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The one-way quantum computing model introduced by Raussendorf and BriegelfPhys. Rev. Lett.86, 5188
s2001dg shows that it is possible to quantum compute using only a fixed entangled resource known as acluster
state, and adaptive single-qubit measurements. This model is the basis for several practical proposals for
quantum computation, including a promising proposal for optical quantum computation based on cluster states
fM. A. Nielsen, Phys. Rev. Lett.sto be publishedd, quant-ph/0402005g. A significant open question is whether
such proposals are scalable in the presence of physically realistic noise. In this paper we prove two threshold
theorems which show that scalable fault-tolerant quantum computation may be achieved in implementations
based on cluster states, provided the noise in the implementations is below some constantthresholdvalue. Our
first threshold theorem applies to a class of implementations in which entangling gates are applieddetermin-
istically, but with a small amount of noise. We expect this threshold to be applicable in a wide variety of
physical systems. Our second threshold theorem is specifically adapted to proposals such as the optical cluster-
state proposal, in whichnondeterministicentangling gates are used. A critical technical component of our
proofs is two powerful theorems which relate the properties of noisy unitary operations restricted to act on a
subspace of state space to extensions of those operations acting on the entire state space. We expect these
theorems to have a variety of applications in other areas of quantum-information science.
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I. INTRODUCTION

A. Overview

One of the most surprising recent developments in quan-
tum computation is the insight thatquantum measurement
can be used as the fundamental dynamical operation in a
quantum computerf1,2g. This insight has significant impli-
cations for our theoretical understanding of how quantum
computers operate, and also for the development of practical
proposals for quantum computing.

Historically, the first measurement-based model for quan-
tum computing was theone-way quantum computerdevel-
oped by Raussendorf and Briegelf1g. A one-way quantum
computation is performed in two stages. In the first stage an
entangled many-qubit state known as thecluster stateis pre-
pared. This is a fixed entangled state that does not depend on
the problem instance being solved by the computation. In-
deed, when the one-way quantum computation is being used
to simulate a quantum circuit1 f1g shows that the identity of
the cluster state can be made very nearly independent of the
details of the circuit being simulated, with the only depen-
dence being on thedepthand breadthof the circuit. In the
second stage of a one-way quantum computation a sequence
of single-qubit measurements is performed on the cluster
state. These measurements areadaptive, in the sense that the

basis in which a qubit is measured may depend upon the
outcome of earlier measurements. Remarkably, this two-
stage process is sufficient to simulate any quantum circuit
whatsoever.

More recently, an apparently quite different teleportation-
basedf4g approach to measurement-based quantum compu-
tation was developed by Nielsenf2g. This approach is based
on the idea now known as gate teleportation, introduced by
Nielsen and Chuangf5g, and further developed by Gottes-
man and Chuangf6g. When it was first introduced,
teleportation-based quantum computation appeared to be
quite different from the one-way quantum computer, but sub-
sequent workf7–9g has provided a unified conceptual frame-
work in which both approaches may be understood.

Although the measurement-based models of quantum
computation represent an important conceptual advance,
there is an important caveat, namely, that the measurement-
based models assume all operations are carried out perfectly.
Since real physical systems suffer from noise, to make
measurement-based models scalable we must develop tech-
niques for combatting noise in those models.

The challenge posed by noise has been met in the quan-
tum circuit model of computation with the development of
an impressive theory offault tolerance, providing a large
body of techniques which can be used to reduce the effects
of noise on quantum circuits. The culmination of the theory
of fault-tolerance is thethreshold theorem, which states that
for physically reasonable models of noise, and provided the
noise is below some constantthresholdvalue, it is possible to
use quantum circuits to efficiently simulate an arbitrarily
long quantum computation with arbitrary accuracy. Although
the threshold remains to be experimentally confirmed, there
is now general agreement that, based on our best theoretical
understanding of quantum noise, the threshold theorem
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solves the problem of noise in the quantum circuit model of
computation. That is, quantum noise poses no problem of
principle for quantum computation, only thesvery signifi-
cantd practical problem of reducing noise levels below the
threshold value. For a survey of the theory of fault tolerance
and the threshold theorem, see Chap. 10 off3g, and refer-
ences therein.

