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The well-known duality relating entangled states and noisy quantum channels is expressed in terms of a
channel ket, a pure state on a suitable tripartite system, which functions as a pre-probability allowing the
calculation of statistical correlations between, for example, the entrance and exit of a channel, once a frame-
work has been chosen so as to allow a consistent set of probabilities. In each framework the standard notions
of ordinarysclassicald information theory apply, and it makes sense to ask whether information of a particular
sort about one system is or is not present in another system. Quantum effects arise when a single pre-
probability is used to compute statistical correlations in different incompatible frameworks, and various con-
straints on the presence and absence of different kinds of information are expressed in a set of all-or-nothing
theorems which generalize or give a precise meaning to the concept of “no-cloning.” These theorems are used
to discuss the location of information in quantum channels modeled using a mixed-state environment, the
classical-quantum channels introduced by Holevo, and the location of information in the physical carriers of a
quantum code. It is proposed that both channel and entanglement problems be classified in terms of pure states
sfunctioning as pre-probabilitiesd on systems ofpù2 parts, with mixed bipartite entanglement and simple
noisy channels belonging to the categoryp=3, a five-qubit code to the categoryp=6, etc., then by the
dimensions of the Hilbert spaces of the component parts, along with other criteria yet to be determined.
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I. INTRODUCTION

Understanding entangled states and understanding the
properties of quantum channels are two central issues in
quantum information theory. At least in a formal sense they
are the same problem: the duality mapping one onto the
other has been discussed explicitly in recent workf1–4g and
employed for various purposes in a much larger collection of
papers; seef5–10g for a few examples in addition to those in
the extensive bibliography inf3g. The early work most often
cited isf11,12g, though the basic idea is not complicated and
has undoubtedly been rediscovered many times. Nonethe-
less, one has the impression that this duality has yet to be
fully exploited, and much more could be done to relate the
concepts used in discussing entanglement and the large num-
ber of proposed measures of entanglement to the ideas em-
ployed for thinking about quantum channels and the defini-
tions of many different sorts of channel capacity. Perhaps a
barrier to its full utilization is the fact that this duality re-
mains something of a mathematical abstraction whose con-
nection with more physical ideas has not been totally clear.
One aim of the present paper is to relate this duality to con-
cepts of quantuminformation. To be sure, “information” as it
applies to the quantum domain is not at present a very pre-
cise concept; the appropriate definitions remain the subject
of current research and occasional controversyf13–18g. The
term is used here in the very broad sense ofstatistical cor-
relation, an idea familiar in classical physics and classical
information theory, which deserves to be better understood
and more widely applied in the quantum domain.

The duality under discussion can be formulated in various
ways. One which seems particularly helpful characterizes a

noisy quantum channel using achannel ket, an entangled
pure state on a suitable tripartite system; see Sec. II C for the
precise definition. While this idea issat leastd implicit in
previous work, the main emphasis has been on the duality
between a density operator describing a mixed state of a
bipartite system and what we here call adynamical operator
sfollowing f3g, where the termdynamical matrixis usedd,
closely connected to the superoperator describing the action
of a quantum channel. The channel ket is obtained by “puri-
fying” the dynamical operator using aspossibly fictitiousd
reference system; in turn, the dynamical operator is a partial
trace over the projector corresponding to the channel ket.
This relationship is well known and frequently exploited in
the case of mixed entangled statesssee, e.g., p. 110 off19gd.
What is less well known is that there are certain advantages,
both formal and conceptual, in using pure states rather than
sor at least in addition tod mixed states when discussing the
locationof quantum information—see Sec. IV—and thus oc-
casions when a channel ket provides insights not directly
available from a dynamical operator. It should be noted that
the principal role of a channel ket is the same as that of a
dynamical operator or a density operator: it allows one to
calculate probabilities for various properties of a quantum
system. These probabilities determine the statistical correla-
tions between events at different times that provide a physi-
cal description of a quantum channel, just as the statistical
correlations between separate quantum systems at a given
moment of time provide a physical description of entangle-
ment.

The remainder of this paper is structured in the following
way. After introducing some conventions on notation in Sec.
II A, the basic map-ket duality is reviewed in Sec. II B; our
treatment differs from previous ones mainly in maintaining
what we think is a helpful distinction between operators and
their matrices. Channel kets are defined in Sec. II C, with*Electronic address: rgrif@cmu.edu
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some simple examples in Sec. II D. Brief remarks on the
inverse problem of turning entangled states into channels are
found in Sec. II E.

Quantum information in the sense of statistical correla-
tions is the topic of Sec. III. Sample spaces and probabilities
for quantum systems are discussed in Sec. III A and applied
to correlated systems in III B. The notion ofparticular types
of information about certain subsystems being present or ab-
sent in other subsystems, which is central to our later discus-
sions, is introduced in Sec. III C for entangled states and
extended to quantum channels, where the ideas are very
similar modulo a partial transpose, in Sec. III D. These defi-
nitions arequalitativeand do not depend upon any quantita-
tive measures of information. We believe, however, that once
correlations have been defined in a consistent manner, there
is no barrier to using quantitative information measures, such
as Shannon’s mutual information; this should take care of the
objections raised inf14g. The point of view adopted here is
consistent with and an extension of that inf16g.

Following this, Sec. IV contains a set of “all-or-nothing”
theorems that apply to qualitative aspects of information.
These theorems have a number of interesting consequences,
some of which are discussed in Sec. V, where they are ap-
plied to two special types of quantum channels—mixed-state
environment and “CQ” channels—and to the problem of the
location of information in quantum codes. In Sec. VI we
propose a scheme, at present rather tentative, for classifying
both entanglement and channel problems in terms of pure-
state entanglement onp-part systems.

The conclusion, Sec. VII has both a summary and a list of
open problems. Appendix A contains the proofs of the theo-
rems of Sec. IV and Appendix B a particular result on bipar-
tite entangled kets used in Appendix A.

II. MAP-KET DUALITY AND CHANNEL KETS

A. Notation

We shall use subscriptsa,b,c, etc., and sometimes num-
bers, to label different subsystems of a system with several
parts. The Hilbert spaceHa is associated with systemSa, the
tensor product

Hab = Ha ^ Hb, s1d

with the combined systemSab consisting ofSa andSb, and
so forth. For a ketuclPHabc we use the notation

c = fcg = uclkcu, s2d

where the square brackets distinguish a dyad from other
types of operator. Partial traces are denoted by

cab = Trcscd, ca = Trbscabd = Trbcscd, s3d

and so forth, both for dyads and other operators. Operators

on the Hilbert spaceHa themselves form a Hilbert spaceĤa,
with inner productkA,A8l=TrsA†A8d.

Because the subscript position is used to label thessub-
dsystem, indices are often written as superscripts in circum-
stances in which they are not likely to be confused with
exponents. ThusP=hupjlj denotes anorthonormal basisfor

the Hilbert spaceHp of dimensiondp, with j taking values

between 0 anddp−1. Two such basesP and P̄=hup̄jlj are
calledmutually unbiasedif

ukp̄jupklu = 1/Îdp, s4d

independent ofj andk.
More generally, we shall be interested in aprojective de-

composition of the identityof Hp, hereafter called a “decom-
position,” a collectionhPkj of projectors summing to the
identity Ip and mutually orthogonal to each other,

Ip = o
k

Pk, PkPl = dklP
k. s5d

sRecall that a projector is a Hermitian operator equal to its
square, so its eigenvalues are 0 and 1.d No confusion arises if
the same symbolP is used to denote an orthonormal basis
hupjlj or the collectionhfpjgj of the corresponding projectors.

Given an orthonormal basishuajlj of Ha, any ket ucl in
Hab can be expanded in the form

ucl = o
j

uajl ^ ub jl, s6d

whereub jl=kaj ucl is uniquely determined byucl and uajl. If
thehub jlj are mutually orthogonal, we shall calls6d aSchmidt
expansion and sometimes write it in the alternative form

ucl = o
j

Îpjuajl ^ ubjl, s7d

with the hubjlj an orthonormal basis ofHb, and thepj sum-
ming to 1 whenucl is normalized,kc ucl=1. By thesupport
of an operatorA we shall mean the smallest projectorP such
that

PAP= A, s8d

or the subspaceP onto which thisP projects. Therank of A
is the trace ofP, or the dimension ofP, or the number of
nonzerospositived eigenvalues ofA†A, or the rank of the
matrix representingA.

B. Maps and kets

Given any linear mapM :Ha→Hb and an orthonormal
basisA=huajlj of Ha, one can define a corresponding ket

ucl = o
j

uajl ^ Muajl s9d

on the tensor productHab. Conversely, given such a ket, one
can always expand it in the forms6d using the basisA and
define a mapM by

Muajl = ub jl, s10d

and its extension to all ofHa by linearity. These two formu-
las define themap-ket dualityused throughout the rest of this
paper.

