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We investigate the amount of noise required to turn a universal quantum gate set into one that can be
efficiently modeled classically. This question is useful for providing upper bounds on fault-tolerant thresholds,
and for understanding the nature of the quantum-classical computational transition. We refine some previously
known upper bounds using two different strategies. The first one involves the introduction of bientangling
operations, a class of classically simulable machines that can generate at most bipartite entanglement. Using
this class we show that it is possible to sharpen previously obtained upper bounds in certain cases. As an
example, we show that under depolarizing noise on the contrattedyate, the previously known upper bound
of 74% can be sharpened to around 67%. Another interesting consequence is that measurement-based schemes
cannot work using only two-qubit nondegenerate projections. In the second strand of the work we utilize the
Gottesman-Knill theorem on the classically efficient simulation of Clifford group operations. The bounds
attained using this approach for thé8 gate can be as low as 15% for general single-gate noise, and 30% for
dephasing noise.
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I. INTRODUCTION In addition to bounding fault tolerance, there is perhaps a

The recent development of quantum information has Ied‘?ore, fllmdamental reason forl invesf[igatir}g where the
to a great deal of interest in the classical simulation of quan¢!assical-quantum computational transition lig%6,7. It

tum systems. An understanding of this issue is important if2y Well be the case that noisy quantum devices cannot be
order to discern which resources are essential for an eXpé_lmulated efficiently classically, yet cannot be used for fault-

nential quantum speedup. If we remove certain resource!€rant quantum computation. This would imply the exis-

from a particular model for universal quantum computation,l€Nce of an “intermediate” I'?thi%al device_—suchl asla n<_)is3|/
and find that the resulting machine can be efficiently simu-q”"’mtu{n sy.;t_err:"n. colntrol ed by al funlversa tctlassm.a
lated classically, then we can infer that those resources al g;?eprutﬁ;;\clzvlag:sic; gseﬁrgar?glivn?ﬁ:te ic;ge?f;nﬁ?gi:nltcl);,alr? d
essential to any exponential speedup that the original device”, " y
may offer. For instance, this approach has been used to sholip & 2,8, o1Ca hresholds also provide. mportants
that fermionic linear optics does not allow for an exponential

. rPerhaps easigmilestones for experimental efforts.
speeduf1], and also that quantum entanglement is an essen- |, this work, however, we will be more interested in the

tial ingredient for quantum computati¢@-4]. _ recent approach taken by Harrow and Nielg&hwhere they

In addition to questions of resources, an understanding Qjresented an algorithm for the efficient classical simulation
classically tractable quantum evolution is also useful forof 3 quantum machine operating witkparability-preserving
bounding the fault-tolerance thresholds of universal quantur‘(lsg guantum gate sets. The term “Separabi”ty preserving”
machines. This connection becomes apparent from anothegfers to any set of operations that cannot entangle product
important question concerning any universal quantum mainputs. Harrow and Nielsen then derived bounds on the mini-
chine: what is the minimal amount of noise required beforemal noise levels required to turn certain universal quantum
the device can be efficiently modeled classically? We looselgate sets into SP machines, thereby obtaining bounds on the
refer to this minimal noise level as tldassical tolerancef  classical tolerance of those gates. Due to the lack of a simple
a particular physical machine. We will also use the térae-  characterization of the SP machines, in most cases their cal-
tableto describe any form of quantum evolution that may beculations proceeded not by considering the full set of SP
modeled with polynomial classical resources. If it is true thatmachines, but instead the sets#parable machinesvhich
quantum computation is not tractable classically, then uppeare those devices that only operate with separable quantum
bounds to the classical tolerance of the gates in a universglates[8]. Their approach has the advantage that one can
quantum gate set are also upper bounds to the fault toleranexen consider weak-noise models where the noise only acts
of those gates. Aharonov and Ben-Or were among the first tavhenever multiqubit gates are applied. Depending upon the
obtain upper bounds on the classical tolerance thresholds ofbise model, however, the upper bounds to classical toler-
guantum gateg3]. To obtain their bounds they assumed thatance derived in this way were of the order of 50% or more
noise acts on every qubit at every stage of the computatiorfpr interesting universal gate sets such as controlied-
and showed that for noise above a certain amount the evoldeNoT)+single-qubit operations. In terms of depolarizing
tion becomes classically tractablsee alsd4,5] for related  noise only, Razboroy5] has obtained the strongest bounds
work). that we are aware of for a general machine using gates of
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(fan-in) <2 (the fan-in of a gate is the number of particles the way that we will choose to represent quantum operations
that it acts upon nontrivially He shows that for schemes (via the Jamiolkowski isomorphisnh13]), and derive our
based upon two qubit gates, 50% noise is an upper bound fslassical tolerance bound for the depolarized model of the
fault tolerance. However, his approach cannot be directly:noT gate that is considered [@d]. We also have performed
compared to that of4], as it does not consider efficient such calculations for some other noise models; however, as
classical simulation, and assumes a different noise modghey only match the bounds derived [id], we defer those
(where each qubit is decohered at every time)step calculations to the Appendix. In Sec. IV we derive bounds

In this article we will consider efficient classical simula- for Clifford-operation-based gate sets by using the
tion, and we will extend the approach taker{4 along two 5 5ttesman-Knill theorem. In Sec. V we discuss some subtle-

different tr'acks. In the first track we define a class of QUaNiies in the interpretation of results from Sec. IV. Section VI is
tum machines that can generate entanglement between Pragls conclusion