The purpose of the present paper is to develop similar
fault-tolerant threshold results for several measurement-
based models of quantum computation, focusing primarily
on models derived from the one-way quantum computer of
Raussendorf and Briegel. We refer to this entire class of
models as thecluster-state model of quantum computation,
to emphasize the crucial role played by cluster states. Note
that we use the term “cluster-state model of quantum com-
putation” in a rather loose sense, using it to denote an entire
class of models based on cluster states. We reserve the term
one-way quantum computerto refer to the specific model
originally suggested inf1g.

Our primary motivation in studying fault-tolerance in the
cluster-state model is to establish that the cluster-state model
can be used as the basis forscalablepractical proposals for
quantum computation. Although several proposals for ex-
perimental quantum computation with cluster states have
been madef1,10g, such proposals cannot be considered scal-
able unless fault-tolerant methods of implementation are de-
veloped. In this paper we develop methods for fault-tolerant
computation using cluster states, methods that are applicable
in a wide variety of practical proposals.

Prior work on the problem of fault-tolerant computation
with cluster states has been reported in Chap. 4 of Raussen-
dorf’s thesisf12g. This work obtained a threshold for a class
of noise models in which Pauli errors occur probabilistically
in a cluster-state computation. Our threshold result applies to
a more general noise model that is likely to be more realistic
in many physical systems; subject to some assumptions
about locality, we allow arbitrary non-Markovian noise to
occur in the computation, and even allow errors to occur in
the accompanying classical computation. Thus, our work
should be viewed as extending and complementing the ap-
proach taken inf12g. We note that independent work extend-
ing f12g is also being undertaken by Raussendorf and Briegel
f13g.

What is it that makes proving a fault-tolerant threshold in
the cluster-state model nontrivial? The obvious approach to
proving a threshold is to take the quantum circuit that we
want to make fault-tolerant, convert it to a fault-tolerant
quantum circuit using the standard prescriptions, and then
simulate the resulting circuit using a cluster-state computa-
tion. It seems physically plausible that noise occurring in the
cluster-state model of computation should then be corrected
by the error-correcting properties of the original fault-
tolerant circuit.

Two difficulties obstruct this proposal. The first difficulty
is that the qubits in the cluster tend to degrade before they
are measured. We will see that this difficulty can easily be
overcome by building up the cluster in parts, so that no part
of the cluster is allowed to degrade too much before being
measured.

The second difficulty is more serious. While it is plausible
that noise in the cluster-state computation is corrected by the

error-correcting properties of the original fault-tolerant cir-
cuit, showing this turns out to be nontrivial. The key is to
prove that noise in a cluster-state simulation of a quantum
circuit can be mapped ontoequivalent noisein the quantum
circuit. Provided that mapping has suitable properties, a
threshold theorem then follows. The greater part of this paper
is spent constructing such a mapping.

This discussion highlights a general point worth noting.
Our paper provides a way of taking an arbitrary quantum
circuit and then simulating it in a fault-tolerant fashion in the
cluster-state model of computation. We do not, however, pro-
vide a direct way of making acluster-statecomputation fault
tolerant, except insofar as a cluster-state computation may be
regarded as a special type of quantum circuit computation. It
would be interesting to investigate more direct fault-
tolerance constructions applicable to an arbitrary cluster-state
computation. Of course, for the purposes of proving the fea-
sibility of scalable quantum computation in the cluster-state
model, the present approach is sufficient.

B. Optical cluster states and fault tolerance

A topic of special interest in the present paper is the op-
tical cluster-state proposal for quantum computation sug-
gested by Nielsenf10g. Optical systems offer a number of
significant experimental advantages for quantum computing,
and this proposal thus offers a very promising approach to
experimental quantum computation. However, the optical
cluster-state proposal also differs from most quantum com-
puting proposals in that it is based on entangling gates that
only work nondeterministically. This nondeterministic nature
poses special difficulties when attempting to prove a thresh-
old for the optical cluster-state proposal. Followingf10g, we
now briefly review some background on this proposal that
will help the reader understand how it fits into the present
paper.

A priori, optics offers significant advantages for the
implementation of quantum computation, such as the ease of
performing basic manipulations, and long decoherence
times. Unfortunately, standard linear optical elements alone
are unsuitable for quantum computation, as they do not en-
able photons to interact. This difficulty can, in principle, be
resolved by making use of nonlinear optical elements
f14,15g, at the price of requiring large nonlinearities that are
at present extremely difficult to achieve.

