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Nonlocality of cluster states of qubits
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We investigate cluster states of qubits with respect to their nonlocal properties. We demonstrate that a
Greenberger-Horne-ZeilingdGHZ) argument holds for any cluster state: more precisely, it holds for any
partial, thencenixed state of a small number of connected qufitee, in the case of one-dimensional lattices
In addition, we derive a Bell inequality that is maximally violated by the four-qubit cluster state and is not
violated by the four-qubit GHZ state.
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[. INTRODUCTION leading to the notion ofraph statesbut in this paper, we

In its most widespread image, a quantum computer is de§tick to cluster states_ and vv_iII discu;s possible _e>_<tensions to
picted by an array of initially un'correlated qubits that passa" graph states only in the final section. I_:or deﬂmteness, we
through a network of logic gates in which they become en-co.nSIder the clgster stah@,@ associated W!th all elgenyalues
tangled[1]. In 2001, Raussendorf and Briegel noticed thatbemg 1, that is, determined by the family of equations

one can adopt a different philosophy and described the so- S|Py =@y forall a. 2)
called one-way quantum computg?]. In this view, the en-

tanglement is distributed once for all by preparing a peculialWe start by considering cluster states built on a one-
entangled state of all the qubits; the logic gates are thedimensional latticd8], which we denotdd,). For such a
applied as sequences of only single-qubit measurements. Rligttice, |¢,) and |¢s) are locally equivalent to a maximally
markable entanglement properties are needed to achieve thégtangled Bell state and to a GHZ state, respectively; the
computational power: in particular, Greenberger-Horne-nonlocality of both has been thoroughly studied. The four-
Zeilinger (GHZ) states, though in some sense maximally en-qubit cluster state reads

tangled, lack this power, and indeed can be simulated by a

polynomial amount of communicatidr8]. SuitableN-qubit |¢4>:}| +)0)| +>|O>+}| +[0)-)|1)

states for universal, scalable quantum computation are the 2 2

so-called cluster stategt]. Motivated by this discovery, 1 1

many works have been devoted in the last few years to the + == D)0y + =[-)| 1) +)|1) 3
properties of those stat¢S]; links have been found in par- 2 2

ticular with error-correction theory6]. In this paper we
study the cluster states under the perspective of their nonl
cality propertieq7].

where the one-qubit states are defined as usuZ|Gs:|0),
Z|1)=-|1), and X|+)=+|+). Note that the statde,) is
not locally equivalent to the four-qubit GHZ state

A brief review of the definition and main properties of the — (1P
cluster states, following2,4], is a necessary introduction. ﬁrleAZ)_—(|11/1\121)>()|OOOQ+|111]>)’ but to 1/2|0000 +|001)

For convenience, through all this paper we adopt the notation The plan of the paper is as follows. Section Il is devoted

X=o0y, Y=0y, andZ=0, for the Pauli matrices. &lusteris . . ) . )
an N-site d-dimensional square lattice with connections © the nonlocality properties dtb,): we identify a GHZ ar-

among the sites that define the notion of neighborhood. Fogumel'rtlt for rl;onéocgllté{q]r,hfrorg Wht'Ch mfttl;]rn a I?_elllm-
any sitea of the lattice, one defines the operator equalty can be derived. The advantage ot fhis particuar con-

struction is that the inequality is optimized for the statg):
S=X, ® Z (1) it acts as a witness discriminating between), which vio-
bEneigha) lates it up to the algebraic limit, an&HZ,), which does not
violate it at all. In Sec. lll we generalize the GHZ argument
to theN-qubit case for one-dimensional lattices; then in Sec.
IV for d-dimensional lattices. In both cases, contrary to what
happens for GHZ states, a GHZ argument for nonlocality can
Be found for the partialthence mixed states defined on
small sets of connected qubits once all the others are traced
out. The result is quite surprising, since it was commonly
believed that the purity of quantum states was a necessary
*Permanent address: Ecole Normale Supérieure, 45, rue d’Ulngondition for all-or-nothing violations of local realism. Fi-
75005 Paris, France. nally, in Sec. V we consider the larger family of graph states.

