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We introduce the distribution of a secret multipartite entangled state in a real-world scenario as a quantum
primitive. We show that in the presence of noisy quantum channelssand noisy control operationsd, any state
chosen from the set of two-colorable graph statessCalderbank-Shor-Steane codewordsd can be created with
high fidelity while it remains unknown to all parties. This is accomplished by either blind multipartite en-
tanglement purification, which we introduce in this paper, or by multipartite entanglement purification of
enlarged states, which offers advantages over an alternative scheme based on standard channel purification and
teleportation. The parties are thus provided with a secret resource of their choice for distributed secure
applications.
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I. INTRODUCTION

In classical information theory, a number of basic primi-
tives are known—among them bit commitment, coin tossing,
fingerprinting, Byzantine agreement and key distribution—
which serve as building blocks for practically relevant appli-
cations. Several of these classical primitives have also been
investigated in a quantum setup. It was shown that quantum
features allow one to perform certain tasks apparently impos-
sible in a classical setup, the most prominent example being
squantumd key distribution, which allows for unconditional
secure communication. The quantum nature of states offers,
however, not only additional possibilities to realize classical
primitives, but also allows us to consider new primitives that
are intrinsically quantum and hence do not have a counter-
part in classical information theory or classical physics. An
important aspect of such quantum primitives—which has
been mostly neglected in previous discussions—is the stabil-
ity of these concepts under imperfections, i.e., the realization
of the task in a real-world scenario. A task that might seem
trivial in an idealized scenario may become highly nontrivial
or even impossible under realistic conditions, i.e., when tak-
ing inevitable noise in quantum channels and local control
operations into account. We emphasize that noise is not just a
practical issue, but is a fundamental limitation one has to
cope with in quantum systems.

In this paper, we will discuss a robust quantum primitive,
which may be used as a basic building block for both quan-
tum and classical security applications in situations where
local and channel noise are present. Specifically, we will
consider the secret creation of a spatially distributed multi-
partite entangled state with high fidelity. We will consider the
set of all two-colorable graph states as possible target states.
Two-colorable graph states include many qualitatively differ-
ent types of multipartite entangled states, each of which can
serve as a different resource to perform certain security tasks.
In particular, they include any collection of bipartite singlet
states shared between some of the parties, any type of mul-
tipartite GHZ states, so-called cluster statesf1,2g sa universal

resource for measurement-based quantum computationd, as
well as algorithmic specific resources which allow one to
implement a certain algorithmsor nonlocal unitary opera-
tiond by means of measurements. As has been shown re-
cently, two-colorable graph states are equivalent to code-
words of Calderbank-Shor-SteanesCSSd codesf3g. It may be
of interest to the end users that the state remains secret to any
third party, i.e., nobody else knows which specific resource
they sharesand hence which tasks they are able to performd.
The information about the state can even remain unknown to
the parties themselves, being only disclosed to a single end
user se.g., a trusted party or dealerd. This is relevant in the
implementation of distributed secure quantum applications
over noisy communication channels, which count with an
additional “adversary,” the eavesdroppersthat should be con-
sidered as the noise source in the channeld, and that might
collaborate with the untrustful parties. There are standard
purification protocolsf3–9g used to reduce noise levels and
factor out any possible eavesdropper even in the presence of
noise f10g. However, these protocols cannot straightfor-
wardly be accommodated to account for possible untrustful
parties—which actively participate in the purification
protocol—and for their possible complicity with the eaves-
dropper.

In this paper, we present ways to achieve the secure dis-
tribution of the aforementioned graph states under realistic
conditions, i.e., noisy quantum channels and imperfect local
control operations. After fixing notation and describing the
scenario for secret state distribution in Sec. II, we present
three possible solutions to the problem in Sec. III. The first
approach, described in Sec. III A, is based on channel puri-
fication and teleportation, while the second and third ap-
proach deal with direct multipartite entanglement purifica-
tion. The second approach, described in Sec. III B, uses blind
multipartite entanglement purification, which we introduce in
this paper. In the third approachssee Sec. III Cd, the security
is guaranteed by purifying an enlarged entangled state. We
summarize and conclude in Sec. IV.
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II. DEFINITIONS AND DESCRIPTION
OF THE SCENARIO

A. Two-colorable graph states

We start by defining two-colorable graph states. A graph
G, given by a set ofN verticesh1,2,… ,Nj connected in a
specific way by edgesE, is called two-colorable if there ex-
ists two groups of vertices,A,B, such that there are no edges
inside either of the groups, i.e.,hk, lj[” E if k, l [A or k, l [B
ssee Fig. 1d. To every such graph there corresponds a basis of
N-qubit stateshumlGj, where each of the basis statesumlG is
the common eigenstate ofN commuting correlation operators
Kj