An alternate approach was developed by Knill, Laflamme,
and MilburnsKLM d f16g, who proposed using measurement
to effect entangling interactions between optical qubits. Us-
ing this idea, KLM developed a scheme for scalable quantum
computation based on linear optical elements, together with
high-efficiency photodetection, feedforward of measurement
results, and single-photon generation. KLM thus showed that
scalable optical quantum computation is in principle possible
using relatively modest resources. Experimental demonstra-
tions f17–21g of several of the basic elements of KLM have
already been achieved.

Despite these impressive successes, the obstacles to fully
scalable quantum computation with KLM remain formi-
dable. The biggest challenge is to perform a two-qubit entan-
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gling gate in the near-deterministic fashion required for scal-
able quantum computation. KLM propose doing this using a
combination of three ideas.s1d Using linear optics, single-
photon sources and photodetectors,nondeterministicallyper-
form an entangling gate. This gate fails most of the time,
destroying the state of the computer when it does so, and so
is not immediately suitable for quantum computation. Sev-
eral variants of this gate have already been experimentally
demonstratedf17–21g. s2d By combining the basic nondeter-
ministic gate with quantum teleportation, a class of nonde-
terministic gates which are not so destructive of the state of
the computer is found.s3d By combining the gates froms2d
with ideas from quantum error correction, the probability of
the gate succeeding can be improved until the gate is near-
deterministic, allowing scalable quantum computation.

The combination of these three ideas allows scalable
quantum computation, in principle. In practice there are
enormous obstacles to performing even a single near-
deterministic entangling quantum gate in this fashion. The
proposal of f10g eliminates much of the difficulty, com-
pletely removing steps3d, and obviating the need for all but
the simplest versions of steps2d.2 This is achieved by com-
bining some of the simplest elements of KLM with the
cluster-state model of quantum computation. The resulting
proposal puts near-deterministic entangling quantum gates
within experimental reach, and thus offers an extremely
promising approach to quantum computation, provided suit-
able methods for dealing with noise can be developed.

A central aim of this paper is to obtain a threshold for the
nondeterministic cluster state model off10g. It is worth men-
tioning, however, that the methods we will develop are also
applicable to other schemes involving the efficient incremen-
tal construction of cluster-states with nondeterministic gates.
The proposal of Barrett and Kokf11g, for example, builds up
the cluster by nondeterministically adjoining small linear
chains rather than the microcluster method used in Sec. V. A
straightforward modification of this section would allow a
threshold for alternative schemes to be obtained.

C. Content of the paper

In this paper we prove two threshold theorems for cluster-
state quantum computation. The first is a general threshold
theorem applicable to a variety of possible implementations
of cluster-state computation, assuming that deterministic en-
tangling gates are available. The second is specifically
adapted to the optical cluster-state proposal for quantum
computation. Taken together, these theorems show that for a
wide variety of possible physical implementations, noise
poses no problem of principle for fully scalable cluster-state
quantum computation.

Before describing in detail the structure of the paper, it is
worth noting two issues that we do not fully address. The
first of these issues is the determination of a numerical value
for the threshold. Although we do obtain bounds on the
threshold, those bounds are obtained through analytic meth-

ods that are far too pessimistic. Our philosophy is that the
problem of understanding the threshold is best split into two
parts. In the first part, one attempts to rigorously prove the
existence of a finite threshold for some large class of noise
models. In the second part, one attempts through a combina-
tion of numerical and analytic work to obtain a realistic es-
timate of the threshold for some specific and physically-
motivated noise model. In this second part it is much more
reasonable to rely on numerical evidence and heuristic rea-
soning, since results for specific noise models can always be
checked by computer simulationsand ultimately by experi-
mentd. Examples of this kind of work for quantum circuits
may be found inf23–27g, and references therein. Our focus
in the present paper has been on the first part of this program,
obtaining a rigorous proof that a finite threshold exists. De-
tailed numerical simulation and optimization of the threshold
value for realistic noise models is underway, and will be
reported elsewheref28g.

The second issue not fully addressed in this paper relates
to the noise model used in our analysis of the optical cluster-
state proposal for quantum computation. One of the most
significant sources of noise in any optical implementation is
likely to be photon loss which is not explicitly dealt with in
our model. This is discussed further in Sec. V B.

