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Thermal effects on quantum communication through spin chains

A. Bayat' and V. Karimipouf
Department of Physics, Sharif University of Technology, P. O. Box 11365-9161, Tehran, Iran
(Received 15 December 2004; published 20 April 2005

We study the effect of thermal fluctuations in a recently proposed protocol for transmission of unknown
guantum states through quantum spin chains. We develop a low-temperature expansion for general spin chains.
We then apply this formalism to study exactly thermal effects on short spin chains of four spins. We show that
optimal times for extraction of output states are almost independent of the temperature, which lowers only the
fidelity of the channel. Moreover we show that thermal effects are smaller in the antiferromagnetic chains than
the ferromagnetic ones.
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I. INTRODUCTION with a rather high fidelity, provided that one extracts the state

o f the basic i dients of ¢ icati at an optimal time.
ne of the basic Ingredients of guantum communicalion 4 aq heen shown ifi2] that one can transmit quantum

is the transport of a known or unknown quantum state fromy oc \with a high fidelity ranging frofi=1 for N=4 to a
one point to anothe[l]. Recently it has been shown that value exceeding 0.9 fa¥=7, 10, 11, 13, and 14. The fidelity

r't}enerally decreases with increasing length of the channel,
exceeding the value df=2/3 for N=80 which holds for
cllassical transmission of quantum stat@k
& One can also use this channel for transmission of en-
ganglement in the following waj2]. One places two maxi-
mally entangled spins labeled @nd 0 to the left of the chain
Fig. 1(b)] and evolution of the chain after a suitable lapse of

[2—4] or perfect[5,6] transfer of quantum states. Of particu-
lar interest to us here is the work reported[h3]. It has

been shown that this scheme may be used for linking sever
small quantum processers in large-scale quantum computin
In this scheme, arN-site ferromagnetic Heisenberg spin
chain placed in a magnetic field plays the role of the quan

tum channel. The spins of the channel are numbered frof,o entangles the spin @vith the rightmost spiN. Here it
1 to N. It is assumed that this chain is in its ground state

T h 5 d h f i in th is assumed that only the spin 0 is coupled to the channel. In
== >d"W ere | >d ehnotes the ?tall(tje ot a splnh In the s way two distant spins can be entangled, which can later
negativez direction and the magnet field points to the posi-p,e ,5a for implementation of other quantum protocols like
tive zdirection. One then adds a spin or qubit to the left-han eleportation[10].

side of this channel labeled by zero, which is in an unknown -, f4rmajism of 2] requires that the spins of the channel
state|¢) [Fig. 1(@)]. The state of this qubit is to be transmit- po geally aligned in the direction opposite to that of the

ted with a high fidelity to the right-hand side, by the natural ,, netic field. This ideal situation is, however, achievable

time ev_olut|on of the Ch"?“n' . ... only at zero temperature or in very strong magnetic fields
In this way one may cwcumvept a problem Wh'ch E."X'Sts Nwhere thermal fluctuations are not large enough to populate
quantum-computer implementation, namely, the difficulty ofg, iteq states, i.e., wheB/kT>1. On the other hand, in-
switching on an(_j off betwee_n sp||ﬁ3,8]. . .. creasing the magnetic field may lower the quality of the
The Hamiltonians governing the Interaction of the spins "Nchannel since a high magnetic field tends to align the spins
the channel and the full chain are, respectively, and will generally dominate the interaction between the

N-1 N
He==J32 0 01,1+ B 0y, 1) *—o—o—o g
i=1 i=1 0 1 2 3 N
and
(a)
N-1 N
H=-32 0i- 01,1 +BX 0y, (2) o—o—0 0 —© °®
=0 =0 o 0 1 2 3 N

where the subscripgt on H stands for the channel. If at time
t=0 the qubit 0 is placed to the left of the chain then the
evolution of the Heisenberg chain carries the state of this (b)

qubit to the rightmost spilN where one extracts the state ) .
FIG. 1. (@) An unknown quantum statep) is placed at site 0 of

