depend upon any quantita- P = — T

tive measures of information. We believe, however, that once

correlations have been defined in a consistent manner, thefRecall that a projector is a Hermitian operator equal to its

is no barrier to using quantitative information measures, suclkquare, so its eigenvalues are 0 and\h confusion arises if

as Shannon’s mutual information; this should take care of th&he same symbaoP is used to denote an orthonormal basis

objections raised ifil4]. The point of view adopted here is {|p))} or the collection{[p']} of the corresponding projectors.

consistent with and an extension of that ir6]. Given an orthonormal basigal)} of H,, any ket|#) in
Following this, Sec. IV contains a set of “all-or-nothing” 7,, can be expanded in the form

theorems that apply to qualitative aspects of information. _ _

These theorems have a number of interesting consequences, ly) =) |y ® |81, (6)

some of which are discussed in Sec. V, where they are ap- j

plied to two special types of quantum channels—mixed—statgvhere|ﬁj>:<aj | ) is uniquely determined biy) and |a). If

environment and “CQ”" channels—and to the problem of thethe{|Bj>} are mutually orthogonal, we shall céf) a Schmidt

location of information in quantum codes. In Sec. VI we ; . L )
. . - expansion and sometimes write it in the alternative form
propose a scheme, at present rather tentative, for classifying

both entanglement and channel problems in terms of pure- ) =3 V’E\aj> ® |bj>’ 7)
state entanglement gmpart systems. i

The conclusion, Sec. VIl has both a summary and a list of _ )
open problems. Appendix A contains the proofs of the theoWith the {[b))} an orthonormal basis df,, and thep; sum-
rems of Sec. IV and ApperxiB a particular result on bipar- Ming to 1 when|y) is normalized{|¢)=1. By thesupport

tite entangled kets used in Appendix A. of an operatoA we shall mean the smallest projec®such
that
II. MAP-KET DUALITY AND CHANNEL KETS PAP=A, (8)
A. Notation

or the subspac® onto which thisP projects. Theank of A
We shall use subscripts,b,c, etc., and sometimes num- is the trace ofP, or the dimension ofP, or the number of

bers, to label different subsystems of a system with severdlonzero(positive eigenvalues ofA'A, or the rank of the

parts. The Hilbert spack, is associated with systes, the ~ matrix representing.

tensor product

Hap=Ha® Hy, (1) B. Maps and kets
with the combined systerf,, consisting ofS, and S, and Given any linear magM:H,— Hy, and an orthonormal
so forth. For a kety) € Hapc We use the notation basis.A={|a))} of H,, one can define a corresponding ket
=[] =)y, (2 |¢>:2 lay) ® Mlay) (9)
where the square brackets distinguish a dyad from other )
types of operator. Partial traces are denoted by on the tensor produdt ,,. Conversely, given such a ket, one
_ _ _ can always expand it in the forii®) using the basis4 and
Pap=Tre(¥h),  a=Trp(thap) = Trupe(h), (3 define a magM by

and so forth, both for dyads and other operators. Operators

. . Mla) =B, (10
on the Hilbert spacé{, themselves form a Hilbert spaté,,
with inner produciA,A’)=Tr(ATA"). and its extension to all of{, by linearity. These two formu-
Because the subscript position is used to label(thd- 1as define thenap-ket dualityused throughout the rest of this
)system, indices are often written as superscripts in circumPaper. _ _ _
stances in which they are not likely to be confused with The duality depends, obviously, on the choice of ortho-
exponents. Thu®={|p)} denotes amrthonormal basior ~ normal basisA; given a different choiced={[a’)}, a given
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FIG. 1. Circuit illustrating magV - ket |¢4) duality. FIG. 3. Circuit for visualizing the channel ki)

map will lead to a different ket and vice versa. For those wh
(like the authoy prefer to write formulas whenever possible
in basis-independent form, this dependence is somewhat al
noying. One can get around it, as[i4 3], by always using a
single basis. We prefer to maintain the usual distinction be
tween operators and matrices. The price for doing this is not’
exorbitant, because the basis dependence can always be
pressed in terms of a suitable unitary transformatiori-fgn
And if one is primarily concerned with concepts which are
invariant under local unitariesmeaning unitary operations — . .
which are tensor products of unitaries on individual sub- \’da|‘1'>=2 &) ® V|a') & Ha @ Hyy, (13
systems, such basis dependence is not intolerable. !

A way of visualizing the relationship betwe¢p) andM, using an orthonormal basig¢={|al)} of H,. The normaliza-
and for understanding the ambiguity associated with th‘?ion ['7||=1 is of no great importance—which is Wh&T is
cho@ce of basis, is indicated by the circuit in Fig. 1, Whereplaced on the left side of this equation—but does éimplify
|¢) is a fully entangled state certain formulas. Notice tha¥) is a pure state on a tripartite

) =2 |a) @ o)) (11  Svstem.
j

0dif“ferent, but equally important permits a distinct label. It is
ﬁgmetimes useful to assume that the environment is initially
In a mixed, rather than a pure stdtme Sec. V A but there

is no loss in generality in assuming a pure staf, since a
ixed state can always be purified by introducing an auxil-
ry system, which can then be thought of as parSof
Thechannel ket¥) e H,,; is defined as the ket dual ¥

in the sense of Sec. Il B,

The channel ket can be visualized using Fig. 3, the obvi-
ous analog of Fig. 1, as obtained by transmitting $f)eart
on the systen,® H,, H, is an auxiliary Hilbert space of of the fully entangled statél1) through the channel, while
the same dimension of{,, and M[v))=[8)), as in (10).  preserving theS, part unchanged. It is important to distin-
Choosing a different fully-entangled state in place(df)  guish thedefinition of the channel ket, given if13), from
would result in a different relationship betwe&hand|#);  this visualization, in thaf¥) is a mathematical object which
this is precisely the ambiguity previously discussed, and profunctions as a pre-probability, used to calculate probabilities
vides a good way of analyzing it. of various events or processes associated with the channel, as
discussed in Sec. Ill, quite apart from whether the channel is
being used in the manner just described.
C. Channel kets and superoperators Following the notation of Sec. Il A, the symb# denotes
We adopt the following by now fairly standard model for the dyad/¥)(¥|, and subscripts are used to indicate its par-
a noisy quantum channel. A unitary time transformation tial traces. Of particular importance is tdgnamical opera-
maps the tensor produt, of the Hilbert spacé{, of the  tor
channel entranceS, and the spacé{, of the (initial) envi- R
ronmentS,, at some initial time toH,=H,® H;, corre- Ri= W, = Tri(¥) € Hap, (14)
sponding to thechannel exitor output S, and environment
St, at some later time, Fig. 2. Initially the environment is in which corresponds to the dynamical matrix defined 3
afixedpure statge®), whereas the initial state of the channel (apart from the ordeab as againsba); the latter isR with a
is arbitrary, not fixed in advance. Becaus®) is fixed, the  particular choice of basis. Sinck is a positive operator, so
only relevant effect of the unitary operat®ris that embod- is R, and given the normalization if13), R has unit trace. In
ied in the isometry: H,— Hy defined by addition, becaus¥ is an isometry,

Via) =T(la) ® [e%) (12 R,=Try(R) =W, = 1,/d,. (15)

and shown schematically in the second part of Fig. 2. Ofte
H, and H,, are identified with each other, arid, with ;.
Maintaining the distinction both allows for the possibility,
sometimes useful, that the dimensionsHof and H,, may be

ThusR is a density operator for the bipartite systéify,
with the special property thak, is proportional to the iden-
tity. Hence whatever intuition one possesses for mixed states
on bipartite systems can at once be applieR;te.g., one can
ask if it is separable and, if not, how entangled it is according
to any of the numerous measures of mixed-state entangle-
ment, etc.
But in addition,R completely determines the properties
FIG. 2. Quantum channel using a unitary transformaffoor ~ Of the noisy quantum channel—that is, the channel
isometryV. superoperator—up to a unitary transformation of the channel

o) — —b la) —b

le%)

— f —f
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input H, corresponding to different choices for the basisbasis. Despite their close relationshipandR are very dif-

used in the definitior(13). The channel superoperatdris  ferent types of operators; the latter is positive, and the

the map frorn’}t[a to f{b defined by former, while it is Hermitian, will typically have negative as
well as positive eigenvalues.