This causes the state of the optical qubit to “leak” from
the degrees of freedom associated with the qubit out into
some other dimensions of the physical state space. In the
context of threshold theorems, such noise is known as a
“leakage error,” and there are standard techniques for dealing
with such errors in the theory of fault tolerance. However,
our threshold analysis for the cluster-state model is based on
the recent threshold theorem proved by Terhal and Burkard
f29g, and that threshold does not explicitly deal with leakage
errors. While it seems extremely likely to us that the result of
f29g can be patched so that leakage errors are accounted for,
we have not worked through the analysis in detail. Rather
than do so, in this paper we restrict ourselves to a brief
discussion of leakage, deferring full investigation of this is-
sue to a future publication.

The structure of the paper is as follows. We begin in Sec.
II by defining a measure of how much noise occurs in a
quantum information processing task. We call this measure
theerror strength, and prove several simple properties of the
error strength that will be useful later in the paper.

Section II also contains two important technical results,
which we dub thefirst and second unitary extension theo-
rems. Roughly speaking, these results are applicable to situ-
ations in which two unitary operationsU and V act in a
similar fashion on a subspaceSof state space. Of course, just
becauseU and V act similarly on a subspace, it does not
follow that they have similar global actions on state space.
However, the theorems we prove guarantee that there exist

unitary extensionsŨ andṼ of the restrictionsuUuS and uVuS,
respectively, such thatŨ and Ṽ have approximately equal
actions everywhere on state space. These unitary extension
theorems are critical to our later analysis of fault tolerance.
More generally, we believe that these results are of substan-
tial interest independent of their application to fault toler-
ance, and likely to find application in other areas of quantum
information science.

2Another promising proposal for optical quantum computing
which shares these attributes isf22g.
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Section II concludes with a review of the content of the
threshold theorem for quantum circuits. We focus our atten-
tion on the threshold theorem proved recently by Terhal and
Burkard f29g, extending earlier work of Aharonov and
Ben-Or f30,31g. The threshold off29g is unique in that it is
specifically designed with non-Markovian noise in mind.
While several of the other known variants of the threshold
theorem can cope with some level of non-Markovian noise,
those other variants are designed primarily with the case of
Markovian noise in mind. This is important for us as we will
see that non-Markovian noise arises naturally in the analysis
of fault-tolerant cluster-state quantum computation, even if
the actual physical noise occurring in the cluster-state com-
putation is Markovian.

In Sec. III we describe the cluster-state model of quantum
computation. Rather than providing a detailed proof of how
the model worksswhich is available elsewhered we describe
the model through some simple examples. We also discuss
ways of alleviating one of the key difficulties that arises
when attempting to perform fault-tolerant quantum computa-
tion with cluster states, the tendency of qubits in the cluster
to degrade before they are measured. We conclude with a
brief review of how the cluster-state model of quantum com-
putation can be combined with the ideas of KLM to obtain a
scheme for optical quantum computation.

Section IV is the heart of the paper, stating and proving
our first threshold theorem for cluster-state computation.
More precisely, what we prove is that it is possible to simu-
late an arbitrary quantum circuit using a noisy cluster-state
computation, with arbitrary accuracy and only a small over-
head in the physical resources required, subject to reasonable
constraints on the physical resources available, and on the
noise afflicting the implementation.

The sequence of ideas used to prove this threshold theo-
rem is conceptually rather simple. Step one is to translate the
quantum circuit that we want to simulate into a fault-tolerant
circuit, using the standard prescriptions for making a circuit
fault tolerant. At this stage we assume there is no noise in the
computation. Step two is to translate the fault-tolerant circuit
into a cluster-state computation, again using standard pre-
scriptions. Step three is to carefully specify a procedure for
physically implementing the cluster-state computation, a pro-
cedure that avoids the degradation of parts of the cluster that
was mentioned above. The idea is to build up only part of the
cluster at any given time, adding extra qubits into the cluster
as required. Up until this step we assume that all operations
are perfect. Step four is to introduce noise into the descrip-
tion of the cluster-state computation, as would occur in an
actual implementation. The most complex and critical step,
step five, is to show that the noisy cluster-state computation
is equivalent to theoriginal fault-tolerant circuit, with some
noise added into the circuit. That is, we want to map noise in
the cluster-state computation back ontoequivalent noisein
the original fault-tolerant circuit. We will see that this map-
ping has the property that provided the noise in the cluster-
state model is of an appropriate form, and not too strong, it is
equivalentto noise in the original fault-tolerant circuit which
is only slightly stronger, and which is of a form which can be
suppressed by the usual fault-tolerance constructions for
quantum circuits. This mapping of noise models thus enables

us to infer a threshold theorem for noisy cluster-state com-
putation.