G with eigenvaluess−1dm j, m=m1m2¯mN. That is, they ful-
fill the set of eigenvalue equationsKj

GumlG=s−1dm jumlG, j
=1,… ,N. The correlation operators are uniquely determined
by the graphG and are given by

Kj
G = sa

s jd p
hk,jj[E

sa
skd, s1d

wherea=x fa=zg if j [A f j [Bg, respectively, andsa
skd de-

notes the application of the corresponding Pauli operator by
partyk. Note that the so-defined graph states are identical to
the usual graph states, as introduced inf2g and, e.g., used in
Refs. f8,9g, up to local Hadamard operations performed on
all particles inB. As has been shown recentlyf3g, they are in
fact equivalent to codewords of the CSS codes. We also re-
mark that the correlation operatorshKjj are the generators of
a group which is often called the stabilizer of the stateu0lG,
and the corresponding description in terms of the stabilizers
is also referred to as the stabilizer formalism.

We will also consider mixed statesr, which for a given
graphG can be written in the corresponding graph state basis
humlGj, r=om,nlmnumlknu. We will often be interested in fi-
delity of the mixed state, i.e., the overlap with some desired
pure state, sayu0lG, F=k0uru0l.

B. Description of scenario

We consider a central partyC sthe companyd, which is
connected via noisy quantum channels toN spatially sepa-
rated local agentsAj, j [ h1,2,… ,Nj. The company offers
the service to spatially separated customers to deliver upon
request any multipartite entangled state chosen from the set
of two-colorable graph states, specified by the graphG and

the sbasisd indexm, with chosen fidelityF=1−e. The state is
delivered by the local agentsAj to the end usersEj. The
company guarantees as a special security service that the
local agents, a potential eavesdropper, or any other party
different from the one who placed the order, cannot learn any
information about the chosen state.

III. SECRET STATE DISTRIBUTION:
POSSIBLE SOLUTIONS

We remark that in the case of noiseless quantum channels
betweenC and the local agents, the described task can be
trivially achieved by creating locally atC a single copy of
the requested state and distributing it to the local agents. The
single copy does not allow the local agents and a potential
eavesdropper to learn information about the graphG, even if
they decide to cooperate and perform measurements. This
follows from the fact that the basis indexm is unknown and
random from the point of view of the local agents, which
implies that for any chosen graphG the ensemble of states
humlGj forms the identity and ensembles corresponding to
different graphsG are hence indistinguishable. However, if
sas in a realistic scenariod the quantum channels connecting
the central stationC with the local agentsAj are noisy, the
task becomes nontrivial. In this case, the state obtained by
the local agentsrA will be mixed and the fidelity will be
below the desired one.

Realistic applications must be designed to cope with two
sources of errors, namely noisy channels and noisy local op-
erations. It is well known that problems arising from the
noisy channels can be overcome usingentanglement purifi-
cation. In a multipartite scenario, we will thus opt for one of
the following approaches depending on the particular condi-
tions ssee Fig. 2d.

sid Channel purificationssee Sec. III Ad: The channel it-
self may be purified. This can be accomplished by sending
parts of maximally entangled singlet states through each in-
dividual channel fromC to Aj and creating from the resulting
multiple copies of the noisy bipartite entangled states a few
copies with high fidelity by a sequence of local operations
and classical communicationsLOCCd, e.g., using one of the
entanglement purification protocols of Refs.f4,5g. These
high-fidelity entangled states can then be used for teleporta-
tion f11g and serve as a purified channel, thereby allowing
for the distribution of arbitrary multipartite entangled states.

sii d Direct multiparty entanglement purificationssee Sec.
III B d: The resulting multipartite mixed statesrA can be pu-

FIG. 1. Examples of two-colorable graphs which correspond to
sad GHZ state;sbd linear cluster state;scd two-dimensional cluster
state. Vertices with the same color are not connected by edges.

FIG. 2. Setup for secure distribution of multipartite entangled
states based onsad channel purificationsid; sbd direct purification of
multipartite entangled statessii d; scd purification of enlarged en-
tangled statessiii d.
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rified. That is, several copies of the multipartite mixed states
rA are produced by distributing the locally created graph
state through noisy channels to the local agentsAj. A suitable
sequence of LOCC, e.g., the purification protocol for two-
colorable graph states introduced in Ref.f8g, allows us to
create few copies withsarbitraryd high fidelity.

siii d Purification of enlarged statesssee Sec. III Cd: One
can purify an enlarged entangled state, i.e., asgraphd state
that is entangled with additional particles that are kept at the
central station, while the remaining particles are sent through
the noisy channels. The resulting mixed staterAC is purified
by means of direct multipartite entanglement purification as
in sii d, and the desired state shared among the partiesAj can
be created from the purified statesideally given byuCACld by
means of local measurements inC.

