
Classical simulability, entanglement breaking, and quantum computation thresholds

S. Virmani,1 Susana F. Huelga,1 and Martin B. Plenio2
1School of Physics, Astronomy and Mathematics, Quantum Physics Group, STRC, University of Hertfordshire, Hatfield,

Hertfordshire AL10 9AB, United Kingdom
2QOLS, Blackett Laboratory, Imperial College London, London SW7 2BW, United Kingdom

sReceived 7 September 2004; published 19 April 2005d

We investigate the amount of noise required to turn a universal quantum gate set into one that can be
efficiently modeled classically. This question is useful for providing upper bounds on fault-tolerant thresholds,
and for understanding the nature of the quantum-classical computational transition. We refine some previously
known upper bounds using two different strategies. The first one involves the introduction of bientangling
operations, a class of classically simulable machines that can generate at most bipartite entanglement. Using
this class we show that it is possible to sharpen previously obtained upper bounds in certain cases. As an
example, we show that under depolarizing noise on the controlled-NOT gate, the previously known upper bound
of 74% can be sharpened to around 67%. Another interesting consequence is that measurement-based schemes
cannot work using only two-qubit nondegenerate projections. In the second strand of the work we utilize the
Gottesman-Knill theorem on the classically efficient simulation of Clifford group operations. The bounds
attained using this approach for thep /8 gate can be as low as 15% for general single-gate noise, and 30% for
dephasing noise.
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I. INTRODUCTION

The recent development of quantum information has led
to a great deal of interest in the classical simulation of quan-
tum systems. An understanding of this issue is important in
order to discern which resources are essential for an expo-
nential quantum speedup. If we remove certain resources
from a particular model for universal quantum computation,
and find that the resulting machine can be efficiently simu-
lated classically, then we can infer that those resources are
essential to any exponential speedup that the original device
may offer. For instance, this approach has been used to show
that fermionic linear optics does not allow for an exponential
speedupf1g, and also that quantum entanglement is an essen-
tial ingredient for quantum computationf2–4g.

In addition to questions of resources, an understanding of
classically tractable quantum evolution is also useful for
bounding the fault-tolerance thresholds of universal quantum
machines. This connection becomes apparent from another
important question concerning any universal quantum ma-
chine: what is the minimal amount of noise required before
the device can be efficiently modeled classically? We loosely
refer to this minimal noise level as theclassical toleranceof
a particular physical machine. We will also use the termtrac-
table to describe any form of quantum evolution that may be
modeled with polynomial classical resources. If it is true that
quantum computation is not tractable classically, then upper
bounds to the classical tolerance of the gates in a universal
quantum gate set are also upper bounds to the fault tolerance
of those gates. Aharonov and Ben-Or were among the first to
obtain upper bounds on the classical tolerance thresholds of
quantum gatesf3g. To obtain their bounds they assumed that
noise acts on every qubit at every stage of the computation,
and showed that for noise above a certain amount the evolu-
tion becomes classically tractablessee alsof4,5g for related
workd.

In addition to bounding fault tolerance, there is perhaps a
more fundamental reason for investigating where the
classical-quantum computational transition liesf3,6,7g. It
may well be the case that noisy quantum devices cannot be
simulated efficiently classically, yet cannot be used for fault-
tolerant quantum computation. This would imply the exis-
tence of an “intermediate” physical device—such as a noisy
quantum system controlled by a universal classical
computer—which is clearly universal for computation, is
better than classical as it can simulate itself efficiently, and
yet is not as powerful as a full quantum computer. Hence
classical tolerance thresholds also provide importantsand
perhaps easierd milestones for experimental efforts.

In this work, however, we will be more interested in the
recent approach taken by Harrow and Nielsenf4g where they
presented an algorithm for the efficient classical simulation
of a quantum machine operating withseparability-preserving
sSPd quantum gate sets. The term “separability preserving”
refers to any set of operations that cannot entangle product
inputs. Harrow and Nielsen then derived bounds on the mini-
mal noise levels required to turn certain universal quantum
gate sets into SP machines, thereby obtaining bounds on the
classical tolerance of those gates. Due to the lack of a simple
characterization of the SP machines, in most cases their cal-
culations proceeded not by considering the full set of SP
machines, but instead the set ofseparable machines, which
are those devices that only operate with separable quantum
gatesf8g. Their approach has the advantage that one can
even consider weak-noise models where the noise only acts
whenever multiqubit gates are applied. Depending upon the
noise model, however, the upper bounds to classical toler-
ance derived in this way were of the order of 50% or more
for interesting universal gate sets such as controlled-NOT

sCNOTd1single-qubit operations. In terms of depolarizing
noise only, Razborovf5g has obtained the strongest bounds
that we are aware of for a general machine using gates of
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sfan-ind ø2 sthe fan-in of a gate is the number of particles
that it acts upon nontriviallyd. He shows that for schemes
based upon two qubit gates, 50% noise is an upper bound to
fault tolerance. However, his approach cannot be directly
compared to that off4g, as it does not consider efficient
classical simulation, and assumes a different noise model
swhere each qubit is decohered at every time stepd.

In this article we will consider efficient classical simula-
tion, and we will extend the approach taken inf4g along two
different tracks. In the first track we define a class of quan-
tum machines that can generate entanglement between prod-
uct input states, but without additional resources can only
generate at most two-particle entanglement. We refer to any
machines that operate with our class of operations asbien-
tangling sBEd machines. An extension of the algorithm pre-
sented inf4g shows that such BE machines can be efficiently
simulated classically. We find that many, but not all, of the
classical tolerance bounds derived inf4g are actually also
optimal with respect to BE machines. One example of an
improvement is the case of theCNOT gate under individual
depolarizing noise on the qubits, where we show that a 67%
noise rate leads to classical tractability, which is stronger
than the 74% bound derived inf4g. Another interesting ex-
ample comes from two-qubit measurement-based quantum
computation, where we find that exponential speedup re-
quires degeneracy in at least one of the projections—a result
that cannot be directly derived from the approach inf4g. This
example suggests that our approach could be more fruitful
for noise models in measurement-based quantum computa-
tion. As an aside we also observe that there are separability-
preserving gates that are not probabilistic mixtures of sepa-
rable and separable1swap operations, thereby deciding a
conjecture made inf4g.