uct input states, but without additional resources can only
generate at most two-particle entanglement. We refer to any Il. THE BIENTANGLING MACHINES
machines that operate with our class of operationbias-
tangling (BE) machines. An extension of the algorithm pre- ~ We define the terrbientangling machinaccording to the
sented in4] shows that such BE machines can be efficientlyfollowing.
simulated classically. We find that many, but not all, of the Definition. A Bientangling machindBE maching is one
classical tolerance bounds derived [#] are actually also that consists of a supply of individual qubits initialized in
optimal with respect to BE machines. One example of arsome fixed state, augmented by the following quantum op-
improvement is the case of tl@&oT gate under individual erations:(1) an arbitrary set of single-qubit quantum opera-
depolarizing noise on the qubits, where we show that a 67%ons (these may be unitary, or measuring, or anything)else
noise rate leads to classical tractability, which is strongef2) an arbitrary set of two-qubit operations that can be ex-
than the 74% bound derived [d]. Another interesting ex- pressed as convex combinations(af separable operations
ample comes from two-qubit measurement-based quantufi3] that do not entangle the two qubitdy) operations that
computation, where we find that exponential speedup reswap the two qubits and then apply a separable operation,
quires degeneracy in at least one of the projections—a resulind (c) entanglement-breakingEB) [14] operations that
that cannot be directly derived from the approachdih This  break any entanglement between the two qubits and the rest
example suggests that our approach could be more fruitfubf the qubits.
for noise models in measurement-based quantum computa- The fact that any machine consisting(@j, (2a) and(2b)
tion. As an aside we also observe that there are separabilitys efficiently classically tractable was already showr 4
preserving gates that are not probabilistic mixtures of sepaas such operations ligtrictly) within the set of separability-
rable and separableswap operations, thereby deciding a preserving operations. The only point added here is the in-
conjecture made if4]. clusion of operations frorf2c), and the resulting convex hull

In the second track we make use of the Gottesman-Knillvith the separable and separable with swap operations. The
theorenm 9]. All of the results discussed above are derived byheuristic explanation for the algorithm is that a machine con-
considering machines that create a limited amount of ensisting of operation$l) and(2) above only has the power to
tanglement, or are so noisy that they tend to some form ofenerate two-particle entanglement. This allows us, with at
equilibrium. However, the important Gottesman-Knill theo- most polynomial classical effort, to reduce the problem of
rem states that machines composed of Clifford group unitartracking the evolution of a BE machine to the problem of
ies[10] and computational basis-state preparation and medracking the evolution of a SP machine. One can then simply
surement can be efficiently modeled classically, despite thapply the results proven if4], where it is shown that SP
fact that such resources are capable of generating manyaachines are classically tractable.
particle entanglemertalthough not all forms of if11]). It is Let us now see why the evolution of BE machines may be
hence natural to ask whether suClifford machinesan lead reduced to the evolution of SP machines. As we are consid-
to better bounds on classical tolerance than bientangling agring operations witi{fan-in) <2, we may without loss of
SP machines. We calculate exactly the minimal noise regenerality assume that all operations in our BE machine are
quired to take a variety of single-qubit gates into the set ofn fact two-qubit operationgby extending any single-qubit
Clifford operations—those operations that may be imple-operations to trivially act on another arbitrary qubkt the
mented by Clifford group unitaries, computational ancillae,beginning of the algorithm, we may compute how each of
and measurements in the computational basis. Forrit®  the two-qubit gates available to us decomposes into a proba-
gate in particulaf12], for generic single-operation noise, the bilistic mixture of the various operations listed in poiris
bound obtained is approximately 14.64%, thereby showingnd (2) above. Each component of this description will in
that thew/8 gate in the standard universal $&t 8, Clifford fact only be calculated to some finite precision. However, the
unitarie3 cannot be made fault tolerant to more than thisarguments given if4] show that the accuracy required to
level of general individual gate noise. For dephasing nois&chieve a particular overall accuracy in the algorithm will
on the /8 gate the bound is twice as large, approximatelylead to at most a polynomial increase in effort. Consequently
29.28%. we will proceed as if this decomposition has in fact been

This paper is structured as follows. In the next section wecomputed exactly.
discuss the class of bientangling machines and the classical Without loss of generality we assume that there are an
algorithm that models them efficiently. In Sec. Il we discusseven number of qubits in the quantum system. To initialize
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our classical description, each qubit is paired up wifhagt-  portation based computation; they use Greenberger-Horne-
ner qubit. A list of the partners is stored, requiring only mod- Zeilinger- (GHZ-)like states and Bell measuremeni5]).

est resources. Note that it is also possible to retrieve inforTherefore it is difficult to extend the bientangling class to
mation from this list at modest cost. We will treat each suchgates acting on three or more parties.

qubit partnership as a single four-level particle. Having ini-
tialized our description, we now must track the evolution of
the system. By changing the way that the qubits are part-
nered as we advance through the algorithm, we will ensure
that at each stage we end up with an easy to compute Sepa- |, o qer 1o ytilize the above algorithm to bound the clas-
rable state. Consider the application of the first bmntanglmz

Ill. REPRESENTATION OF QUANTUM
OPERATIONS BY STATES

gate, and suppose that it acts upon qubits 2 and 3. If qubits 'cql tolerance Of. quantum gates, itis impor'tant to be.able to
and 3 are already partners, then the evolution of the syste ecide when a given set of quantum_operatlons _faIIs into the
essentially corresponds to single-particle evolution, as we arga>> of BE machines. In_general this prot_)lem is extremely
regarding each partnership as a single four-level system. fficult. However, some important operations such as the
suppose instead that qubits 2 and 3 are not partnered, aftiOT gate possess a great deal of symmetry that makes the
that qubit 2 is partnered with qubit 1, and qubit 3 is partnerecinalysis feasible analytically. In order to perform this analy-
with qubit 4. The bientangling gate decomposes into a probasis, the Jamiolkowski isomorphisi13] provides a conve-
bilistic application of(a) a separable gatéB) a separable hient way of representing quantum operations. To any trace-
+swap gate, andy) an EB gate. We can sample this prob- Preserving quantum operatiafi on a single particle ofi
ability distribution efficiently, and use this to decide which levels, the Jamiolkowski isomorphism associates a two-party
componenta—y) we will follow. The casex corresponds to  quantum state that we will refer to as th@miolkowski state
a separable operation on partnershif) and (3,4). The p(&):
casep results in a separable state if the partnership list is
changed to(1,3 and (2,4). Finally y results in a separable p(E):=1a® Eg(| + )+ ) (1)
state if the partnerships are changedl@) and(2,3). Hence —ad o i )
by iterating these techniques for every gate that we apply, wwhere | +):=(1/Nd)ZL i) is the canonical maximally en-
ensure that we end up with a separable state over effectii@ngled state for twa-level systems\ andB. Itis clear from
four-level systems. The algorithm p4] can be applied, and the above Qeflnlthn tha,b(éj) has a reduced density matr_lx
hence we can see that there is a classically efficient algorithiP(€) ]a that is maximally mixed. It turns out that any density
for bientangling machines wittfan-in) <2. matrix with this propertyi.e., one withp, maximally mixed