where neigla) is the set of all the neighbors af The op-
erators{S,,a€ lattice} form a complete family of commuting
operators on the lattice; euster stateis any of their com-
mon eigenvectors. We note here that this construction ca
actually be done for any graph, not only for square lattices
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Il. NONLOCALITY OF THE FOUR-QUBIT STATE  |¢,) ON  ment would suggest that the nonlocality of the cluster state is
A ONE-DIMENSIONAL CLUSTER after all not too different from that of the GHZ state. The rest

A. GHZ argument of the paper will show that the opposite is true.

The four-qubit cluster statip,) is defined by Eq(2): B. Bell-type inequality
XZIl=+1 (Ey), The GHZ argument for nonlocality involves identifying
properties that are satisfied with certainty. Thus, this ap-
ZXZI= +1 (E,), proach strongly relies on the details of the state and is not

suited for comparison between different states; nor can it
incorporate the effect of noise in a simple way. Therefore,
especially to deal with experimental results, it is convenient
_ to introduce linear Bell inequalities.

NZX=+1 (Ey. ) The best-known inequality for four-qubit states is the
These notations are shortcuts %Il ¢,)=|¢,), etc. Eleven Mermin-Ardehali-Belinski-KlyshkdMABK) [10] inequality
similar equations can be obtained by multiplication using theM,. For the cluster state, after optimizing on the settings,
algebra of Pauli matrices: one finds<M4>¢4=2\s“2 where the local-variable bound is set

at 2. This is indeed a violation, but a rather small one: a

1IZXZ= +1 (Ey),

XIXZ=+1, (E) X (Ey), (5 two-qubit singlet attains this amount as well, aj@HZ,)
reaches up to ¢2. It is well known by now that the MABK
ZYYZ= +1, (B X (Ey), (6) inequality detects optimally GHZ-type nonlocality, but it
can be beaten by other inequalities for other families of
XIYY=+1, (B X (Eg) X (Ea), (1) stateg11].
In our case, it is natural to guess a Bell inequality out of
ZYXY==1, (Ep) X (E3) X (Ey), (8) the GHZ argument: one takes the very same four conditions

(5)«8) that have led to the GHZ argument, and writes a
suitable linear combination of them. Specifically, on the one
hand, the previous results imply that the Bell operator

and seven others which we will not use explicitly in this
paper, namelyYYZI=XZZX=ZXIX=1ZYY=YYIX=Y XXY=

+1 andYXYZ-1. The 15 properties can be read directly
from |p4)(¢b4|; they are associated with the operators that, B=AIC'D+AICD' + A’'BCD-A'BC'D’ (9)
together with the identity, form the Abelian group generated i

by {S,,...,S4}, called thestabilizer group Note how a minus ~ réaches 4 when evaluated phy) for the settingA=X, A’

sign arises from the multiplication of three consecutive equa=4, B=Y, C=Y, C'=X, D=2, andD’=Y. This is the alge-
tions, since in the common site one H&XZ=-X. braic value; obviously no state can ever give a larger value