Section V extends these ideas to the optical cluster-state
proposal for quantum computation. The reason the results of
Sec. IV cannot be immediately applied is that the entangling
gates used in the optical cluster-state proposal are nondeter-
ministic. We resolve this problem by devising an approach to
computation in which the nondeterministic entangling gates
can be treated as deterministic entangling gates, subject to a
small amount of additional noise. This enables us to map
noise in the optical cluster-state proposal into equivalent
noise in the deterministic cluster-state model, and then use
the result of Sec. IV to infer a threshold theorem for optical
cluster-state quantum computation.

Section VI concludes the paper with a summary of results,
and a discussion of the outlook for further developments.

II. NOISE AND FAULT-TOLERANT
QUANTUM CIRCUITS

In order to prove a threshold for cluster-state computation
we first need a way of describing quantum noise, and quan-
tifying its effects. In Sec. II A we introduce a measure that
quantifies the effects of quantum noise, describe some prop-
erties of that measure, and describe the unitary extension
theorems. In Sec. II B we review the threshold theorem for
quantum circuits proved by Terhal and Burkardf29g.

A. Error strength

Suppose we have a quantum system,Q, and we wish to
implement a unitary operationUQ on that system. Unfortu-
nately, the system is not completely isolated from its envi-
ronment,E, and thus the true evolution of the system will be
described by some unitary evolutionVQE acting on both the
system and the environment. We define theerror strengthor
noise strengthof this operation by

DQ:EsUQ,VQEd ; min
UE

iVQE − UQ ^ UEi, s1d

where the minimum is over all unitary operationsUE on the
systemE, and the norm is the usual operator norm.

We will use the error strengthDQ:E as our principal mea-
sure of noise in the implementation of quantum computation,
whether it be by cluster-state methods, or by quantum cir-
cuits. AlthoughDQ:E has been defined only when the ideal
operationUQ is unitary, we will see later that it can also be
used to understand noise in operations that may not be uni-
tary, such as measurement and state preparation.DQ:E satis-
fies several properties that will be required later in this paper.

Proposition 1 (Chaining property). Let UQ
1 , . . . ,UQ

m be
unitary operations on the systemQ, and VQE

1 , . . . ,VQE
m be

unitary operations on the combined systemQE. Then

DQ:EsUQ
1 . . .UQ

m,VQE
1 . . .VQE

m d ø o
j=1

m

DQ:EsUQ
j ,VQE

j d. s2d

The chaining property tells us that the total error strength
of a sequence of imperfect operations is less than or equal to
the sum of the individual error strengths. We note that this
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proposition and its proof is similar to lemma 1 in Sec. I C of
f29g.

Proof. Choose UE
j so that DQ:EsUQ

j ,VQE
j d=iVQE

j −UQ
j

^ UE
j i, and defineD j ;VQE

j −UQ
j

^ UE
j . A straightforward in-

duction onm can be used to establish the formula

VQE
1 . . .VQE

m = sUQ
1 . . .UQ

md ^ sUE
1 . . .UE

md + o
j=1

m

sUQ
1 . . .UQ

j−1

^ UE
1 . . .UE

j−1dD jVQE
j+1 . . .VQE

m . s3d

The result follows by subtractingsUQ
1 . . .UQ

md ^ sUE
1 . . .UE

md
from both sides of Eq.s3d, and applying the triangle inequal-
ity. h

To map noise from the cluster-state model to the circuit
model we will use a technique that involves changing the set
of systems considered to be part of the environment. The
following two propositions help us understand the behavior
of the error strength when the environment is changed in this
way.