The duality depends, obviously, on the choice of ortho-

normal basisA; given a different choiceĀ=huājlj, a given
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map will lead to a different ket and vice versa. For those who
slike the authord prefer to write formulas whenever possible
in basis-independent form, this dependence is somewhat an-
noying. One can get around it, as inf2,3g, by always using a
single basis. We prefer to maintain the usual distinction be-
tween operators and matrices. The price for doing this is not
exorbitant, because the basis dependence can always be ex-
pressed in terms of a suitable unitary transformation onHa.
And if one is primarily concerned with concepts which are
invariant under local unitaries, meaning unitary operations
which are tensor products of unitaries on individual sub-
systems, such basis dependence is not intolerable.

A way of visualizing the relationship betweenucl andM,
and for understanding the ambiguity associated with the
choice of basis, is indicated by the circuit in Fig. 1, where
ufl is a fully entangled state

ufl = o
j

uajl ^ uv jl s11d

on the systemHa ^ Hv, Hv is an auxiliary Hilbert space of
the same dimension ofHa, and Muv jl= ub jl, as in s10d.
Choosing a different fully-entangled state in place ofs11d
would result in a different relationship betweenM and ucl;
this is precisely the ambiguity previously discussed, and pro-
vides a good way of analyzing it.

C. Channel kets and superoperators

We adopt the following by now fairly standard model for
a noisy quantum channel. A unitary time transformationT
maps the tensor productHae of the Hilbert spaceHa of the
channel entranceSa and the spaceHe of the sinitiald envi-
ronment Se, at some initial time toHbf=Hb ^ H f, corre-
sponding to thechannel exitor output Sb and environment
S f, at some later time, Fig. 2. Initially the environment is in
a fixedpure stateue0l, whereas the initial state of the channel
is arbitrary, not fixed in advance. Becauseue0l is fixed, the
only relevant effect of the unitary operatorT is that embod-
ied in the isometryV:Ha→Hbf defined by

Vual = Tsual ^ ue0ld s12d

and shown schematically in the second part of Fig. 2. Often
Ha andHb are identified with each other, andHe with H f.
Maintaining the distinction both allows for the possibility,
sometimes useful, that the dimensions ofHa andHb may be

different, but equally important permits a distinct label. It is
sometimes useful to assume that the environment is initially
in a mixed, rather than a pure statessee Sec. V Ad, but there
is no loss in generality in assuming a pure stateue0l, since a
mixed state can always be purified by introducing an auxil-
iary system, which can then be thought of as part ofSe.

Thechannel ketuClPHabf is defined as the ket dual toV
in the sense of Sec. II B,

ÎdauCl = o
j

uajl ^ Vuajl P Ha ^ Hbf, s13d

using an orthonormal basisA=huajlj of Ha. The normaliza-
tion iCi=1 is of no great importance—which is whyÎda is
placed on the left side of this equation—but does simplify
certain formulas. Notice thatuCl is a pure state on a tripartite
system.

The channel ket can be visualized using Fig. 3, the obvi-
ous analog of Fig. 1, as obtained by transmitting theSv part
of the fully entangled states11d through the channel, while
preserving theSa part unchanged. It is important to distin-
guish thedefinition of the channel ket, given ins13d, from
this visualization, in thatuCl is a mathematical object which
functions as a pre-probability, used to calculate probabilities
of various events or processes associated with the channel, as
discussed in Sec. III, quite apart from whether the channel is
being used in the manner just described.

Following the notation of Sec. II A, the symbolC denotes
the dyaduClkCu, and subscripts are used to indicate its par-
tial traces. Of particular importance is thedynamical opera-
tor

Rª Cab = TrfsCd P Ĥab, s14d

which corresponds to the dynamical matrix defined inf3g
sapart from the orderab as againstbad; the latter isR with a
particular choice of basis. SinceC is a positive operator, so
is R, and given the normalization ins13d, R has unit trace. In
addition, becauseV is an isometry,

Ra = TrbsRd = Ca = Ia/da. s15d

Thus R is a density operator for the bipartite systemHab,
with the special property thatRa is proportional to the iden-
tity. Hence whatever intuition one possesses for mixed states
on bipartite systems can at once be applied toR; e.g., one can
ask if it is separable and, if not, how entangled it is according
to any of the numerous measures of mixed-state entangle-
ment, etc.

But in addition,R completely determines the properties
of the noisy quantum channel—that is, the channel
superoperator—up to a unitary transformation of the channel

FIG. 1. Circuit illustrating mapM - ket ucl duality.

FIG. 2. Quantum channel using a unitary transformationT or
isometryV.

FIG. 3. Circuit for visualizing the channel ketuCl.
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input Ha corresponding to different choices for the basis
used in the definitions13d. The channel superoperatorV is

the map fromĤa to Ĥb defined by

VsAd = TrfsVAV†d s16d

for any operatorA in Ĥa. To explore howV is related toR, it
is helpful to choose an orthonormal basishuf llj for H f and
expanduCl as

uCl = o
l

ukll ^ uf ll P Hab ^ H f . s17d

We shall refer to the expansion coefficientshukllj as Kraus
kets, in that they can, using the duality introduced in Sec.
II B, be turned into maps

Îdaukll = o
j

uajl ^ Kluajl, s18d

where theKl are the usual Kraus operators, labeled by sub-
scripts as is the usual convention. They can be used to ex-
press the channel superoperator in the familiar form

VsAd = o
l

KlAKl
†. s19d

The usual normalizationolKl
†Kl = Ia is the counterpart of

s15d.
The Kl no longer depend upon the arbitrary choice of

basishuajlj used in defininguCl, as this dependence is un-
done when kets are changed to mapssusing the same basisd
in s18d, but they do depend upon the choice of basishuf llj.
One can eliminate, orsin degenerate casesd at least mitigate
this arbitrariness by makings17d a Schmidt expansion, so
that thehukllj are orthogonal to one another or, equivalently,

TrasKl
†Kmd = 0 for l Þ m. s20d

In that case the number of nonzero terms ins17d, which
could be called theKraus rankof the channel superoperator,
is the ranksin the ordinary sensed of the dynamical operator
R=Cab.

Combinings17d and s18d, one obtains the expression

R= Cab = o
l

fklg =
1

da
o
j ,k

uajlkaku ^ o
l

KluajlkakuKl
†

s21d

for R, and from it another formula

VsAd = TrafsA ^ IdQg s22d

for the channel superoperator in terms of thetransition op-
erator Q, the partial transpose

Q = RTA =
1

da
o
j ,k

uaklkaju ^ o
l

KluajlkakuKl
† P Ĥab s23d

of the dynamical operator with respect to the basisA
=huajlj. Once again, by using this same basis a second time,
its effect in defininguCl has been undone, andQ is indepen-
dent of the basis, consistent with the fact that the superop-
erator V in s22d also does not depend upon the choice of

basis. Despite their close relationship,Q andR are very dif-
ferent types of operators; the latter is positive, and the
former, while it is Hermitian, will typically have negative as
well as positive eigenvalues.

The superoperatorV is a map fromĤa to Ĥb, so it can be
represented as a matrix once orthonormal operator bases
have been defined for these two spaces. There are many
ways of choosing such bases, but one that is particularly

convenient whenĤa and Ĥb are qubits is thePauli repre-
sentationusinghsa

j j, with j =0 the identity andj =1,2,3 the
x, y, and z Pauli matrices in the standard basis ofHa, and
similarly hsb

j j. Expanding the transition operatorQ in the
Pauli form—see the examples in Sec. II D—often provides a
clearer notion of what a noisy channel “does” than is evident
by looking at the Kraus operators. There are various ways of
generalizing this representation to higher-dimensional
spaces. For the case of a channel superoperator there is some
advantage to using a basis of Hermitian operators, rather
than unitaries as inf20g, because the resulting matrix is real.
If the basis is again denoted byhs jj, with 0ø j ød2−1 for a
d-dimensional Hilbert space, one can again lets0 be the
identity, so that the orthogonality condition

Trss jskd = d jkd s24d

implies thats j for j .0 has zero trace—this makes it easy to
take partial traces of operators written in Pauli form.

D. Examples of one qubit channels

We use the names for one qubit channels employed in
Sec. 8.3 off19g, but employp in a way which identifies it as
the probability of an error. The channel kets are sums of
terms of the formuabl ^ ufl, wherea andb are either 0 or 1,
but f sometimes takes larger values.