In the second track we make use of the Gottesman-Knill
theoremf9g. All of the results discussed above are derived by
considering machines that create a limited amount of en-
tanglement, or are so noisy that they tend to some form of
equilibrium. However, the important Gottesman-Knill theo-
rem states that machines composed of Clifford group unitar-
ies f10g and computational basis-state preparation and mea-
surement can be efficiently modeled classically, despite the
fact that such resources are capable of generating many-
particle entanglementsalthough not all forms of itf11gd. It is
hence natural to ask whether suchClifford machinescan lead
to better bounds on classical tolerance than bientangling or
SP machines. We calculate exactly the minimal noise re-
quired to take a variety of single-qubit gates into the set of
Clifford operations—those operations that may be imple-
mented by Clifford group unitaries, computational ancillae,
and measurements in the computational basis. For thep /8
gate in particularf12g, for generic single-operation noise, the
bound obtained is approximately 14.64%, thereby showing
that thep /8 gate in the standard universal sethp /8, Clifford
unitariesj cannot be made fault tolerant to more than this
level of general individual gate noise. For dephasing noise
on thep /8 gate the bound is twice as large, approximately
29.28%.

This paper is structured as follows. In the next section we
discuss the class of bientangling machines and the classical
algorithm that models them efficiently. In Sec. III we discuss

the way that we will choose to represent quantum operations
svia the Jamiolkowski isomorphismf13gd, and derive our
classical tolerance bound for the depolarized model of the
CNOT gate that is considered inf4g. We also have performed
such calculations for some other noise models; however, as
they only match the bounds derived inf4g, we defer those
calculations to the Appendix. In Sec. IV we derive bounds
for Clifford-operation-based gate sets by using the
Gottesman-Knill theorem. In Sec. V we discuss some subtle-
ties in the interpretation of results from Sec. IV. Section VI is
the conclusion.

II. THE BIENTANGLING MACHINES

We define the termbientangling machineaccording to the
following.

Definition.A Bientangling machinesBE machined is one
that consists of a supply of individual qubits initialized in
some fixed state, augmented by the following quantum op-
erations:s1d an arbitrary set of single-qubit quantum opera-
tions sthese may be unitary, or measuring, or anything elsed;
s2d an arbitrary set of two-qubit operations that can be ex-
pressed as convex combinations ofsad separable operations
f8g that do not entangle the two qubits,sbd operations that
swap the two qubits and then apply a separable operation,
and scd entanglement-breakingsEBd f14g operations that
break any entanglement between the two qubits and the rest
of the qubits.

The fact that any machine consisting ofs1d, s2ad ands2bd
is efficiently classically tractable was already shown inf4g,
as such operations liesstrictlyd within the set of separability-
preserving operations. The only point added here is the in-
clusion of operations froms2cd, and the resulting convex hull
with the separable and separable with swap operations. The
heuristic explanation for the algorithm is that a machine con-
sisting of operationss1d ands2d above only has the power to
generate two-particle entanglement. This allows us, with at
most polynomial classical effort, to reduce the problem of
tracking the evolution of a BE machine to the problem of
tracking the evolution of a SP machine. One can then simply
apply the results proven inf4g, where it is shown that SP
machines are classically tractable.

Let us now see why the evolution of BE machines may be
reduced to the evolution of SP machines. As we are consid-
ering operations withsfan-ind ø2, we may without loss of
generality assume that all operations in our BE machine are
in fact two-qubit operationssby extending any single-qubit
operations to trivially act on another arbitrary qubitd. At the
beginning of the algorithm, we may compute how each of
the two-qubit gates available to us decomposes into a proba-
bilistic mixture of the various operations listed in pointss1d
and s2d above. Each component of this description will in
fact only be calculated to some finite precision. However, the
arguments given inf4g show that the accuracy required to
achieve a particular overall accuracy in the algorithm will
lead to at most a polynomial increase in effort. Consequently
we will proceed as if this decomposition has in fact been
computed exactly.

Without loss of generality we assume that there are an
even number of qubits in the quantum system. To initialize
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our classical description, each qubit is paired up with apart-
ner qubit. A list of the partners is stored, requiring only mod-
est resources. Note that it is also possible to retrieve infor-
mation from this list at modest cost. We will treat each such
qubit partnership as a single four-level particle. Having ini-
tialized our description, we now must track the evolution of
the system. By changing the way that the qubits are part-
nered as we advance through the algorithm, we will ensure
that at each stage we end up with an easy to compute sepa-
rable state. Consider the application of the first bientangling
gate, and suppose that it acts upon qubits 2 and 3. If qubits 2
and 3 are already partners, then the evolution of the system
essentially corresponds to single-particle evolution, as we are
regarding each partnership as a single four-level system. So
suppose instead that qubits 2 and 3 are not partnered, and
that qubit 2 is partnered with qubit 1, and qubit 3 is partnered
with qubit 4. The bientangling gate decomposes into a proba-
bilistic application ofsad a separable gate,sbd a separable
1swap gate, andsgd an EB gate. We can sample this prob-
ability distribution efficiently, and use this to decide which
componentsa–gd we will follow. The casea corresponds to
a separable operation on partnershipss1,2d and s3,4d. The
caseb results in a separable state if the partnership list is
changed tos1,3d and s2,4d. Finally g results in a separable
state if the partnerships are changed tos1,4d ands2,3d. Hence
by iterating these techniques for every gate that we apply, we
ensure that we end up with a separable state over effective
four-level systems. The algorithm off4g can be applied, and
hence we can see that there is a classically efficient algorithm
for bientangling machines withsfan-ind ø2.

One might hope that the algorithm may be extended, ei-
ther to gates with higher fan-in, or by incorporating all SP
operations instead of only the separable and separable1swap
operations. However, this cannot be done straightforwardly.
We defer the discussion of why we cannot include all SP
operations to the next section. To see why we cannot extend
the fan-in of the gates either, it is interesting to consider the
connection between the above algorithm and measurement-
based quantum computation schemesf15,16,25g. This situa-
tion also provides a simple first example of where consider-
ation of bientangling machines may yield more information
than consideration of SP machines alone. In measurement-
based computation schemes it is known that two-qubit mea-
surements allow universal quantum computationf15g. How-
ever, our algorithm shows that we must allow these
measurements to be degenerate, because if they are nonde-
generate, then the resulting operations will be EB, and the
device cannot offer an exponential speedup. This leads to a
useful rule: any two-qubit measurement-based scheme for
quantum computation must involve nondegenerate measure-
ments.

