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We study the effect of thermal fluctuations in a recently proposed protocol for transmission of unknown
quantum states through quantum spin chains. We develop a low-temperature expansion for general spin chains.
We then apply this formalism to study exactly thermal effects on short spin chains of four spins. We show that
optimal times for extraction of output states are almost independent of the temperature, which lowers only the
fidelity of the channel. Moreover we show that thermal effects are smaller in the antiferromagnetic chains than
the ferromagnetic ones.
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I. INTRODUCTION

One of the basic ingredients of quantum communication
is the transport of a known or unknown quantum state from
one point to anotherf1g. Recently it has been shown that
quantum spin chains can act as channels for the efficient
f2–4g or perfectf5,6g transfer of quantum states. Of particu-
lar interest to us here is the work reported inf2,3g. It has
been shown that this scheme may be used for linking several
small quantum processers in large-scale quantum computing.
In this scheme, anN-site ferromagnetic Heisenberg spin
chain placed in a magnetic field plays the role of the quan-
tum channel. The spins of the channel are numbered from
1 to N. It is assumed that this chain is in its ground state,
u−,−,¯ ,−l, where u−l denotes the state of a spin in the
negativez direction and the magnet field points to the posi-
tive z direction. One then adds a spin or qubit to the left-hand
side of this channel labeled by zero, which is in an unknown
stateufl fFig. 1sadg. The state of this qubit is to be transmit-
ted with a high fidelity to the right-hand side, by the natural
time evolution of the chain.

In this way one may circumvent a problem which exists in
quantum-computer implementation, namely, the difficulty of
switching on and off between spinsf7,8g.

The Hamiltonians governing the interaction of the spins in
the channel and the full chain are, respectively,

Hc = − Jo
i=1

N−1

si · si+1 + Bo
i=1

N

sz,i s1d

and

H = − Jo
i=0

N−1

si · si+1 + Bo
i=0

N

sz,i , s2d

where the subscriptc on H stands for the channel. If at time
t=0 the qubit 0 is placed to the left of the chain then the
evolution of the Heisenberg chain carries the state of this
qubit to the rightmost spinN where one extracts the state

with a rather high fidelity, provided that one extracts the state
at an optimal time.

It has been shown inf2g that one can transmit quantum
states with a high fidelity ranging fromF=1 for N=4 to a
value exceeding 0.9 forN=7, 10, 11, 13, and 14. The fidelity
generally decreases with increasing length of the channel,
exceeding the value ofF=2/3 for N<80 which holds for
classical transmission of quantum statesf9g.

One can also use this channel for transmission of en-
tanglement in the following wayf2g. One places two maxi-
mally entangled spins labeled 08 and 0 to the left of the chain
fFig. 1sbdg and evolution of the chain after a suitable lapse of
time entangles the spin 08 with the rightmost spinN. Here it
is assumed that only the spin 0 is coupled to the channel. In
this way two distant spins can be entangled, which can later
be used for implementation of other quantum protocols like
teleportationf10g.

The formalism off2g requires that the spins of the channel
be ideally aligned in the direction opposite to that of the
magnetic field. This ideal situation is, however, achievable
only at zero temperature or in very strong magnetic fields
where thermal fluctuations are not large enough to populate
excited states, i.e., whenB/kT@1. On the other hand, in-
creasing the magnetic field may lower the quality of the
channel since a high magnetic field tends to align the spins
and will generally dominate the interaction between the
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FIG. 1. sad An unknown quantum stateufl is placed at site 0 of
the chain and is transported to siteN by the dynamics of the spin
chain. sbd The entanglement of a Bell stateuf+l=s1/Î2dsu0,0l
+ u1,1ld placed at sites 08 and 0 develops into the entanglement of
sites 08 andN.
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spins, which is essential for the working of the channel.
Moreover, when one uses this channel once and extracts

the state at the right-hand site, the initial state of the channel
turns into a mixed state. Before using the channel for another
round of transmission the initial state of the channel should
be restored, for example, by cooling to low enough tempera-
tures. It is plausible to assume that multiple uses of the chan-
nel may heat it up to temperatures in which not only the
ground state but also some of the excited states are also
populated.

In view of these considerations it is desirable to study the
effect of thermal fluctuations on such a quantum channel.
This is the problem that we want to address in this paper.
Thus we want to generalize the protocol off2g to the case
where the initial state of the channel is not the ground state
but a thermal state given by a thermal density matrix.

This enables us to to see the effect of the ambient tem-
perature on the feasibility of the protocol, and the quantita-
tive effect that temperature has on the fidelity of transmission
of states and distribution of entanglement.