Proposition 2. Let A,B andC be three quantum systems,
and letUA, UB, VABC be unitary operations acting on systems
indicated by the respective subscripts. Then

DA:BCsUA,VABCd ø DAB:CsUA ^ UB,VABCd. s4d

Proof. The proof is immediate from the definition ofDQ:E
and the fact that the set of unitary matricesUBC on BC is a
superset of the set of unitary matrices of the formUB ^ UC,
whereUB is the sfixedd given matrix:

DA:BCsUA,VABCd = min
UBC

iVABC− UA ^ UBCi s5d

ømin
UC

iVABC− UA ^ UB ^ UCi s6d

=DAB:CsUA ^ UB,VABCd. s7d

h
Proposition 3. Let A, B andC be three quantum systems,

and letUA, VAB, VC be unitary operations acting on systems
indicated by the respective subscripts. Then

DA:BCsUA,VAB ^ VCd ø DA:BsUA,VABd. s8d

Proof. Similarly to the proof of the previous proposition,
the proof is immediate from the definitions and the fact that
the set of unitary matricesUBC on BC is a superset of the set
of unitary matrices of the formUB ^ VC, where VC is the
sfixedd given matrix:

DA:BCsUA,VAB ^ VCd

= min
UBC

iVAB ^ VC − UA ^ UBCi s9d

ømin
UB

iVAB ^ VC − UA ^ UB ^ VCi s10d

=min
UB

iVAB − UA ^ UBi s11d

=DA:BsUA,VABd. s12d

h
The next proposition helps in commuting noisy operations

past one another.
Proposition 4. Let UQ andVQ be commuting unitary op-

erations on a quantum systemQ. Let UQE andVQE be noisy
versions of these operations involving also an environment

E. Then there exist unitariesŨQE and ṼQE such thatsad
ŨQEṼQE=VQEUQE; DQ:EsUQ,ŨQEdøDQ:EsVQ,VQEd; and

DQ:EsVQ,ṼQEdøDQ:EsUQ,UQEd.
This proposition tells us that ifUQ andVQ commute, then

applying a noisy version ofUQ followed by a noisy version
of VQ is equivalent to applying a noisy version ofVQ fol-
lowed by a noisy version ofUQ. Furthermore, the noise
strengths in the new versions ofUQ and VQ are no worse
than in the originals, except for interchanging the role ofUQ
andVQ.

Proof. Using the definition ofDQ:E we may choose uni-
tariesUE andVE, and matricesDU andDV, such that

UQE = sUQ ^ UEdsI + DUd, s13d

iDUi = DQ:EsUQ,UQEd, s14d

VQE = sI + DVdsVQ ^ VEd, s15d

iDVi = DQ:EsVQ,VQEd. s16d

With these choices,I +DU andI +DV are easily verified to be
unitary operations onQE. We see that

VQEUQE = sI + DVdsVQ ^ VEdsUQ ^ UEdsI + DUd s17d

=sI + DVdsUQ ^ VEdsVQ ^ UEdsI + DUd, s18d

where we used the commutativity ofUQ andVQ in the sec-

ond line. The proof is completed by choosingŨQE

;sI +DVdsUQ ^ VEd and ṼQE;sVQ ^ UEdsI +DUd. h

To prove our threshold theorems for cluster-state compu-
tation, we need two other theorems, which we call the first
and second unitary extension theorems. These results are not
phrased directly in terms of the error strengthDQ:E, but we
shall see later in the paper that these theorems have signifi-
cant implications for the error strength.

The first unitary extension theorem may be motivated by
the following problem. SupposeV is a noisy unitary opera-
tion approximating a noiseless unitary operationU. sNote
that U and V here act on the same state space;U might
correspond toUQ ^ UE in our earlier notation, withV corre-
sponding toVQE.d For some physical reason we are only
interested in the action ofU andV on some subspaceSof the
total Hilbert space. That is, we know on physical grounds
that all inputs to the operations are constrained to be in that

subspace. Furthermore, there is another unitary operationŨ
which acts identically to U on the subspaceS. A natural

question is whether we can find a unitary operationṼ which

acts identically toV on the subspaceS, and so thatṼ ap-

proximatesŨ at least as well asV approximatesU.
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Remarkably, such an extensionṼ always exists, and the
proof of the first unitary extension theorem shows how it
may be constructed. We believe this theorem has consider-
able independent interest in its own right, quite apart from
the applications later in this paper to fault-tolerant computa-
tion with cluster states.