Properties like(4)—(8) predict perfect correlations be- (in particular,[¢,) is an eigenstate oB for these settings
tween the outcomes af priori uncorrelated measurements On the other hand, the classical polynomial corresponding to
on separated particles. In a classical world, once communiB Satisfies the inequality
c_ation is prev_ented by re_alizing spacelike separated detec- lac’'d +acd +a’bcd-a’bc'd’| < 2, (10)
tions, correlations can arise only if the outcomes of each
measurement on each particle are preestablished. In othas one can verify either by direct check, or by grouping 1 and
words, a local variable is a list of 12 bits={(X, Yk, ), 2 together, thus recovering the polynomial that defines the
k=1,2,3,4, wherex, €{-1, + 1} is the preestablished value three-party Mermin inequality10,12. The so-defined four-
of a measurement ok on qubit 1, and so on. The GHz qubit Bell inequality cannot be formulated using only four-
argument for nonlocality aims to show that no lis€{-1, party correlation coefficients, thus it does not belong to the
+1}*12 can account for all the 15 properties above. To verifyrestricted set classified by Werner an(_j Wolf and/okowski
this, one replaces each Pauli matrix with the corresponding"d Brukner[13]. Moreover, on particle 2 only one non-
preestablished value: all the properties are supposed to hol#ivial setting is measured; in other words, no locality con-
but now they are written with ordinary numbers, whose al-Straint is imposed on {14].
gebra is commutative. Assuming commutativity, the multipli- Our inequality exhibits a remarkable feature: the GHZ
cation of Eqs.(5)—(7) gives zy,Xsy,=+1, in contradiction state|GI—_IZ4> does not VIO|<":1I6 it. The_ most elegant way to
with Eq. (8), which readsz;y,xsy,=—1. Therefore, no local Prove this statement co_nS|sts in writing down_epr|C|tIy the
variable can account for all the properties of the list. Of ProjectorQ associated withGHZ,): only terms with an even
course, a similar argument could be worked out using othergumber — of = Pauli  matrices  appear. ~ Consequently,
among the 15 conditions above. Tr{Q(AIC'D)]=Tr[Q(AICD’)]=0 for any choice of the mea-

All in all, by inspection one sees that local variables cansurement directions, and so (QB)=Tr{Q(A'BCD)]
account for 13 out of the 15 properties associated with com= T{Q(A’BC'D’)] whose algebraic maximum is 2. We
muting observables: e.g., usingl as the preestablished checked also our inequality on the stat),)=1/2(/0001)
value for all 12 measurement, one satisfies all properties but|0010+|0100 +|1000) and found numerically a violation
(8) and(E;) X (E,) X (E3), which readsy XYZ=-1. The same (B)y~2.618. In conclusion, our specific derivation results in
is true for the four-qubit GHZ staté&sHZ,). This rapid argu-  a Bell inequality which acts as a strong entanglement witness
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for the cluster statgp,): it is violated maximally by it, and is tial state on consecutive qubits leads to a GHZ argument for
not violated at all by the four-qubit GHZ staf#&5]. nonlocality. The converse holds too: the GHZ argument
works only forconsecutiveyubits[16]. In fact, to obtain the
minus sign that is necessary for the GHZ argument, one has
lll. GHZ ARGUMENT FOR THE ~ N-QUBIT STATE [¢n) ON o multiply three equations that have nontrivial operators on
A ONE-DIMENSIONAL CLUSTER a common site: a rapid glance at Efl) shows that this can
The nonlocality of the four-qubit cluster state has beerPNly be the case if the three equations are consecutive. This
GHZ argument for mixed states recalls the notion of “persis-

studied in full detail, starting from the expression |gf,). by ; "
With the insight gained there, we can move on to look for the!€NC¢Y” [4]: one can measure many qubits, or even throw

nonlocality of the cluster state of an arbitrary number ofth€m away, and strong locality properties are not destroyed.
qubits N, still defined on a one-dimensional lattice. We do Finally note that in the GHZ argument involving
not need to givedy) explicitly, but can work directly on the 1Bk Ex1,Eiwal, particlesk—1 andk+3 are only asked to

set(2) of N eigenvalue equations that define it: measureZ: as we saw for the four-qubit state, on these par-

ticles we do not impose any locality constraint, but they must

XZI--1=+1 (Ey, be asked for cooperation in order to retrieve the GHZ argu-
ment.

ZXZI- 1= +1 (B, Finally, note that a Bell inequality can be derived from the
GHZ argument as was done in Sec. Il. On the five meaning-

1ZXZF1= +1 (Ey) ful qubits, the Bell operator reads

B=(AB)C'(DE) + (A’B')C(DE) + (AB)C(D'E’)

NZXZ--- 1= +1 (Ey),

(Ed - (A'B")C'(D'E’) (13)
where we have grouped the terms in order to make explicit
the analogy with Mermin’s inequality10]. The inequality

---1ZX= +1 (Ey). (11)  for local variables readf3|<2; partial states of a cluster