Although this observation is quite simple, it applies to
gates that can generatesomeentanglementse.g., Bell mea-
surementsd, and so it cannot be derived directly from the
approach inf4g. However, this limit on the capacity to gen-
erate multiparticle entanglement is removed when we allow
EB channels with three or more inputs, and this is one reason
why universal quantum computation is possible using some
forms of nondegenerate measurements on three or more par-
ticles ssee, e.g., the paper by Gottesman and Chuang on tele-

portation based computation; they use Greenberger-Horne-
Zeilinger- sGHZ-dlike states and Bell measurementsf16gd.
Therefore it is difficult to extend the bientangling class to
gates acting on three or more parties.

III. REPRESENTATION OF QUANTUM
OPERATIONS BY STATES

In order to utilize the above algorithm to bound the clas-
sical tolerance of quantum gates, it is important to be able to
decide when a given set of quantum operations falls into the
class of BE machines. In general this problem is extremely
difficult. However, some important operations such as the
CNOT gate possess a great deal of symmetry that makes the
analysis feasible analytically. In order to perform this analy-
sis, the Jamiolkowski isomorphismf13g provides a conve-
nient way of representing quantum operations. To any trace-
preserving quantum operationE on a single particle ofd
levels, the Jamiolkowski isomorphism associates a two-party
quantum state that we will refer to as theJamiolkowski state
rsEd:

rsEdªIA ^ EBsu + lk+ ud s1d

where u+lªs1/Îddoi=1
d uii l is the canonical maximally en-

tangled state for twod-level systemsA andB. It is clear from
the above definition thatrsEd has a reduced density matrix
frsEdgA that is maximally mixed. It turns out that any density
matrix with this propertysi.e., one withrA maximally mixedd
can be associated with a quantum operationE. Moreover, a
simple teleportation argument can be used to show that this
association is one to one. Hence the Jamiolkowski isomor-
phism is a one-to-one mapping between the set of trace-
preserving quantum operationsE and two-party quantum
states with maximally mixed reduced density matrix.

This isomorphism can be easily applied to multiparty
quantum operations in the following way. Suppose that we
have a two-particle quantum operationE12 acting upon two
qubits 1 and 2. To represent this operation we must use a
quantum state of four partiesA1, A2, B1, andB2 f17g:

rsE1,2dªIA1 ^ IA2 ^ EB1,B2fsu + lk+ udA1,B1 ^ su + lk+ udA2,B2g.

This representation is particularly convenient because vari-
ous important properties of quantum operationsE may easily
be translated into properties of the corresponding statersEd.
In this work we will consider three such propertiesssee Fig.
1d. sad An operation is separable if and only if the
Jamiolkowski state is separable across thesA1B1d-
sA2B2d split. sbd An operation is equivalent to the swap op-
eration, preceded by and followed by separable operations, if
and only if the Jamiolkowski state is separable across the
sA1B1d-sA2B2d split. scd An operation is entanglement
breaking if and only if the Jamiolkowski state is separable
across thesA1A2d-sB1B2d split.

A set of operations is bientangling if every operation lies
within the convex hull of these three classessad, sbd, andscd.
An operation is hence bientangling if and only if the Jami-
olkowski state that represents it can be written as
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r = po
i

pirA1A2
i

^ rB1B2
i + qo

j

qjrA1B2
j

^ rA2B1
j

+ ro
k

qkrA1B1
k

^ rA2B2
k s2d

wheresp,q,rd is a probability distribution, the setshpij, hqjj,
hrkj are also individual probability distributions, and allr’s
on the right-hand side are valid density matrices.

This is a convenient point to discuss the relationship be-
tween BE machines and SP machines. It is clear from the
above definition that BE machines contain the convex hull of
the separable operations with separable1swap operations.
However, they do not contain all possible separability-
preserving operations. This becomes apparent from consid-
eration of the following Jamiolkowski state:

vª
1

2
uGHZlkGHZuA1,A2,B1 ^ u0lk0uB2 +

1

2
uGHZ8l

3 kGHZ8uA1,A2,B1 ^ u1lk1uB2

where

uGHZlª
1
Î2

su000l + u111ld,

uGHZ8lª
1
Î2

su011l + u100ld. s3d

As v is a valid density matrix with the reduced state of
partiesA1 andA2 maximally mixed, it corresponds to the
Jamiolkowski state of a valid quantum operation. When
viewed as a state of four parties,v also has the property that
a GHZ-type state can be distilled from it by local operations
and classical communicationsLOCCd simply by measuring
the particleB2 in the computational basis. However, as the
Jamiolkowski states of bientangling operations contain only
two-particle entanglement, this means thatv cannot repre-
sent a bientangling operation. However,v manifestly repre-
sents a SP operation, because the output qubitsB1 andB2
are always left in a separable state. Therefore we can also
conclude that the conjecture made inf4g that SP operations
Þ sconvex hull hseparable operations, separable1swapjd is
indeed truef18g. In the above definition of BE machines, we
have included the ability to make separable operations,
separable1swap operations, and EB operations. One might

be tempted to expand this definition to include all SP opera-
tions as well. However, operations such asv have the capac-
ity to probabilistically generate many-particle entanglement
when accompanied by EB channels such as Bell measure-
ments, and so in our definition of BE machines we are forced
to include the smaller classes of separable and separable
1swap operations, and not the larger class of SP operations.

We would now like to use the class of BE machines de-
fined above to obtain bounds on the classical tolerance of
important universal gate sets. Suppose for example that we
have a universal quantum computer consisting of theCNOT

gate and a sufficient set of single-qubit operations. If we add
some noise to theCNOT gate such that it is taken to a bien-
tangling operation, then the whole set is taken to a BE ma-
chine, and can be efficiently classically simulated. Hence to
bound the classical threshold of theCNOT gate in our device,
we would like to calculate the minimal noise required to turn
the CNOT gate into a bientangling operation. In general such
calculations are very difficult.