Theorem 1. (First unitary extension theorem). Let U, Ũ
andV be unitaries acting on a Hilbert spaceT. SupposeS is

a subspace ofT such thatU andŨ have the same action on

S, i.e., uUuS= uŨuS. sNote that we do not assume thatU andŨ

leave the subspaceS invariant, so uUuS and uŨuS should be
considered as maps fromS into T.d Then there exists a uni-

tary extensionṼ of uVuS to the entire spaceT such that

iṼ − Ũi ø iV − Ui. s19d

The proof of this theorem is given in Appendix A.
The second unitary extension theorem answers a question

similar in spirit, but not identical, to the question answered
by the first unitary extension theorem. LetU andV be uni-
tary operations acting on a vector spaceT, with a subspaceS.
Suppose uUuS and uVuS are close, i.e.,iuUuS− uVuSi is small.

Can we argue that there exists a unitary operationṼ extend-

ing uVuS, and such thatiU−Ṽi is also small? The second
unitary extension theorem shows that this is always true.

Theorem 2. (Second unitary extension theorem). Let U
and V be unitary operation acting on asfinite-dimensionald
inner product spaceT. SupposeS is a subspace ofT. Then

there exists a unitary operationṼ such that uṼuS= uVuS and

iU − Ṽi ø 2iuUuS− uVuSi. s20d

The proof of the second unitary extension theorem is
given in Appendix A. Note that this theorem may easily be
restated in the language of isometries, if that is more to one’s
taste. It is also worth noting that the second unitary extension
theorem implies a weaker version of the first unitary exten-
sion theorem. In the notation of the first theorem, the second

theorem implies that there exists a unitary extensionṼ of

uVuS such thatiṼ−Ũiø2iuŨuS− uVuSiø2iU−Vi.

B. Fault tolerance in the quantum circuit model

The threshold for cluster-state computation proved in this
paper is based on the threshold for quantum circuits proved
by Terhal and Burkardf29g. In this subsection we review
Terhal and Burkard’s result. We begin with a description of
the assumptions they make about quantum circuits, including
the noise model, before stating their main theorem. Note that
the noise model used by Terhal and Burkard is the basis for
our noise model for cluster-state computation, described in
Sec. IV A.

Terhal and Burkard split the total system up into three
types of subsystem. First, there areregister qubits, which can
be controlled and used for computation. These qubits are
present through the entirety of the computation. Second,
there areancilla qubits, which may also be controlled and
used for the computation. The difference between register

and ancilla qubits is that the ancillas may be brought into the
computer partway through a computation, used as part of the
subsequent computation, and then discarded at some later
time. The third type of system is theenvironment, which is
not under control.

The computation is represented by a sequence of unitary
operations. Ideally, these operations would be applied just to
the register and ancilla qubits, but inevitably they involve
some interaction with the uncontrolled environment. It is this
interaction which causes noise in the computer. We will find
it convenient to assume the interaction with the environment
is unitary; by making the environment sufficiently inclusive
the laws of quantum mechanics ensure we may always make
such an assumption.

Within this framework, our noise model may be described
as follows. Each qubit in the computer, whether a register
qubit or an ancilla qubit, has associated with it its own envi-
ronment. So, for example, if we label the qubitsQ1,Q2, . . .,
then the corresponding environments would be labeled
E1,E2, . . .. The keyassumption we make about noise is that
noninteracting qubits have noninteracting environments.
More precisely, suppose as part of the computation we want
to attempt some unitary gateU on qubit Qj. This might be
the identity gate, representing quantum memory, or it might
be a more complex gate, like a Hadamard or Pauli gate. In
reality, this gate will be noisy, due to interactions with the
environment. Our assumption is that the real noisy operation
is a unitary evolutionV acting onQj and its environmentEj,
with the other qubits and their environments not affected. In
a similar way, if we attempt a two-qubit operationU between
qubitsQj andQk, we assume that the real noisy evolutionV
may involve the qubitsQj ,Qk, and the corresponding envi-
ronmentsEj ,Ek, but not the other qubits or their environ-
ments. With these assumptions, we say the noise in a noisy
circuit is of strength at mosth if each ideal gateUj in the
circuit is approximated by a noisy gateVj such that
DQ:EQ

sUj ,Vjdøh, whereQ is the qubit or qubits involved in
the gate, andEQ is the corresponding environment or envi-
ronments.

We refer to the assumption that noninteracting qubits have
noninteracting environments as thelocality assumptionfor
noise.3 Physically, the motivation for the locality assumption
is that each environment is well localized in space, and that
environments can only interact with one another when two
qubits are brought together to interact in a quantum gate.