We will derive a low-temperature expansion through
which we can study the effect of temperature to any desired
degree of accuracy by keeping appropriate number of terms
in the expansion.

In a sequel to this paper we will study long chains of
arbitrary numbers of spins at low temperatures. This study
can be done only numerically. In this paper, however, we will
study exactly thermal effects on a short chain of four spins.
The advantage of studying this short chain is that we can
obtain the spectrum completely and hence can compare the
two cases of ferromagnetic and antiferromagnetic chains.

The structure of this paper is as follows. In Sec. II we set
up the general formalism and will develop low-temperature
expansions for the expressions of fidelity and entanglement.
In Sec. III we derive general expressions for entanglement of
end points of the chain at arbitrary temperatures. In Sec. IV
we study exactly the specific example of a short chain of
only four spins where we present our basic results in Figs.
2–5 below.

II. LOW-TEMPERATURE EXPANSION OF THE FIDELITY

We consider the interaction between the spins to be near-
est neighbor and of Heisenberg type. The spins also interact
with an external magnetic field. We should emphasize that
much of what we derive in this section does not depend on
the specific form of the Hamiltonian. We assume that the
initial state of the channel is

FIG. 2. sColor onlined The fidelity sFd be-
tween the output and the input states averaged
over all input states, as a function ofkT and time
t, in a fixed magnetic field. In all the figures the
fidelity F and the concurrenceC are dimension-
less and we are working in units wherekT and t
have no dimensions. In these units we have taken
B=1 andJ= +1 for ferromagnetic andJ=−1 for
antiferromagnetic chains.

FIG. 3. sColor onlined The fidelity sFd be-
tween the the output and the input states averaged
over all input states, as a function ofkT and time
t, in a fixed magnetic fieldsB=1d, for an antifer-
romagnetic channelsJ=−1d.
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rth =
e−bHc

Z
= o

a

e−bEa

Z
ualkau, s3d

where theual’s andEa’s are, respectively, the eigenstates and
eigenenergies of the channel Hamiltonians1d. HereZ is the
partition function of the channelZªtrse−bHcd.

At time t=0 we place the 0th spin, which is in an un-
known pure stater0= uflkfu, to the left of this channel. The
initial state of the whole chain will be given byr0 ^ rth
which evolves to

rstd = e−iHtsr0 ^ rthdeiHt , s4d

whereH is now the Hamiltonian of the full chains2d.
The state of theNth spin after timet will be given by

rNstd = trN̂fe−iHtsr0 ^ rthdeiHtg, s5d

whereN̂ means that we take the trace over all sites except the
Nth site. We can now derive an operator-sum representation
for the transformation of the state of the leftmost qubit
rs0dªuflkfu to the state of the rightmost qubitrNstd. To do
this we use Eq.s5d to compute an element ofrNstd as fol-

lows, where we use the indexI to run over a complete set of
stateshuIlj for the Hilbert space of part of the total chain
from site 0 to siteN−1, and the indexa is to run over the
eigenstates of the channel Hamiltonian:

kkurNstdull = o
I

kI,kue−iHtsr0 ^ rthdeiHtuI,ll

= o
I,j ,m,a,b

kI,kue−iHtu j ,alk j ,ausr0 ^ rthdum,bl

3km,bueiHtuI,ll

= o
I,j ,m,a

kI,kue−iHtu j ,alr0j ,m
km,aueiHtuI,ll

e−bEa

Z
.

s6d

Defining a collection of 232 matricesMI,a with elements

kkuMI,au jlª
e−bEa/2

ÎZ
kI,kue−iHtu j ,al s7d

we find the following Kraus decompositionf11,12g for rNstd:

FIG. 4. sColor onlined The concurrenceC of
the state of the end points of the chain as a func-
tion of time t andkT in a fixed magnetic field for
a ferromagnetic chain. HereB=1 andJ=1.

FIG. 5. sColor onlined The concurrenceC of
the state of the end points of the chain as a func-
tion of time t and kT, in a fixed magnetic field
sB=1d, for an antiferromagnetic chainsJ=−1d.
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rNstd = o
I,a

MIar0MIa
† . s8d

Note that in general the number of elements in this de-
composition, i.e., the number of matricesMI,a, is huge. In
fact this number is equal to the number of different choices
for the pair of indicessI ,ad, which equals 22N. In principle
there are many operator-sum representations for a superop-
erator and the number of Kraus operators for a qubit can be
reduced to 4f11,12g; however, the present form has the ad-
vantage that it is suitable for a low-temperature expansion of
the fidelity of the channel. Note also that even in the present
form symmetry arguments highly restrict the number of non-
zero matrices as we will see in the following.