It is at this point that we must discuss the form of the
noise model that we consider. In the rest of this article we
adopt the standardprobabilistic noise model, where qubits
are affected incoherently. In this model whenever we would
like to perform an ideal quantum operationE, instead due to
noise we are forced to perform an operationE8 that is related
to E as follows:

E8 = s1 − pdE + pN s4d

wherep is a probability, andN is some other quantum op-
eration that represents the error. In this equationp is a mea-
sure of the error rate. Note that this is not the most general
model of error, and not necessarily the most physical model
either. Consider the example where our ideal operation is to
simply preserve the state of a qubit, but in fact it undergoes
a spontaneous emission at a sufficiently slow rate. This form
of error cannot be written in the form of Eq.s4d unless the
error parameter is set top=1 ssee, e.g.,f12g, p. 442d. For
more generic errors one would have to adopt some suitable
metric i ·i on the set of quantum operations and useiE8−Ei
as a measure of error ratessee, e.g.,f19g for some possible
metricsd. Although several authors have considered more
general models of error in relation to fault tolerancef20g, the
only prior work on classical tolerance has been within the
framework of Eq.s4d, and this is the model that we will
follow here. In the case of Markovian, identical, and inde-
pendent noise it should be possible to extend many of the
techniques presented to metric-based noise quantification, al-
though we will not pursue that avenue further. Within the
probabilistic model, one can also make further restrictions,
and constrain the form ofN to interesting forms of noise
such as depolarization or dephasing. We have investigated a
variety of different types ofN, and derived bounds on the
classical tolerance for theCNOT gate in particular. In most of
the examples that we have considered, the bounds that we
have derived are equivalent to those obtained inf4g, and so
calculations for such examples are deferred to the Appendix.
However, in the case of the depolarizing noise model con-
sidered inf4g we are able to make significant improvements,
and so we will present this argument now.

FIG. 1. Entanglement-breakingsEBd, separable sSd, and
separable1swap sSSd operations have a simple connection to
Jamiolkowski-state separability. For EB and separable operations,
the dashed line indicates the corresponding separable split. For
separable1swap operations the dashed ellipse indicates the split-
ting. In all diagrams the wavy lines indicate entanglement between
pairs 1 and 2.
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In order to set up our analysis, let us initially considerN
to be a general quantum operation. This will allow us to
construct symmetry arguments that are also required for the
calculations presented in the Appendix. Given that our error
model is probabilistic, our task is to find the minimal valuep
such that there is a validN taking our ideal gate into the set
of bientangling operations. In general this is likely to be a
difficult task. However, for the case of theCNOT gate a great
deal of symmetry is present that enables the calculation to be
performed exactly. In order to see how this proceeds, it will
be first helpful to consider the case that the two-qubit gate is
a general unitaryU, and examine some of the symmetry
possessed by the Jamiolkowski state that representsU.

For any two-qubit unitaryU we have the trivial identity

fUssi ^ s jdU†gUssi ^ s jd = U s5d

wherehsi u i =0,x,y,zj are the standard Pauli operators. This
identity, together with the fact thatI ^ Au+l=AT ^ I u+l for
any linear operatorA, can be used to show that the Jami-
olkowski state representingU commutes with all operators
of the form

Wij
U
ªssi

TdA1 ^ ss j
TdA2 ^ fUssi ^ s jdU†gB1,B2. s6d

It is not hard to verify that as we vary overi, j the operators
in Eq. s6d form a groupsup to an unimportant phased, and
moreover from the commutation relationships of the Pauli
operators it follows that the group is Abelian. It hence fol-
lows from Schur’s lemma that any operator that commutes
with all operators of the forms6d is diagonal in the eigenba-
sis formed by the one-dimensional irreducible representa-
tions of the groups6d. We can construct these irreducible
representations quite easily. In fact, the groups6d is isomor-
phic to the group consisting of elements

ssi
TdA1 ^ ss j

TdA2 ^ ssidB1 ^ ss jdB2, s7d

as it is related tos6d by the unitary transformationIA1 ^ IA2
^ UB1,B2. Hence we can utilize the stabilizer formalism for
the Pauli group, and write the 16 common eigenstates of the
operators ins6d as

ue,Ulke,UuªS I + s− 1de0W0x
U

2
DS I + s− 1de1W0z

U

2
D

3 S I + s− 1de2Wx0
U

2
DS I + s− 1de3Wz0

U

2
D s8d

where e is a four-bit string given by its components
ea[ h0,1j, a=0, 1, 2, 3. It turns out that each of these eigen-
projectorsuelkeu is a Jamiolkowski state for a valid quantum
operation—the normalization and positivity are automatic,
and the reduced density matrices over particlesA1 andA2
are all maximally mixedsthis is in turn becausesi ^ s j is an
irreducible representationd. The Jamiolkowski state
representing U is in fact given by the projector
ue=0,Ulke=0,Uu corresponding toe=0:

S I + W0x
U

2
DS I + W0z

U

2
DS I + Wx0

U

2
DS I + Wz0

U

2
D . s9d

If we denote the Jamiolkowski state that representsU by
rsUd= ue=0,Ulke=0,Uu, then our task is to find the minimal
probability p such that for some quantum noiseN

E = s1 − pdrsUd + prsNd s10d

is the Jamiolkowski state of a bientangling operation. Now
the properties of theCNOT gate allow us to make further
simplifications. TheCNOT gate is a member of the Clifford
group, meaning that for any two Pauli operatorssi, s j we
have that

CCNOTssi ^ s jdCCNOT , sk ^ sl s11d

where sk, sl are other Pauli operators, and the symbol,
means that the two sides of the equation are equal up to an
unimportant global phase. This means that the groups6d cor-
responding to theCNOT gate is actually a local group, where
each element is a tensor product of Pauli operators acting on
individual qubits of the Jamiolkowski state. We can therefore
averages“twirl” d over the groups6d any valid solutions10d
corresponding to theCNOT gate, and as eachWij

CNOT is local,
the bientangling properties of the equation will not be
changed. This means that without loss of generality, for the
CNOT gate we need only consider “twirled” noise states
r8sNd that are also invariant under the action of the group.
This means that we can set

r8sNd = o
e

lesNduelkeu s12d

wherehlej is a probability distribution of eigenvalues. If we
have not constrained further the form ofN, then the form of
the probability distributionhlesNdj can be left free. How-
ever, if we are restrictingN to be of a specific form such as
depolarization or dephasing, then we will have to restrict the
distribution accordingly. Our task is hence to find the mini-
mal probabilityp such that there exists a probability distri-
bution hlesNdj sconsistent with any further constraints upon
the noised such that the state

s1 − pdrsUd + pSo
e

lesNduelkeuD
; fs1 − pd + pl0sNdgue= 0l

3 ke= 0u + o
eÞ0

lesNduelkeu s13d

is bientangling. Let us denote this optimal value ofp by pmin.
We have performed this optimization for the cases thatN is
sad an unconstrained quantum operation,sbd a separable op-
eration, separable1swap operation, or mixture of the two,
and scd depolarizing noise. We defer the calculations forsad
andsbd to the Appendix, as they do not lead to improvements
over the results inf4g. However, we present the calculation
for scd here, as it leads to an improved bound.