One might hope that the algorithm may be extended, eican be associated with a quantum operatioMoreover, a
ther to gates with higher fan-in, or by incorporating all SPsimple teleportation argument can be used to show that this
operations instead of only the separable and separablap  association is one to one. Hence the Jamiolkowski isomor-
operations. However, this cannot be done straightforwardlyPhism is a one-to-one mapping between the set of trace-
We defer the discussion of why we cannot include all SPPreserving quantum operatiors and two-party quantum
operations to the next section. To see why we cannot extengfates with maximally mixed reduced density matrix.
the fan-in of the gates either, it is interesting to consider the This isomorphism can be easily applied to multiparty
connection between the above algorithm and measuremerfitantum operations in the following way. Suppose that we
based quantum computation scherf#s,16,23. This situa- have a two-particle quantum operatiéi, acting upon two
tion also provides a simple first example of where considerdubits 1 and 2. To represent this operation we must use a
ation of bientangling machines may yield more informationduantum state of four partiesl, A2, B1, andB2 [17]:
than consideration of SP machines alone. In measurement-
based computation schemes it is known that two-qubit mea?(€1,2:=la1 @ lp2 ® Eg1gal (| + )X+ Dare1 ® (| + X+ azgal-

surements allow universal quantum computafibf]. How- ) o . . .
ever, our algorithm shows that we must allow theseThis representation is particularly convenient because vari-

measurements to be degenerate, because if they are non@&!S important properties of quantum operatiéiaay easily
generate, then the resulting operations will be EB, and th&€ translated into properties of the corresponding giefe
device cannot offer an exponential speedup. This leads to & this work we will consider three such propertisee Fig.
useful rule: any two-qubit measurement-based scheme fo- (& An operation is separable if and only if the
guantum computation must involve nondegenerate measurdamiolkowski state is separable across thalB1)-
ments. (A2B2) split. (b) An operation is equivalent to the swap op-
Although this observation is quite simple, it applies to eration, preceded by and followed by separable operations, if
gates that can generasemeentanglemente.g., Bell mea- and only if the Jamiolkowski state is separable across the
surements and so it cannot be derived directly from the (A1B1)-(A2B2) split. (c) An operation is entanglement
approach irf4]. However, this limit on the capacity to gen- breaking if and only if the Jamiolkowski state is separable
erate multiparticle entanglement is removed when we allowacross th€A1A2)-(B1B2) split.
EB channels with three or more inputs, and this is one reason A set of operations is bientangling if every operation lies
why universal quantum computation is possible using somavithin the convex hull of these three clasgak (b), and(c).
forms of nondegenerate measurements on three or more pakn operation is hence bientangling if and only if the Jami-
ticles (see, e.g., the paper by Gottesman and Chuang on teletkowski state that represents it can be written as
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be tempted to expand this definition to include all SP opera-

[}
A ' B A B A O B tions as well. However, operations suchabave the capac-
H iy St R TN W ity to probabilistically generate many-particle entanglement
1 S ~ i -
" : 22 AS 22 AS = ¥ when accompanled by EB channels such as Bell measure
S~ ments, and so in our definition of BE machines we are forced
(EB) ®) (88) .
to include the smaller classes of separable and separable
FIG. 1. Entanglement-breakindEB), separable(S), and +sSwap operations, and not the larger class of SP operations.

separable swap (SS operations have a simple connection to ~ We would now like to use the class of BE machines de-
Jamiolkowski-state separability. For EB and separable operationdined above to obtain bounds on the classical tolerance of
the dashed line indicates the corresponding separable split. Famportant universal gate sets. Suppose for example that we
separable-swap operations the dashed ellipse indicates the splithave a universal quantum computer consisting of¢keT
ting. In all diagrams the wavy lines indicate entanglement betweemate and a sufficient set of single-qubit operations. If we add
pairs 1 and 2. some noise to theNoT gate such that it is taken to a bien-
tangling operation, then the whole set is taken to a BE ma-
chine, and can be efficiently classically simulated. Hence to
bound the classical threshold of tb®0T gate in our device,
we would like to calculate the minimal noise required to turn
the CNOT gate into a bientangling operation. In general such
calculations are very difficult.

It is at this point that we must discuss the form of the
L D noise model that we consider. In the rest of this article we
{rig are also individual probability distributions, and pls adopt the standargrobabilistic noise model, where qubits

on the right-hand side are valid density matrices. ; .
o . . . . . are affected incoherently. In this model whenever we would
This is a convenient point to discuss the relationship be:

tween BE machines and SP machines. It is clear from thgl«.3 to perform an ideal quantum operatiéninstegd due to
above definition that BE machines contain the convex hull of °'5€ W€ aré forced to perform an operaifirthat is related

the separable operations with separaide/ap operations. to £ as follows:
However, they do not contain all possible separability- E=1-pE+pN (4)
preserving operations. This becomes apparent from consid-

eration of the following Jamiolkowski state: wherep is a probability, andV' is some other quantum op-
eration that represents the error. In this equapas a mea-

sure of the error rate. Note that this is not the most general
model of error, and not necessarily the most physical model
either. Consider the example where our ideal operation is to
simply preserve the state of a qubit, but in fact it undergoes
a spontaneous emission at a sufficiently slow rate. This form
of error cannot be written in the form of E) unless the
error parameter is set tp=1 (see, e.g9.[12], p. 442. For
more generic errors one would have to adopt some suitable
metric | -|| on the set of quantum operations and [i§e-£||

as a measure of error ratsee, e.g.[19] for some possible
metricy. Although several authors have considered more
general models of error in relation to fault toleraf26], the