The superoperator is a map fronH, to H,, so it can be
represented as a matrix once orthonormal operator bases
have been defined for these two spaces. There are many
ways of choosmg such bases, but one that is particularly

convenient wherH and Hb are qubits is thePauli repre-
|¥) = |k @ | ') € Hap® Hy. (17)  sentationusing{c'}, with j=0 the identity and=1,2,3 the
l X, y, andz Pauli matrices in the standard baS|s7®g and
similarly {o},}. Expanding the transition operat@ in the
Pauli form—see the examples in Sec. || D—often provides a
clearer notion of what a noisy channel “does” than is evident
by looking at the Kraus operators. There are various ways of
\,rd:|,<l> => laly ® Kj|al), (18) generalizing this representation to higher-dimensional
j spaces. For the case of a channel superoperator there is some
advantage to using a basis of Hermitian operators, rather
than unitaries as if20], because the resulting matrix is real.

f the basis is again denoted Ky}, with 0<j=<d?-1 for a
d-dimensional Hilbert space, one can again ¢8tbe the
V(A) = >, KAK]. (19)  identity, so that the orthogonality condition

|

V(A) = Try( VAV (16)

for any operatoA in 7:(a. To explore howy is related taR, it
is helpful to choose an orthonormal bagig)} for #; and
expand V) as

We shall refer to the expansion coefficiefs')} as Kraus
kets in that they can, using the duality introduced in Sec.
[l B, be turned into maps

where theK, are the usual Kraus operators, labeled by sub-
scripts as is the usual convention. They can be used to e
press the channel superoperator in the familiar form

Tr(elo) = Sy d (24
The usual normalizatiorE,Ker,:Ia is the counterpart of ,
(15). implies thato? for j >0 has zero trace—this makes it easy to

The K, no |0nger depend upon the arbitrary choice oftake partial traces of operators written in Pauli form.
basis{|al)} used in defining¥), as this dependence is un-
done when kets are changed to mapsing the same basis D. Examples of one qubit channels
in (18), but they do depend upon the choice of bd$is}.
One can eliminate, ofin degenerate caseat least mitigate
this arbitrariness by makin¢l7) a Schmidt expansion, so
that the{|«')} are orthogonal to one another or, equivalently,

We use the names for one qubit channels employed in
Sec. 8.3 0f 19], but employp in a way which identifies it as
the probability of an error. The channel kets are sums of
terms of the formjab) ® |f), wherea andb are either 0 or 1,
TraK/K) =0 forl #m. (20)  butf sometimes takes larger values.

The bit flip channel is described by
In that case the number of nonzero terms(irY), which

could be called th&raus rankof the channel superoperator, \E|\1r) =v1-p(|00) +|11) ® |0) + \,'E(|01> +|10) ® |1),

is the rank(in the ordinary sengeof the dynamical operator
R=v¥ (25)
- Yab
Combining(17) and(18), one obtains the expression leading to a transition operator
R=W,= > [«]= E lal)ak ® 2 K |al)(@K] 4Q=1+orop+ (1 - 2p)[ oot + oo0t] (26)
| aj k

in the Pauli representation. The dynamical oper&as the

(21)  same except for a minus sign multiplying the teerfo?,
for R, and from it another formula reflecting the fact thad¥ changes sign when transposed.
For the amplitude damping channel the corresponding ex-
V(A) =Tr[(A® Q] (220 pressions are

for the channel superoperator in terms of thensition op- B — 1 -
erator Q, the partial transpose V2[¥)=N1-p(j00) +[11) ® [0} + VP10 @ [1), (27)
Q=R™= —E lakyal| ® Z Kila) @K e Hap (29) 4Q =1+ pop + 1 - p(ogoy; + oa0p) + (1 - p)ogop.

daj k (28)
of the dynamical operator with respect to the bagls
={|al)}. Once again, by using this same basis a second timé,
its effect in defining W) has been undone, ai@lis indepen- 21W) =2 = 3p(100) + |11)) ® |0) + Vp(l00) = |11)) ® |1
dent of the basis, consistent with the fact that the superop- ¥y =1 — (100 +[12) ® |0+ V(00 ~[11) @ 1)
erator) in (22) also does not depend upon the choice of +2p(|0D) ® [2) +|10) ® |3)), (29

A depolarizing channel requires a larger environment:
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4Q=1+(1-2p)(oro+ o2l + o0y). (30) mation in that its symbols are correlated with those in the
] . i i ) key used to encrypt or decrypt it. Shannon’s information
Again, the dynamical operatét is obtained by changing the theory provides numerical measures for these statistical cor-
sign of o507, relations, which apply to quantum as well as to classical
systemgwhich, of course, are in fact quantum mechanical
E. From entangled states to channels when probabilities have been properly defined.
. , _ Standard probability theorj21-23 is based on the idea
_As shown in Sec. I C, any noisy channel modeled as inyt 4 sample spacef mutually exclusive properties. A quan-
Fig. 2 can be mapped onto an equivalent entangledet ;1) sample space drameworkcan be constructed using the
on a tripartite system and thence onto a density operatqf,ally exclusive properties associated with a decomposi-
whose partial transpose determines the channel superopetas,, of the identity(Sec. 11 A) of the Hilbert space used to

tor. Can one do the reverse, starting with a tripartite[#8t  yescribe the system. Given such a sample space one can
ora bipartite density operatcR_. Yes, aside _from_the condi- assign probabilities using the standard formula
tion thatW¥, (or R,) be proportional to the identity operator

I. But if this is not true, can one still turn an entanglement P = (P¥) = (P = Tr(P*p), (31)
problem into a channel problem.There are at least two ap- . .
proaches, each with advantages and disadvantages. Where the quantum system is assumgd to be described by a
The first is to begin with a unitary operator or isometry asket |‘/’>. or 'densny operqtorp funct|on|ng as apre-
in Fig. 2, but then instead of “throwing away” the environ- probablllty—l_._e_., as a device for ger_1erat|ng probqbllltles
ment ’apply a projectof to this part of the output, and [24]. Probabilities in quantum mechanics are often discussed
condition on the resulting state. One can think of this adh terms ofmeasuremgni;wmch.prowde a good approach o
carrying out a measurement &ty that determines whethér understandmg them in operational terms, even though itis
is true or false and throwing away the results of all experi-rather unsatisfactory from a fundamental perspedtive in-

ments in which it is false. The consequence of an appropri]famous measurement problem;” see, €.8A)). For present

ately chosen “post-selection” of this type will be a set of purposes such measurements should be thought mfeas

(conditiona) probabilities that correspond to those of the projective measurementwhlch reveal the(mmrosqopn} L
original ket or density operator: in other words, one obtaingroperties they are designed to measure; see the discussion in

o haps. 17 and 18 df24]. We shall have no need of more
the same pre-probability—see Sec. Il below. The seconé: .
approach is based on Fig. 3, and the idea is to replace t mplicated concepts such as POVRKege, e.g., p. 90 of

fully entangled ¢) with a different entangled state, chosen so 9), or Chap 7 0f26)). From time to time_there have be?ﬁ‘
¢, is no longer proportional to,, but toW, (or R,) proposals to introduce nonstandard notions of probability
a ar a .