Depolarizing noise.In the depolarizing model off4g, each
qubit undergoing a two-qubit gate is independently depolar-
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ized with equal probabilityp. Hence a noisy two-qubit uni-
tary U in fact acts as

s1 − pd2U + ps1 − pdsD ^ IdU + ps1 − pdsI ^ DdU + p2D ^ D

s14d

where D represents the single-qubit depolarizing quantum
operation,

D:r → I

2
, s15d

and U represents the ideal unitary quantum operationswe
often represent a unitary and the corresponding quantum op-
eration by the same letter—the meaning should be clear from
the contextd. In particular we will takeU to be theCNOT

operation. In order to derive an upper bound on the minimum
value of p required to make this noisy operation bientan-
gling, we will first show that thesunnormalizedd quantum
operation corresponding to the central terms of Eq.s14d,

ps1 − pdfsD ^ IdU + sI ^ DdUg, s16d

is in fact a separable operationsnot just SPd for any value of
p. Hence if thesunnormalizedd operation corresponding to
the outer terms

s1 − pd2U + p2D ^ D s17d

is entanglement breaking, then the whole operations14d is
bientangling. First we must show that the central termss16d
correspond to a separable operation. Consider the operation
sD ^ IdU, whereU is the CNOT gate. After a little algebraic
manipulation of the Jamiolkowski state corresponding to the
CNOT gate, it can be shown that the Jamiolkowski state of
sD ^ IdU is

r„sD ^ IdU… = S I + IA1 ^ IB1 ^ XA2 ^ XB2

2
D

3 S I + ZA1 ^ IB1 ^ ZA2 ^ ZB2

2
D .

Writing this out in the computational basis whereu0l repre-
sents the11 eigenstate of theZ operator andu1l represents
the 21 eigenstate of theZ operator, we find thatr(sD
^ IdU) may be written as an equal mixture of the following
four sunnormalizedd pure states:

u0A10B1l ^ su0A20B2l + u1A21B2ld,

u0A11B1l ^ su0A20B2l + u1A21B2ld,

u1A10B1l ^ su0A21B2l + u1A20B2ld,

u1A11B1l ^ su0A21B2l + u1A20B2ld.

As each of these pure states is separable across the
sA1B1d-sA2B2d split, it is clear thatsD ^ IdU is a separable
operation. Similarly, one can show that the Jamiolkowski
state representing the operationsI ^ DdU is related to the
state representingsD ^ IdU in the following way:

r„sI ^ DdU… = OSWAP1↔2
fH^4r„sD ^ IdU…H^4g s18d

where theH^4 is a Hadamard rotation on each qubit, and
OSWAP1↔2

is the operation that interchangesA1 with A2 and
B1 with B2. Asr(sI ^ DdU) is related tor(sD ^ IdU) by local
rotations followed by interchanging the labels 1↔2, it is
also separable across thesA1B1d-sA2B2d split, and hence
both central terms in Eq.s14d correspond to separable opera-
tions.

It now remains for us to determine values ofp for which
the outer termss17d represent an entanglement-breaking op-
eration. TheCNOT operation, as with any unitary on two
qubits, is represented by a Jamiolkowski state that is maxi-
mally entangled across thesA1B1d-sA2B2d splitting. The de-
polarizing operation on both qubitsD ^ D, on the other hand,
is represented by a maximally mixed state. Hence if we are
only considering thesA1B1d-sA2B2d splitting, the state rep-
resenting the operation of Eq.s17d is essentially a maximally
entangled state of two four-level systems, mixed with a
maximally mixed state. The conditions for such a state to
correspond to an entanglement-breaking operation are that it
must be separable across thesA1B1d-sA2B2d splitting snote
that this does not mean that the operation itself is separable,
only that it is entanglement breakingd. The conditions under
which this occurs are well known, and correspond to

s1 − pd2 + p2/16

s1 − pd2 + p2 ø
1

4
, s19d

giving that s17d is entanglement breaking whenever

p ù 2/3. 67%. s20d

This means that the noisyCNOT gate is definitely bientan-
gling whenever the depolarizing noise rate is greater than
2/3,67%. This is an improvement over the 74% bound
derived inf4g for exactly the same noise model, and hence
shows that consideration of BE-machines may lead to tighter
bounds than consideration of separable machines alone. Of
course the calculation here is not a full optimization over all
bientangling gates—we have only calculated the minimalp
required to make the inner terms separable and the outer
terms entanglement breaking. This hence only provides an
upper bound to the minimalp required to make theCNOT

gate bientangling, and hence there is a possibility that this
calculation may be improved. However, as such full optimi-
zation is likely to be difficult, we leave it to another occa-
sion.

It is also worth noting that the classical tolerance bound of
2/3 derived here applies to any two-qubit unitaryW for
which the inner termssI ^ DdW and sD ^ IdW are separable.
This is because Eq.s19d guarantees that the outer termss17d
will be entanglement breaking for any two-qubit unitary, not
just theCNOT gate.

IV. BOUNDS FROM THE GOTTESMAN-KNILL
THEOREM

In order to apply the Gottesman-Knill theoremf9g to cal-
culate bounds on the classical tolerance of quantum gates,
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we need to compute the minimal amounts of noise required
to take all the gates in a particular machine into the Clifford
class. Unfortunately this restricts severely the possible situa-
tions in which this approach may be applied. In previous
examples we have calculated the classical tolerance of cer-
tain two-qubit gates with only very loose constraints on the
other gates available to the machine. In this section we will
calculate the classical tolerance of single-qubit gates, assum-
ing that the other gates in the machine are Clifford opera-
tions, where we define Clifford operations as follows.