The bit flip channel is described by

Î2uCl = Î1 − psu00l + u11ld ^ u0l + Îpsu01l + u10ld ^ u1l,

s25d

leading to a transition operator

4Q = I + sa
1sb

1 + s1 − 2pdfsa
2sb

2 + sa
3sb

3g s26d

in the Pauli representation. The dynamical operatorR is the
same except for a minus sign multiplying the termsa

2sb
2,

reflecting the fact thatsy changes sign when transposed.
For the amplitude damping channel the corresponding ex-

pressions are

Î2uCl = Î1 − psu00l + u11ld ^ u0l + Îpu10l ^ u1l, s27d

4Q = I + psb
3 + Î1 − pssa

1sb
1 + sa

2sb
2d + s1 − pdsa

3sb
3.

s28d

A depolarizing channel requires a larger environment:

2uCl = Î2 − 3psu00l + u11ld ^ u0l + Îpsu00l − u11ld ^ u1l

+ Î2psu01l ^ u2l + u10l ^ u3ld, s29d
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4Q = I + s1 − 2pdssa
1sb

1 + sa
2sb

2 + sa
3sb

3d. s30d

Again, the dynamical operatorR is obtained by changing the
sign of sa

2sb
2.

E. From entangled states to channels

As shown in Sec. II C, any noisy channel modeled as in
Fig. 2 can be mapped onto an equivalent entangled ketuCl
on a tripartite system and thence onto a density operator
whose partial transpose determines the channel superopera-
tor. Can one do the reverse, starting with a tripartite ketuCl
or a bipartite density operatorR. Yes, aside from the condi-
tion thatCa sor Rad be proportional to the identity operator
Ia. But if this is not true, can one still turn an entanglement
problem into a channel problem.There are at least two ap-
proaches, each with advantages and disadvantages.

The first is to begin with a unitary operator or isometry as
in Fig. 2, but then instead of “throwing away” the environ-
mentH f, apply a projectorF to this part of the output, and
condition on the resulting state. One can think of this as
carrying out a measurement onH f that determines whetherF
is true or false and throwing away the results of all experi-
ments in which it is false. The consequence of an appropri-
ately chosen “post-selection” of this type will be a set of
sconditionald probabilities that correspond to those of the
original ket or density operator; in other words, one obtains
the same pre-probability—see Sec. III below. The second
approach is based on Fig. 3, and the idea is to replace the
fully entangledufl with a different entangled state, chosen so
fa is no longer proportional toIa, but to Ca sor Rad.

The question remains as to whether either of these proce-
dures is worthwhile, and that depends on one’s goals. Rather
than turning entanglement problems into channel problems,
it may be simpler to do the reverse, as in the classification
scheme proposed in Sec. VI. This allows the mathematical
structure of the two types of problem to be compared. If, on
the other hand, there is quite a bit of useful mathematical and
physical intuition to be wrung from contemplating how
quantum systems develop in time, the approaches mentioned
in the previous paragraph may be worthwhile. Until the
channel-entanglement duality has been more thoroughly ex-
plored, it is hard to say which approach is best. In any case,
there are significant entanglement problems that map in a
simple way onto channel problems, and a study of what en-
tanglement does and does not mean in such cases might be
very helpful.

III. QUANTUM INFORMATION

A. Sample spaces and probabilities

The basic concept of “information” used in the following
discussion is that of astatistical correlation. This morning’s
newspaper contains information because the symbols are
correlated in an appropriate way with yesterday’s events. In-
formation is contained in a photon traveling down an optical
fiber because its properties are correlated with whatever pro-
duced it, and with the effects produced by the further pro-
cesses it will undergo. An encrypted message contains infor-

mation in that its symbols are correlated with those in the
key used to encrypt or decrypt it. Shannon’s information
theory provides numerical measures for these statistical cor-
relations, which apply to quantum as well as to classical
systemsswhich, of course, are in fact quantum mechanicald,
when probabilities have been properly defined.

Standard probability theoryf21–23g is based on the idea
of a sample spaceof mutually exclusive properties. A quan-
tum sample space orframeworkcan be constructed using the
mutually exclusive properties associated with a decomposi-
tion of the identitysSec. II Ad of the Hilbert space used to
describe the system. Given such a sample space one can
assign probabilities using the standard formula

pk = kPkl = kcuPkucl = TrsPkrd, s31d

where the quantum system is assumed to be described by a
ket ucl or density operatorr functioning as a pre-
probability—i.e., as a device for generating probabilities
f24g. Probabilities in quantum mechanics are often discussed
in terms ofmeasurements, which provide a good approach to
understanding them in operational terms, even though it is
rather unsatisfactory from a fundamental perspectivesthe in-
famous “measurement problem;” see, e.g.,f25gd. For present
purposes such measurements should be thought of asideal
projective measurementswhich reveal thesmicroscopicd
properties they are designed to measure; see the discussion in
Chaps. 17 and 18 off24g. We shall have no need of more
complicated concepts such as POVMsssee, e.g., p. 90 of
f19g, or Chap 7 off26gd. From time to time there have been
proposals to introduce nonstandard notions of probability
into quantum mechanics, but these have not proven very suc-
cessful, and we shall not use them.

In quantum mechanics, in contrast to classical physics,
one is typically interested in a variety of sample spaces that
are incompatible with each other, but whose probabilities can
all be generated from a single pre-probability. For example,
what is the probability thatSx= +1/2, orthatSz=−1/2, for a
spin-half particle¿ The same ket or density operator may be
used to answer these questions by inserting different projec-
tors in s31d, but there is no way of combining the answers to
make them refer to a single physical system, as it makes no
sense to talk aboutSx= +1/2 AND Sz=−1/2 or any other
logical combination of propositions associated with incom-
patible decompositions of the identity whose projectors do
not commute with each other. Traditional textbooks state that
Sx andSz cannot be simultaneouslymeasured, which is cor-
rect. But the reason such joint measurements are impossible
in a quantum world is that the combined propertiesdo not
exist: such a combination is incompatible with the math-
ematical structure of the quantum Hilbert spacessee Chap. 4
of f24gd. Treating incompatible sample spaces as if they were
compatible and combining the probabilities of one with the
other is the same sort of mistake as ignoring the difference
betweenxp and px when these symbols refer to quantum
operators.

Consequently, one must be careful when giving aphysical
interpretation to the variousmathematicalconstraints, such
as those in Sec. IV, relating probabilities on different incom-
patible sample spaces generated by a single pre-probability.
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They cannot refer to a single quantum system, as it cannot be
simultaneously described by incompatible frameworks. In-
stead, one must take a counterfactual approach: “This is what
happens when a qubit initially in stateu0l is sent through the
channel,but if instead it had beenin the statesu0l+ u1ld /2,
then….” To be sure, counterfactuals can themselves produce
headaches in quantum theory if improperly used; for a con-
sistent approach, see Chap. 19 off24g. Alternatively, one can
imagine different experiments carried out on an array of
nominally identical systems.

In comparison with classical physics, the new and unfa-
miliar element in quantum information theory is the multi-
plicity of incompatible sample spaces and probability distri-
butions associated with them, even when one is using a
single pre-probability. Finding good ways to think about this
is a fundamental problem, perhaps the fundamental problem,
of quantum information and thus a major challenge to our
understanding the world in quantum terms.

B. Correlations

Consider two systemsSa andSb, with Hilbert spacesHa
andHb, and lethAjj and hBkj be decompositions of the re-
spective identitiesIa and Ib. On the tensor productHab
=Ha ^ Hb used to describe the combined systems the projec-
tors hAjBkj form a decomposition ofIab, and thus a sample
space, to which probabilities may be assigned as ins31d:

PrsAj,Bkd = kAjBkl = TrfsAj
^ Bkdrg, s32d

with r= uclkcu for a pure stateucl. The marginal distributions

PrsAjd = o
k

PrsAj,Bkd = kAjl,

PrsBkd = o
j

PrsAj,Bkd = kBkl s33d

are obtained by summing or by insertingAj ^ I si.e., Ajd or
I ^ Bk si.e., Bkd on the right side ofs32d. One can think of
PrsAj ,Bkd as the joint probability distribution of two random
variables which take on integer valuesj andk, and apply to
it any standard measure of correlation including, if one
wants, the Shannon mutual informationIsA:Bd. Note, in par-
ticular, the condition forstatistical independence:

PrsAj,Bkd = PrsAjdPrsBkd, or kAjBkl = kAjlkBkl. s34d

If one thinks ofSa and Sb as physically separated sys-
tems, then the joint probability distributions32d will be the
same as that of the outcomes of ideal measurements ofhAjj
and hBkj carried out on the separate systems. Consequently,
the measurement outcomes will be correlated in precisely the
same way as the quantum properties that have been mea-
sured, and one can use either the language of propertiessour
approachd or of measurement outcomes to discuss these sta-
tistical correlations. Discussions of measurements in text-
books often refer to “observables” rather than decomposi-
tions. Given a decompositionhAjj, one can always construct
a corresponding observableO=o jajA

j with distinct sreald ei-
genvalues:aj Þak for j Þk. But for our purposes these eigen-

values play no role, so the language of decompositions tends
to be clearer than that referring to observables.