As w is a valid density matrix with the reduced state of only prior work on classical tolerance has been within the
partiesAl and A2 maximally mixed, it corresponds to the framework of Eq.(4), and this is the model that we will
Jamiolkowski state of a valid quantum operation. Whenfollow here. In the case of Markovian, identical, and inde-
viewed as a state of four partiaes,also has the property that pendent noise it should be possible to extend many of the
a GHZ-type state can be distilled from it by local operationstechnigues presented to metric-based noise quantification, al-
and classical communicatiah OCC) simply by measuring though we will not pursue that avenue further. Within the
the particleB2 in the computational basis. However, as theprobabilistic model, one can also make further restrictions,
Jamiolkowski states of bientangling operations contain onlyand constrain the form ol to interesting forms of noise

p= PE PiPALA2 ® PeiB2 * qz 0jPhsee @ Phos1
i J
2

k K
+rY, QkPa1B1 @ Pa2B2
K

where(p,q,r) is a probability distribution, the se{g;}, {q;},

1 1 :
w=:§|GHZ><GHZ|A1,A2,Bl ® [0)(0lg2 + §|GHZ )

X (GHZ'| a1 p281 ® [1)(1]g2

where

IGHZ)= (/000 + [111),
V2

IGHZ' ::%qom +[100). 3)
AY

two-particle entanglement, this means thatannot repre-
sent a bientangling operation. Howevermanifestly repre-
sents a SP operation, because the output qiditand B2

such as depolarization or dephasing. We have investigated a
variety of different types ofV, and derived bounds on the
classical tolerance for theNoT gate in particular. In most of

are always left in a separable state. Therefore we can alghe examples that we have considered, the bounds that we

conclude that the conjecture made[#] that SP operations
# (convex hull{separable operations, separabdavag) is
indeed trug 18]. In the above definition of BE machines, we

have derived are equivalent to those obtainef#in and so
calculations for such examples are deferred to the Appendix.
However, in the case of the depolarizing noise model con-

have included the ability to make separable operationssidered in(4] we are able to make significant improvements,
separable-swap operations, and EB operations. One mightand so we will present this argument now.
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In order to set up our analysis, let us initially considér I +ng I +VV(L)JZ [ +W)L(JO I +VVL2JO
to be a general quantum operation. This will allow us to > 5 > 5 .
construct symmetry arguments that are also required for the

calculations presented in the Appendix. Given that our erroff we denote the Jamiolkowski state that represdmtdy
model is probabilistic, our task is to find the minimal vajue p(U)=|e=0,U)(e=0,U|, then our task is to find the minimal
such that there is a validl" taking our ideal gate into the set probability p such that for some quantum noigé

of bientangling operations. In general this is likely to be a

difficult task. However, for the case of tlioT gate a great E=(1-pp(U) +ppN) (10)
deal of symmetry is present that enables the calculation to be . . . . .
performed exactly. In order to see how this proceeds, it will'S the Jamiolkowski state of a bientangling operation. Now

be first helpful to consider the case that the two-qubit gate iéhe ;?_rf(')p(irtles 9|_fhthe:NOT gtatt_e allow uz 0 rfnf:]ke Cfllj.#hedr
a general unitaryJ, and examine some of the symmetry simplincations. TheCNOT gate IS a member of the Liinor

possessed by the Jamiolkowski state that represénts %roupt,hmteanlng that for any two Pauli operaters o; we
For any two-qubit unitaryJ we have the trivial identity ave tha

9)

C o ® 0,)C ~ 0y ® 0 11

[U(o: & (TJ')UT]U(O'i ® O_j) —U 5) enot( O ]) CNOT k | (11
where gy, o are other Pauli operators, and the symbol

where{o;|i=0,x,y,z} are the standard Pauli operators. Thismeans that the two sides of the equation are equal up to an

identity, together with the fact thdt® A|+)=AT®1|+) for ~ unimportant global phase. This means that the gi@cor-

any linear operatoA, can be used to show that the Jami- responding to thenoT gate is actually a local group, where

olkowski state representing commutes with all operators €ach element is a tensor product of Pauli operators acting on
of the form individual qubits of the Jamiolkowski state. We can therefore

average(“twirl” ) over the group6) any valid solution(10)

WYiz (0N ar @ (0N ao ® [U(0n @ o )UT _ 6 corresponding to thenoT gate, and as eacWﬁNoT is local,
17201 @ () ® [U(0 © 0)U g1 2 © the bientangling properties of the equation will not be
changed. This means that without loss of generality, for the

in Eq. (6) form a group(up to an unimportant phaseand CE\IOT gate we neec_;l onI_y consider “tW|rIe_d" noise states
morgover from th% coFr)nrr?utation relatiF())nshipspof the Paulf (,N) that are also invariant under the action of the group.
operators it follows that the group is Abelian. It hence fol- 1S means that we can set

lows from Schur’s lemma that any operator that commutes , _

with all operators of the forn(6) is diagonal in the eigenba- p'N) = % Ae(WN)le)Xel
sis formed by the one-dimensional irreducible representa-

tions of the group(6). We can construct these irreducible where{\.} is a probability distribution of eigenvalues. If we
representations quite easily. In fact, the grd¢@pis isomor-  have not constrained further the form.&f then the form of

It is not hard to verify that as we vary ovirj the operators

(12

phic to the group consisting of elements the probability distribution{\o(\)} can be left free. How-
ever, if we are restrictingV" to be of a specific form such as
(o)) ® (ojT)Az ® (07)g1 ® (07)g2, (7)  depolarization or dephasing, then we will have to restrict the

distribution accordingly. Our task is hence to find the mini-
as it is related td6) by the unitary transformatiohn; ® | o, mal probabilityp such that there exists a probability distri-
® Ugy g- Hence we can utilize the stabilizer formalism for bution{A(\)} (consistent with any further constraints upon
the Pauli group, and write the 16 common eigenstates of th#e nois¢ such that the state

operators in(6) as
(1-p)p(U) + p<2 xeuv)|e><e|)