The fidelity of this out-staterNstd to the in-stater0 is
given by

F = o
I,a

trsr0MIar0MIa
† d. s9d

We are interested in the fidelity averaged over all the initial
input states, that is,

F̄ =
1

4p
E F dV, s10d

where the integral is taken over the surface of the Bloch
sphere. This integral can further be simplified by using the
following easily verified identity:

trsr0Ar0Bd = trfsA ^ BdSsr0 ^ r0dg, s11d

whereS is the swap operator with elementsSij ,kl=dild jk. We
now write r0 as r0= 1/2s1+n ·sd and use the identity
s1/4pdeninjdV= 1/3di j to arrive at the following identity:

1

4p
E r0 ^ r0dV =

1

6
s1 + Sd, s12d

which we use to rewriteF̄ as

F̄ =
1

6o
I,a

trfMIa ^ MIa
† s1 + Sdg. s13d

Using the facts that trfsA^ BdSg=trsABd and

oI,aMIa
† MIa=1 we find the final form ofF̄ as

F̄ =
1

3
+

1

6o
I,a

utrMIau2. s14d

Equations14d is already in the form of a low-temperature
expansion for the average fidelity. The leading contribution
comes from the ground state which we label asa0, the next
to leading contribution comes from the first excited states,
and so on. Thus despite the huge number of matricesMI,a, at
low temperatures one can obtain a reasonably good value of
the fidelity by using only the first few terms in the expansion.

The zero-temperature limit of the ferromagnetic chain

In this limit only the ground state contributes to the ex-
pansions14d. For the ferromagnetic chain the ground state is

ua0l = u− ,− ,− ,̄ ,− l, s15d

where all the spins are down. Thus we have

F̄ =
1

3
+

1

6o
I

utrMIa0
u2. s16d

In Eq. s16d it appears that a set of 2N matricesMI,a0
contrib-

ute to the sum. However, we show that by symmetry consid-
erations one can reduce this number to only 2. To this end we
note that a general element ofMI,a0

can be written as fol-
lows:

MI,a0
si, jd = kI,i ue−iHtu j ,− ,− ,− ,̄ ,− l. s17d

In view of the symmetryfH ,Jzg=0 whereJz is the total spin
in the z direction, the only nonzero matrices are those in
which the indexI is eithers2,2,2,¯,2d for which we de-
note the corresponding matrix byM0, or those in which only
one spin is up fe.g., in the ith position s2,2,¯2,
1,2,¯,2dg for which we denote the corresponding matrix
by Mi.

Moreover, the above-mentioned symmetry requires that
the matrices be of the following form:

M0 = Sm+ 0

0 m−
D ,

Mi = S 0 0

mi 0
D, i = 1,¯,N, s18d

where

m+: = k− ,− ,¯ − , + ue−iHtu + ,− ,− ,̄ ,− l,

m−: = k− ,− ,¯ − ,− ue−iHtu− ,− ,− ,̄ ,− l, s19d

and

miªk− ,¯ − , + ,−¯ − ue−iHtu + ,− ,− ,̄ ,− l. s20d

A simple calculation now shows that the following iden-
tity holds for the above types of matrices, regardless of the
explicit form of their matrix elements:

o
i=1

N

MirMi
† = MrM †, s21d

where

M = 1 0 0

Îo
i=1

N

umiu2 02 . s22d

Thus the operator-sum representation reduces to a sum with
only two elements, i.e.,

rNstd = M0r0M0
† + Mr0M

†. s23d

Using Eq.s16d and noting that the matrixM is traceless,
we find the average fidelity at zero temperature:
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F̄ =
1

3
+

1

6
um+ + m−u2. s24d

For the ferromagnetic chain, the stateu−,−,¯ ,−l is also the
ground state of the full Hamiltonian and thus by shifting the
zero energy of the Hamiltonian to 0 we can setm−=1. Thus
we find

F̄ =
1

3
+

1

6
u1 + m+u2 s25d

in accordance with the result off2g. Note that ourm+ is
denoted byf0,Nstd in f2g.

III. TRANSFER OF ENTANGLEMENT

We now consider how temperature affects the distribution
of a maximally entangled pair through the channel. Follow-
ing f2g we consider a maximally entangled pair of qubits in
the stateuF+lªs1/Î2dsu0,1l+ u1,0ld. In Fig. 1sbd this pair of
qubits are labeled by 08 and 0.