C. Information present and absent

Because of the multiplicity of incompatible quantum
sample spaces, one needs to identify differenttypesor vari-
etiesof information potentially available about a particular
system. Given a decompositionA=hAjj of Ia, we shall say
that the A information aboutSa is present, or perfectly
present, in another systemSb for a given pre-probability pro-
vided there exists a decompositionB=hBkj of Ib such that

kAjBkl = d jkkAjl = d jkkBkl, s35d

where one may have to renumber the projectors in one of the
collections to satisfy this condition. A little thought will
show that the first equality implies the second. The symmetry
of the definition implies that when some type of information
aboutSa is available inSb, there is also some type of infor-
mation aboutSb available inSa. Although we shall not make
use of it in this paper, it is worth mentioning that the
Shannon mutual informationIsA :Bd in this case is
s−o jpj log pjd with pj =kAjl.

If the A information aboutSa is present inSb sin the
sense just definedd for everydecomposition ofIa, we shall
say thatall the squantumd information aboutSa is in Sb.
Clearly it suffices to check this for every orthonormal basis
huajlj. Less obviousstheorem 4 in Sec. IVd is the fact that
one need not check them all: two properly chosen incompat-
ible bases suffice. We shall say thatSa andSb are informa-
tionally equivalentwhen all information aboutSa is in Sb
and all information aboutSb is in Sa.

The A=hAjj information aboutSa is scompletelyd absent
from Sb providedanychoice of a decompositionhBkj of Ib is
statistically independent,s34d. A little thought shows that this
is equivalent to the requirement that

TrasAjrd = kAjlrb = pjrb s36d

for every j , whererb=Trasrd is the reduced density operator
for rb. fNote that it suffices to require that the operators
defined by the left side ofs36d be proportional to one an-
other; when that is so, summing them shows they are all
proportional torb.g In other words, for everyj such thatpj is
not zero, the density operatorconditionalon Aj,

r̄b
j = TrasAjrd/pj , s37d

is the same asrb.
If for every decompositionA of Ia—it suffices to check

all orthonormal bases—the corresponding information about
Sa is absent fromSb, one can showftheorem 1siii d in Sec.
IV g that

r = ra ^ rb, s38d

from which it follows that all information of any sort about
Sb is also absent fromSa. In this case we shall say thatSa
andSb are scompletelyd uncorrelated. No conceivable mea-
surement on one of these systems will provide any informa-
tion about the other.
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In the case of three or more systems, the presence or
absence of particular types of information aboutSa satisfies
some intuitively obvious rules. IfA information aboutSa is
present inSb, it is also present in the combined systemSb
andSc, denoted bySbc. If it is absent fromSbc, it is absent
from bothSb andSc. The same is true when “A information”
is replaced by “all information.”

These definitions of information perfectly present or com-
pletely absent make no reference to any sort of numerical
measure of correlation and thus are useful for aqualitative
rather than a quantitative discussion of quantum information.
This is not to say that quantitative measures are
unimportant—far from it—but they lie outside the scope of
this paper. It is hoped that the qualitative approach developed
here will help organize and motivate quantitative discussions
ssee Sec. VII Bd.

D. Correlations for channels

The preceding discussion referred to properties of sepa-
rated systemsSa andSb at the same time. Basically the same
ideas apply in the case of quantum channels, whereSa is the
channel input at an earlier time andSb its output at a later
time sSec. II Cd. The only difference is the manner in which
one calculates a joint probability distribution;s32d is re-
placed by

PrsAj,Bkd = kAjBkl = TrfsAj
^ BkdQg. s39d

Here the transition operatorQ fsees23dg takes the place of
the density operator ins32d. The marginals are once again
given by s33d. The fact thatQ is the partial transpose of a
density operatorR guarantees that the probabilities ins39d
are well defined; indeed, they behave very much like those of
a bipartite system described byR.

One can once again visualizehBkj in terms of idealized
measurements of what emerges from the channel, but the
corresponding intuitive picture ofhAjj is an idealprepara-
tion. Of course, it is no more possible to prepare a quantum
system in a state of twosor mored incompatible properties
than it is to measure such a state, for such states do not exist
in the quantum world. And just as an ideal measurement
reveals a property possessed by a quantum system at a
slightly earlier time, an ideal preparation results in a quan-
tum system having a specific property at a slightly later time.
The language of “preparation” and “measurement” is useful
both for providing quantum concepts with intuitive content
and for relating quantum theory to laboratory experiments,
but it should be used to illuminate, not replace, the notion of
statistical correlations among microscopic properties,
whether at the same or at different times, as this is the more
fundamental concept.

The correlations obtained using a transition operator,s39d,
are not entirely the same as those arising from a density
operator,s32d, but the differences are rather subtle. Given a
pair of decompositionsA andB, there is no way of telling
whether the joint probability distribution comes from a den-
sity or a transition operator. What can happen withsetsof
correlations forincompatibledecompositions, when they are
generated by a single pre-probability, is best illustrated by

means of an example. For a perfect one-qubit channel,p=0
in s26d, each component of angular momentum of a spin-half
particle is identical at the entrance and at the exit,

ksa
xsb

xl = ksa
ysb

yl = ksa
zsb

zl = 1. s40d

However, this type of correlation is impossible for two sepa-
rate systems at the same time. What one can, instead, achieve
by using an appropriatespure stated density operator is

ksa
xsb

xl = − ksa
ysb

yl = ksa
zsb

zl = 1 s41d

or something similar: one of the termssit need not beksa
ysb

yld
must have a minus sign, or else there are three minus signs,
as in the famous spin-singlet state used in discussions of the
Einstein-Podolsky-Rosen paradox. Similarly,s41d is impos-
sible for a quantum channel.

Interesting as these differences, which arise from the par-
tial transpose ins23d, may be, they are basically irrelevant to
the concerns of this paper. The definitions of information
perfectly present or completely absent given in Sec. III C
above and the theorems in Sec. IV below apply equally to
channels and entangled states. In both cases the fundamental
issue is statistical correlations and what quantum theory has
to say about them, and that is exactly the same once proper
account is taken of the partial transpose.

IV. ALL-OR-NOTHING THEOREMS

It is convenient to organize a number of qualitative “all-
or-nothing” results on the location of quantum information in
a series of eight theorems. The first four refer to bipartite and
the last four to tripartite systems. In several cases there are
separate results depending upon whether the pre-probability
is a pure state, indicated by a ketuCl, or a density operatorr.
The former are stronger than the latter, and the reader should
keep in mind that any result that is valid for a density opera-
tor applies equally to the case of a pure state, even if that is
not explicitly stated.

While the theorems are stated for entangled states,
thought of as different systems at a single instant of time,
they apply equally to correlations at two different times in a
quantum channel, for whichuCl is the channel ket. The bi-
partite systems used in the first four theorems are sometimes
designatedSab and sometimesSac. This makes the notation
consistent with the later theorems for tripartite systems,
where informationabout Sa is presentin Sb and/orabsent
from Sc. Note that, in agreement with the definitions in Sec.
III C, “present” means perfectly or completely present; “ab-
sent” means completely absent. The proofs will be found in
Appendix A.

The tripartite theorems have a no-cloning “smell” to them
and represent an attempt to give this important, but some-
what elusive, notion a precise information-theoretic content.
The absence of theorems forp-part systems withpù4 re-
flects our inability to find results of corresponding generality,
and we hope our readers will be more successful. But keep in
mind that a tripartite theorem might, for example, be usefully
applied to Sabcd thought of as consisting ofSa, Sb, and
Scd—a strategy employed in discussing quantum codes in
Sec. V C.
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Theorem1. Absence of information.
sid If A=hAlj is a decomposition ofIa, theA information

aboutSa is absent fromSc for a pre-probabilityuClPHac if
and only if

PAlP = alP, s42d

whereP is the projector on the support ofCa and theal are
snon-negatived constants. The following is equivalent tos42d:

kpjuAlupkl = ald jk, s43d

wherehupjlj is a collection of orthonormal states which span
the support ofCa, so thatP=o jupjlkpju.

sii d If A=huajlj is an orthonormal basis and allA infor-
mation aboutSa is absent fromSc for uClPHac, then

uCl = ual ^ ugl s44d

is a product state onHa ^ Hc.
siii d All information aboutSa is absent fromSc for a pre-

probability rPĤac if and only if

r = ra ^ rc, s45d

which implies that all information aboutSc is absent fromSa
sthe two are uncorrelatedd.

Theorem 2.Presence of particular information.
sid The A=hAlj information aboutSa is present inSb for

rPĤab if and only if

LlLm = 0 for l Þ m, s46d

where

Ll = TrasAlrd. s47d

sii d TheA=hAlj information aboutSa is present inSb for
uClPHab if and only if

fAl,Cag = 0 s48d

for all l. In particular, if A=huajlj is an orthonormal basis,
s48d is equivalent to the requirement that

uCl = o
j

uajl ^ ub jl s49d

be a Schmidt expansion—i.e.,kbkub jl=0 for j Þk.
siii d If the A=hAlj information aboutSa is present inSb

for rPĤab, then for all l

fAl,rag = 0. s50d

Note that ifA is an orthonormal basis,s48d and s50d are
equivalent to the assertion that theCa or ra matrices are
diagonal in this basis.