the chain and is transported to slteby the dynamics of the spin

chain. (b) The entanglement of a Bell state*y=(1/v2)(|0,0)
*Email address: abolfazl_bayat@mehr.sharif.edu +|1,1) placed at sites‘0and 0 develops into the entanglement of
TCorresponding author. Email address: vahid@sharif.edu sites 0 andN.
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Q < N
\\\\\\\\\\\,f\I\\\\\\\\ \ WA FIG. 2. (Color online The fidelity (F) be-
™ N \ O AN .
SRR = A tween the output and the input states averaged
23 \\\\\“;;:i‘is\‘ \\\\\\\\\\\ \\\\\\\\ \ over all input states, as a function bt and time
AN \\\\\\\\\\‘\ \\\\\‘\\\\\\\\\\\\\\\ t, in a fixed magnetic field. In all the figures the
RIS ideli i ion-
\\\\\\\\\\\\\\\\\\\{\\\2@“‘}' \\\\\“\\\%\\\\\\\\\@ fidelity F and the conpurrgnc@_ are dimension
) \\\\\\\\\\\\\\\\\\\:i:__.— \\\\\\\\\\\\\\\\\\\\‘ less and we are working in units whek@& andt
\\\\\\\\\&i" $\\\\ \\\\\\\‘\ have no dimensions. In these units we have taken
N W\ .
023 N \ B=1 andJ=+1 for ferromagnetic and=-1 for

NS

antiferromagnetic chains.

t 0

spins, which is essential for the working of the channel. In a sequel to this paper we will study long chains of
Moreover, when one uses this channel once and extractsbitrary numbers of spins at low temperatures. This study
the state at the right-hand site, the initial state of the channejan be done only numerically. In this paper, however, we will
turns into a mixed state. Before using the channel for anothestudy exactly thermal effects on a short chain of four spins.
round of transmission the initial state of the channel shouldrhe advantage of studying this short chain is that we can
be restored, for example, by cooling to low enough temperagptain the spectrum completely and hence can compare the
tures. Itis plausible to assume that multiple uses of the chanyg cases of ferromagnetic and antiferromagnetic chains.
nel may heat it up to temperatures in which not only the  Tne strycture of this paper is as follows. In Sec. Il we set
ground state but also some of the excited states are algp, the general formalism and will develop low-temperature
popula_ted. : : . . expansions for the expressions of fidelity and entanglement.
In view of these considerations it is desirable to study theIn Sec. lll we derive general expressions for entanglement of

effect of thermal fluctuations on such a quantum channel . ) .
This is the problem that we want to addrqess in this paper(.énd points of the chain at e}r_bltrary temperatures. In Sep. v
Thus we want to generalize the protocol [@] to the case we study exactly the specific example of a short chain of

where the initial state of the channel is not the ground stat@"Y four spins where we present our basic results in Figs.
but a thermal state given by a thermal density matrix. 5 below.
This enables us o to see the effect of the ambient temy |\ oy TEMPERATURE EXPANSION OF THE FIDELITY
perature on the feasibility of the protocol, and the quantita-
tive effect that temperature has on the fidelity of transmission We consider the interaction between the spins to be near-
of states and distribution of entanglement. est neighbor and of Heisenberg type. The spins also interact
We will derive a low-temperature expansion throughwith an external magnetic field. We should emphasize that
which we can study the effect of temperature to any desiredhuch of what we derive in this section does not depend on
degree of accuracy by keeping appropriate number of termihe specific form of the Hamiltonian. We assume that the
in the expansion. initial state of the channel is
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\ FIG. 3. (Color onling The fidelity (F) be-
tween the the output and the input states averaged
over all input states, as a function ot and time

t, in a fixed magnetic fieldB=1), for an antifer-
romagnetic channgl=-1).
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tion of timet andkT in a fixed magnetic field for
a ferromagnetic chain. Hee=1 andJ=1.

e BHc e BEa lows, where we use the indéxo run over a complete set of
=" =2 Z laXal, (3 states{|l)} for the Hilbert space of part of the total chain
“ from site 0 to siteN-1, and the indexx is to run over the

where thga)’'s andE,’s are, respectively, the eigenstates andeigenstates of the channel Hamiltonian:
eigenenergies of the channel Hamiltonidy. HereZ is the

partition function of the channé:=tr(e Hc), Klpn®I =2 (1, Ke™M(pg @ pg)e™I, 1)
At time t=0 we place the Oth spin, which is in an un- l
known pure state,=|#)(¢|, to the left of this channel. The _ SHE
initial state of the whole chain will be given by,® py, —lyj%a’ﬁ<l,k|e i a)(J. l(po ® pyr)|m. )
which evolves to .
_ _ X(m, Ble"™|1,1)

p(t) =€ (po ® pe™, ¢ o PE,

whereH is now the Hamiltonian of the full chaif®). =|E (1K™ i, a)po, (m,ale™[I,H=—.
,),Ma

The state of théNth spin after timet will be given by
(6)

Defining a collection of Z 2 matricesM, , with elements

whereN means that we take the trace over all sites except the
Nth site. We can now derive an operator-sum representation KIM, )= g P2
for the transformation of the state of the leftmost qubit lall 7=

p(0):=|p){ | to the state of the rightmost qulit,(t). To do
this we use Eq(5) to compute an element gfy(t) as fol-  we find the following Kraus decompositigtil,12] for py(t):

pn() = tri[e(po ® py)eM], (5

-t
z (1LKe™[j,a) (7

A\
£ a
“\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\:\\\\\\\\\l\} FIG. 5. (Color online The concurrenc€ of
o 2\‘"\\\\\\\“\\\\\\“\\\\\\ \\\\ the state of the end points of the chain as a func-
\\\\\\\\ \\\\\\ \\\\\v tion of time t and kT, in a fixed magnetic field

(B=1), for an antiferromagnetic chaid=-1).