The question remains as to whether either of these procé'jto quantum mechanics, but these have not proven very suc-

dures is worthwhile, and that depends on one’s goals. Rath&essmL and we shall ngt use them. . .
In quantum mechanics, in contrast to classical physics,

han turning entanglement problems into channel problem . . . : .
than turning entanglement problems into channel proble ne is typically interested in a variety of sample spaces that

S
it may be simpler to do the reverse, as in the classificatiorﬁj . ) . ot

scheme proposed in Sec. VI. This allows the mathematical' © incompatible with each other, but WhOS.G. probabilities can
structure of the two types of problem to be compared. If, on"’lII be generated from a single pre-probability. For example,

the other hand, there is quite a bit of useful mathematical an}Q’h.at is the pr'oba.bility tha = +1/2, orthat.SZ=—1/2, for a
physical intuition to be wrung from contemplating how spin-half particle¢, The same ket or density operator may be

quantum systems develop in time, the approaches mention Ed. to answer these_z guestions by ‘”SerFi”Q different projec-
in the previous paragraph may be worthwhile. Until the ors in(31), but there is no way of combining the answers to

. ke them refer to a single physical system, as it makes no
channel-entanglement duality has been more thoroughly e = 7
plored, it is hard to say which approach is best. In any cas ense to talk abouB=+1/2 AND 5,=-1/2 or any other

there are significant entanglement problems that map in g[cal combinatio'n. of proposit?ons gssociated Wi.th incom-
simple way onto channel problems, and a study of what enpatlble decomp_osmons of the 'de'.“_'W whose projectors do
tanglement does and does not me:':m in such cases might 8t commute with each other. Traditional textbooks state that

andS, cannot be simultaneoustyeasuredwhich is cor-
very helpful. - . .
rect. But the reason such joint measurements are impossible
in a quantum world is that the combined propertiks not
I1l. QUANTUM INFORMATION exist such a combination is incompatible with the math-
ematical structure of the quantum Hilbert spé&see Chap. 4
of [24]). Treating incompatible sample spaces as if they were
The basic concept of “information” used in the following compatible and combining the probabilities of one with the
discussion is that of atatistical correlation This morning’s  other is the same sort of mistake as ignoring the difference
newspaper contains information because the symbols atgetweenxp and px when these symbols refer to quantum
correlated in an appropriate way with yesterday’s events. Ineperators.
formation is contained in a photon traveling down an optical Consequently, one must be careful when givinzhgsical
fiber because its properties are correlated with whatever pranterpretation to the variousiathematicalconstraints, such
duced it, and with the effects produced by the further pro-as those in Sec. IV, relating probabilities on different incom-
cesses it will undergo. An encrypted message contains infopatible sample spaces generated by a single pre-probability.

A. Sample spaces and probabilities
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They cannot refer to a single quantum system, as it cannot bealues play no role, so the language of decompositions tends
simultaneously described by incompatible frameworks. Into be clearer than that referring to observables.
stead, one must take a counterfactual approach: “This is what
happens when a qubit initially in staj@) is sent through the
channel,but if instead it had beeim the state(|0)+|1))/2,
then...” To be sure, counterfactuals can themselves produce Because of the multiplicity of incompatible quantum
headaches in quantum theory if improperly used; for a consample spaces, one needs to identify diffetgpesor vari-
sistent approach, see Chap. 1924]. Alternatively, one can etiesof information potentially available about a particular
imagine different experiments carried out on an array ofsystem. Given a decompositioda={A'} of I,, we shall say
nominally identical systems. that the A information aboutS, is present or perfectly
In comparison with classical physics, the new and unfafresentin another systensy, for a given pre-probability pro-
miliar element in quantum information theory is the multi- vided there exists a decompositiéi+{B*} of I, such that
plicity of incompatible sample spaces and probability distri- : :
butions associated with them, even when one is using a <AjBk>:5jk<AJ>:5jk<Bk>’ (39
single pre-probability. Finding good ways to think about thiswhere one may have to renumber the projectors in one of the
is a fundamental problem, perhaps the fundamental problengollections to satisfy this condition. A little thought will
of quantum information and thus a major challenge to ourshow that the first equality implies the second. The symmetry
understanding the world in quantum terms. of the definition implies that when some type of information
aboutS, is available inS,, there is also some type of infor-
mation aboutS, available inS,. Although we shall not make
use of it in this paper, it is worth mentioning that the
Consider two systems, and Sy, with Hilbert spaces{,  Shannon mutual informationl(A:8) in this case is
and H,, and let{Al} and{B"} be decompositions of the re- (-=;p; log p)) with p;=(A)).
spective identitiesl, an_d I, On the_ tensor product,, . If the A information aboutS, is present inS, (in the
=Ha®H,, used to describe the combined systems the projecsense just definedor every decomposition of ,, we shall
tors {A/B"} form a decomposition of, and thus a sample g5y thatall the (quantum information aboutS, is in S,
space, to which probabilities may be assigned aSi: Clearly it suffices to check this for every orthonormal basis
PrA,BY) = (AIBY = TI[(A © BYp], (32) {|al)}. Less obviougtheorem 4 in Sec. IYis the fac_t that
one need not check them all: two properly chosen incompat-
with p=[¢)(y]| for a pure statgy). The marginal distributions  ible bases suffice. We shall say th& and S, areinforma-
_ _— . tionally equivalentwhen all information abous, is in S,
Pr(A)) = X, P(A,BY) = (A)), and all information abous,, is in S,.
K The A={A'} information aboutS, is (completely absent
from S, providedany choice of a decompositiofB¥} of 1, is

C. Information present and absent

B. Correlations

Pr(BY) = > Pr(AJ,BY = (B (33)  statistically independent34). A little thought shows that this
i is equivalent to the requirement that
are obtained by summing or by insertidgge| (i.e., Al) or Tr(Alp) = (Al)pp = Pipp (36)
a i

| ® B (i.e., BY on the right side 0f32). One can think of

Pr(Al,BX) as the joint probability distribution of two random for everyj, wherep,=Tr,(p) is the reduced density operator
variables which take on integer valupandk, and apply to  for p,. [Note that it suffices to require that the operators
it any standard measure of correlation including, if onedefined by the left side of36) be proportional to one an-
wants, the Shannon mutual informatiti#: B). Note, in par-  other; when that is so, summing them shows they are all
ticular, the condition fosstatistical independence proportional topy, ] In other words, for every such that; is

: . . . not zero, the density operatoonditionalon Al,
Pr(Al,BY) = P{A)PI(BY), or (AIB¥) = (AI)}BY). (34)

iz i5)/0;

If one thinks of S, and S, as physically separated sys- po=Tr(Ap)lpy, 7
tems, then the joint probability distributioi2) will be the is the same apy,.
same as that of the outcomes of ideal measuremenr{aipf If for every decompositiond of | —it suffices to check
and{B} carried out on the separate systems. Consequentlg@ll orthonormal bases—the corresponding information about
the measurement outcomes will be correlated in precisely th€a is absent fromS,,, one can shovjtheorem 1(iii) in Sec.
same way as the quantum properties that have been me/] that
sured, and one can use either the language of propéoties -0 ® (39)
approach or of measurement outcomes to discuss these sta- P=Pa’® Po,
tistical correlations. Discussions of measurements in textfrom which it follows that all information of any sort about
books often refer to “observables” rather than decomposis§,, is also absent fron§,. In this case we shall say that,
tions. Given a decompositiof'}, one can always construct and S, are (completely uncorrelated No conceivable mea-
a corresponding observabtlIs:EjajAj with distinct(real) ei-  surement on one of these systems will provide any informa-
genvaluesa; # g, for j # k. But for our purposes these eigen- tion about the other.
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In the case of three or more systems, the presence aneans of an example. For a perfect one-qubit chanel
absence of particular types of information ab&ytsatisfies in (26), each component of angular momentum of a spin-half
some intuitively obvious rules. [ information aboutS, is  particle is identical at the entrance and at the exit,
present inSy, it is also present in the combined syste&in

and S, denoted byS,.. If it is absent fromS,, it is absent (0307 = (o301 = (o507 = L. (40
from bothS, andS,. The same s true whend'information”  However, this type of correlation is impossible for two sepa-
is replaced by “all information. rate systems at the same time. What one can, instead, achieve

These definitions of information perfectly present or com-py ysing an appropriatéure state density operator is
pletely absent make no reference to any sort of numerical
measure of correlation and thus are useful fajualitative (ohot) == (otol) =(otop) =1 (42)
rather than a quantitative discussion of quantum information,

. o . y_y
This is not to say that quantitaive measures areorsomethlng similar: one of the terrfisneed not b&a}ay))

unimportant—far from it—but they lie outside the scope of Must have a minus §ign, or else there are th_ree m_inus signs,
s in the famous spin-singlet state used in discussions of the

this paper. It is hoped that the qualitative approach developeg ; T .
here will help organize and motivate quantitative discussion&iNStéin-Podolsky-Rosen paradox. Similar§l) is impos-

see Sec. VII sible for a.quantum char?nel. . .
( B Interesting as these differences, which arise from the par-
tial transpose ir{23), may be, they are basically irrelevant to
D. Correlations for channels the concerns of this paper. The definitions of information