Theorem 3.Presence of all information.
sid All information aboutSa is in Sb for uClPHab if and

only if

Ca = Ia/da; s51d

i.e., uCl is maximally entangled.

sii d All information aboutSa is in Sb for rPĤab if and
only if there are Hilbert spacesHd and He whose tensor

product isHb or a subspace ofHb, andr is of the form

r = f ^ re P Ĥad ^ Ĥe, s52d

where f= uflkfu projects on a fully entangled stateufl
PHad. This last impliessbut is not implied byd

ra = Ia/da. s53d

siii d All information aboutSa is in Sb and all information
aboutSb is in Sa, i.e., the two systems are informationally
equivalent, if and only if the pre-probability is a fully en-
tangled pure state: maximally entangled withHa andHb of
the same dimension.

The utility of theorem 3 increases significantly through
the existence of somesseeminglyd rather weak conditions
which imply that all information aboutSa is in Sb. To this
end we need the following definition. Two decompositions

A=hAjj andĀ=hĀkj of Ia arestrongly incompatibleif there
exists no projectorP, apart fromP=0 andP= Ia, that com-

mutes with all thehAjj and all thehĀkj. This is, for example,

the case whenA=huajlj and Ā=huājlj are two orthonormal
bases for which

kajuākl Þ 0 s54d

for all j and k, a condition which is fulfilled when the two
bases are mutually unbiased,s4d, but is obviously much
weaker. Strong incompatibility is weaker still; it is possible
for a number of the inner products ins54d to vanish provided
a sufficient number are nonzero. Indeed, two decompositions
can be strongly incompatible without all of the projectors or,
in some cases, any of the projectors being onto pure states.
We shall not pursue the matter further at this point, but in-
stead state the desired result:

Theorem 4.Strong incompatibility. LetA and Ā be two
strongly incompatible decompositions ofIa, according to the

preceding definition, and suppose that both theA and theĀ
information aboutSa is in Sb. Then

ra = Ia/da, s55d

and if, in addition,r=C is a pure state onHab, then all
information aboutSa is in Sb.

The following theorems refer to a tripartite systemSabc.
Theorem 5.All information absent. If foruClPHabc all

information aboutSa is absent fromSc, there are Hilbert
spacesHd andHe whose tensor productHde is eitherHb or
a subspace ofHb, and uCl is of the form

uCl = uxl ^ ucl P Had ^ Hce. s56d

Only if the support ofCb is a proper subspace ofHb will
Hde differ from Hb, and in that case it can be identified with
the subspace. The “hidden product” structure ofs56d turns
out to be a surprisingly useful tool.

Theorem 6.Particular information present for a pure state.
For a pre-probabilityuClPHabc, the following holds:

sid If A=huajlj is an orthonormal basis ofHa, a necessary
and sufficient condition for theA information to be present
in Sb is that
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Cac = o
j

uajlkaju ^ G j , s57d

where thehG jj are spositived operators onHc.
sii d If for some decompositionA=hAkj of Ia,

Cac = o
k

Ak
^ Ḡk, s58d

the A information aboutSa is in Sb, and if Ā=hĀlj is a

compatible decomposition ofIa in the sense that all thehĀlj
projectors commute with all thehAkj projectors, then theĀ
information is also present inSb. sIn particular,Ā may be an
orthonormal basis in which thehAkj are diagonal.d

Theorem 7.Particular information present for a mixed
state. Suppose that theA=huajlj information aboutSa is in

Sb for rPĤabc. Then the following holds:
sid The reduced density operator onHac is of the form

rac = o
j

uajlkaju ^ G j , s59d

where thehG jj are spositived operators onHc.

sii d If Ā=huāklj is another orthonormal basis ofHa, andA
andĀ are mutually unbiased, then noĀ information is inSc,
and

Trsrfākgd = 1/da, s60d

independent ofk.
Theorem 8.No splitting theorem.

sid If for rPĤabc all the information aboutSa is in Sb,
then there is no information aboutSa in Sc,

rac = ra ^ rc. s61d

sii d If for uClPHabc all the information aboutSa is in Sbc
and none of it is inSc, then it is all inSb.

siii d If for rPĤabc all the information aboutSa is in Sbc,
but none of it is inSc, then the dimension ofHb is not less
than that ofHa.

Note thatsiii d in this last theorem is a weaker result than
sii d, for if all the Sa information is inSb, then by theorem 3
sii d the dimension ofHb cannot be less than that ofHa. The
difference betweensii d andsiii d turns out be of some interest
for understanding quantum codes, Sec. V C.

V. APPLICATIONS

A. Channels with mixed-state environment

There is no loss in generality in assuming the environ-
ment for a quantum channel is initially in a pure state, Fig. 2,
provided the dimensionde of He is at leastda

2. The question
has been raisedf27,28g as to what channels can be produced
using a smallerde—e.g., de=da—if one assumes an initial
mixed state for the environment.

Such a channel can be modeled in the manner indicated in
Fig. 4, with a “large” environmentSed initially in a pure state
uxl, which when traced down toHe yields the desired mixed-

state density operator. The unitary transformationT maps
Hve onto Hbc to produce the analog of Fig. 3, wheref has
become the paircd, andufl is again the fully entangled state
s11d. The channel ket

uCl = sIa ^ T ^ Iddsufl ^ uxld s62d

is a pure state ofHabcd.
This channel ket has the interesting property

Cad = Ca ^ Cd, s63d

which means thatSa andSd are uncorrelated; no information
about one is available in the other. It follows from the fact
that the product state on the right side ofs62d has this prop-
erty, which is preserved during time development because
the unitary operatorT does not act onHad. As a conse-
quence,Cad sand therefore also its partial tracesCa andCdd
is independent of time. Note that this invariance isnot true
sin generald if T is not a unitary operator. The reason, in
physical terms, is that a general map fromHve to Hbc can be
thought of as involving post selection, based upon some sort
of joint measurement. SinceSa is correlated withSz andSd
with Se through the entangled initial states, the final state of
affairs conditioned on the outcome of such a measurement
may very well contain correlations betweenSa andSd.

Not only is s63d a consequence of our model of a mixed-
state environment, it comes close to being the very essence
of the matter in light of theorem 5 applied to the tripartite
Ha ^ Hbc^ Hd, for that tells us thatuCl necessarily involves
a “hidden product” structure. What is required to bring that
structure to light is a suitable unitary transformation, which
is T in Fig. 4. To be sure, theorem 5 does not tell us thatufl
shall be fully entangled—which suggests that the problem of
a channel with a mixed-state environment is actually part of
a more general information-theoretical question about en-
tangled states on four-part systems, and exploring it from this
perspective may be useful. In addition, our analysis suggests
a close connection between such channels and properties of
unitary transformations on bipartite systems.

B. CQ channels

The notion of a CQ or “classical-quantum” channel was
introduced inf29g and has been the subject of some recent
studiesf7,8g in connection with entanglement-breaking chan-
nels, which were introduced inf30g. An entanglement-
breaking channel may be defined as one in which the dy-
namical operatorR in s21d is separable, in the standard way
in which that term is applied to density operatorsssee, e.g.,

FIG. 4. Channel and channel ketuCl for a mixed-state
environment.
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f31,32g, Sec. 2.2.3 off1gd, and a CQ channel is a particular
case of an entanglement-breaking channel in whichR has the
form

R= s1/dado
j

uajlkaju ^ Bj , s64d

using a suitably chosen orthonormal basisA=huajlj for Ha

and positive operatorsBj of unit tracefto ensures15dg onHb.
The remarks which follow apply equally to a QC or
“quantum-classical” channel, with the roles ofa andb inter-
changed.

Introducing the channel ketuClPHabf with R=Cab, s14d,
allows one to apply theorem 6sid in order to characterize a
CQ channel as one in which there is an orthonormal basis for
the channel entrance such that the information associated
with this basis isperfectly present in the environmentS f at
the later time. Note that such a characterization isnot imme-
diately obvious from considering the dynamical operator
or, equivalently, the channel superoperator, for these are ob-
tained by tracing out, thus ignoring, the environment,
whereas the property which provides the simplest character-
ization in information-theoretic terms has very much to do
with what information is availablein the environment.

Using a channel ket in no way reduces the value of the
insights provided in the studies cited above, nor does it sup-
ply sat least in any obvious sensed alternative tools for arriv-
ing at the technical results in those papers. But it does sug-
gest a genuinely quantum-mechanical and information-
theoretical description of what is “classical”sthe C in CQd
about a CQ channel: namely, the environment provides per-
fect decoherence in a particular basis, as a consequence of
which no information in any “complementary,” which is to
say mutually unbiased basis, is available at the channel exit,
theorem 7sii d. This is typical of what is generally referred to
as “classical communication.”