) state violate it up to the algebraic limit fgx=E=I, A’ =E’
The GHZ argument appears out of these equations as folk:7 g-p=7 g'=p’=Y C=Y, andC’=X.

lows. We focus ork,, E;, andE, first. Using the algebra of
Pauli matrices, one derives the three properties IV. GHZ ARGUMENT FOR CLUSTER STATES
ON ANY-DIMENSIONAL CLUSTERS
Ci=EEs; ZYYZI--1=+1,

As a last extension, we consider the nonlocality of a clus-

C,=EsEy 1ZYYZ-1= +1, ter state prepared on two- and higher-dimensional square lat-
tices. It is clear why this problem is not immediately equiva-
Cs=E,EEy ZYXYZ-l=-1. (12) lent to the one we have just studied: the eigenvalue equations

(2) do not have the same form as those for one-dimensional
Moving to the level of local variable§hat is, using commu- lattices (11), because the structure of the neighborhood is
tative multiplication), E;C,C, leads to zy-xsy,zs=+1,  different. Consequently, thii-qubit cluster state on a two-
which manifestly contradict€;. The argument is absolutely dimensional lattice is different from tHg-qubit cluster state
identical using{Ey, Ey.1,Eyo}, for anyke{2,...,N-3}, be-  on a one-dimensional lattice. Still, one expects similar prop-
cause all the eigenvalue equations but the first and the lasftties to hold. Indeed, we provide a generalization of the
one are obtained from one another by translation; and it caGHZ argument for cluster states constructed on square lat-
be verified explicitly that it holds also fde=1 andk=N-2. tices of any dimension.
In conclusion, we have shown that one can build the follow- As a case study, we consider the simplest two-
ing GHZ argument on five qubits out of any three consecudimensional square lattice, which isx3, because a R 2
tive eigenvalue equations{l) Take the three equations lattice is equivalent in terms of neighbors to a closed four-
{Ex,Exs1,Eao, for ke{1,...,N-2}; (2) with the algebra of site one-dimensional loop and we have already solved that
Pauli matrices, defineC;=E,Ey,;, C;=Ey.1Ewo and C;  case implicitly[8]. The nine eigenvalue equation;), i,
=E,E+1Ex+2, this last property providing the needed minusj&{1,2,3, can be written formally in a way reminiscent of
sign; (3) with commutative algebra, the condition obtained asthe lattice:
C,C,E,.1 is exactly the opposite t€;.

Let us focus again on the GHZ paradox us{ig, E3,E,}

X Z |
for definiteness: this paradox involves nontrivial operators Z |
I

+1 (B,
only on qubits 1-5. This means that one can forget com-
pletely about the otheN-5 qubits, that is, the partial state
p12345 0btained by tracing out all the other qubits exhibits a
GHZ-type nonlocality. This state is certainfgixedbecause
|#n) is not separable according to any partition. Since this is
true for any translation, we conclude that any five-qubit par-