Definition. Clifford operations are those operations that
can be performed by probabilistic application of Clifford-
group unitariesf10g, sancillad state preparation in the com-
putational basis, and measurement in the computational ba-
sis.

We will ask how much noise is required to turn non-
Clifford single-qubit gates into a Clifford operation. The re-
sulting bounds on the classical tolerance can be relatively
low. For general single-qubit operations we will show that
the classical tolerance to generic noise is no greater than
75%, although on a case-by-case basis this can be made
much stronger. For example for thep /8 gate, we find that
sÎ2−1d /2Î2,14.64% noise is the minimal amount required
to turn the gate into a Clifford operation.

In order to perform these calculations, at first it seems
necessary to understand which single-qubit operations can be
implemented using Clifford-group unitaries and ancillas pre-
pared in the computational basis. However, we will not char-
acterize this set exactly here, as to obtain optimal bounds for
many interesting cases it turns out that it is sufficient to
consider the effect that Clifford operations have upon a par-
ticular subset of single-qubit states.

We will consider the set of states that is given by the
convex hull of the Pauli operator eigenstates. This set is an
octahedronO that is shown in Fig. 2. Our choice of this set
is inspired by the recent work of Bravyi and Kitaevf6g, who

consider which single-qubit state supplies may allow the
Clifford operations to become universal. We will first argue
that the octahedronO can only be mapped to within itself by
Clifford operations, and use this fact to simplify the optimi-
zations that we wish to perform.

Observation.The octahedronO is closed under the action
of Clifford operations.

Proof. Let us consider a systems that is prepared in one
of hux± lkx± u , uy± lky± u , uz± lkz± uj, whereua± l refer to the up
and down eigenstates of the corresponding Pauli operatorA.
These states correspond to the vertices of the octahedronO.
Suppose also that there aren−1 ancillae prepared in the
computational basis, as can be prepared by Clifford opera-
tions. We need to calculate what final states of the system are
possible given Clifford-group unitary evolution of the system
1ancilla and Clifford-group measurements. As the entire in-
put state is a stabilizer statef9,12g, the final state of system
1ancilla will also be a stabilizer state that is uniquely
specified by its stabilizer generators

hg1,g2,…,gnj

where eachgi is a product of Pauli operators. Hence from the
standard theory of stabilizers, the final state of system
1ancilla will be given by

S 1

2nD p
i=1..n

sI + gid.

This equation may be expanded, and each element of the
group that is generated by the stabilizer will contribute ex-
actly one term in this expansionsthis follows from the inde-
pendence of the stabilizer generatorsf12gd. As any nontrivial
Pauli operator is traceless, tracing out then−1 ancilla qubits
from each term will only lead to a contribution to the final
reduced state of the system if the term is of the form
s1/2ndAs, whereAsªAsystem̂ I ^ I ^ I ^¯, in which case the
term will contributeA/2 to the system density matrix. Our
goal is hence to find every group element of the formAs in
the stabilizer group. As the identityI is an element in each
stabilizer group, we will at least have a contribution ofI /2
swhich is of course a requirement in the Bloch expansion of
any single-qubit stated. However, we need to find all other
terms of the formAs.

This task can be constrained as follows. First, in each
stabilizer group each element is its own inverse. This means
that any nontrivial terms of the required form must actually
be one of the six possibilities ±Xs, ±Ys, or ±Zs. Moreover, at
most only one of these six possibilities is present in each
stabilizer group, as if two or more are present, then repeated
multiplication we would force −I to be a member of the
stabilizer groupfe.g., sXsYsd2=−Ig, and this is not possible.
This means that input system states taken from the vertices
of the octahedron will be taken to either the maximally
mixed stateI /2, or one of the eigenstates of theX,Y,X op-
erators fcorresponding tosI /2±X/2d ,sI /2±Y/2d ,… etc.g.
This means that the vertices will be taken either to the maxi-
mally mixed state, or to another vertex. Then by convexity
the octahedronO can only be mappedonto or withinitself by
Clifford operations. h

FIG. 2. The accesible states via Clifford unitaries define an oc-
tahedron in the Bloch sphere. Note that the vertices of the octahe-
dron correspond to the Pauli eigenstates.

CLASSICAL SIMULABILITY, ENTANGLEMENT … PHYSICAL REVIEW A 71, 042328s2005d

042328-7



This observation may be used to givelower bounds on the
amount of noise required to take any particular unitary op-
eration into a Clifford operation. Then by explicit construc-
tion we will be able to show that whenever the unitary is
diagonal in the computational basis, these lower bounds may
be achieved, and are hence tight. First let us see why the
above arguments allow us to construct lower bounds on the
minimal noise level required. Consider a unitary gate of the
form

Usudªu0lk0u + expsiudu1lk1u. s21d

This gate acts upon theux+l state to give

ucsudlª
1
Î2

fu0l + expsiudu1lg. s22d

We may visualize this by looking at the cross section of the
Bloch sphere given by thex-y plane. This is shown in Fig. 3,
with the pointA representingucsp /4dl corresponding to the
action of thep /8 gate. One can see intuitively from the
figure, and this can easily be shown rigorously, that the mini-
mal noise level required to take the stateucsp /4dl into the
octahedron is given by the ratiouABu / uACu from the figure. In
the case of thep /8 gate, the ratiouABu / uACu corresponds to
a noise level of

p =
Î2 − 1

2Î2
= 0.1464. s23d

If a noise level less than this amount could be added to the
gateUsud to turn it into a Clifford operation, then this would
mean that theux+l state would be mapped to outside the
octahedronO by the noisy operation. As this is not possible,
we can assert thats23d is a lower bound on the amount of
noise required to take the operationUsud into the Clifford
operations.