The preceding discussion referred to properties of sepa2€rfectly present or completely absent given in Sec. Il C

rated systems,, andS, at the same time. Basically the same @P0ve and the theorems in Sec. IV below apply equally to
ideas apply in the case of quantum channels, wiSefie the channels and entangled states. In both cases the fundamental

channel input at an earlier time a®j its output at a later issue is statistical correlations and what quantum theory has
time (Sec. Il O. The only difference is the manner in which {0 Say about them, and that is exactly the same once proper
one calculates a joint probability distributioi32) is re- ~ account is taken of the partial transpose.

placed by
IV. ALL-OR-NOTHING THEOREMS

PI(ALBY = (ANBY=TIA © B9QL. (39 . . . -
It is convenient to organize a number of qualitative “all-

Here the transition operat@ [see(23)] takes the place of or-nothing” results on the location of quantum information in
the density operator i632). The marginals are once again a series of eight theorems. The first four refer to bipartite and
given by (33). The fact thatQ is the partial transpose of a the last four to tripartite systems. In several cases there are
density operatoR guarantees that the probabilities (89)  separate results depending upon whether the pre-probability
are well defined; indeed, they behave very much like those ak a pure state, indicated by a K&t), or a density operatgy.
a bipartite system described B/ The former are stronger than the latter, and the reader should

One can once again visualiZB"} in terms of idealized keep in mind that any result that is valid for a density opera-
measurements of what emerges from the channel, but theer applies equally to the case of a pure state, even if that is
corresponding intuitive picture dfA'} is an idealprepara-  not explicitly stated.
tion. Of course, it is no more possible to prepare a quantum While the theorems are stated for entangled states,
system in a state of twgor more incompatible properties thought of as different systems at a single instant of time,
than it is to measure such a state, for such states do not existey apply equally to correlations at two different times in a
in the quantum world. And just as an ideal measurementiuantum channel, for which?’) is the channel ket. The bi-
reveals a property possessed by a quantum system atpartite systems used in the first four theorems are sometimes
slightly earlier time, an ideal preparation results in a quandesignatedS,, and sometimesS,.. This makes the notation
tum system having a specific property at a slightly later timeconsistent with the later theorems for tripartite systems,
The language of “preparation” and “measurement” is usefulvhere informationabout S, is presentin S, and/orabsent
both for providing quantum concepts with intuitive contentfrom S.. Note that, in agreement with the definitions in Sec.
and for relating quantum theory to laboratory experiments|ll C, “present” means perfectly or completely present; “ab-
but it should be used to illuminate, not replace, the notion okent” means completely absent. The proofs will be found in
statistical correlations among microscopic properties Appendix A.
whether at the same or at different times, as this is the more The tripartite theorems have a no-cloning “smell” to them
fundamental concept. and represent an attempt to give this important, but some-

The correlations obtained using a transition operd8%,  what elusive, notion a precise information-theoretic content.
are not entirely the same as those arising from a densitfhe absence of theorems fprpart systems wittp=4 re-
operator,(32), but the differences are rather subtle. Given aflects our inability to find results of corresponding generality,
pair of decompositionsA and B, there is no way of telling and we hope our readers will be more successful. But keep in
whether the joint probability distribution comes from a den-mind that a tripartite theorem might, for example, be usefully
sity or a transition operator. What can happen vgdisof  applied to S,,cq thought of as consisting of,, S, and
correlations foincompatibledecompositions, when they are S.;—a strategy employed in discussing quantum codes in
generated by a single pre-probability, is best illustrated bySec. V C.
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Theoreml. Absence of information.
(i) If A={A'} is a decomposition of,, the A information
aboutS, is absent fromS, for a pre-probability| V) e H, if

and only if
PAP=aP, (42

whereP is the projector on the support df, and thea, are
(non-negativgconstants. The following is equivalent (2):

(P|A Py = ay i, (43)

where{|p))} is a collection of orthonormal states which span

the support of¥,, so thatP=3;|p/)(p/|.
(i) If A={|a))} is an orthonormal basis and a#l infor-
mation aboutS, is absent fromS, for |¥) e H,, then

[¥) =) ® | )

is a product state ofi{,® H..
(iii ) All information aboutS, is absent fromS, for a pre-

probability p e H,. if and only if

(44)

P=pa® pe, (45)

which implies that all information abod; is absent frons,
(the two are uncorrelated

Theorem 2Presence of particular information.

(i) The A={A"} information aboutS, is present inS, for

p € Hap if and only if

A'A™=0 forl#m, (46)

where

A =Tr(Ap). (47)

(i) The A={A"} information aboutS, is present inS, for
|¥) e H,p, if and only if

[A, ¥, ]=0 (48)

for all I. In particular, if A={|a))} is an orthonormal basis,
(48) is equivalent to the requirement that

=2 |d)®|8) (49)
J
be a Schmidt expansion—i.€ 3| 81Y=0 for j #k.
(i) If the A={A"} information aboutS, is present inS,
for p € Hap, then for alll

[A,p,]=0. (50

Note that if A is an orthonormal basi$48) and (50) are
equivalent to the assertion that the, or p, matrices are
diagonal in this basis.

Theorem 3Presence of all information.

(i) All information aboutS, is in S, for |¥) e H,, if and
only if

V. =1,/dy;

i.e., |¥) is maximally entangled.

(i) All information aboutS, is in Sy, for pe 7:(ab if and
only if there are Hilbert spaces{y and H, whose tensor

(51)
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product isH,, or a subspace of{,, andp is of the form

P=h® pee Hag® He, (52)

where ¢=|p)¢| projects on a fully entangled stateb)
€ H.g This last implies(but is not implied by

Pa=lald,. (53

(iii ) All information aboutS, is in S, and all information
aboutS, is in S, i.e., the two systems are informationally
equivalent, if and only if the pre-probability is a fully en-
tangled pure state: maximally entangled whfy and +,, of
the same dimension.

The utility of theorem 3 increases significantly through
the existence of somé&eemingly rather weak conditions
which imply that all information abous, is in S,. To this
end we need the following definition. Two decompositions
A={A} and A={AX} of |, arestrongly incompatibléf there
exists no projectoP, apart fromP=0 andP=1,, that com-
mutes with all the/Al} and all the{AX}. This is, for example,

the case whem={|a)} and A={[a)} are two orthonormal
bases for which

@[a) +0 (54)

for all j andk, a condition which is fulfilled when the two
bases are mutually unbiaset), but is obviously much
weaker. Strong incompatibility is weaker still; it is possible
for a number of the inner products (64) to vanish provided

a sufficient number are nonzero. Indeed, two decompositions
can be strongly incompatible without all of the projectors or,
in some cases, any of the projectors being onto pure states.
We shall not pursue the matter further at this point, but in-
stead state the desired result:

Theorem 4.Strong incompatibility. Let4 and A be two
strongly incompatible decompositions Igf according to the

preceding definition, and suppose that both thand theA
information aboutS, is in S,. Then

Pa=lald,, (59

and if, in addition,p=V is a pure state ori,, thenall
information aboutS, is in S,

The following theorems refer to a tripartite systeiy,.
Theorem 5All information absent. If for| W) e H 4. all
information aboutS, is absent fromS., there are Hilbert
spacesHy andH, whose tensor produét 4 is eitherH, or

a subspace df{,,, and|¥) is of the form

|\I’> = |X> ® |¢> € Had ® Hee- (56)

Only if the support of¥, is a proper subspace &f}, will
'H 4e differ from H,,, and in that case it can be identified with
the subspace. The “hidden product” structure(®6) turns
out to be a surprisingly useful tool.