+1 (B,

042325-3



SCARANI et al. PHYSICAL REVIEW A 71, 042325(2005

B. Comparison with systematic inequalities

Very recently, a systematic way of constructing Bell's in-
equalities for any graph state has been folt&]. The result
is very elegant: the sum of the elements of the stabilizer
group provides a Bell inequality. It is instructive to apply this
formalism to the four-qubit cluster state, for which we have
provided inequality(10) above. We have written explicitly
(14) the equations corresponding to each element of the stabilizer
group at the beginning of Sec. Il A; at the end of the same
with obvious notations. The basic reasoning to find the GHZsection, we have stressed that only(18 nontrivial plus the
argument is as before: one can find such an argument if anidentity) of the 16 equations can be satisfied in a local-
only if a minus sign can be produced, that is, if one takes avariable theory. By definition, QM satisfies all the properties
least three equations that lead to the prodiXZin a site. In ~ With the cluster state. Therefore we have a Bell-type inequal-
this case, the argument is constructed in a way similar to thgy 3,,, <14Xx (+1)+2X(-1)=12 [19] for which QM
case of one-dimensional lattices. For instance, if one takeg,
{E11,E1,,E; o}, then theZXZ product can be found in site
(1,2) of the lattice. First, with the Pauli commutation rela-
tionS, one builds C1=E1,1E1‘2, C2=E1’2E2'2, and C3
=E, ,E; 5B, 5 where the minus sign appears @y. Then,
using commutative multiplication, one gets tf&{C,E, , is
exactly the opposite property to that obtained directly from : L
Cs. In this example, particles in sité8, 1) and(3, 3 can be YXYZ-1), and eight more terms. These addltlonal terms
traced out because in all conditions the operator in those sﬂegm out to be "innocuous” as far as local variables are con-
is the identity; and the four particles in sités 3), (2, 1), (2, cerned: thus, the violation #<12is nothing but the simul-
3), and (3, 2 undergo a single measureme@) and are taneous V|0Iat_|on o’(l_Q) and its symm_etrlc version. How-
therefore there to help establish the argument. ever, the two inequalities are not equivalent on all quantum
In general, the following is easily checked. states, as can be seen on the GHZ datéZ,) by the same
(1) A GHZ argument can be obtained if the three sitesargument as in Sec. Il B: eight terms in the ponnonZBaire

form a neighbor-to-neighbor path, likeE; 1,E15,Ez5 OF  products of three Pauli operators, ;<8 (and the
{E1,1,E12,E1 g in this case, the argument goes as in thebound can actually be attainedSo, for the inequality dis-
examples above. cussed in this section, the GHZ state cannot even reach the
(2) A GHZ argument cannot be obtained if the threelocal-variable bound.
sites do not form a neighbor-to-neighbor path, like In summary, in the case of the four-qubit cluster state
{E1,1,E22,Eg 3 or {E1 1,E1 2, Bz 3 |,), the inequality built according to the recipe of RE¥S]
With this characterization, it is obvious how to generalizeexploits the same nonlocality as our inequaliy0). Note
the GHZ argument to larger two- and higher-dimensionalalso that our inequality is easier to test experimentally be-
clusters. Again, a Bell inequality can be derived from thiscause it requires fewer settin¢fsvo instead of three per qu-
GHZ argument, exactly as we did in the previous sections. bit) and fewer termgfour instead of 15 However, when we
apply our method to an arbitrary numhbemf qubits(see the
V. COMPARISION WITH GRAPH STATES end of Sec. Il] we find an inequality whose violation is
always by a factor of 2, irrespective of, whereas the in-
A. Extension of our results equalities discussed in RdfL8] are such that the violation

Cluster states are members of a large family of statel{Icreases WItN.
called graph statdd.7]. Graph states differ from one another VI. CONCLUSION
according to the graph on which the state is built. Since the
definition of the family of commuting operators on the graph  In conclusion, we have found that a rich nonlocality struc-
is always (1), our techniques can be applied to study theture arises from the peculiar, highly useful entanglement of
nonlocality of any graph state. However, the specific result§luster states of qubits. This nonlocality is very different
can be strongly dependent on the graph, which here was tteom the one of the GHZ states: the qualitative difference is
regular lattice or cluster. For instands;qubit GHZ states Most strikingly revealed by the existence of a GHZ argument
are graph states, but—contrary to what has just been déor mixed states. In the four-qubit case, we have also pro-
scribed for cluster states—no GHZ argument for their partiavided a quantitative witness in terms of a Bell inequality,
states can be found, because all the partial states are sep#hich will be an important tool in planned experiments to
rable. This derives from the connectivity of the correspond{roduce photonic cluster statg20].
ing graph, in which all the sites are connected only through a
single sitea; therefore, the operat@®, must be used to find ACKNOWLEDGMENTS
any GHZ argument, and this operator is nontrivial on all V.S. and A.A. acknowledge hospitality from the Institut
sites. fir Experimentalphysik in Vienna, where this work was

=+1 (B,

_N_
N %< N
- N -

aches the valuBq,,=16. This inequality uses three set-
tings per qubit.

There is a strong link between this inequality and ours
(10). By summing over all the stabilizers, the polynomil
contains the four terms of Eq9), the four terms that build
the symmetric version of it(GHZ argument based on
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