The evolution of the chain may transform the entangle-
ment between the pairs08 ,0d to the pair s08 ,Nd, thus en-
abling us to transport entanglement between ions or any
other realization of qubits over long distances. Note that the
Hamiltonian only acts on the part of the chain from 0 toN. It
is assumed that the qubit 08 does not interact with the rest of
the chain. After a timet, the density matrix of the pairs08 ,Nd
is easily obtained, thanks to the operator-sum representation
s8d. We find

r08,Nstd = o
I,a

s1 ^ MIadsuF+lkF+ds1 ^ MIa
† d. s26d

Using the fact that

uf+lkf−u =
1

21
0

1 1

1 1

0
2 s27d

and the explicit form of the matrix elements ofMI,a as given
in Eq. s7d, we find after some manipulations the following
low-temperature expansion:

r08,Nstdªo
a

e−bEa

Z
rsadstd, s28d

where eachra pertains to a levela of the spectrum of the
channel and is given by

rsadstd =1
ua

+std
wa

+std zastd
za

* std wa
−std

ua
−std
2 , s29d

where

ua
+std =

1

4
k1,auf1 + sN

z stdgu1,al,

ua
−std =

1

4
k0,auf1 − sN

z stdgu0,al,

wa
+std =

1

4
k1,auf1 − sN

z stdgu1,al,

wa
−std =

1

4
k0,auf1 + sN

z stdgu0,al,

zastd =
1

2
k0,ausN

+stdu1,al. s30d

Here the operatorssN
astd are operators in the Heisenberg pic-

ture, i.e.,sN
astd=eiHtsN

ae−iHt.
Thus the concurrence will have the same dependence on

the correlation function as in the thermal equilibrium state
f14,15g, only now the correlation functions are time depen-
dent.

IV. EXACT SOLUTION FOR A SHORT CHAIN

An exact study of the thermal effects on a long chain with
an arbitrary number of spins is highly involved, since it re-
quires a knowledge of all the energy eigenstates. One can
study these chains only at low temperatures, in which case
only the ground state and the first excited states of the chain
are populated. We will do this in a sequel to this paper. Here
we study exactly a short spin chain ofN=3. An exact study
of a short chain has the advantage that one can compare the
characteristically different behaviors of ferromagnetic and
antiferromagnetic chains. We remind the reader that at zero
temperature the channel relaxes to its ground state, which for
the ferromagnetic chain is a disentangled state of spins
aligned with the magnetic field. This is the only case that was
studied inf2g.

So we consider a three-site channel with Hamiltonian
given by

Hc = − Jss1 ·s2 + s2 ·s3d + Bss1z + s2z + s3zd. s31d

The spectrum of this Hamiltonian is easily obtained and is
given in the Appendix. The Hamiltonian of the full chain is
now

H = − Jss0 ·s1 + s1 ·s2 + s2 ·s3d + Bss0z + s1z + s2z + s3zd.

s32d

Determination of the spectrum of this Hamiltonian is facili-
tated by using the following symmetries:

fH,Jzg = fH,Lg = fJz,Lg = 0 and

sx
^4HsJ,Bd = HsJ,− Bdsx

^4, s33d

whereL is the inversion operator

Lus0,s1,s2,s3l = us3,s2,s1,s0l. s34d

The spectra of the total and the channel Hamiltonians are
derived in the Appendix. By plugging these eigenstates and
eigenvalues in Eqs.s7d ands14d one can determine the aver-
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age fidelity of the output state to the input state. The fidelity
is a complicated function of time, in fact it is a superposition
of periodic functions with periodsvi jª1/uEj −Eiu. In f2g one
extracts the output state only at certain times where the fi-
delity reaches a maximum. Since we want to focus on the
effect of temperature, we fix the magnetic field and deter-
mine the average fidelity as a function of time and tempera-
ture. The results are shown in Figs. 2 and 3 for ferromagnetic
and antiferromagnetic chains, respectively.

These curves show several interesting features. The first
one is that the optimal time of extraction is almost indepen-
dent of temperature; thus at any temperature one can tune the
optimal time of extraction to be the same as that of the zero
temperature. The only effect of temperature is that it de-
creases the fidelity. It is also seen that the optimal times
when the fidelity reaches local maxima are the same for both
types of chains. Moreover thermal fluctuations have much
less destructive effect on the fidelity in the antiferromagnetic
chain as compared with the ferromagnetic chain.