Theorem 6Particular information present for a pure state.
For a pre-probability¥) e H,p, the following holds:

(i) If A={|a’)} is an orthonormal basis 6f,, a necessary
and sufficient condition for thel information to be present
in Sy is that
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Woe= 2 |a)al| @ 17, (57)
j
where the{I'l} are (positive) operators orf,.
(i) If for some decompositiotd={AX} of I,
Vo= > A T, (59)
k

the A information aboutS, is in S, and if Z:{N} is a
compatible decomposition df in the sense that all th{s!\'_}
projectors commute with all thgAk} projectors_, then thed

information is also present i,. (In particular,.A may be an
orthonormal basis in which thgA\X} are diagonal).

Theorem 7.Particular information present for a mixed

state. Suppose that thé={|al)} information aboutsS, is in

Sp for p e Hape Then the following holds:
(i) The reduced density operator &ty is of the form

Pac= 2 |aj><aj| ® Fj1

J

(59)

where thg{l“i} are (positive) operators ori...
(i) If A={[a")} is another orthonormal basis #f,, and.A

and.A are mutually unbiased, then obinformation is iNS,
and

Tr(p[a"]) = 1/d,, (60)

independent ok.
Theorem 8No splitting theorem.

(i) If for pe ﬂabc all the information aboutS, is in Sy,
then there is no information abosy, in S,

Pac= Pa® pc- (61)

(i) If for | W) € Hapc all the information abous, is in Sy
and none of it is inS,, then it is all inS,,

(i) If for p e Hape all the information abous, is in Sy,

but none of it is inS;, then the dimension of{, is not less
than that ofH,.

PHYSICAL REVIEW A 71, 042337(2005

R —————
|¢){

v b
T o)

e [
Ix){
dr—
FIG. 4. Channel and channel keé®) for a mixed-state
environment.

state density operator. The unitary transformatiormaps
'H,e Onto Hy, to produce the analog of Fig. 3, whefehas
become the paicd, and|¢) is again the fully entangled state
(11). The channel ket

W) =(a@Tely)(h @ [x (62
is a pure state 0H ypcq
This channel ket has the interesting property
‘Pad = \Ifa & \Pd! (63)

which means tha$, andSy are uncorrelated; no information
about one is available in the other. It follows from the fact
that the product state on the right side(6®) has this prop-
erty, which is preserved during time development because
the unitary operatorT does not act or{,4. AS a conse-
qguenceX 4 (and therefore also its partial trac#g andW¥ )

is independent of time. Note that this invariancenét true

(in general if T is not a unitary operator. The reason, in
physical terms, is that a general map fréty, to H,. can be
thought of as involving post selection, based upon some sort
of joint measurement. Sincg, is correlated withS, and Sy

with S, through the entangled initial states, the final state of
affairs conditioned on the outcome of such a measurement
may very well contain correlations betwe&gp and S.

Not only is (63) a consequence of our model of a mixed-
state environment, it comes close to being the very essence
of the matter in light of theorem 5 applied to the tripartite
Ha® Hp® Hy, for that tells us thaf¥) necessarily involves
a “hidden product” structure. What is required to bring that

Note that(iii) in this last theorem is a weaker result than structure to light is a suitable unitary transformation, which

(i), for if all the S, information is inSy, then by theorem 3
(i) the dimension ofH{,, cannot be less than that &f,. The

difference betweefii) and(iii) turns out be of some interest

for understanding quantum codes, Sec. V C.

V. APPLICATIONS

A. Channels with mixed-state environment

is T in Fig. 4. To be sure, theorem 5 does not tell us tigat

shall be fully entangled—which suggests that the problem of
a channel with a mixed-state environment is actually part of
a more general information-theoretical question about en-
tangled states on four-part systems, and exploring it from this
perspective may be useful. In addition, our analysis suggests
a close connection between such channels and properties of
unitary transformations on bipartite systems.

There is no loss in generality in assuming the environ-

ment for a quantum channel is initially in a pure state, Fig. 2,

provided the dimensiod, of H, is at Ieas1d§. The question

B. CQ channels
The notion of a CQ or “classical-quantum” channel was

has been raisg®7,28 as to what channels can be producedintroduced in[29] and has been the subject of some recent

using a smalled.—e.g., d.=d,—if one assumes an initial

mixed state for the environment.

studieq 7,8] in connection with entanglement-breaking chan-
nels, which were introduced if30]. An entanglement-

Such a channel can be modeled in the manner indicated inreaking channel may be defined as one in which the dy-

Fig. 4, with a “large” environmen§.qinitially in a pure state

[x), which when traced down t&(, yields the desired mixed-

namical operatoR in (21) is separable, in the standard way
in which that term is applied to density operat¢sse, e.g.,

042337-9



ROBERT B. GRIFFITHS PHYSICAL REVIEW A71, 042337(2009

[31,32, Sec. 2.2.3 of1]), and a CQ channel is a particular below]. That is, an eavesdropper could learn nothing at all by
case of an entanglement-breaking channel in wRittas the  carrying out arbitrary measurements on a setcdrriers, but
form could learn something from a suitable setsefl carriers. In
o ) the literature it is customary to refer §3-1 as the “distance”
R=(1/d) > [a/)(al| @ B, (64)  dof the code, using an analogy with classical codes in which
i d is the minimum Hamming distance between two code
using a suitably chosen orthonormal basis {|a/)} for 7,  Words. For a quantum code the notion of “distance” is some-
and positive operato®i of unit tracefto ensure15)] on,. ~ What obscure, as is the notion of code word, wheesaas a
The remarks which follow apply equally to a QC or Simple intuitive interpretation. _
“quantum-classical” channel, with the rolesafndb inter- For analyzing the security and the error-correction prop-
changed. erties of the code it is convenient to define a channel ket
Introducing the channel kW) e H ¢ With R=V, (14),
allows one to apply theorem ®) in order to characterize a
CQ channel as one in which there is an orthonormal basis for
the channel entrance such that the information associataghere the{|al)} form an orthonormal basis of the channel
with this basis isperfectly present in the environmeSif at  entrancel,, with d,=K, and the{|b’)} an orthonormal basis
the later time. Note that such a characterizationdsimme-  f the code subspad8 with projector
diately obvious from considering the dynamical operator
or, equivalently, the channel superoperator, for these are ob- B=> Ibi)(bi|. (67)
tained by tracing out, thus ignoring, the environment, j

whereas the property which provides the simplest character- _ i .
ization in information-theoretic terms has very much to do!huS the encoding operation map§ onto B. One can vi-

with what information is availablé the environment. sualize|W) using Fig. 3, but withS, and Sy combined to
Using a channel ket in no way reduces the value of thd®™m Sa- _ o _

insights provided in the studies cited above, nor does it sup- 1€ security condition introduced earlier can now be

ply (at least in any obvious sensaiternative tools for arriv-  Stated as

ing at the technical results in those papers. But it does sug- V. =P @ (68)

gest a genuinely quantum-mechanical and information- aw Tam o

theoretical description of what is “classicathe C in CQ  where u denotes any subset o integers drawn from

about a CQ channel: namely, the environment provides peki1,2, ... n}. Note that if (68) holds for such a set, it also

fect decoherence in a particular basis, as a consequence gdids for a smaller set; simply, take an appropriate partial

which no information in any “complementary,” which is to trace of both sides. In view of theorentiii), (68) expresses

say mutually unbiased basis, is available at the channel exiprecisely what we want to say by the security condition: if it

theorem 7(ii). This is typical of what is generally referred to is satisfied, no conceivable measurementSyrwill reveal

KWy =3 [a) @ |bl) & Ha® Ha, (66)
j

as “classical communication.” anything about any sort of information in the channel en-
trance, whereas if it inot satisfied, somesort of information
C. Information location in quantum codes will be at least partially available to an eavesdropper.