The utility of pictures such as Fig. 3 is that they may be
used to show that bounds such ass23d are in fact also upper
bounds, and are hence tight. The argument for this is strongly
related to the construction presentedf6g for the programming
of unitary operations in quantum states. Every state on the
circumference of the Bloch sphere in thex-y plane corre-
sponds to a pure state of the form

ucsudlª
1
Î2

fu0l + expsiudu1lg. s24d

These states are clearly isomorphic to the Jamiolkowski
states representing eachUsud, simply by changing u0l
→ u00l and u1l→ u11l:

uJsudlª
1
Î2

fu00l + expsiudu11lg. s25d

Hence by using convexity every state in thex-y cross section
of the Bloch sphere represents a valid quantum operation.
From this isomorphism we see hence that each of the verti-
ces represents a Clifford unitary:ux+l represents the identity
gates0, ux−l represents the PauliZ rotation,uy+l represents
the so-calledphase gatef9g, denoted by the letterS,

SªS1 0

0 i
D , s26d

and uy−l represents its inverseS−1. This mapping hence
shows that bounds such ass23d can indeed be attained, as the
x-y plane of the Bloch sphere maps directly into a problem
concerning quantum operations and a subset of the Clifford
operations. Hence for gates of the formUsud we have the
following statement.

Lemma 1.The minimal noise required to turnUsud into a
Clifford operation is equivalent to the minimal noise required
to take the stateucsudl into the octahedronO in Fig. 3.

As shown above, in the case of thep /8 gate this lemma
returns a minimal noise level of approximately 14.64%. The
same procedure also yields sharp bounds for any unitary gate
that may be diagonalized by Clifford-group unitaries, as well
as for any quantum operation that is a convex mixture of
such unitaries.

We may also apply the above arguments to some cases
where the noise is constrained to be of a specific form. Sup-
pose for example that we wish to know how much dephasing
noise is required to take thep /8 gate into the set of Clifford
operations. The dephasing operation takesux+l to the maxi-
mally mixed state, at the center of the Bloch sphere in Fig. 3.
On the other hand, when Fig. 3 is viewed as representing
Jamiolkowski states of quantum operations, the center of the
circle in Fig. 3 also represents the dephasing operation.
Hence the above arguments also show the following lemma.

Lemma 2.The minimal dephasing noise required to take
any gateUsud into a Clifford operation is identical to the
minimal amount of the maximally mixed state required to
take the corresponding stateucsudl into the octahedronO in
Fig. 3.

FIG. 3. Cross section of the Bloch sphere in thex-y plane. Point
A represents the stateucsp /4dl, and the ratiouABu / uACu represents
the exact minimal possible noise level required to take thep /8 gate
into the set of Clifford operations.
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In the case of thep /8 gate this shows that approximately
30% dephasing noise is required to take thep /8 gate into the
Clifford operations, or more precisely twice the value in Eq.
s23d:

Î2 − 1
Î2

= 0.2928. s27d

Although the bounds on the classical noise threshold ob-
tained in this way are quite low compared to bounds ob-
tained in Refs.f3–5g, the above procedure has the disadvan-
tage that it applies only to very specific gate sets, whereas
previous works have applied to much wider classes of ma-
chine. At the expense of increasing the bound, we can, how-
ever, make the approach more general. For instance, we can
show that the universal gate set consisting of Clifford opera-
tions augmented byany trace-preserving single-qubit opera-
tion has a classical noise tolerance of no greater than 75% on
the additional single-qubit operation. The argument proceeds
as follows. Given any single-qubit trace preserving operation
E, we can always turn it into an operation that is a convex
mixture of Clifford group operations by the following
method. Instead of performingE on an input stater, we
perform

1

4
Esrd +

3

4 o
i=x,y,z

1

3
si„Essi

Trsi
*d…si

†. s28d

In the Jamiolkowski representation this quantum operation
can be represented as

1

4
hRE + fssx ^ sxdREssx ^ sxd†g + fssy ^ sydREssy ^ syd†g

+ fssz ^ szdREssz ^ szd†gj.

This corresponds to a “Bell twirling,” and the resultant quan-
tum operation is represented by a Bell diagonal state, which
is a mixture of the four Pauli transformations. Hence by add-
ing 75% noise,any trace-preserving single-qubit operation
may be taken to a probabilistic mixture of Clifford group
operations, and so any machine consisting ofhCNOT1single-
qubit gatesj has a classical noise tolerance of at most 75% on
the single-qubit gates.

V. INTERPRETATION OF THE BOUNDS

The bounds derived in the previous sections give upper
bounds to the fault tolerance of specific gates. For example,
in the case of the gate sethClifford unitaries,p /8 gatej, they
show that no fault-tolerant encoding can be found that pro-
tects against 14.64%general single-gate noise. However,
this does not mean that specific forms of noise cannot be
tolerated to greater than 14.64%, but one must construct pro-
tection methods that specifically target that form of noise.

Furthermore, in the case of the approach based upon the
Clifford group, our results show that if the Clifford gates in a
gate set are noiseless, then the noise level corresponding to
Lemma 1 may not be tolerated on an additional non-Clifford
gateUsud. However, it is possible that by mixing noise in
with the Clifford gates as well, and not imposing that they be

noiseless, one can recover the power to do universal quan-
tum computation. Indeed, we have been able to construct
examples where mixing a certain type of noise to the gateU
from a universal sethClifford unitaries,Uj leads to classi-
cally tractable evolution, but mixing the same noisef21g
with the Clifford gates as well asU restores the ability to
perform universal quantum computation. Although we do not
include the details here, the examples that we have are all
quite extreme, and work because noise that turns the non-
Clifford gate U into a Clifford operation can also take the
Clifford unitariesout of the Clifford groupf22g. Neverthe-
less, in these examples the methods that restore universality
are very specific, and cannot be used to tackle general noise
of the same level.

VI. CONCLUSIONS

We have presented a class of operations—the bientangling
operations—that may be efficiently simulated classically, as
they are only capable of generating two-party entanglement.
In some situations this class of operations may give tighter
bounds than currently known on the classical noise tolerance
of quantum gates. One example is the case of depolarizing
noise on theCNOT gate, for which we show that 67% noise is
sufficient to make the subsequent evolution efficiently trac-
table classically, compared to the best previous bound of
74%. Another extreme case is with measurement-based com-
putation, where we observe that two-qubit nondegenerate
measurements cannot enable exponential speedup over clas-
sical computation. It may be difficult to extend the class of
bientangling operations and still generate a class that is effi-
ciently tractable. This is because any natural generalizations
to higher numbers of input particles enable perfect quantum
computation, and any extensions that still involve two-
particle gates are hampered by the subtle interplay between
separability-preserving and separable gates.