On top of the noise from channels, there is also noise in
the local control operations. In this case, it turns out that
entanglement purification is still possible, although the mini-
mal required fidelityFmin si.e., the maximal acceptable chan-
nel noised as well as the maximal reachable fidelityFmax of
the purified states is limited by the amount of noise in the
local control operationsf8,9,12g and in fact strongly depends
on the entanglement purification protocol that is used. It was
shown in Ref.f9g that direct multipartite entanglement puri-
fication offers advantages over protocols based on bipartite
purification. In particular, for graph states of small degree
and a generic noise model for local operations, the reachable
fidelity for multipartite states created by bipartite entangle-
ment purificationsi.e., channel purificationd and teleportation
turns out to besmaller than the fidelity of the states created
by direct multipartite entanglement purification, i.e.,Fmax

sii d

.Fmax
siii d .Fmax

sid . This is true for all values of the local noise
ssee Fig. 7 inf9gd. The upper fixed pointsFmax only depend
on noise in local control operations and on the entanglement
purification protocol. On the other hand, the minimal re-
quired fidelityFmin swhich again depends on the purification
protocol and noise in local control operationsd puts limits on
the maximal acceptable channel noise. The minimal required
fidelity Fmin fulfills for uncorrelated channelsFmin

sid ,Fmin
siii d

,Fmin
sii d , while in the case of correlated channels the situation

can also be the other way around. In general, each of the
three schemessid–siii d has its own advantages. There are pa-
rameter regimessnoise level of local operations, channel
noised for which a certain scheme allows one to create an
entangled state with sufficiently high fidelity, while the other
two schemes fail. In particular, it can happen that a multipar-
tite state cannot be produced with required fidelityF=1−e
as requested by customers when using methodsid, while a
protocol based on direct multipartite entanglement purifica-
tion sii d or siii d enables one to reach the required fidelity.
These facts are our main motivation to provide alternative
methods tosid to accomplish the secret creation of a multi-
partite entangled state, that are based on direct multiparty
entanglement purification.

A. Channel purification

For perfect local control operations, approachsid immedi-
ately leads to a protocol to create arbitrary multipartite en-

tangled states with high fidelity in such a way that local
agents and possible eavesdroppers do not learn any informa-
tion about the created state. The purification of the channel
does not contain any information about the state, and the
presence of eavesdroppers can be excluded by checking the
resulting singlet statesse.g., by testing a violation of Bell’s
inequality or, simpler, by measuring the expectation values
of the correlation operatorskKjl, j =1,… ,Nd f13g. After suc-
cessful teleportation, the local agents only possess a single
copy of an unknown state in a random basis. Again, as in the
case of noiseless channels, the ensembles corresponding to
different graphsG are indistinguishable. The teleportation
process may even be postponed until the local agents deliver
sseveral copies ofd the purified singlets to the end usersswho
may then check the validity of the singlets together withC
by testing a random subsetd before teleporting the requested
multipartite state. This circumvents any possible attempts of
the local agents or eavesdroppers to learn information about
the state or to corrupt the delivered state at a later stage.
Security requirements are fulfilled even in the presence of
imperfect control operations, as no information regarding the
finally distributed state can be learned.

B. Direct multipartite entanglement purification

We now turn to the second scenariosii d, the direct purifi-
cation of noisy multipartite entangled states, namely two-
colorable graph states. For simplicity of the analysis, we con-
sider in the following noiseless local operations. This
restriction is, however, not crucial and will in fact be
dropped later on. We start by summarizing the main steps
involved in any multipartite purification protocolf8,9g: sad
Depolarization of the mixed stater to standard formrG di-
agonal in the basis of entangled states to be purified;sbd local
operations on twosor mored copies of the staterG in such a
way that information about the first statessd is transferred to
the last one;scd measurement of the last state to retrieve this
information, public announcement of the measurement out-
comes, and keeping or discarding the remaining states de-
pending on the measurement outcomes.