The difference between these two types of chains is more
pronounced when we use them to transfer entanglement. We
have used these two channels to transfer the maximal en-
tanglement between the two spins 08 and 0 at the left-hand
side of the chains1d to entanglement of the end points of the
chains at timet, measured by the concurrence of the density
matrix r08,3. In a fixed magnetic field, the concurrence of this
density matrixf13g is a function of temperature. Figures 4
and 5 show this concurrence as a function of temperature and
time for the ferromagnetic and antiferromagnetic chains, re-
spectively. All the previous comments apply also to this type
of behavior. The striking difference is that in the antiferro-
magnetic chain there are long intervals of time when no en-
tanglement can be distributed in the chain regardless of the
temperature; entanglement transfer is possible only in short
periods of time. In fact comparison of the figures for the
fidelity and concurrence shows that when the fidelity of the
channel drops below the approximate value of 0.6, it no
longer can transfer any entanglement.

V. SUMMARY

We have studied the effect of thermal fluctuations on a
recently proposed method for transportation of unknown
states through quantum spin chains. We have developed a
low-temperature expansion which can be used to calculate
this effect to a desired degree of accuracy at any given tem-
perature. As an example we have calculated exactly the ef-
fect of thermal fluctuations on transportation of states on a
short spin chain and have shown that the optimal time of
extraction of transported states at the end of the chain is
almost independent of temperature, the only effect of which
is to lower slightly the fidelity of the output state with the
input state. We have made a detailed comparison between the
ferromagnetic and antiferromagnetic channels.
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APPENDIX: SPECTRUM OF THREE- AND FOUR-SITE
SPIN CHAINS

In this appendix we collect the eigenstates and eigenval-
ues of the HamiltoniansHc and H shown in Eqs.s31d and
s32d.

The eigenstates and eigenenergies of the channel are as
follows:

ua1l = u− ,− ,− l,

ua2l =
1

2
su + ,− ,− l − Î2u− , + ,− l + u− ,− , + ld,

ua3l =
1

2
su + ,− ,− l + Î2u− , + ,− l + u− ,− , + ld,

ua4l =
1
Î2

su + ,− ,− l − u− ,− , + ld, sA1d

and

uai+4l = sx
^3uail, i = 1,…,4, sA2d

with energies

E1 = −
J

2
−

3B

2
,

E2 = −
J

2
−

B

2
,

E3 = J −
B

2
,

E4 = −
B

2
, sA3d

and

Ei+4sJ,Bd = EisJ,− Bd, i = 1,…,4. sA4d

The eigenstates of the total HamiltonianH fEq. s32dg are
obtained by using the symmetriess33d. We use the notation
uil or ui , jl to indicate that the spins in theith position or the
si , jd positions are up and the rest are down:

ux1l = u− ,− ,− ,−l,

ux2l =
1

2
su1l + u2l + u3l + u4ld,

ux3l =
1

2
su1l − u2l − u3l + u4ld,

ux4l =
1

2Î2 +Î2
fu1l − sÎ2 + 1dsu2l − u3ld − u4lg,

ux5l =
1

2Î2 −Î2
fu1l + sÎ2 − 1dsu2l − u3ld − u4lg,
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ux6l =
1
Î2

su1,4l − u2,3ld,

ux7l =
1
Î6

su1,2l + u1,3l + u1,4l + u2,3l + u2,4l + u3,4ld,

ux8l =
1

2Îs2 +Î2d
fu1,2l − s1 +Î2dsu1,3l − u2,4ld − u3,4lg,

ux9l =
1

2Îs2 −Î2d
f− u1,2l + s1 −Î2dsu1,3l − u2,4ld + u3,4lg,

ux10l =
1

2Î3h+

su1,2l − h+u1,3l + j+u1,4l + j+u2,3l

− h+u2,4l + u3,4ld,

ux11l =
1

2Î3h−

su1,2l − h−u1,3l + j+u1,4l + j−u2,3l

+ − h−u2,4l + u3,4ld, sA5d

where j±ª1±Î3 and h±=2±Î3. The other five states are

obtained by the action of the flip operatorsx
^4 on the first

five states above, that is,

uxi+11l = sx
^4uxil, i = 1,…,5. sA6d

The energies of the above states are

E1 = −
3

4
J − 2B, E2 = −

3

4
J − B, E3 =

1

4
J − B,

E4 =
1

4
s1 + 2Î2dJ − B, E5 =

1

4
s1 − 2Î2dJ − B, E6 =

1

4
J,

E7 = −
3

4
J, E8 =

1

4
s1 + 2Î2dJ, E9 =

1

4
s1 − 2Î2dJ,

E10 =
Î3

4
h+J, E11 = −

Î3

4
h−J, sA7d

and

Ei+11sJ,Bd = EisJ,− Bd, i = 1,…,5. sA8d
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