1 \\\\\\\\\\\\\
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pN(t):E MmpoMra. (8) |a/0>:|_1_1_!'“!_>1 (15)
l,a

where all the spins are down. Thus we have
Note that in general the number of elements in this de-

compqsition, i.e.,_ the number of matrich‘q,a,_is huge. In_ E= 1 + }E ltrM, , [2. (16)
fact this number is equal to the number of different choices 3 675 0
for the pair of indiceg, «), which equals 2\. In principle ) . .
there are many operator-sum representations for a superopil Ed. (16) it appears that a set of'2ZnatricesM, , contrib-
erator and the number of Kraus operators for a qubit can bete to the sum. However, we show that by symmetry consid-
reduced to 411,17; however, the present form has the ad- erations one can reduce this number to only 2. To this end we
vantage that it is suitable for a low-temperature expansion ofiote that a general element bf, , can be written as fol-
the fidelity of the channel. Note also that even in the presenows:
form symmetry arguments highly restrict the number of non-

iiy={(lileHt]j — — — ... -
zero matrices as we will see in the following. M"ao("J) =(Lile™i =), 17
_ The fidelity of this out-statepy(t) to the in-statepo IS |y yiew of the symmetnfH,J,]=0 whered, is the total spin
given by in the z direction, the only nonzero matrices are those in
_ + which the index is either(—,—,—, --,—) for which we de-
F= % tr(poMiapoM)- ©) note the corresponding matrix By, or those in which only
one spin is uple.g., in the ith position (—,—,-—,
We are interested in the fidelity averaged over all the initial+ — ... —)] for which we denote the corresponding matrix
input states, that is, by M;.
_ 1 Moreover, the above-mentioned symmetry requires that
F= _f FdQ, (10) the matrices be of the following form:
47
0
where the integral is taken over the surface of the Bloch Mqg= (rm )
sphere. This integral can further be simplified by using the 0 m
following easily verified identity:
00 )
tr(poApB) =t (A ® B)S(py ® po)], (11 M; = (m 0>7 1=1,-4N, (18
1
whereS is the swap operator with elemers = & . We h
now write py, as pp=1/2(1+n-o) and use the identity WNeré
(1/4m) fninidQ=1/36; to arrive at the following identity: My =(=,— o=, +|e M+ = = e =),
1 1 _
ZT p0®p0dﬂ=é(l+8), (12) rn_::<_,_,..._,_|e_|Ht|_’_'_,...,_>' (19)
which we use to rewrit€ as and
m|::<_ 1."_ 1 + !—"'_ |e_IHt| + l_ !— l"'7_>' (20)

__ 1 +
F= 6% M, ® Mig(1+9)]. (13) A simple calculation now shows that the following iden-

' tity holds for the above types of matrices, regardless of the
Using the facts that [A®B)S]=tr(AB) and explicit form of their matrix elements:

s, M! M,,=1 we find the final form ofF as N
_ MipM{ =MpMT, 21
F=1415 M 2 (14) gl PR v
3 61,
where
Equation(14) is already in the form of a low-temperature
expansion for the average fidelity. The leading contribution 0 0
comes from the ground state which we labelagsthe next M = N (22)
to leading contribution comes from the first excited states, - >imf2 0
and so on. Thus despite the huge number of matihitgs at i=1

low temperatures one can obtain a reasonably good value of ) )
the fidelity by using only the first few terms in the expansion. Thus the operator-sum representation reduces to a sum with
only two elements, i.e.,

The zero-temperature limit of the ferromagnetic chain pn(t) = MopoME+MpgM ™. (23

In this limit only the ground state contributes to the ex- Using Eq.(16) and noting that the matrii is traceless,
pansion(14). For the ferromagnetic chain the ground state iswe find the average fidelity at zero temperature:

042330-4
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— 1 1 _ 1
F:§+é|rm+m_|2. (24) ua(t):Z(O,a|[1—0',z\,(t)]|0,a),
For the ferromagnetic chain, the st&te—,---,—) is also the
ground state of the full Hamiltonian and thus by shifting the wh(t) = l(1,oz|[1 -onW]|L,@),
zero energy of the Hamiltonian to 0 we can set=1. Thus “ 4
we find
1
— 1 1 “(+) = = z
F ==+ _|1 + m+|2 (25) Wa(t) 4<0,C¥|[1 + O-N(t)]|ola>1
3 6
in accordance with the result ¢2]. Note that ourm, is 1 .
denoted byfq(t) in [2]. z,(t) = §<0,a|<TN(t)|1,a>- (30

Here the operatorsf(t) are operators in the Heisenberg pic-
Il. TRANSFER OF ENTANGLEMENT ture, i.e.,of(t) =eMtoRe M,

We now consider how temperature affects the distribution 1hUS the concurrence will have the same dependence on
of a maximally entangled pair through the channel. Follow-the correlation function as |n'the ther.mal equm_brlum state
ing [2] we consider a maximally entangled pair of qubits in[14,15, only now the correlation functions are time depen-
the statdd®,):=(1/2)(|0,1)+|1,0)). In Fig. L(b) this pair of €Nt
qubits are labeled by’Cand 0.

The evolution of the chain may transform the entangle- IV. EXACT SOLUTION FOR A SHORT CHAIN
ment between the pait0’,0) to the pair(0’,N), thus en-
abling us to transport entanglement between ions or an
other realization of qubits over long distances. Note that th
Hamiltonian only acts on the part of the chain from O\olt
is assumed that the qubit @oes not interact with the rest of
the chain. After a time, the density matrix of the pai{0’,N)

An exact study of the thermal effects on a long chain with
n arbitrary number of spins is highly involved, since it re-
quires a knowledge of all the energy eigenstates. One can
study these chains only at low temperatures, in which case
only the ground state and the first excited states of the chain
is easily obtained, thanks to the operator-sum represent::xtioar{e populated. We will do th.|s n alsequel to this paper. Here
. we study exactly a short spin chain BE3. An exact study
(8). We find .
of a short chain has the advantage that one can compare the
por () =S @ae M, ) (| @D, (L ® MlTa)_ (26) chgracterlstlcally dlffe_rent behaw(_)rs of ferromagnetic and
o antiferromagnetic chains. We remind the reader that at zero
temperature the channel relaxes to its ground state, which for

Using the fact that the ferromagnetic chain is a disentangled state of spins
0 aligned with the magnetic field. This is the only case that was
studied in[2].
|¢+><¢_|:} 11 (27) So we consider a three-site channel with Hamiltonian
2 11 given by
0

He==J3(s;-S+S,-8) +B(Sy,+ 55, +53). (3D)

The spectrum of this Hamiltonian is easily obtained and is
given in the Appendix. The Hamiltonian of the full chain is

and the explicit form of the matrix elements Mf , as given
in Eq. (7), we find after some manipulations the following
low-temperature expansion:

now
_BEa
por n(D=>, eTp(a)(t), (28) H=-J(sp-S1+51 -5+, S3) + BlSp, + 12+ 5, + Sgp).

« (32
where eacfp, pertains to a levelr of the spectrum of the  petermination of the spectrum of this Hamiltonian is facili-
channel and is given by tated by using the following symmetries:

ua(t) [H,3,]=[H,A]=[J,A]=0 and
Wi(t)  z,(t
o0 = () 20 29 oPHUIB) =HU-B)o®, (33
z,(t) w(t) . . :
-0 where A is the inversion operator
th
A H il il = y H il . 34
where |S0,51,52,53) = 53,2, 51, %0) (34)
The spectra of the total and the channel Hamiltonians are
ui(t) = }<1,a|[1 + o3 (V]IL,a), dgrived in th_e Appendix. By plugging these e@genstates and
4 eigenvalues in Eq47) and(14) one can determine the aver-
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age fidelity of the output state to the input state. The fidelity APPENDIX: SPECTRUM OF THREE- AND FOUR-SITE
is a complicated function of time, in fact it is a superposition SPIN CHAINS

of periodic functions with periodey;:=1/|E;~E|. In[2Jone | appendix we collect the eigenstates and eigenval-
extracts the output state only at certain times where the f'ﬂes of the Hamiltoniansi, andH shown in Egs(31) and
delity reaches a maximum. Since we want to focus on th?32) ¢ .

effect of temperature, we fix the magnetic field and deter-
mine the average fidelity as a function of time and temperafOI
ture. The results are shown in Figs. 2 and 3 for ferromagnetic
and antiferromagnetic chains, respectively. lay) =|-,-,-),

These curves show several interesting features. The first
one is that the optimal time of extraction is almost indepen- 1 =
dent of temperature: thus at any temperature one can tune the %2 = §(| o) N2 ) ),
optimal time of extraction to be the same as that of the zero
temperature. The only effect of temperature is that it de- 1 _
creases the fidelity. It is also seen that the optimal times lagy = =(|+,—, =y +\2|—, +,=)+ |- ,—, +)),
when the fidelity reaches local maxima are the same for both 2
types of chains. Moreover thermal fluctuations have much
less destructive effect on the fidelity in the antiferromagnetic
chain as compared with the ferromagnetic chain.