L+ (= DWW, \ [ 1+ (- =W,
'e*U><e’U":< 2 )( 2 ) = [(1-p) + ProATle=0)
|+ (= D)Wy | [ 1+ (= D)W X (e=0[+ X N(Mle)e] (13
X 5 5 (8) e+0

is bientangling. Let us denote this optimal valugodfy ppin-
where e is a four-bit string given by its components We have performed this optimization for the cases ikids
e,€{0,1}, =0, 1, 2, 3. It turns out that each of these eigen-(a) an unconstrained quantum operatiéin), a separable op-
projectors|e)(e| is a Jamiolkowski state for a valid quantum eration, separabteswap operation, or mixture of the two,
operation—the normalization and positivity are automatic,and (c) depolarizing noise. We defer the calculations far
and the reduced density matrices over partiddsandA2  and(b) to the Appendix, as they do not lead to improvements
are all maximally mixedthis is in turn because;® ojis an  over the results i4]. However, we present the calculation
irreducible representation The Jamiolkowski state for (c) here, as it leads to an improved bound.
representing U is in fact given by the projector Depolarizing noiseln the depolarizing model d#], each
|e=0,U)Xe=0,U| corresponding t@=0: qubit undergoing a two-qubit gate is independently depolar-
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ized with equal probabilityp. Hence a noisy two-qubit uni- p((1 ® D)U) = Ogyyap [H®*((D ® HU)H®4  (18)
tary U in fact acts as _ v _ _
where theH®* is a Hadamard rotation on each qubit, and

(1-p?U+p(L-p)(D®HU+p(1l-p)(l ®D)U+p’De D Oswar, , is the operation that interchangéd with A2 and
(14) B1 with B2. As p((1 ® D)U) is related tgp((D ® I)U) by local
) ) . rotations followed by interchanging the labels-2, it is
Where_D represents the single-qubit depolarizing quantumygq separable across tlia1B1)-(A2B2) split, and hence
operation, both central terms in Eq14) correspond to separable opera-
tions.
D:p— IE (15) It now remains for us to determine valuesmfor which
the outer termg17) represent an entanglement-breaking op-
and U represents the ideal unitary quantum operatioe eration. TheCcNOT operation, as with any unitary on two
often represent a unitary and the corresponding quantum ogubits, is represented by a Jamiolkowski state that is maxi-
eration by the same letter—the meaning should be clear frormally entangled across thi@1B1)-(A2B2) splitting. The de-
the context In particular we will takeU to be thecNoT  polarizing operation on both qubiB® D, on the other hand,
operation. In order to derive an upper bound on the minimunis represented by a maximally mixed state. Hence if we are
value of p required to make this noisy operation bientan-only considering thé A1B1)-(A2B2) splitting, the state rep-
gling, we will first show that thgunnormalizedl quantum  resenting the operation of E(L7) is essentially a maximally

operation corresponding to the central terms of @d), entangled state of two four-level systems, mixed with a
maximally mixed state. The conditions for such a state to
P(L-plD®HU+ (I ® D)U], (16 correspond to an entanglement-breaking operation are that it

is in fact a separable operati¢not just S for any value of ~Must be separable across t#1B1)-(A2B2) splitting (note

p. Hence if the(unnormalizedl operation corresponding to that this does not mean that the operation itself is separable,
the outer terms only that it is entanglement breakingrhe conditions under

which this occurs are well known, and correspond to

(1-pU+pD®D (17)
, , o (1-p?+p%l6 1
is entanglement breaking, then the whole operatitd) is W < 2 (19
bientangling. First we must show that the central teftr PFp

correspond to a separable operation. Consider the operatigjiving that(17) is entanglement breaking whenever

(D® 1)U, whereU is thecNOT gate. After a little algebraic

manipulation of the Jamiolkowski state corresponding to the p=2/3=67%. (20
CNOT gate, it can be shown that the Jamiolkowski state ofrhis means that the noisynoT gate is definitely bientan-

D&V is gling whenever the depolarizing noise rate is greater than
~ i i i 0,
14100 ® lgy ® Xpp ® st) 2/3~67%. This is an improvement over the 74% bound

derived in[4] for exactly the same noise model, and hence

2 shows that consideration of BE-machines may lead to tighter
| +Zp1 © gy ® Zpo ® Zpo bounds than consideration of separable machines alone. Of

> course the calculation here is not a full optimization over all

bientangling gates—we have only calculated the minimal
Writing this out in the computational basis whe@ repre-  required to make the inner terms separable and the outer
sents thet+1 eigenstate of th& operator andl) represents terms entanglement breaking. This hence only provides an
the —1 eigenstate of theZ operator, we find thap((D  UPPer bound to the minimagb required to make thenoTt

®1)U) may be written as an equal mixture of the following 9at€ bientangling, and hence there is a possibility that this
four (unnormalized pure states: calculation may be improved. However, as such full optimi-

zation is likely to be difficult, we leave it to another occa-

p(D® I)U)=<

|0a1081) ® (|02082) + |1a21g2)), sion.
It is also worth noting that the classical tolerance bound of
|0a11g1) ® (|0a2082) + [1a2162)), 2/3 derived here applies to any two-qubit unitady for

which the inner termgl ® D)W and (D ® |)W are separable.
This is because Eq19) guarantees that the outer terfis)
will be entanglement breaking for any two-qubit unitary, not
just thecNOT gate.

|151081) © (|0a2152) +|142082)),

11a1181) © (|0a21g0) +|142082)).

As each of these pure states is separable across the

(A1B1)-(A2B2) split, it is clear thatD® 1)U is a separable V. BOUNDS FROM THE GOTTESMAN-KNILL

g . . . THEOREM
operation. Similarly, one can show that the Jamiolkowski ©
state representing the operatiohg D)U is related to the In order to apply the Gottesman-Knill theord®] to cal-
state representingd ® 1)U in the following way: culate bounds on the classical tolerance of quantum gates,

042328-6



CLASSICAL SIMULABILITY, ENTANGLEMENT ... PHYSICAL REVIEW A 71, 042328(2005

1Z+) consider which single-qubit state supplies may allow the
Clifford operations to become universal. We will first argue
that the octahedro® can only be mapped to within itself by
Clifford operations, and use this fact to simplify the optimi-
zations that we wish to perform.

ObservationThe octahedro® is closed under the action
of Clifford operations.