It is easy to see that information about the stateumlG to be
purified, both about the graphG and the used basism, can be
learned in various ways by all local agents involved in such
a protocol. In the depolarization processsad, elements of the
stabilizer ofumlG sall possible products of correlation opera-
tors Kj

Gd are appliedf3,8,9g, which reveal information about
the graphG. The local operations and measurements per-
formed in the second step provide knowledge about the
structure of the graph. For example, in the recurrence proto-
col of Ref.f8g, the two-coloring of the graph is revealed. The
information about the measurement outcomes together with
the fact that a particular outcome is interpreted as a success-
ful step also allows the parties to obtain information about
the graph. The statistics of measurement outcomes in several
steps of the protocol can be used to learn bothG andm, as
for all possible graphs the expectation values ofKj

G can be
calculated and the corresponding histograms can be ana-
lyzed. Finally, since in principle a large number of copies of
the state are available,ssome ofd the local agents can decide
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to perform state tomography on a subensemble, thereby
learning all information about the state they should purify.
That is, when using anysknownd direct multiparticle en-
tanglement purification protocol, the secrecy of the state to
be purified is not guaranteed.

1. Blind purification

In the following, we will present a modified multipartite
entanglement purification protocol where it is impossible for
all involved local agents to learn any information about the
state being purified, even ifall of them decide to collaborate
and even if they conspire with a possible eavesdropper who
is in full control of all quantum channels betweenC andAj.
The central stationC coordinates the action of the local
agents and is the only partysbesides the customer that placed
the orderd that knows the graph state which is being purified.
The customers’ order consists in the graphG and the desired
basis indexm, as well as an additional secret random bit
string of suitable sizef14g. After receiving the order, the
central party preparesM two-colorable graph states corre-
sponding to the graphG and chooses the basis indicesumilG
randomly from a uniform distribution. For any graphG, the
set of graph states is complete, i.e.,omumlGkmu=1. This im-
plies that the completely mixed ensemble of states corre-
sponding to two different graphsG1 andG2, humilG1

ji=1,2,…,M

andhumilG2
ji=1,2,…,M, is indistinguishable, as the correspond-

ing density operatorsi.e., the proper description of the en-
semble for any observer not possessing the information
aboutmid is the completely mixed states~1d f15g. The states
umil are then distributed through noisy channels to the local
agentsAj. Purification of these states takes place by a proto-
col ssee belowd where no information about the indicesmi or
the graphG is revealed, which ensures that at any stage of
the protocol the ensemble of states corresponding to different
graphs remains indistinguishable by the local agents. Finally,
the stateumlG is delivered to the end users.

The first step in the purification protocol is to ensure that
the mixed stater—which arises after sending the stateumlG
through the noisy channelsE1,E2,… ,EN—is diagonal in the
specific graph state basishunlGj. In standard purification pro-
tocols, this is enforced by depolarizing the transmitted state.
Instead, here we depolarize the channelsE j to a Pauli-
diagonal formf16g. This can be accomplished by applying
probabilistically the operatorssi ssi

Td beforesafterd sending
a particle through the channel in a correlated wayshere
hsiji=0,…,3=h1 ,sx,sy,szjd. Given a general initial channel

Er=oi,j=0
3 li jsirs j, the resulting depolarized channelẼ is

then given byẼr=o j=0
3 l j js jrs j. Moreover, the action of a

Pauli operator in partyAk on a graph state results in another
graph state:si

sAkdumlGkmusi
sAkd= um% ni

GlGkm% ni
Gu, whereni

G

depends on the neighborhood of particleAk specified by the
graphG f9g. That is, sendingumlG through the depolarized
channels also results—independently of the graphG—in the
creation of a graph-diagonal state in this specific graph state
basis f17g. Additionally, by writing umlG=sz

mAsx
mBu0lG,

wherem=smA,mBd andsi
mA denotes the action ofsi on all

partiesj [A for which mj =1, we find that if

r0 = E1¯ENu0lGk0u = o
n

lnunlGknu s2d

is the state resulting from sendingu0lG through the channels,
then the resulting staterm when sending a different basis
stateumlG is given by a simple basis shift ofr0, i.e.,

rm = E1¯ENumlGkmu = o
n

lnun % mlGkn % mu. s3d

These are nontrivial properties of states diagonal in a graph
state basis that follow from the description of these states in
terms of their stabilizers and from the commutation relations
of the Pauli matrices. At this stage, the local agentsAj thus
share theM stateshrmi

ji=1,…,M f18g.
We now introduce modified multipartite recurrence proto-

cols P18, P28 that give the same performance as the proto-
cols P1, P2 of Refs. f8,9g, but operate on statesrm, rn
fwhich are obtained by a basis shift fromr0 according to Eq.
s3dg and fulfill our security requirements. We start with pro-
tocol P18, where in a first step local controlled-NOT sCNOTd
operationsf19g with the particles of the firstssecondd state
acting as sourcestargetd, respectively, are applied by all par-
ties. It is easy to check that the action of such multilateral
CNOT operations is given by