C. Information location in quantum codes

Quantum codes allow quantum information to be pre-
served against the effects of noise, whether due to interaction
with the environment in a quantum communication setting,
or imperfect gates in a quantum computer, and thus they
have received a great deal of attention; for an introduction,
seef33g and Chap. 10 off19g. Our purpose here is not to
contribute to the technical literature, but instead to point out
how the basic operation of such a code can be understood in
terms of the presence or absence of certain types of informa-
tion in certain places.

The standard scenario is one in which the quantum infor-
mation is embedded in acodeB, a K-dimensional subspace
of the Hilbert space

Hd = H1 ^ H2 ^ ¯ Hn s65d

associated withn carriers of the coded information. The
simplest situation is one in whichK=2=dm for 1ømøn,
but most of what we have to say applies more generally.
Define thesecurity sof the code to be the largest integer
such that the encoded information is entirely absent from any
set of s or fewer carriersfin a sense made precise ins68d

belowg. That is, an eavesdropper could learn nothing at all by
carrying out arbitrary measurements on a set ofs carriers, but
could learn something from a suitable set ofs+1 carriers. In
the literature it is customary to refer tos+1 as the “distance”
d of the code, using an analogy with classical codes in which
d is the minimum Hamming distance between two code
words. For a quantum code the notion of “distance” is some-
what obscure, as is the notion of code word, whereass has a
simple intuitive interpretation.

For analyzing the security and the error-correction prop-
erties of the code it is convenient to define a channel ket

ÎKuCl = o
j

uajl ^ ubjl P Ha ^ Hd, s66d

where thehuajlj form an orthonormal basis of the channel
entranceHa, with da=K, and thehubjlj an orthonormal basis
of the code subspaceB with projector

B = o
j

ubjlkbju. s67d

Thus the encoding operation mapsHa onto B. One can vi-
sualize uCl using Fig. 3, but withSb and S f combined to
form Sd.

The security condition introduced earlier can now be
stated as

Cau = Ca ^ Cu, s68d

where u denotes any subset ofs integers drawn from
h1,2, . . . ,nj. Note that if s68d holds for such a set, it also
holds for a smaller set; simply, take an appropriate partial
trace of both sides. In view of theorem 1siii d, s68d expresses
precisely what we want to say by the security condition: if it
is satisfied, no conceivable measurement onSu will reveal
anything about any sort of information in the channel en-
trance, whereas if it isnot satisfied,somesort of information
will be at least partially available to an eavesdropper.

From the definitions66d it is obvious thatCa= Ia/da, so
by theorem 3sid all information aboutSa is in Sd. Thus by
theorem 8sii d, if none of this information is inSu, it must be
in the complement of this system inSd. That is, all the in-
formation aboutSa is available in any collection ofn−s
carriers; given any such a set, there will be a means of ex-
tracting or recovering the information from it even if the
other carriers are ignored. This provides a preliminary under-
standing in information-theoretic terms of how a quantum
error-correcting code functions, though some additional
points remain to be dealt with.

In order to relate the security of the code to the discussion
of error correction found inf34,35g, it is helpful to introduce
the following definition. An operatorF on Hd will be said
to have abaseSw, wherew is some subset of, andw̃ its
complement in,h1,2, . . . ,nj, provided

F = Fw ^ Iw̃ P Ĥw ^ Ĥw̃, s69d

andw is thesmallestset for whichF can be written in this
form. Thesizeof the base ofF is the number of carriers in
Sw, the number of integers inw.
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A code has securitys when for every operatorF with a
base whose size does not exceeds it is the case that

BFB= bsFdB, or kbjuFubkl = bsFdd jk, s70d

and s is the largest integer for which this is the case. Here
bsFd is a scomplexd number that depends uponF, but not on
j or k, andB is the projector ins67d. The two equalities in
s70d are equivalent because the second is simply the first
expressed as a matrix when one extendshubjlj to an ortho-
normal basis ofHd. To see thats70d is correct, first apply it

in the case whereF is a projector inĤu for someu for which
s68d holds, and use theorem 1sid, with Ha in the theorem
replaced byHd, andHc by Ha, to the decompositionhF ,Id

−Fj of Id. Any operator onHu can be expressed as a linear
combination of projectors, and hence by linearity, and the “if
and only if” of theorem 1sid, we arrive at the equivalence of
s68d ands70d as statements thatHa andHu are uncorrelated.

Now s70d is very similar to the necessary and sufficient
condition

kbjuKl
†Kmubkl = blmd jk s71d

of f35g sin a slightly different notationd for a code to be able
to correct a class of errors corresponding to the Kraus opera-
tors hKlj acting on the spaceHd. If these Kraus operators
have a base no larger thant, thenF=Kl

†Km has a base that is
no larger than 2t, and we arrive at the condition

s= 2t s72d

relating the securitys to the maximum number of errorst
which can be corrected. That is, a code which allows full
recovery of information whent carriers are tampered with in
any way, andone does not know whichcarriers have been
affected, must allow full recovery when anyknownset ofs
=2t carriers have been tampered with; in the latter case the
information will be recovered from then−2t remaining car-
riers. Thus the well-known five qubit code—seef34,36g and
p. 469 off19g—allows error recovery in the case of tamper-
ing with any one of the five carriers, but also if any two are
stolen, since recovery is then carried out on the three that
remain.sFor a helpful discussion of this somewhat confusing
point, seef37g.d

The foregoing considerations make it possible to under-
stand in information-theoretical terms the quantum Singleton
lower bound

n ù 4t + log K/log D s73d

on the number of carriers, each assumed to have a Hilbert
space of dimensionD, in a quantum codef38g; also see p.
568 of f19g. One argues as follows. In order to correct up to
t errors on unknown carriers the code must have a security of
s=2t: there is no information aboutSa in any collection of 2t
carriers, so by theorem 8sii d all the information aboutSa is
in any set ofn−2t carriers, as we noted earlier. But in a set of
n−2t carriers, no information can be present in a subset of 2t
carriers, and thus by theorem 8siii d, the Hilbert space ofn
−2t−2t=n−4t carriers must have a dimension greater than
or equal toda=K. This last assertion is equivalent tos73d.

Note how in carrying out this argument it is essential to
distinguish between a pure state pre-probabilityuCl and a
mixed state pre-probabilityr. The former is needed when
using theorem 8sii d to infer the presence of all the informa-
tion aboutSa in any collection ofn−2t carriers, given that it
is absent from any collection of size 2t. However, thesen
−2t carriers along withSa form a system whose pre-
probability is a density operator, and as a consequence we
cannot use the fact that no 2t of thesecarriers contain infor-
mation to infer that it must be present in a set ofn−4t car-
riers, something that issat least in generald not true. By using
theorem 8siii d instead of theorem 8sii d, we correctly infer
that the leftover collection ofn−4t carriers has a certain
minimal size,not that it contains all the information.

The foregoing discussion focused on codes for which ar-
bitrary errors int or fewer carriers can be corrected. What of
codes designed for the correction of errors of a more specific
sort? Once agains71d applies, but only to a more specialized
class of operators. Consider, for example, the three-qubit
code which is adequate for bit-flip errorssf33g or p. 430 of
f19gd. Such errors can be represented by a Paulisx on a
single qubit, and whats71d is telling us is thatno X infor-
mation about any pair of qubit code carriers can be present
in Sa, where the sample spaceX is the orthonormal basis
hux1

±x2
±lj if the carriers are 1 and 2; hereux±l are the eigen-

states ofsx.
The statement about absence at the channel inputSa of

certain types of information about some of the carriers can be
misinterpreted if thought of in terms of some backwards-in-
time “influence” which the carriers exert on the channel in-
put. Instead, keep in mind that the real issues have to do with
statistical correlations between states of affairs at different
times as represented in appropriate sample spaces or frame-
works. Error recovery depends, of course, on information
being present in appropriate locations, and quantum no-
cloning sloosely speakingd allows us to connect the presence
of information in one place with its absence someplace else.
Presence and absence should always be thought of in terms
of statistical correlations.

VI. CLASSIFICATION OF CHANNEL
AND ENTANGLEMENT PROBLEMS

The fact that the properties of a quantum channel can be
deduced from those of a channel ket, and likewise the prop-
erties of an entangled mixed state from those of a suitable
purification, suggests the possibility of classifying these two
types of quantum information problem in a single scheme
based on pure states of ap-part system. Of course, for eachp
one should then introduce additional categories with some
information-theoretical significance. The dimensions of thep
subsystems are meaningful parameters, and other features,
such as the “all” or “nothing” character of certain types of
information, could assist in classifying particular cases. The
motivation behind such a classification scheme is to have a
useful way of comparing different types of experimental phe-
nomena or theoretical models, one that may suggest analo-
gies in instances where these are not immediately evident.
Seeing how it relates to other problems does not, of course,
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automatically provide a solution or even a better way of
thinking about a particular question, but could in some cases
suggest an alternative approach or allow the application of a
different set of ideas.