Proof. Let us consider a systemthat is prepared in one
of {|xx)(x£|,|y£Xy+|,|z£ )Xzt |}, where|at) refer to the up
and down eigenstates of the corresponding Pauli opefator
These states correspond to the vertices of the octahealron
Suppose also that there ane-1 ancillae prepared in the
s IX+) computational basis, as can be prepared by Clifford opera-

tions. We need to calculate what final states of the system are
possible given Clifford-group unitary evolution of the system
+ancilla and Clifford-group measurements. As the entire in-
put state is a stabilizer staf®,12], the final state of system
+ancilla will also be a stabilizer state that is uniquely
specified by its stabilizer generators

FIG. 2. The accesible states via Clifford unitaries define an oc-
tahedron in the Bloch sphere. Note that the vertices of the octahe- 191,92, Gnt

dron correspond to the Pauli eigenstates. where eacly; is a product of Pauli operators. Hence from the

o ) . standard theory of stabilizers, the final state of system
we need to compute the minimal amounts of noise required. gncilla will be given by

to take all the gates in a particular machine into the Clifford

class. Unfortunately this restricts severely the possible situa- 1
tions in which this approach may be applied. In previous on
examples we have calculated the classical tolerance of cer-

tain two-qubit gates with only very loose constraints on theThis equation may be expanded, and each element of the
other gates available to the machine. In this section we wilgroup that is generated by the stabilizer will contribute ex-
calculate the classical tolerance of single-qubit gates, assunactly one term in this expansidthis follows from the inde-

ing that the other gates in the machine are Clifford operapendence of the stabilizer generatgtg]). As any nontrivial
tions, where we define Clifford operations as follows. Pauli operator is traceless, tracing out thel ancilla qubits

Definition. Clifford operations are those operations thatfrom each term will only lead to a contribution to the final
can be performed by probabilistic application of Clifford- reduced state of the system if the term is of the form
group unitarieg10], (ancillg) state preparation in the com- (1/2"A, whereAg=Agygienf® | ® | ® 1 ®- -+, in which case the
putational basis, and measurement in the computational baerm will contributeA/2 to the system density matrix. Our
sis. goal is hence to find every group element of the fokgin

We will ask how much noise is required to turn non- the stabilizer group. As the identityis an element in each
Clifford single-qubit gates into a Clifford operation. The re- stabilizer group, we will at least have a contributionl 62
sulting bounds on the classical tolerance can be relativelyjwhich is of course a requirement in the Bloch expansion of
low. For general single-qubit operations we will show thatany single-qubit staje However, we need to find all other
the classical tolerance to generic noise is no greater thagrms of the formA,.

75%, although on a case-by-case basis this can be made This task can be constrained as follows. First, in each
much stronger. For example for the/8 gate, we find that stabilizer group each element is its own inverse. This means
(\5—1)/2\5~14.64%) noise is the minimal amount required that any nontrivial terms of the required form must actually
to turn the gate into a Clifford operation. be one of the six possibilitiesX, Y, or +Z.. Moreover, at

In order to perform these calculations, at first it seemgnost only one of these six possibilities is present in each
necessary to understand which single-qubit operations can séabilizer group, as if two or more are present, then repeated
implemented using Clifford-group unitaries and ancillas pre-multiplication we would force tto be a member of the
pared in the computational basis. However, we will not charstabilizer grouple.g., (XsYs)?=-1], and this is not possible.
acterize this set exactly here, as to obtain optimal bounds foFhis means that input system states taken from the vertices
many interesting cases it turns out that it is sufficient toof the octahedron will be taken to either the maximally
consider the effect that Clifford operations have upon a parmixed statel /2, or one of the eigenstates of theY, X op-
ticular subset of single-qubit states. erators[corresponding to(1/2+X/2),(1/2+Y/2),... etc).

We will consider the set of states that is given by theThis means that the vertices will be taken either to the maxi-
convex hull of the Pauli operator eigenstates. This set is amally mixed state, or to another vertex. Then by convexity
octahedrorO that is shown in Fig. 2. Our choice of this set the octahedro® can only be mappednto or withinitself by
is inspired by the recent work of Bravyi and Kitags], who  Clifford operations. O

.

> | Y+)

_H (I1+g).

1.n
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The utility of pictures such as Fig. 3 is that they may be
[Y4XY4| used to show that bounds such(28) are in fact also upper
bounds, and are hence tight. The argument for this is strongly
related to the construction presenfédifor the programming

of unitary operations in quantum states. Every state on the
circumference of the Bloch sphere in tley plane corre-
sponds to a pure state of the form

e |¢<a>>==71§[|o>+exme>|1>]. (24)

These states are clearly isomorphic to the Jamiolkowski
states representing eadd(6#), simply by changing|O)
C — |00y and|1)— |11):

|J<e>>==\,i5[|00>+ expfi 6)|11)]. (25)

FIG. 3. Cross section of the Bloch sphere in xag plane. Point b . . in to .
A represents the state(w/4)), and the ratidAB|/|AC| represents Hence by using convexity every state in g Cross section

the exact minimal possible noise level required to taketh@ gate ~ ©f the Bloch sphere represents a valid quantum operation.
into the set of Clifford operations. From this isomorphism we see hence that each of the verti-

ces represents a Clifford unitaryc+) represents the identity

. . gateoy, |x—) represents the Pauli rotation,|y+) represents
This observation may be used to giesver bounds on the the so-callecphase gatd], denoted by the lettes,

amount of noise required to take any particular unitary op-
eration into a Clifford operation. Then by explicit construc- 10
tion we will be able to show that whenever the unitary is 3:( )
diagonal in the computational basis, these lower bounds may

be achieved, and are hence tight. First let us see why the o . )
above arguments allow us to construct lower bounds on thand |y—) represents its invers& . This mapping hence

minimal noise level required. Consider a unitary gate of theshows that bounds such €3) can indeed be attained, as the
form x-y plane of the Bloch sphere maps directly into a problem