umA,mBlunA,nBl → umA,mB % nBlumA % nA,nBl. s4d

All particles of the second state are then measured in the
eigenbasishu0lx, u1lxj of sx, yielding resultss−1dji which are
publicly announced. Fromji, the expectation values of all
correlation operatorsKj with j [A can be calculated at the
central stationC. The result is taken as a successful purifi-
cation step if the calculated expectation values correspond to
mA % nA. In this case, one finds that the resulting state is
again diagonal in the graph state basis, with new coefficients

l̃gA%mA,gB%mB%nB
=

1

2K
o

hsnB,mBdunB%mB=gBj
lgA,nB

lgA,mB
, s5d

whereK is a normalization constant. Note that these coeffi-
cients are exactly the same as in the situation where we apply
the original protocolP1 to two copies ofr0, only the basis of
the resulting state is shifted bysmA,mB % nBd fas done in Eq.
s3dg. Similarly, the protocolP28 consists of localCNOTs in
the opposite direction, followed by measurement of all par-
ticles of the second state in the eigenbasishu0lz, u1lzj of sz.
From the measurement outcomes, the expectation values of
all correlation operatorsKj, j [B can be calculated at the
central stationC. The result is interpreted as a successful step
if the calculated expectation values correspond tomB % nB.
Again, one can determine the action of this protocol on two
statesrm ^ rn and finds that the resulting state is up to a basis
shift smA % nA,mBd the same as the one obtained by the pro-
tocol P2 applied tor0

^2. The purification procedure takes
place by an alternating application of protocolsP18, P28,
where at each step the central station randomly chooses the
pairs to combine. In particular, also pairs resulting from un-
successful purification rounds are further processed. We re-
mark that this substantially reduces the yield of the entangle-
ment purification protocol as compared to the original
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scheme. The reachable fidelity and error thresholds, however,
are exactly the same as those of protocolsP1, P2 investi-
gated in Refs.f8,9g. The only difference from the original
scheme for the central partyC is that it has to keep track of
the basis shift for each state and modify the decision about
successful/unsuccessful purification stepsswhich are not
publicly announcedd accordingly. We remark that in order to
determine the basis shifts for final copies, knowledge of the
initial basis shiftshmij and the history of the purification
procedure is required for each state, i.e.,ni = f ismid. At the
end of the procedure, additional independent random basis
shifts are applied to all statessthis can be accomplished by
letting the local agents apply appropriate Pauli operatorsd,
where for a specific copy, say 1, resulting from a successful
purification branchsi.e., all purification steps successfuld, a
basis shiftn1 % m is performed. This guarantees that copy 1
is in the basism and hence corresponds to the required state.
The order of the copies is randomly chosen byC in such a
way that copy 1 is located at a position specified by the
additional secret bit string which is shared with the end us-
ers. All statessalso the ones resulting from unsuccessful pu-
rification stepsd are then handed over to the end users. This
ensures that it remains unknown to all involved partiessex-
ceptC and the end usersd which of the copies correspond to
successful branches. Finally, all states but copy 1 are mea-
sured, either in the eigenbasis ofsx or sz, and the measure-
ment results are publicly announced. This allows the central
station to check the trustfulness of the local agents, as, e.g.,
for states corresponding to a successful purification proce-
dure the expectation values of the correlation operatorsKj

G

and hence the fidelity of the produced states can be deter-
mined byC f13g. Depending on the results of this verifica-
tion procedure,C uses another shared random bit to secretly
announce whether the remaining copy can be used for the
desired security application. We note that distrustful local
agents or an eavesdropper can always prevent a successful
generation of the desired state, e.g., by simply not taking
place in the purification procedure as requested or by adding
additional noise. However, if the state passed the verification
procedure, it can be guaranteed that it has the required fidel-
ity and that the local agents have not learned information
about the target state.