There are two reasons for preferring a classification using
entangled states to one based on channels. First, every chan-
nel problemsof the sort under discussiond maps in a simple
and natural way to an entanglement problem, while the re-
verse is subject to some qualifications, as discussed in Sec.
II E. Second, entangled states have a higher “conceptual
symmetry;” for example, it is more natural to ask what hap-
pens if two subsystems of a bipartite system are interchanged
than what will occur if the channel is, so to speak, operated
in a time-reverse mode. The utility of pure states as against
mixed states is less obvious, but the results in Sec. IV sug-
gest that this may lead to a simpler classification using the
location of quantum information, assuming that is a useful
way to proceed.

Now let us consider some preliminary results. The
Schmidt expansion for bipartite pure states provides a com-
plete classification, up to local unitaries, forp=2, and the by
now standard pure-state entanglement measure has proven
itself a remarkably useful tool for their study. Noiseless
quantum channels described by unitary time development
fall in this category and correspond to fully entangled states.

The difficult problems start withp=3, which includes
both mixed-state entanglement and the standard model for
noisy quantum channels. Classifying the two together imme-
diately raises the question of how various mixed-state en-
tanglement measuresf1,39g may be related to the many dif-
ferent types of quantum channel capacity that have been
definedf1,40g. There is a brief discussion in Sec. 6.3.3 off1g,
which notes that the equivalence of thessimpled quantum
capacity and a one-way distillation entanglement measure
was demonstrated inf34g. But we know of no systematic
attempt to relate objects which ought to have a close connec-
tion. Or if they do not have a close connection, why is that?

If one further classifiesp=3 problems according to the
sizes of the subsystems, the obvious starting point is pure
states of three qubits. Some one-qubit noisy channel prob-
lems fall in this category, as does the simplest cloning prob-
lem f41g. Leaving aside cases of a product state of one qubit
with an entangled state of the other two, which in some sense
belong to thep=2 class, the remaining states fall into two
classes, “W” and “GHZ,” under the equivalence generated
by

uC8l = sA ^ B ^ CduCl, s74d

whereA, B, andC are nonsingular operatorsf42g. This is a
very interesting result which does not seem to have been
generalized to larger subsystems. However, even for qubits it
may not represent a complete classification scheme, for op-
erations of the forms74d do not, in general, preserve all the
properties that are of interest from an information-theoretic
perspectivesin which uCl functions as a pre-probabilityd.

The general one-qubit noisy quantum channel falls in the
p=3 category, with two subsystemssentrance and exit of the
channeld of dimension 2 and onesthe environmentd of di-
mension 4. A quite general description of such channels has

been worked out inf43g, and this work can and should be
regarded as a significant step in classifying a large and im-
portant set of tripartite pure states. There are, on the other
hand, entangled states which escape this classificationsfor
the reasons explained in Sec. II Ed, and it would be interest-
ing if the methods used inf43g could be extended to these as
well.

A unitary transformation mapping a bipartite system to
itself can be thought of as ap=4 problem, equivalent to a
fully entangled state between two bipartite systems. In the
case of two qubits such unitaries can be written down explic-
itly in terms of three real parametersf44g, up to local unitar-
ies on the individual qubits, and this provides a convenient
description of an important class ofp=4 pure states in which
each subsystem has dimension 2. Beyond this very little
seems to be known at present about the four qubit problem.
A one-qubit channel with a mixed-state environment falls in
this category, as explained in Sec. V A. Theentanglement of
purification introduced inf45g is an example of ap=4 prob-
lem not limited to qubits, as is the general problem of a
channel corresponding to a mixed-state environment.

As noted in Sec. V C, a quantum code withn carriers falls
in the p=n+1 category of states for which there is an ab-
sence of correlations between one particular subsystemsthe
channel entranced and various collections of other sub-
systems. Relating quantum codes to more general problems
of multipartite entanglement is an interesting and challenging
problemf20g.

VII. CONCLUSION

A. Summary

The fundamental idea underlying the duality discussed in
Sec. II is that the correlation of events at different times that
characterize a quantum channel are “the same thing” as the
correlation of properties of an entangled quantum system at
different points in space. At the mathematical level the cor-
respondence is expressed by a simple partial transposes23d
that carries the dynamical density operatorR, into the tran-
sition operatorQ representing the channel superoperator. In
physical terms the duality says that the correlations which
express the location of information about one quantum sys-
tem in another are of basically the same nature, whether they
refer to properties of a single system at two different times or
to two different systems at the same time. This is well estab-
lished in classical information theory, where the same tools
are used for both circumstances, and it works equally well in
quantum systems given appropriate sample spaces or frame-
works, as explained in Sec. III.

The nonclassical “peculiarities” of quantum information
emerge when one uses a single pre-probability, either a pure
state or a density operator, or their counterparts for a quan-
tum channel, to generate probability distributions and thus
correlations for a variety of different, incompatible frame-
works ssample spacesd. It is here that “no-cloning” plays a
central role, and the eight all-or-nothing theorems of Sec. IV
are intended to make that idea more precise and more widely
applicable. While the theorems are expressed in entangle-
ment language, the duality allows their immediate applica-
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tion to quantum channels. In many cases the results are more
precisesand in others their derivation is easierd when the
pre-probability is a pure rather than a mixed state, which in
the case of a quantum channel means a channel ket rather
than a dynamical operator. This suggests that channel kets
are a useful tool for analyzing the properties of noisy quan-
tum channels, and the applications in Sec. V bear this out.
Whether pure states are equally advantageous for classifying
entangled states and quantum channels in a single scheme
remains to be demonstrated, but the preliminary results in
Sec. VI are encouraging.

B. Open questions

The eight all-or-nothing theorems of Sec. IV provide a
useful first step in describing in a systematic way how infor-
mation can be divided up or spread out over an entangled
quantum system. But one suspects there remains much more
to be said, both about bipartite and tripartite systems, and
also about systems withpù4 parts. In addition, every quali-
tative theorem of the type found in Sec. IV ought to be the
limiting case of one or perhaps severalquantitativetheorems
in which the complete presence or absence of information is
replaced by quantitative measures—Shannon entropies are
an obvious, but not the unique possibility—and constraints
are provided in the form or rigorous inequalities, or perhaps
even equalities, if one is lucky. While some ideas of this sort
have been put forward—e.g.,f46,47g—a great deal more
could be done.

To be sure, several entanglement measures have been pro-
posed for bipartite mixed statesf1,39g, and to a lesser extent
for systems withpù3 parts; seef20g and the references
given there. But rarely do these have a specific information-
theoretical content or basis, and it is an open question
whether, and if so how, they can be understood in such
terms—i.e., related to statistical correlations forming part of
a consistent probabilistic description of a quantum system.
To be sure, entanglement measures can be useful even if they
have no connection to information theory, but if there is such
a connection, understanding what it is could be a useful con-
tribution to the subject.

Discussions of quantum channel capacities seem better
anchored in an information-theoretic framework than those
concerning entanglement measures, though perhaps more
thought should be given as to how to translate “classical,”
which occurs rather frequently in such discussions, into ap-
propriate quantum mechanical terms; we no longer live in a
classical world. Relating these capacities to entanglement
measures seems at present a largely open question, and an-
swering it could make a valuable contribution understanding
both entanglement and noisy channels.

The task of classifying entangled pure states ofp-part
systems in the manner suggested in Sec. VI can be regarded
as complete forp=2, but forp=3 it has just begun, and very
little is known aboutpù4 systems apart from work on quan-
tum codes. Extending the latter to more general entangled
states could make a significant contribution to our under-
standing of multipartite entanglement, which at present is
quite limited.
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APPENDIX A: PROOFS OF THEOREMS IN SEC. IV

Theorem 1 (i).ExpanduCl in Schmidt form,

uCl = o
j

Îqjuajl ^ ucjl, sA1d

and letJ be the collection ofj values for whichqj .0. For
the hAlj information to be absent fromSc, it must be the case
fsees36dg that

TrasCAld = o
j ,k

ÎpjpkkajuAluaklsucjlkckud sA2d

is proportional to

Cc = o
jPJ

pjfcjg, sA3d

which means that

kajuAluakl = ald jk sA4d

for all j and k in J. This is the same ass43d, which is the
same ass42d.

Theorem 1 (ii).ExpanduCl in the orthonormal basishuajlj
fsees6dg:

uCl = o
j

uajl ^ ug jl. sA5d

The requirement that no information abouthuajlj be in Sc

means that all theug jl must be proportional to each other,
and thus to a single ketugl, which means thatuCl is of the
form s44d.