In the second half of this work we turn to bounds on
classical tolerance that may be derived from the Gottesman-
Knill theorem. The subsequent boundsse.g., 30% depolariz-
ing noise on thep /8 gate, 14.64% for general single-gate
noised can be relatively low for this kind of approach.

In general it is quite likely that the bounds derived here
may be improved. One interesting possibility is that a hybrid
of the approaches used byf3,4g may be used to understand
when slightly nonseparable gates may be efficiently simu-
lated classically, albeit with a noise model more in the spirit
of f3,5g, where noise is applied to every qubit at every time
step.

In terms of the Clifford-gate-based work, it seems quite
possible that if the recent conjecture of Bravyi and Kitaevf6g
is true, then gates of the formUsud= u0lk0u+expsiudu1lk1u can
indeed be used for quantum computation up to the noise
levels derived heresand implied by their workd. Their con-
jecture implies that a supply of single-qubit quantum states
from outside the octahedronO may be “purified” to certain
“magic” pure states by the use of Clifford operations only.
As Clifford operations may be made fault tolerant to some
degree via encoding schemes based on Clifford operations
only ssee, e.g.,f12g and references thereind, it may be pos-
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sible that the noise levels that we have derived may indeed
be tolerated as long as the remaining Clifford operations act
within their own spotentially much tighterd fault-tolerant
threshold. The Bravyi-Kitaev conjecture has recently been
spartiallyd proven along “the Hadamard directions”f7g,
which include the direction relevant for thep /8 gate. There-
fore it seems to be reasonable to suppose that 14.64% really
is the exact probabilistic noise level that may be tolerated on
the p /8 gate, as long as the remaining Clifford operations
are sufficiently error-free.

These results show the potential of analyzing classical
tractability with the aim of bounding from above fault-
tolerance thresholds. Moreover, investigating the quantum-
classical computational transition forsnoisyd quantum evolu-
tion is important in its own rightf3,6g, particularly as there is
the possibility of “intermediate” quantum computation. It
may well be the case that noisy quantum devices cannot be
simulated efficiently classically, yet cannot be used for fault-
tolerant quantum computation. This would imply the exis-
tence of an intermediate physical device—such as a noisy
quantum system controlled by a universal classical
computer—which is clearly universal for computation, is
better than classical as it can simulate itself efficiently, and
yet is not as powerful as a full quantum computer. Such
intermediate devices may be easier to construct, and hence
may provide a more achievable experimental target.
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APPENDIX

In this appendix we calculate the minimal error rate re-
quired to take theCNOT gate into a bientangling operation,
under constraints upon the form of noise other than the de-
polarizing model considered in Sec. III. These calculations
have been placed in this appendix, as the bounds derived at
best match the bounds derived inf4g. The intuitive reason for
this is that two-qubit unitary operations are maximally en-
tangled across the EB splittingssee Fig. 1d, whereas they are
not always maximally entangled across the other splittings.
Therefore one expects that the addition of EB operations to
separable and separable1swap operations might not lead to
improved bounds. However, this intuition is not entirely
valid, as we are also taking the convex hull after including
the EB operations, and indeed for the depolarizing noise con-
sidered earlier we do obtain a large improvement. Neverthe-
less, for the noise forms considered in this appendix the in-
tuition does appear to be correct.

1. No constraints

In this case we need only restrict thele’s to be a prob-
ability distribution, and do not need to further constrain
them. Takel0

optsBd to be the maximal possiblel0 over all
bientangling states invariant under the symmetry groups6d.
Then we clearly have that

s1 − pd + pl0sNd ø l0
optsBd sA1d

and hence asp, l0ù0 we have that

s1 − pd ø l0
optsBd ⇒ p ù 1 − l0

optsBd. sA2d

This lower bound can be attained as we are free to choose the
form of the noise as we wish. Hencepmin=1−l0

opt, and our
task is now to calculatel0

opt. This is now an easier problem,
as the fact that the set of bientangling states is the convex
hull of separable, separable1swap, and EB states means that

l0
optsBd = maxhl0

optsSd,l0
optsSSd,l0

optsEBdj sA3d

wherel0
optsSd, l0

optsSSd, and l0
optsEBd are the maximal pos-

sible l0’s over separable states, separable1swap states, and
EB states, respectively. This means that to work out the mini-
mal generic noise required to turn theCNOT gate into a bien-
tangling gate, we simply need to separately calculate the
minimal noise required to take theCNOT gate into the differ-
ent classes of separable, separable1swap, and EB states, and
take the lowest value. As each of these classes separately
corresponds to separability across a particular partition of the
parties in the Jamiolkowski state, we can apply the tech-
niques developed inf4g. Although we omit the details, it
turns out that the Jamiolkowksi state representing theCNOT

gate has only one ebit of maximal entanglement across the
sA1B1d-sA2B2d splitting or thesA1B2d-sA2B1d splitting, but
as with any two-qubit unitary has a full two ebits of maximal
entanglement across thesA1A2d-sB1B2d splitting. Hence the
CNOT gate is less robust to noise across the separable–
separable1swap splittings. Furthermore, the results off4,23g
show that the minimal noise that breaks the entanglement of
the CNOT gate across the relevant splitting can always be
chosen to be separable across that splitting. The result of all
these observations is that the bounds derived inf4g for ge-
neric noise are also optimal when considering BE-machines
as the classically tractable set, leading to an upper bound of
50% on the classical tolerance of aCNOT gate. It is also
interesting to note that if we do not ask for the noise to take
us into the bientangling set, but instead ask to be taken into
the entanglement-breaking channels, then the above ap-
proach yields a weaker upper bound of 75% forall unitary
gates, not just theCNOT f24g.

2. Separable noise, separable1swap noise, and noise that is a
mixture of separable and separable1swap

The previous section points out that by the arguments of
f4,23g, the minimal generic noise that turns theCNOT gate
into a bientangling gate can always be taken to be separable,
or separable1swap. Hence the bounds derived inf4g are also
optimal with respect to these forms of noise, and where the
classically tractable set is the set of BE-machines.
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