2. Security of direct multiparty entanglement purification

We now discuss the security of this modified protocol by
analyzing the scheme from the point of view of the local
agentssor eavesdropperd. We first remark that the entangle-
ment purification protocol is carefully constructed in such a
way that absolutely no information about the state to be pu-
rified is revealed during the protocol. In contrast to original
protocolsP1, P2, the protocols are symmetric, i.e., no infor-
mation about the two-coloring of the graph is revealed. The
randomly chosen basis stateshmij guarantee that at any stage
of the protocol no information about the structure of the
graph can be learned from measurement statistics, as any
statistics is randomized due to random basis shifts. Even the
information of whether a given purification step is successful
or not is kept secret. This is guaranteed on the one hand by
randomly combining copies of the state after each purifica-

tion round, and on the other hand by delivering the whole
ensemble of states rather than a single copyswhich the local
agents would otherwise identify as the resulting state of sev-
eral successful purification roundsd. Although it seems un-
likely that such a tiny amount of information could be used
by the local agents and eavesdropper to learn about the iden-
tity of the graph state, it cannot be excluded that there exists
a strategy which allows them to make use of this informa-
tion. One may, e.g., imagine that by means of a graph state
analyzer they were able to learn information about the basis
index mi for this specific state, which—together with the
information that the state results from several successful pu-
rification rounds—could then be used to exclude the graphs
that are incompatible with the measurement outcomes ob-
tained in the purification protocol. Hence, we have modified
the purification protocol in the way described above, which
guarantees thatno additional information can be learned
from the protocol itself. In fact, from the point of view of the
local agents, the protocol they should performsas well as all
measurement outcomes, etc.d is the same for all graph states.
It follows that the secrecy of the graph state to be purified is
still guaranteed by the fact that the corresponding ensembles
of states for two different graph states are indistinguishable,
as they are both described by the identity. Naturally, this still
holds if one considers the transmitted ensemble of states
hrmi

j instead ofhmij: it is safe to attribute the noise in the
channel to the actions of an eavesdropper and/or the agents.

We finally remark that unconditional security can only be
guaranteed if we keep the information whether the required
state has been successfully created or not secret. Otherwise
there exists ansindirectd strategy for a possible eavesdropper
to learn about the graph: by varying the noise in the channel
swe assume that Eve has complete control over the channeld,
Eve together with the local agents can prevent the purifica-
tion of certain statesse.g., states with high degreed as for
these states the channel noisesor noise in local control op-
erationsd is above the threshold value where purification is
possible. As the threshold values depend on the graph, know-
ing whether the purification procedure was successful or not
would provide Eve with some information about the graph,
e.g., about itsslocald degree. This is just a single bit of in-
formation which might well be negligible in many cases as
there exist exponentially many different graph states which
are potential target states. By keeping the information of
whether the procedure was successful or not secret, we pre-
vent Eve from learning even this single bit of information.
The validation stage in our protocol only serves to detect
possible attempts of the local agents to prevent the produc-
tion of the state with required fidelity. The secrecy of the
states is guaranteed by other meanssthe random basis shiftsd.
In principle, one may use the validation stage also to detect
possible attempts of Eve or the local agents to gain informa-
tion about the final graph, which clearly leads to corruption
of the states and hence to reduced fidelity. In approachsiii d,
we will discuss a strategy which guarantees security even
when the success or failure of the protocol is publicly
known. The strategy ofsiii d can immediately be adopted to
the protocol described above.

The influence of noisy local operations can easily be ana-
lyzed. From the point of view of the central stationC, we
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essentially have entanglement purification protocolsP1, P2
with imperfect means with the corresponding properties dis-
cussed in Refs.f8,9g. In particular, entanglement purification
is still possible even for errors of local operations at the order
of sseverald percent. Only the reachable fidelity of the target
state is limited. From the point of view of the local agents,
the additional noise in their operations will not enable them
to learn more information about the state to be purified than
they would be able to learn if their operations are noiseless
sthey still would have to distinguish between two ensembles
of states which are both—from their point of view—the
identity at all stages of the protocold. Thus the produced state
remains secret and the required procedure can be followed in
a real-world scenario. The secrecy of the states at all stages is
guaranteed by the random basis shiftshmij, which on the one
hand ensure that the input ensemble is the maximally mixed
state, and on the other hand that measurement statistics and
any association of specific outcomes with the graph structure
during the protocol itself are randomized. The second state-
ment follows from the nontrivial property of two-colorable
graph states that basis shifts can be effectively propagated
through both the channels and the purification protocols, re-
sulting in output states with shifted bases.