Theorem 1 (iii).The “if” part is obvious. To prove that
s45d holds if all information aboutSa is absent fromSc, let
huajlj and hucllj be bases in whichra andrc are diagonal,

ra = o
j

pjfajg, rc = o
l

qlfclg, sA6d

and write

r = o
jk

o
lm

kajcluruakcmlsuajlkaku ^ ucllkcmud. sA7d

The absence of all information implies that

TrasArd = kAlrc sA8d

for any operatorAPĤa—sees36d, and note that the collec-

tion of all projectors is an operator basis forĤa. Insert A
= uaklkaju in sA8d, and usesA7d to evaluate the left side and
sA6d the right. The conclusion is that

kajcluruakcml = pjqld jkdlm, sA9d

which is s45d.
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Theorem 2 (i). If the A information is present inSb s35d
implies that

TrsAlBmd = TrbsLlBmd = dlm TrbsLld, sA10d

since kAll=TrbsLld. If P and Q are positive operators such
that TrsPQd=0, thenPQ=0. Using this and the fact that the
Bm are projectors, so thatLl =LlBm+LlsIb−Bmd, one sees
that sA10d implies that

BmLlBm = dlmLl , sA11d

and s46d is a consequence ofBlBm=dlmBl. Conversely,s46d
implies that one can simultaneously diagonalize the collec-
tion hLlj and choose theBl projecting onto appropriate
blocks in such a way thatsA11d, and thereforesA10d and
s35d are satisfied.

Theorem 2 (ii).Choose an orthonormal basishuajlj in
which the hAlj are diagonal, and expanduCl in this basis,
s49d, without assuming it is in Schmidt form. Then

Ca = o
jk

kbkub jluajlkaku sA12d

and

Ll = o
jPJl

ub jlkb ju, sA13d

whereJl is the collection ofj values for whichAluajl= uajl.
One can show thatCa commutes with all theAl if and only
if kbkub jl=0 wheneverj PJl andkPJm with mÞ l. But this
last is equivalent tos46d. If the Al project onto one-
dimensional states, thenkbkub jl=0 for j Þk, so s49d is in
Schmidt form.

Theorem 2 (iii).Purify r to a ketuClPHabc. Use the fact
that theA information is present inSbc, and apply partsii d of
the theorem withSbc in place of Sb to infer that Ca=ra
commutes with all theAl.

Theorem 3.Partsid is an immediate consequence of 2sii d,
for it is only multiples of the identity that commute with all
projectors. The proofs ofsii d and siii d are given below, fol-
lowing that of theorem 8.

Theorem 4.By theorem 2,ra or Ca must commute with

all the hAjj and all thehĀkj, and must therefore, by the defi-
nition of strong incompatibility, be multiples ofIa. The final
statement is a consequence of theorem 3.

Theorem 5.Let huajlj and hucklj be orthonormal bases of
Ha andHc which diagonalizeCa andCc,

Ca = o
j

pjfajg, Cb = o
k

qkfckg, sA14d

and expanduCl in these bases:

uCl = o
jk

uajl ^ ub jkl ^ uckl. sA15d

The conditionC=Ca ^ Cc expressing the absence of allSa
information fromSb, theorem 1siii d, implies that

kb j8k8ub jkl = pjqkd j j 8dkk8. sA16d

Therefore if we restrict our attention to thej PJ and kPK
for which pj .0 andqk.0, we can construct an orthonormal
set

ubjkl = ub jkl/Îpjqk sA17d

of kets inHb, and rewritesA15d in the form

uCl = o
jk

Îpjqkuajl ^ ubjkl ^ uckl. sA18d

The spacesHd andHe are thendefinedas having orthonor-
mal baseshudjlj and hueklj such that

ubjkl = udjl ^ uekl, sA19d

so thatuCl is of the forms56d with

uxl = o
j

Îpjuajl ^ udjl, ucl = o
k

Îqkuckl ^ uekl.

sA20d

Theorem 6 (i).ExpanduCl in the orthonormal basishuajlj

uCl = o
j

uajl ^ uz jl, sA21d

with uz jlPHbc, and write

C = o
jk

uajlkaku ^ z jk, z jk
ª uz jlkzku. sA22d

If the huajlj information is inSb, then, by theorem 2sid,

zb
jjzb

kk = 0 for j Þ k, sA23d

where, following our usual notation,zb
jj =Trcsz j jd. Now apply

sB3d in Appendix B, witha replaced byb, b replaced byc,
uel= uz jl, and ugl= uzkl, to conclude thatsA23d holds if and
only if

zc
jk = 0 for j Þ k. sA24d

fNote that TrcsCC†d=0 implies thatC=0.g But sA24d in-
serted insA22d implies s57d with G j =zc

j j . Conversely,s57d
implies sA24d, which impliessA23d, which, using theorem 2
sid, implies that thehuajlj information is inSb.

Theorem 6 (ii).Let huajlj be any basis in which theAk in
s58d are diagonal. Thens57d is a consequence ofs58d: simply
write eachAk as a sum of a suitable collection offajg. Thus
by sid, the huajlj anda fortiori the hAkj information is inSb.

For a compatible decompositionĀ=hĀlj, use a basishuajlj in
which both these and thehAkj are diagonal.

Theorem 7 (i).Purify r to uClPHabcd, and apply theorem
6 sid with c replaced bycd to conclude thatCacd is of the
form s57d with operatorsG j on Hcd. Now trace both sides
over Hd to get the equivalent ofs59d.

Theorem 7 (ii).Multiply both sides ofs59d by fākg. First
trace overHa and use the definition of mutually unbiased
bases ins4d to conclude that the resulting operatorson Hcd
does not depend onk, so the huāklj information is absent
from Sc according to the definition in Sec. III C; see the
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comment followings36d. Next, trace overHc to get s60d.
Theorem 8 (i).Given an arbitrary orthonormal basisĀ of

Ha, one can always find another basisA with Ā and A
mutually unbiased. As theA information is, by assumption,

in Sb, the Ā information cannot be inSc, by theorem 7sii d.
Theorem 8 (ii).All the information aboutSa is in Sbc, so

Ca= Ia/da by theorem 3sid. But as there is no information
aboutSa in Sc, theorem 5 tells usuCl is of the form s56d,
with xa=Ca= Ia/da, and therefore, once again invoking theo-
rem 3 sid, all the information aboutSa is in Sb.

Theorem 8 (iii).fThe following argument is from p. 569
of f19g, where it is ascribed tof48g, and it makes use of some
well-known properties of the von Neumann entropy

Ssrd = − Trsr log rd; sA25d

see, e.g., pp. 513 and 515 off19g.g Upon purifying r to
uClPHabcd one finds that

SsCad + SsCcd = SsCacd = SsCbdd ø SsCbd + SsCdd.

sA26d

The first equality is a consequence of the absence of infor-
mation aboutSa in Sc, thusCac=Ca ^ Cc by theorem 1siii d.
The second equality reflects the fact thatuCl is a pure state
on Hac^ Hbd, and the final inequality is a standard result for
a density operator on a tensor product. Since all information
aboutSa is in Sbc, it must be absent fromSd by part sid of
this theorem, so we can interchange the roles ofSc andSd in
sA26d to obtain

SsCad + SsCdd ø SsCbd + SsCcd, sA27d

and by adding this tosA26d arrive at

SsCad ø SsCbd. sA28d

By theorem 3sid sreplace b by bcdd we know that Ca
= Ia/da, so the left side ofsA28d is logda and as the right side
cannot exceed logdb, thereforedbùda.

Theorem 3 (ii) and Theorem 3 (iii). Purify r to uCl

PHabc. If all information aboutSa is in Sb sfor r and for
uCld, then by theorem 8sid there is none inSc, so by theorem
5 uCl has the product structure ofs56d, where in additionuxl
must be maximallysfully d entangled, so we arrive ats52d. If,
on the other hand,s52d is correct, thenfa= Ia/da, and all the
information aboutSa is in Sd and, therefore, inSb. To prove
theorem 3siii d, note that ifuCl is given bys56d andde is 2 or
more,Ie has a nontrivial decomposition, and the correspond-
ing information obviously cannot be inSa. Thus if all the
information aboutSb is in Sa, it is the case thatde=1 and
Hde is the same asHd, and the latter is the same asHb, for
were it a proper subspace,Cb would not be proportional to
Ib.

APPENDIX B: FOUR ENTANGLED KETS

Let

Def = uelkf u, Da
ef = TrbsDefd, Db

ef = TrasDefd sB1d

denote the dyad and its partial traces for two ketsuel and ufl
on Hab=Ha ^ Hb.

Theorem.Let uel, ufl, ugl, uhl be any four kets onHab.
Then

TrasDa
efDa

ghd = TrbsDb
ehDb

gfd. sB2d

In particular, if ufl= uel and uhl= ugl, then

TrasDa
eeDa

ggd = TrbsDb
egDb

ged. sB3d

Proof. Lethuajlj be a fixed orthonormal basis ofHa, and
expand each ket in the form

uwl = o
j

uajl ^ uwjl. sB4d

Direct calculation shows that the left and right sides ofs2d
are both equal to

o
jk

kfkuejlkhjugkl. sB5d
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