. . From the definition(66) it is obvious that¥,=1,/d,, so
Quantum codes allow quantum information to be pre- . . . o
: : . ~ by theorem 3(i) all information aboutS, is in Sy. Thus by
served against the effects of noise, whether due to interactio L o A ;
; - . - . “theorem §(ii), if none of this information is irS,, it must be
with the environment in a quantum communication settmg,in the complement of this system &y, That is, all the in
or imperfect gates in a quantum computer, and thus the comp : Syster : '
. oo . . _~formation aboutS, is available in any collection oh-s
have received a great deal of attention; for an mtrOdUCtlonCarrierS' iven anv such a set. there will be a means of ex
see[33] and Chap. 10 of19]. Our purpose here is not to ' 9 y '

. . . ; X {racting or recovering the information from it even if the
contribute to the technical literature, but instead to point OUL o carriers are ignored. This provides a preliminary under-
how the basic operation of such a code can be understood 9 ) b b y

I SO : !
terms of the presence or absence of certain types of mformr;%l}"’mcjIng in information-theoretic terms of how a guantum
o : error-correcting code functions, though some additional
tion in certain places. . ) :
o . . , points remain to be dealt with.
The standard scenario is one in which the quantum infor? : . .
L . : : In order to relate the security of the code to the discussion
mation is embedded in eode B, a K-dimensional subspace : . o .
of the Hilbert space of error correction found if34,39, it is helpful to introduce
P the following definition. An operatoF on Hy will be said
Hy=H1 @ Ho ® -+ H, (65) to have abaseS,,, wherew is some subset of, an@ its

. ) . ) ) complement in{1,2, ... n}, provided
associated witm carriers of the coded information. The

simplest situation is one in whicK=2=d,, for 1=m=n, F=F,®lge ﬂw® ﬁw, (69)
but most of what we have to say applies more generally.

Define thesecurity sof the code to be the largest integer andw is the smallestset for whichF can be written in this
such that the encoded information is entirely absent from anjorm. Thesizeof the base of is the number of carriers in
set of s or fewer carrierdin a sense made precise (68) Sw» the number of integers iw.
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A code has securitg when for every operatoF with a Note how in carrying out this argument it is essential to
base whose size does not excedtlis the case that distinguish between a pure state pre-probabiliy and a
Ck mixed state pre-probability. The former is needed when
BFB=Db(F)B, or (b'[F|b®) = b(F) g, (700 using theorem 8ii) to infer the presence of all the informa-

ands is the largest integer for which this is the case. Here_tion abouts, in any collectic_)n ofn—2_t carriers, given that it
b(F) is a(complex number that depends up®n but not on IS absenf[ from any co_IIect|on of sizd.However, these

j or k, andB is the projector in(67). The two equalities in _th cglrl_rtler{s alc()jng y;nthSa fczrm adsystem whose pre-
(70) are equivalent because the second is simply the firgpTOPADINY IS a density operator, and as a consequence we
expressed as a matrix when one extef{ti§} to an ortho- cannot use the fact that na &f thesecarriers contain infor-

normal basis ofity. To see that70) is correct, first apply it mation to infer that it must be present in a setnef4t car-
d N ' pply riers, something that it least in generahot true. By using

in the case wherE is a projector i, for someu for which  theorem 8(iii) instead of theorem &i), we correctly infer
(68) holds, and use theorem (), with H, in the theorem  that the leftover collection oh-4t carriers has a certain
replaced byHg, and™, by H,, to the decompositiofF,lg  minimal size,not that it contains all the information.
—F} of I4. Any operator or{, can be expressed as a linear  The foregoing discussion focused on codes for which ar-
combination of projectors, and hence by linearity, and the “ifpitrary errors int or fewer carriers can be corrected. What of
and only if” of theorem (i), we arrive at the equivalence of codes designed for the correction of errors of a more specific
(68) and(70) as statements that, and, are uncorrelated. sort? Once agaifi’1) applies, but only to a more specialized
Now (70) is very similar to the necessary and sufficientclass of operators. Consider, for example, the three-qubit
condition code which is adequate for bit-flip erroff83] or p. 430 of
. [19]). Such errors can be represented by a Patilon a
(DK Kinfb*) = bim (7)) ingle qubit, and what71) is telling us is thano X infor-
of [35] (in a slightly different notationfor a code to be able Mation about any pair of qubit code carriers can be present
to correct a class of errors corresponding to the Kraus operdD Sa where the sample spack is the o+rthonormal basis
tors {K} acting on the spacé. If these Kraus operators 1%1Xz)} if the carriers are 1 and 2; hefe) are the eigen-
have a base no larger tharthenF=KK,, has a base that is States ofo™.

no |arger than 2 and we arrive at the Condition The Statement about absence at the Channel |89l.ﬂf
certain types of information about some of the carriers can be
s=2t (72 misinterpreted if thought of in terms of some backwards-in-

. . . time “influence” which the carriers exert on the channel in-
relating the securitys to the maximum number of errots ;¢ nstead, keep in mind that the real issues have to do with
which can be corrected. That is, a code which allows fullgiatistical correlations between states of affairs at different

recovery of information whehcarriers are tgmpered with i times as represented in appropriate sample spaces or frame-
any way, andone does not know whictarriers have been ok, Error recovery depends, of course, on information

i‘ﬁeCtedz must allow full recovery whe.n.arkylownset ofS  peing present in appropriate locations, and quantum no-
=2t carriers have been tampered with; in the latter case thg|oning (loosely speakingallows us to connect the presence
information will be recovered from the—2t remaining car- o information in one place with its absence someplace else.

riers. Thus the well-known five qubit code—si@#,36 and  presence and absence should always be thought of in terms
p. 469 of[19]—allows error recovery in the case of tamper- ¢ siatistical correlations.

ing with any one of the five carriers, but also if any two are

stolen, since recovery is then carried out on the three that

remain.(For a helpful discussion of this somewhat confusing VI. CLASSIFICATION OF CHANNEL

point, sed37].) AND ENTANGLEMENT PROBLEMS
The foregoing considerations make it possible to under-

stand in information-theoretical terms the quantum Singletij e

lower bound

The fact that the properties of a quantum channel can be
duced from those of a channel ket, and likewise the prop-
erties of an entangled mixed state from those of a suitable
n= 4t+logK/log D (73) purification, sugges_ts the ppssibility of cllassifying these two
types of quantum information problem in a single scheme
on the number of carriers, each assumed to have a Hilbeliased on pure states opgpart system. Of course, for eaph
space of dimensio®, in a quantum codg38]; also see p. one should then introduce additional categories with some
568 of[19]. One argues as follows. In order to correct up toinformation-theoretical significance. The dimensions offihe
t errors on unknown carriers the code must have a security afubsystems are meaningful parameters, and other features,
s=2t: there is no information abouf, in any collection of 2  such as the “all” or “nothing” character of certain types of
carriers, so by theorem @) all the information abous, is  information, could assist in classifying particular cases. The
in any set ofh—2t carriers, as we noted earlier. But in a set of motivation behind such a classification scheme is to have a
n-2t carriers, no information can be present in a subset of 2useful way of comparing different types of experimental phe-
carriers, and thus by theorem(# ), the Hilbert space of nomena or theoretical models, one that may suggest analo-
—-2t-2t=n-4t carriers must have a dimension greater thangies in instances where these are not immediately evident.
or equal tod,=K. This last assertion is equivalent (63). Seeing how it relates to other problems does not, of course,
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automatically provide a solution or even a better way ofbeen worked out if43], and this work can and should be
thinking about a particular question, but could in some casesegarded as a significant step in classifying a large and im-
suggest an alternative approach or allow the application of portant set of tripartite pure states. There are, on the other
different set of ideas. hand, entangled states which escape this classificéfton
There are two reasons for preferring a classification usinghe reasons explained in Sec. ,&nd it would be interest-
entangled states to one based on channels. First, every chang if the methods used %3] could be extended to these as
nel problem(of the sort under discussibmaps in a simple  well.
and natural way to an entanglement problem, while the re- A unitary transformation mapping a bipartite system to
verse is subject to some qualifications, as discussed in Seitself can be thought of as p=4 problem, equivalent to a
Il E. Second, entangled states have a higher “conceptudlily entangled state between two bipartite systems. In the
symmetry;” for example, it is more natural to ask what hap-case of two qubits such unitaries can be written down explic-
pens if two subsystems of a bipartite system are interchangetly in terms of three real parametdi44], up to local unitar-
than what will occur if the channel is, so to speak, operatedes on the individual qubits, and this provides a convenient
in a time-reverse mode. The utility of pure states as againsiescription of an important class p£4 pure states in which
mixed states is less obvious, but the results in Sec. IV sugeach subsystem has dimension 2. Beyond this very little
gest that this may lead to a simpler classification using theseems to be known at present about the four qubit problem.
location of quantum information, assuming that is a usefulA one-qubit channel with a mixed-state environment falls in
way to proceed. this category, as explained in Sec. V A. Téistanglement of
Now let us consider some preliminary results. Thepurificationintroduced in45] is an example of @=4 prob-
Schmidt expansion for bipartite pure states provides a comiem not limited to qubits, as is the general problem of a
plete classification, up to local unitaries, for 2, and the by channel corresponding to a mixed-state environment.
now standard pure-state entanglement measure has provenAs noted in Sec. V C, a quantum code witlcarriers falls
itself a remarkably useful tool for their study. Noiselessin the p=n+1 category of states for which there is an ab-
guantum channels described by unitary time developmergence of correlations between one particular subsystieen
fall in this category and correspond to fully entangled stateschannel entrangeand various collections of other sub-
The difficult problems start withp=3, which includes systems. Relating quantum codes to more general problems
both mixed-state entanglement and the standard model faf multipartite entanglement is an interesting and challenging
noisy gquantum channels. Classifying the two together immeproblem[20].
diately raises the question of how various mixed-state en-