C. Purification of enlarged states

We now turn to scenariosiii d, the purification of enlarged
states. Instead of creating the desired graph stateumlG di-
rectly and sending several copies through the noisy channels
to the local agents, the central station can also create en-
larged graph statesu0lG̃ of 2N qubits in such a way that each
vertex of the initial graph is connected to an additional, in-
dependent vertex. That is, ifG=sV,Ed is the graph of verti-

cesh1,2,… ,Nj, then the graphG̃ corresponding to the en-

larged state is given by verticesh1,2,… ,2Nj with edgesẼ
=Eø hsk,k+Ndj with k=1,2,… ,N. The qubits correspond-
ing to vertices 1 toN are sent through the noisy channels to
the local agents, while qubitsN+1 to 2N are kept by the
central partyC. The bases randomization of initial states
done in approachsii d is replaced here by additional quantum
correlations betweenC and Aj. In principle, C could intro-
duce random basis shifts on the states ofAj by performing
suitable measurementsfreducing the protocol to the one dis-
cussed insii dg. However, the quantum correlations are more
powerful than classical correlations, which allow us to fur-
ther simplify the purification protocol. The purification takes
place by a multipartite protocol and hence offers advantages
se.g., higher reachable fidelityd as compared to schemesid
based on channel purification. When compared to scheme
sii d, one finds a higher robustness of the states against chan-
nel noise for uncorrelated channels. It is easy to check that
the stateu0lG̃ can be written as

u0lG̃ =
1

Î2No
m

umlG ^ uml, s6d

where umlG is a graph state corresponding to graphG of
particles 1 toN, while uml= um1m2¯mNl with mj [ h0,1j are
orthogonal product states of particlesN+1 to 2N and the

sum runs over all possible binary vectorsm. We have that
umkl denotes the eigenstate with eigenvalues−1dmk of the
operatorsz if k[A fsx if k[Bg, whereA,B correspond to

the two-coloring of the graphG̃.
The resulting noisy graph states are then purified using

multipartite entanglement purification protocolsP18, P28 de-

scribed above, which can be applied because the graphG̃ is
two-colorable whenever the initial graphG is two-colorable.
While the local agents publicly announce their measurement
outcomes, the central partyC keeps its measurement out-
comes secret. The expectation value of each correlation op-
erator Kj—which determines whether a purification step is
successful or not—depends on the measurement outcome in
particle j and its neighbors. Forj .N, particle j itself is held
by C, while for j ,N the neighboring particles j +Nd is held
by C, which implies that the expectation value ofKj ∀ j
cannot be determined by the local agents. The additional
qubits held atC act as a randomizer for all measurement
outcomes of the local agents. After several successful purifi-
cation roundsswhere in this case always two pairs resulting
from a successful purification round can be combinedd, all
but a single copy is measured in the eigenbasis ofsx or sz,
where again only the measurement outcomes of local agents
are announced. From the measurement outcomes,C can cal-
culate expectation values for the correlation operatorsKj and
hence verify whether the required fidelity of the states was
achieved. If the states passed the validation step, i.e., the
required fidelity is achieved, the local agents hand the par-
ticles of the remaining copy over to the end users. Finally, all
qubits inC of the remaining copy are measured in the eigen-
basis ofsz ssxd if they are inA sBd, whereA, B corresponds

to the two-coloring of the graphG̃. If the final states were
pure, i.e.,u0lG̃, it follows from Eq.s6d that for a measurement
outcome corresponding tom=m1m2¯mN with mj [ h0,1j,
the resulting state shared by the end users would be given by
umlG. Announcing publicly the bit stringm% m allows the
end users to shift the basis such that they finally hold the
stateumlG. Note thatm% m is a random string from the point
of view of local agents and an eavesdropper, and does not
contain information sincem is secret. We consider now the
case where the final state is mixed, i.e.,rG̃
=omnlmnumnlG̃kmnu, wherem corresponds to vertices 1 toN
si.e., the particles held by the local agentsd while n refers to
verticesN+1 to 2N si.e., the particles held byCd. In the case
where the outcome of all measurements iss11d, we have
that the state after the measurements inC is given by

r0 = o
m
So

n

lmnDumlGkmu, s7d

while for other measurement outcomesm the basis is shifted
by m, i.e., we obtainrm. Note that the fidelityGkmurmumlG

with respect to the graph state corresponding to the graphG
is larger than the fidelity of the initialsenlargedd state with
respect to the graph stateu00lG̃, which is given byl00.