concerning quantum operations and a subset of the Clifford
U(6):=]0)(0] + expli 6)|1)(1. (21)  operations. Hence for gates of the fotd{#) we have the
following statement.
Lemma 1The minimal noise required to tutd(6) into a
1 ] Clifford operation is equivalent to the minimal noise required
|¢(9)>‘=T§[|0> +expif)|1)]. (22) {0 take the statéy(6)) into the octahedro® in Fig. 3.
v As shown above, in the case of thé8 gate this lemma
We may visualize this by looking at the cross section of thereturns a minimal noise level of approximately 14.64%. The
Bloch sphere given by they plane. This is shown in Fig. 3, same procedure also yields sharp bounds for any unitary gate
with the pointA representindyA(7/4)) corresponding to the that may be diagonalized by Clifford-group unitaries, as well
action of thew/8 gate. One can see intuitively from the as for any quantum operation that is a convex mixture of
figure, and this can easily be shown rigorously, that the minisuch unitaries.
mal noise level required to take the stagéw/4)) into the We may also apply the above arguments to some cases
octahedron is given by the rati&B|/|AC| from the figure. In where the noise is constrained to be of a specific form. Sup-
the case of ther/8 gate, the ratidAB|/|AC| corresponds to  pose for example that we wish to know how much dephasing
a noise level of noise is required to take the/8 gate into the set of Clifford
_ operations. The dephasing operation tajkes to the maxi-
N2-1 mally mixed state, at the center of the Bloch sphere in Fig. 3.
P= 2.2 =0.1464. (23 Oon the other hand, when Fig. 3 is viewed as representing
Jamiolkowski states of quantum operations, the center of the
If a noise level less than this amount could be added to theircle in Fig. 3 also represents the dephasing operation.
gateU(6) to turn it into a Clifford operation, then this would Hence the above arguments also show the following lemma.
mean that thegx+) state would be mapped to outside the Lemma 2.The minimal dephasing noise required to take
octahedrorO by the noisy operation. As this is not possible, any gateU(6) into a Clifford operation is identical to the
we can assert thg23) is alower bound on the amount of minimal amount of the maximally mixed state required to
noise required to take the operatiti{#) into the Clifford  take the corresponding stdi(6)) into the octahedroi® in
operations. Fig. 3.

0 i (26

This gate acts upon tha+) state to give

042328-8



CLASSICAL SIMULABILITY, ENTANGLEMENT ... PHYSICAL REVIEW A 71, 042328(2005

In the case of ther/8 gate this shows that approximately noiseless, one can recover the power to do universal quan-
30% dephasing noise is required to take #I8 gate into the tum computation. Indeed, we have been able to construct
Clifford operations, or more precisely twice the value in Eq.examples where mixing a certain type of noise to the ghte

(23): from a universal sefClifford unitaries, U} leads to classi-
— cally tractable evolution, but mixing the same nojsH]
V2 - 1: 0.2928 (27) with the Clifford gates as well ab restores the ability to
\"E ' ' perform universal quantum computation. Although we do not

. . include the details here, the examples that we have are all
Although the bounds on the classical noise threshold Oquite extreme, and work because noise that turns the non-

tained in this way are quite low compared to bounds objitord gate U into a Clifford operation can also take the
tained in Refs[3-5], the above procedure has the disadvan-iittorg unitariesout of the Clifford group[22]. Neverthe-
tage that it applies only to very specific gate sets, whereagsg in these examples the methods that restore universality

previous works have applied to much wider classes of mazre very specific, and cannot be used to tackle general noise
chine. At the expense of increasing the bound, we can, howss ihe same level.

ever, make the approach more general. For instance, we can

show that the universal gate set consisting of Clifford opera-

tions augmented bginy trace-preserving single-qubit opera- VI. CONCLUSIONS

. . i 0

tion has a classical noise tolerance of no greater than 75% on We have presented a class of operations—the bientangling

the additiona_l single-qu_bit operat_ion. The arg“”?e”t proce?d(?perations—that may be efficiently simulated classically, as
as follows. Given any smgle-qublt trace preserving operatloqhey are only capable of generating two-party entanglement.
fﬁigsrgagfalg?f?;éumrc')tu'ntoo agr:t?:r:?'%n t?ﬁé 'Sfozﬁo(i;’irrzvexln some situations this class of operations may give tighter
method. Instead of 9 of Fr)minp n an iny t state. W 9 pounds than currently known on the classical noise tolerance

ethod. Instead of perfo g on an input state, we of quantum gates. One example is the case of depolarizing

perform noise on theeNoT gate, for which we show that 67% noise is
1 3 1 T sufficient to make the subsequent evolution efficiently trac-
Zc‘?(p)+z'2 éo'i(g(a'i pa;))oi . (28)  table classically, compared to the best previous bound of
=Xy 74%. Another extreme case is with measurement-based com-
In the Jamiolkowski representation this quantum operatiofPutation, where we observe that two-qubit nondegenerate
can be represented as measurements cannot enable exponential speedup over clas-

sical computation. It may be difficult to extend the class of
bientangling operations and still generate a class that is effi-
ciently tractable. This is because any natural generalizations
to higher numbers of input particles enable perfect quantum
+

*+[(0,® 0)Re(0, ® 0) '} computation, and any extensions that still involve two-

This corresponds to a “Bell twirling,” and the resultant quan-particle gates are hampered by the subtle interplay between
tum operation is represented by a Bell diagonal state, whicReparability-preserving and separable gates.

is a mixture of the four Pauli transformations. Hence by add- In the second half of this work we turn to bounds on
ing 75% noise,any trace-preserving single-qubit operation classical tolerance that may be derived from the Gottesman-
may be taken to a probabilistic mixture of Clifford group Knill theorem. The subsequent boun@sg., 30% depolariz-
operations, and so any machine consistingapfoT+single-  ing noise on ther/8 gate, 14.64% for general single-gate

qubit gates has a classical noise tolerance of at most 75% orfl0ise can be relatively low for this kind of approach.
the single-qubit gates. In general it is quite likely that the bounds derived here

may be improved. One interesting possibility is that a hybrid
of the approaches used b$,4] may be used to understand
when slightly nonseparable gates may be efficiently simu-
The bounds derived in the previous sections give uppelated classically, albeit with a noise model more in the spirit
bounds to the fault tolerance of specific gates. For examplegf [3,5], where noise is applied to every qubit at every time
in the case of the gate sgtlifford unitaries,=/8 gate, they  step.
show that no fault-tolerant encoding can be found that pro- In terms of the Clifford-gate-based work, it seems quite
tects against 14.64%eneral single-gate noise. However, possible that if the recent conjecture of Bravyi and Kitg@&v
this does not mean that specific forms of noise cannot bés true, then gates of the forbh(6) =|0)(0| +exp(i#)|1)(1| can
tolerated to greater than 14.64%, but one must construct prandeed be used for quantum computation up to the noise
tection methods that specifically target that form of noise. levels derived heréand implied by their work Their con-
Furthermore, in the case of the approach based upon thjecture implies that a supply of single-qubit quantum states
Clifford group, our results show that if the Clifford gates in a from outside the octahedra® may be “purified” to certain
gate set are noiseless, then the noise level corresponding ‘tmagic” pure states by the use of Clifford operations only.
Lemma 1 may not be tolerated on an additional non-CliffordAs Clifford operations may be made fault tolerant to some
gateU(#). However, it is possible that by mixing noise in degree via encoding schemes based on Clifford operations
with the Clifford gates as well, and not imposing that they beonly (see, e.g.[12] and references thergint may be pos-