The difference between these two types of chains is more
pronounced when we use them to transfer entanglement. W&
have used these two channels_to transfer the maximal en- lai,g) =02 a), 1=1,...,4, (A2)
tanglement between the two spins#nd O at the left-hand ]
side of the chairfl) to entanglement of the end points of the With energies
chains at timd, measured by the concurrence of the density J 3B
matrix po 3. In a fixed magnetic field, the concurrence of this Ej=---—
density matrix[13] is a function of temperature. Figures 4
and 5 show this concurrence as a function of temperature and
time for the ferromagnetic and antiferromagnetic chains, re- E,=—=-—,
spectively. All the previous comments apply also to this type 2 2
of behavior. The striking difference is that in the antiferro-
magnetic chain there are long intervals of time when no en-
tanglement can be distributed in the chain regardless of the
temperature; entanglement transfer is possible only in short
periods of time. In fact comparison of the figures for the B

2

The eigenstates and eigenenergies of the channel are as
lows:

|a4> =

fidelity and concurrence shows that when the fidelity of the Ei=-7, (A3)
channel drops below the approximate value of 0.6, it no

longer can transfer any entanglement. and
Ei+(J,B)=EJ,-B), i=1,..,4. (Ad)

We have studied the effect of thermal fluctuations on al—gteaiﬁ:eg;rt])iltit;igOIhtges;r?]trile{-r'ig?:)ltovrvgtsjiqt.hgﬁ)c])t;ltri?)n
recently proposed method for transportation of unknowr@l or |i.j) o indicate that the spins in theh position or the

states through quantum spin chains. We have developed " i
low-temperature expansion which can be used to calculatg’” positions are up and the rest are down:
this effect to a desired degree of accuracy at any given tem- xo=1-.-.-.,-),
perature. As an example we have calculated exactly the ef-

fect of thermal fluctuations on transportation of states on a 1

short spin chain and have shown that the optimal time of |X2>=5(|1>+ 2) +3) +1[4)),
extraction of transported states at the end of the chain is

almost independent of temperature, the only effect of which 1

is to lower slightly the fidelity of the output state with the Ixa)==(1)-12) - [3) +|4)),
input state. We have made a detailed comparison between the 2

ferromagnetic and antiferromagnetic channels.

V. SUMMARY

1 =
ACKNOWLEDGMENTS Xa) = m[m -(2+D(2)-[3) - 4],
We thank I. Marvian for his very constructive comments
and M. Asoudeh and L. Memarzadeh for their critical read-
ing of the manuscript.

1 =
=—|1 2-1)(2)-1(3)) —1|4)],
|xs) z\m[| >+ (\ )(12) = [3) = [4)]
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1 obtained by the action of the flip operataf4 on the first
Ixe) = E(|1,4> -12,3), five states above, that is,
X0 = 0 Yx), 1=1,...,5. (AB)

1
=—=(1,2+1,39 +[1,4 +1(2,3 +|2,4 +[3,4),
X V%(I IR +2.9+2,4+13.4) The energies of the above states are

1 - 3 3 1
- (1 4y - - E,=--J-2B, E,=--J-B, E;=-J-B,
|X8> 2 (2+\’,E)[|112> (1+\2)(|113> |214>) |314>]1 1 4 2 4 3 4
| >—;[—|12>+(1— 2)(|11,3) - [2,4) +[3,4)] = S(1+2021-B, Es=~(1-2/2J-B, Eg=>J
P ale-g T T TR R R e e
3 1 - 1
X0 = 2\/3—(|1 2 - 1|13+ &1, + £]2,3) E;=- ZJ, Eg= Z(l +2V2)J, Eg= Z(l - ZVE)J,

- 7.2,4 +(3,9)),
V3 V3

S Z%J Ei=- ke J, (A7)
X = N 3—(|1 2= 71,3+ E|1,4+£]2,3
+-7)2,4 +3,9), (ns) and
where &.:=1+3 and 7.=2+3. The other five states are E.1.(J,B)=E(J,-B), i=1,..,5. (A8)
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