tanglement measurg4,39] may be related to the many dif- VIl. CONCLUSION

ferent types of quantum channel capacity that have been

defined[1,40]. There is a brief discussion in Sec. 6.3.3 bf, A. Summary

which notes that the equivalence of ti&@mple quantum The fundamental idea underlying the duality discussed in

capacity and a one-way distillation entanglement measurgec. || is that the correlation of events at different times that
was demonstrated ifB4]. But we know of no systematic characterize a quantum channel are “the same thing” as the
attempt to relate objects which ought to have a close connegyyrelation of properties of an entangled quantum system at
tion. Or if they do not have a close connection, why is that%jifferent points in space. At the mathematical level the cor-
If one further classifiep=3 problems according to the respondence is expressed by a simple partial transi@3se
sizes of the subsystems, the obvious starting point is purghat carries the dynamical density operarinto the tran-
states of three qubits. Some one-qubit noisy channel probsition operatorQ representing the channel superoperator. In
lems fall in this category, as does the simplest cloning probppysical terms the duality says that the correlations which
lem [41]. Leaving aside cases of a product state of one qubigypress the location of information about one quantum sys-
with an entangled state of the other two, which in some sensgm in another are of basically the same nature, whether they
belong to thep=2 class, the remaining states fall into two yefer to properties of a single system at two different times or
classes, “W” and “GHZ,” under the equivalence generatedy two different systems at the same time. This is well estab-
by lished in classical information theory, where the same tools
W'y =(A® B® C)[W), (74) are used for both cir.cumstances,. and it works equally well in
qguantum systems given appropriate sample spaces or frame-
whereA, B, andC are nonsingular operatofd2]. Thisis a  works, as explained in Sec. Ill.
very interesting result which does not seem to have been The nonclassical “peculiarities” of quantum information
generalized to larger subsystems. However, even for qubits @merge when one uses a single pre-probability, either a pure
may not represent a complete classification scheme, for ogtate or a density operator, or their counterparts for a quan-
erations of the form(74) do not, in general, preserve all the tum channel, to generate probability distributions and thus
properties that are of interest from an information-theoreticcorrelations for a variety of different, incompatible frame-
perspectiveiin which |¥) functions as a pre-probability works (sample spaceslt is here that “no-cloning” plays a
The general one-qubit noisy quantum channel falls in thecentral role, and the eight all-or-nothing theorems of Sec. IV
p=3 category, with two subsystenisntrance and exit of the are intended to make that idea more precise and more widely
channel of dimension 2 and onéthe environmentof di- applicable. While the theorems are expressed in entangle-
mension 4. A quite general description of such channels hasient language, the duality allows their immediate applica-
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tion to quantum channels. In many cases the results are more ACKNOWLEDGMENTS
precise(and in others their derivation is eagiavhen the -
pre-probability is a pure rather than a mixed state, which in cI:rti?i?::Ik rl_e.a\c(jlijr:corcﬂr?r\::adlpe%(ts O_ﬁ]iojetgsarrifrgggsﬁbzréd ;;ere
the case of a quantum channel means a channel ket rath%rceived su O?t from the .National Science Foundation
than a dynamical operator. This suggests that channel keE rouah Grarrl)tpNo PHY-0139974

are a useful tool for analyzing the properties of noisy quan- 9 ' '

tum channels, and the applications in Sec. V bear this out.

Whether pure states are equally advantageous for classifying APPENDIX A: PROOFS OF THEOREMS IN SEC. IV
entar!gled states and quantum channels in a single SChe.meTheorem 1 (i)Expand|¥) in Schmidt form,

remains to be demonstrated, but the preliminary results in

Sec. VI are encouraging. |¥) = > V’E,-Iaj) ® |cl), (A1)
i

B. Open questions and letJ be the collection of values for whichg;>0. For
the{A'} information to be absent frof,, it must be the case

The eight all-or-nothing theorems of Sec. IV provide a[see(se)] that

useful first step in describing in a systematic way how infor-
mation can be divided up or spread out over an entangled Tr,wa)=> \;ﬁ<aj|Al|ak>(|Cj><Ck|) (A2)
guantum system. But one suspects there remains much more ik

to be said, both about bipartite and tripartite systems, and ,

also about systems with=4 parts. In addition, every quali- 'S Proportional to
tative theorem of the type found in Sec. IV ought to be the

= el
limiting case of one or perhaps sevegalantitativetheorems Yo J% ple'l, (A3)
in which the complete presence or absence of information is
replaced by quantitative measures—Shannon entropies ayéich means that
an obvious, but not the unique possibility—and constraints (aj|A'|ak>:a5jk (A4)

are provided in the form or rigorous inequalities, or perhaps

even equalities, if one is lucky. While some ideas of this sorffor all j andk in J. This is the same a&3), which is the

have been put forward—e.gl46,47—a great deal more same ag42).

could be done. Theorem 1 (ii)Expand|¥) in the orthonormal basigal)}
To be sure, several entanglement measures have been p[gee(6)]:

posed for bipartite mixed statg$,39], and to a lesser extent

for systems withp=3 parts; seq20] and the references |\P)=E |aly @ |y)). (A5)

given there. But rarely do these have a specific information- j

theoretical content or basis, and it is an open questionr

whether, and if so how, they can be understood in such eans that all théyl) must be proportional to each other,

terms—i.e., related to statistical correlations forming part o ; ; .
a consistent probabilistic description of a quantum system?wntz‘;j) to a single key), which means thaft?) is of the
To be sure, entanglement measures can be useful even if the%/Theorem 1 (iii).The “i" part is obvious. To prove that

have no connection to information theory, but if there is suc 45) holds if all information abouts, is absent froms,, let

a connection, understanding what it is could be a useful cont, ; . .
tribution to the subject. 9 {lal)} and{|c')} be bases in whiclp, and p. are diagonal,

Discussions of quantum channel capacities seem better _ - _ |

anchored in an information-theoretic framework than those pa_; plal,  po= ; alel, (A6)

concerning entanglement measures, though perhaps more _

thought should be given as to how to translate “classical,and write

which occurs rather frequently in such discussions, into ap- . :

propriate quantum mecganic:j terms; we no longer live in% p= 2 > (@clplacM (@)@ ® [)c™). (A7)

classical world. Relating these capacities to entanglement Jie - 1m

measures seems at present a largely open question, and die absence of all information implies that

swering it could make a valuable contribution understanding

both entanglement and noisy channels. Tra(Ap) =(A)pc (A8)
The t?Sk of classifying entangl_ed pure statespefart f(g any operatorA e 7:(a—see(36), and note that the collec-

systems in the manner suggested in Sec. VI can be regarde ) i R

as complete fop=2, but forp=3 it has just begun, and very t|onk of_a!l projectors is an operator basis fhf,. IngertA

little is known aboup= 4 systems apart from work on quan- =/@X@| in (A8), and use(A7) to evaluate the left side and

tum codes. Extending the latter to more general entangletf\6) the right. The conclusion is that

states could make a significant contribution to our under- Pl ol akeM — . S

standing of multipartite entanglement, which at present is (@clpla’c ) = PihOjcdm (A9)

quite limited. which is (45).