1. Security of purification of enlarged states

We now discuss the security of this protocol. We have that
the reduced density operator of particles 1 toN held by the
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local agentssor an eavesdropperd is given by omumlGkmu,
which is the identity foranygraphG. This implies that even
if several copies of the state are available to the local agents,
they are not able to distinguish between different graphs. In
fact, the stateu0lG̃ fEq. s6dg is maximally entangled between
systemsC and the local agents. This implies that by an ap-
propriate unitary operation inC, one can change the sub-
graphG in A to any other subgraphG8. This can be seen
from the fact that for a maximally entangled stateuFlCA,
UC

T
^ 1AuFl=1A ^ UAuFl. In other words,C has in principle

the freedom to change the delivered state until the last mo-
ment, i.e., after the last copy is delivered to the end users,
which clearly makes it impossible for the local agents or any
eavesdropper to determine the state. For these states it is also
irrelevant whether the local agents learn if the final state is
the result of several successful purification rounds. While in
the purification of the initial graph stateu0lG this information
stogether with the knowledge of basisd would have allowed
the local agents to exclude certain graphssas they are not
compatible with the values for correlation operatorsKj

G cal-
culated from the measurement outcomesd, here the value of

each correlation operatorKj
G̃ depends on the unknown, ran-

dom measurement outcome of a qubit inC and hence is
unknownsand completely randomd from the point of view of
the local agents or eavesdropper. Hence, one can in this case
deliver only a single copy of the state to the end users
sthereby revealing that this copy is the result of several suc-
cessful purification roundsd as well as only combine copies
resulting from a previous successful purification step without
compromising security of the protocol.

The only possibility left to the eavesdropper to gain infor-
mation about the graph is the indirect attack outlined in the
description of protocolsii d, Sec. III B. That is, Eve may ad-
just the noise in channels and local operations in such a way
that only certain states can be purifiedsgroup 1d, while others
cannotsgroup 2d. From the fact whether the purification pro-
tocol was successful or not, one bit of information about the
graph could be obtained in this waysnamely whether the
graph belongs to group 1 or 2d. However, this approach nec-
essarily forces Eve to modify channel noise and/or noise in
local control operations, which can be detected by the central
party C. To this aim,C uses an enhanced validation proce-
dure which in this case serves not only to guarantee the fi-
delity of the states to be purified, but is aimed to detect any
possible attempts of the eavesdropper to modify the noise
processes. This can be done, e.g., by sending parts of maxi-
mally entangled states as probe states at certain instances
instead of multipartite states to be purifiedsthe position of
these probe states remains unknown to the eavesdropperd.
Measurements of observablessx andsz—which occur natu-
rally in the purification protocol—can be used to perform
channel tomographysat early instances of the protocold and
process tomographysat later stages of the protocold and
hence to detect any attempts of the eavesdropper to increase
noise. Note that it is sufficient to send parts of a maximally
entangled state through channels to perform complete chan-
nel tomographyf20g. Measurements of the two observables

are sufficient in this case, as additional basis changessand
hence effective measurements of other observablesd can be
enforced byC at the local agents during the initial channel
depolarization. Local agents can in this case not distinguish
whether the requested unitary operations correspond to a
channel depolarization procedure or to a real basis change.
The procedure is aborted if anything is not as expectedsi.e.,
additional noise in channels or local operations occurredd,
even if the purification ofu0lG̃ was successful.

Alternatively sor additionallyd, C may prepare and purify
not only the enlarged graph stateu0lG̃, but also several copies
of other graph statesu0lG̃8 corresponding to different graphs

G̃8 swith different threshold valuesd. The positions of these
states are randomly chosen. In the validation step,C checks
if the purification of these probe states was successful. This
allowsC to draw conclusions about attempts of Eve to intro-
duce additional noise and eventually to abort the procedure.
We remark that one typically has a hierarchy of states with
respect to their fragility to noise. That is, if the purification of
a certain state was successful, one can conclude that also
several other statesscorresponding to different graphsd are
purificable. In particular,C can be sure that Eve cannot dis-

tinguish between the graphG and any graphG̃8 for which
purification succeeded. We remark that the same procedure
can also be used in the context of protocolsii d.

IV. SUMMARY AND CONCLUSIONS

The purified states, created by one of the proceduressid,
sii d, and siii d, serve as a resource for a variety ofssecurityd
tasks. Graph states are, for instance, an algorithmic-specific
resource, i.e., depending on which state is produced, a dif-
ferent quantum algorithm can be applied by a simple se-
quence of local measurementsf2g. Other possible applica-
tions include secure evaluation of assecretd function, secret
sharing among some of the parties, and multipartite voting
schemes. The tasks that can be performed strongly depend on
the structure of the graph state being produced, and thus
remain unknown to any outside party.

We have introduced the distribution of an unknown mul-
tipartite entangled state with high fidelity as a basic quantum
primitive, which can be accomplished in a real-world sce-
nario where quantum channels as well as local control op-
erations are noisy. We have presented three alternative ways
to achieve this aim, based on channel purification and tele-
portation or direct multipartite entanglement purification, re-
spectively. While the first approach is conceptually simpler,
the second and third offer advantages with respect to reach-
able fidelities and tolerable errors.
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