1
Z{Re +[(0x ® 0 )Re(0y ® UX)T] + [(O'y ® O'y)RS(O'y ® O'y)T]

V. INTERPRETATION OF THE BOUNDS
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sible that the noise levels that we have derived may indeed 1. No constraints
be tolerated as long as the remaining Clifford operations act |, this case we need only restrict thg's to be a prob-

within  their own (potentially much tighter fault-tolerant  gpjjity distribution, and do not need to further constrain
threshold. The Bravyi-Kitaev conjecture has recently beefhem. TakeASP(B) to be the maximal possiblk, over all

(partially) proven along “the Hadamard direction$7],  pientangling states invariant under the symmetry gre8)p
which include the direction relevant for the/8 gate. There-  Then we clearly have that

fore it seems to be reasonable to suppose that 14.64% really op
is the exact probabilistic noise level that may be tolerated on (1=p) +pro(N) < AG(B) (A1)
the /8 gate, as long as the remaining Clifford operationsang hence ap, Ao=0 we have that
are sufficiently error-free. op op

These results show the potential of analyzing classical (1-p) <AF(B) D p=1-Ag’(B). (A2)
tractability with the aim of bounding from above fault- Thjs lower bound can be attained as we are free to choose the
tolerance thresholds. Moreover, investigating the quantumfyrm of the noise as we wish. Hengg,,=1-\3", and our
classical computational transition f@roisy) quantum evolu- {535k is now to calculatad®. This is now an easier problem,
tion is important in its own right3,6], particularly as there is 55 the fact that the set of bientangling states is the convex

the possibility of “intermediate” quantum computation. It hy|| of separable, separablswap, and EB states means that
may well be the case that noisy quantum devices cannot be

simulated efficiently classically, yet cannot be used for fault- AP(B) = maxAP(9) AP(SINGF(ER)}  (A3)
tolerant quantum computation. This would imply the eXiS'Where)\gp‘(S) \P(SS, and \JP(EB) are the maximal pos-

tence of an intermediate physical device—such as a ”OiSXible \g's Over separable states, separaideap states, and

quantum - system controlled _by a universal C!ass"?a'EB states, respectively. This means that to work out the mini-
computer—which is clearly universal for computation, is

b h lassical . imulate itself efficientl c{nal generic noise required to turn tb&OT gate into a bien-
etter than classical as it can simulate itself efficiently, an angling gate, we simply need to separately calculate the

yet is not as powerful as a full quantum computer. Suchyinimal noise required to take thvoT gate into the differ-
mtermedlgte devices may be easier tq construct, and hen(‘e%t classes of separable, separaisieap, and EB states, and
may provide a more achievable experimental target. take the lowest value. As each of these classes separately
corresponds to separability across a particular partition of the
ACKNOWLEDGMENTS parties in the Jamiolkowski state, we can apply the tech-
nigues developed if4]. Although we omit the details, it

We thank Koenraad Audenaert and Terry Rudolph for in-turns out that the Jamiolkowksi state representingakeT
teresting discussions, and Ben Reichardt for sending us thgate has only one ebit of maximal entanglement across the
results of 7] prior to electronic publication. We acknowledge (A1B1)-(A2B2) splitting or the(A1B2)-(A2B1) splitting, but
financial support by the U.S. Army through Grant No. a5 with any two-qubit unitary has a full two ebits of maximal
DAAD 19-02-0161, The Nuffield Foundation, the Royal So- entanglement across tii81A2)-(B1B2) splitting. Hence the
ciety Leverhulme Trust, the Royal Commission for the EX-cnot gate is less robust to noise across the separable—
hibition of 1851, the EPSRC QIP-IRC, and the EU Themat'cseparableswap splittings. Furthermore, the resultd 4123
Network QUPRODIS. show that the minimal noise that breaks the entanglement of
the CNOT gate across the relevant splitting can always be
chosen to be separable across that splitting. The result of all
these observations is that the bounds derivef4infor ge-

In this appendix we calculate the minimal error rate re-neric noise are also optimal when considering BE-machines
quired to take thecNOT gate into a bientangling operation, as the classically tractable set, leading to an upper bound of
under constraints upon the form of noise other than the de50% on the classical tolerance of@oT gate. It is also
polarizing model considered in Sec. Illl. These calculationsnteresting to note that if we do not ask for the noise to take
have been placed in this appendix, as the bounds derived as into the bientangling set, but instead ask to be taken into
best match the bounds derived #i. The intuitive reason for the entanglement-breaking channels, then the above ap-
this is that two-qubit unitary operations are maximally en-proach yields a weaker upper bound of 75% &dr unitary
tangled across the EB splittifgee Fig. 1, whereas they are gates, not just theNoT [24].
not always maximally entangled across the other splittings. ) ) ) _
Therefore one expects that the addition of EB operations to?- Separable noise, separableswap noise, and noise that is a
separable and separablswap operations might not lead to mixture of separable and separable-swap
improved bounds. However, this intuition is not entirely  The previous section points out that by the arguments of
valid, as we are also taking the convex hull after including[4,23], the minimal generic noise that turns toeoT gate
the EB operations, and indeed for the depolarizing noise corinto a bientangling gate can always be taken to be separable,
sidered earlier we do obtain a large improvement. Neverthesr separable swap. Hence the bounds derived 4] are also
less, for the noise forms considered in this appendix the ineptimal with respect to these forms of noise, and where the
tuition does appear to be correct. classically tractable set is the set of BE-machines.

APPENDIX
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