he requirement that no information abadf@)} be in S,
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Theorem 2 (i) If the A information is present i, (35)
implies that

Tr(AB™ = Try(A'B™ = 8, Try(A), (A10)

since(AY=Try(A"). If P andQ are positive operators such
that T(PQ)=0, thenPQ=0. Using this and the fact that the
B™ are projectors, so thar'=A'B™+A'(I,—B™), one sees
that (A10) implies that

B™A'B™= §,A, (A11)

and (46) is a consequence @&'B™=4,,,B'. Conversely,(46)

PHYSICAL REVIEW A71, 042337(2009

(B¥|pr = PGS 7 Ok - (A16)
Therefore if we restrict our attention to thesJ andk e K
for which p;>0 andq,> 0, we can construct an orthonormal
set

6 = 84/ pjqi (A17)
of kets inH;,, and rewrite(A15) in the form
(A18)

vy =X Vpjada) @ [ @ 9.
ik

The space$i{y and H, are thendefinedas having orthonor-

implies that one can simultaneously diagonalize the collecmal baseg|d’)} and{|€")} such that

tion {A'} and choose theéB' projecting onto appropriate
blocks in such a way thatA11), and thereforgd A10) and
(35) are satisfied.

Theorem 2 (ii).Choose an orthonormal basfl)} in
which the{A'} are diagonal, and expan@) in this basis,
(49), without assuming it is in Schmidt form. Then

V,= Ek (BYB)al) (@Y (A12)
]

and

A= |BXAY, (A13)

jed

whereJ; is the collection ofj values for whichA'|al)=|al).

One can show tha¥’, commutes with all the\ if and only

if (8| 8')=0 whenevej e J, andk e J,, with m=1. But this

last is equivalent to(46). If the A' project onto one-
dimensional states, theB8*|81Y=0 for j #k, so (49) is in

Schmidt form.

Theorem 2 (iii).Purify p to a ket|¥) e H,, Use the fact
that theA information is present i, and apply parii) of
the theorem withS,. in place of S, to infer thatV,=p,
commutes with all the\'.

Theorem 3Part(i) is an immediate consequence i
for it is only multiples of the identity that commute with all
projectors. The proofs ofii) and (iii) are given below, fol-
lowing that of theorem 8.

Theorem 4By theorem 2,p, or ¥, must commute with

all the {Al} and all the{AX}, and must therefore, by the defi-
nition of strong incompatibility, be multiples df. The final
statement is a consequence of theorem 3.

Theorem 5Let {|al)} and{|c¥)} be orthonormal bases of
‘H, andH. which diagonalize¥V, and ¥,

va=Spfal, v=Salc] (AL
I

and expand¥) in these bases:

vy =2 |d) ® |8 ® |c9). (A15)
ik

The condition¥V =¥ ,® V. expressing the absence of &l
information fromsS,,, theorem 1(iii ), implies that

%) = [d)) ® €9,
so that|P) is of the form(56) with

0= \plah @ d), (1= Vald) @ [e9.
i k

(A19)

(A20)
Theorem 6 (i) Expand|¥) in the orthonormal basigal)}
w) :§ ) ® |2, (A21)

with |{) € Hy, and write
(A22)

V=2 laya| e d  dh= 0.
ik

If the {|al)} information is inS,, then, by theorem 2i),

dak=0 forj#k, (A23)
where, following our usual notationg{)j =Try(Z). Now apply
(B3) in Appendix B, witha replaced byb, b replaced byc,
le)=|Z0y, and|g)=|Z¥), to conclude thatA23) holds if and
only if

=0 forj+k. (A24)

[Note that Tg(CC")=0 implies thatC=0.] But (A24) in-
serted in(A22) implies (57) with Fj:g"JCJ. Conversely,(57)
implies (A24), which implies(A23), which, using theorem 2
(i), implies that the{|al)} information is inS,,.

Theorem 6 (ii).Let {|al)} be any basis in which thak in
(58) are diagonal. The(b7) is a consequence ¢68): simply
write eachAX as a sum of a suitable collection [afi]. Thus
by (i), the{|al)} anda fortiori the {AX} information is inS,,

For a compatible decompositioh={A'}, use a basi§al)} in
which both these and thg@\} are diagonal.

Theorem 7 (i) Purify p to | V) € H,pc and apply theorem
6 (i) with c replaced bycd to conclude thatV,4 is of the
form (57) with operatorsl’) on H.4 Now trace both sides
over Hq to get the equivalent aof59).

Theorem 7 (ii).Multiply both sides of(59) by [a¥]. First
trace overH, and use the definition of mutually unbiased
bases in(4) to conclude that the resulting operaton H,)
does not depend ok, so the{[a%)} information is absent
from S, according to the definition in Sec. Il C; see the
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comment following(36). Next, trace ovefH to get(60).
Theorem 8 (i)Given an arbitrary orthonormal basié of

H,, one can always find another basis with A and A
mutually unbiased. As thel information is, by assumption,

in Sy, the A information cannot be B, by theorem 7ii).
Theorem 8 (ii) All the information aboutS, is in Sy, SO

Vv.=1,/d, by theorem 3(i). But as there is no information

aboutS, in S, theorem 5 tells us¥) is of the form(56),

PHYSICAL REVIEW A 71, 042337(2005

€ Hape If all information aboutS, is in Sy, (for p and for
|¥)), then by theorem 8) there is none iS,, so by theorem
5 |¥) has the product structure 86), where in additior]y)
must be maximallyfully) entangled, so we arrive &2). If,
on the other hand52) is correct, thenp,=1,/d,, and all the
information aboutS, is in Sy and, therefore, i5,. To prove
theorem Jiiii ), note that if| V) is given by(56) andd, is 2 or
more, |, has a nontrivial decomposition, and the correspond-
ing information obviously cannot be i§,. Thus if all the

with xo=W,=1,/d,, and therefore, once again invoking theo- jnformation abouts, is in S, it is the case thatl,=1 and

rem 3 (i), all the information abous, is in S,,.
Theorem 8 (iii).[The following argument is from p. 569

Hqe is the same a%{y, and the latter is the same 2§, for
were it a proper subspac®,, would not be proportional to

of [19], where it is ascribed tp48], and it makes use of some I,

well-known properties of the von Neumann entropy
S(p) == Tr(plog p); (A25)

see, e.g., pp. 513 and 515 pf9].] Upon purifying p to
|¥) € Hapeq ONE finds that

S(W,) + S(Wo) = SWao) = (Wpg) < S(Wp) + S(¥y).
(A26)

The first equality is a consequence of the absence of infor-

mation aboutS, in S, thusV¥,.=¥,® V¥, by theorem IL(iii).
The second equality reflects the fact th is a pure state

on H,.® Hpg, and the final inequality is a standard result for

APPENDIX B: FOUR ENTANGLED KETS
Let
D*'=|e)f|, DS'=Tr,(D®"), DE'=Tr (D% (B1)

denote the dyad and its partial traces for two Ketsand|f)
on Hap=Ha® Hp,.

Theorem.Let |e), |f), |g), |h) be any four kets orHy,
Then

Try(DEDIM = Tr,(DEDE). (B2)

a density operator on a tensor product. Since all informationn particular, if|f)=|e) and|h)=|g), then

aboutS, is in Sy, it must be absent fron¥y by part (i) of
this theorem, so we can interchange the role§ &gind S, in
(A26) to obtain

SV, + S (Vg < S(Wp) +S(Vy), (A27)
and by adding this t¢A26) arrive at
SV, < S(Vp). (A28)

By theorem 3(i) (replaceb by bcd) we know thatV,
=1,/d,, so the left side 0fA28) is logd, and as the right side
cannot exceed lod,, therefored, = d..

Theorem 3 (ii)and Theorem 3 (iii). Purify p to |¥)

Tr,(DED%) = Try(DLDY). (83)

Proof. Let{|al)} be a fixed orthonormal basis t,, and
expand each ket in the form

wy =2 |al) ® w). (B4)
J

Direct calculation shows that the left and right sides(®f

are both equal to

_Zk (fel)n|g"). (B5)
]
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