Importantly, Terhal and Burkard do not make any Mar-
kovian assumption. That is, each environment can have an
arbitrarily long memory. So, for example, we may perform a
sequence of gates in whichQ1 first interacts withE1, which
then passes information ontoE2 through a subsequent gate,
then ontoE3 through another gate, and finally corrupts qubit
Q4, say. This is in contrast with many other variants of the
threshold theorem, where Markovian noise is assumed, i.e.,

3Terhal and Burkard consider even more general noise models,
which may be of interest in certain circumstances. However, the
locality assumption is sufficiently strong to cover a very wide class
of physically interesting noise models, and so we restrict attention
to noise models satisfying this assumption.

M. A. NIELSEN AND C. M. DAWSON PHYSICAL REVIEW A71, 042323s2005d

042323-6



qubits are assumed to have independent and memoryless en-
vironments.

In addition to the locality assumption for noise, Terhal
and Burkard make three important additional assumptions
about how quantum circuits are performed.

s1d It is possible to perform quantum gates on different
qubits in parallel. Physically, this requirement is due to the
fact that error correction must constantly be performed on all
the qubits, even if one is merely attempting to maintain them
in memory. It is possible to prove that parallelizability is a
necessary condition for a threshold theorem to apply.

s2d It is possible to initialize fresh ancilla qubits in the
stateu0l just prior to their being brought into the computa-
tion. Physically, this requirement is due to the fact that the
ancillas are used as an entropy sink to remove noise from the
computation. To be effective in this capacity they must start
in a low-entropy state. It is possible to prove that the require-
ment for fresh ancillas is a necessary condition for a thresh-
old theorem to applyf32g.

s3d Excepting ancilla preparation, all dynamical opera-
tions applied during the computation are unitary, up until the
final measurement at the end of the computation. This is not
a necessary feature of a threshold theorem, but is a feature of
the threshold of Terhal and Burkard.

The third assumption, that the computation is performed
using only unitary operations, is rather inconvenient from
our point of view, since the cluster-state model of quantum
computation inherently involves many measurements per-
formed during the computation. One feature of our proof is
that it involves the replacement of measurements and classi-
cal feedforward by equivalent unitary operations. The reason
we use the all-unitary model is that we need a threshold
theorem which allows non-Markovian noise, and at present
this means using Terhal and Burkard’s all-unitary model. Fu-
ture improvements to the threshold theorem for cluster states
may come by developing threshold results for quantum cir-
cuits which allow both non-Markovian noise and measure-
ment during the computation.

To conclude preparation for the statement of the threshold
theorem we need a few final items of notation and nomen-
clature. It will be convenient to assume that each unitary
operation performed during the computation takes the same
amount of time,Dt, and so the circuit may be written as a
sequence of unitary operations performed at timest=0,t
=Dt ,t=2Dt, and so on. We define alocation in the circuit to
be specified by a tripleskDt ,U ,Qd consisting of the timekDt
at which the gateU is performed on a qubit or ordered pair
of qubits,Q. Our measure of the total size of the circuit is the
total number of locations in that circuit. Note that it is im-
portant to count locations at which the identity gate is ap-
plied to a qubit.

Computation is concluded by measuring the computer in
the computational basis to produce a probability distribution
p. The goal of fault tolerance is to take a perfect quantum
circuit which outputs a probability distributionp and to con-
struct a fault-tolerant quantum circuit that may be subject to
noise, but nonetheless outputs a probability distributionp8
which is close to p in some suitably defined sense. As the
measure of closeness we use theKolmogorov distance, ip
−p8i1; 1

2oxupsxd−p8sxdu.

Theorem 3. (Threshold theorem for quantum circuits
f29g). There exists a constant thresholdhth.0 for quantum
circuit computation with the following property. Letn be the
number of locations in a perfect quantum circuit,C, which
outputs the probability distributionp. Let e.0. We can ef-
ficiently construct a noisy quantum circuit,C8, with a total
number of locationsnpolylogsn2/ed, and such that if the
noise inC8 satisfies the locality assumption and is of strength
at mosthth then the output distributionp8 from C8 satisfies
ip−p8i1øe.

Terhal and Burkard’s construction ofC8 is based on a
particular type of quantum error-correcting code dubbed a
computation codeby Aharonov and Ben-Orsdefinition num-
ber 15 in f31gd. As a consequence of this construction, the
circuit C8 is built up out of a special restricted class of quan-
tum gates, gates that can be implemented in a fault-tolerant
manner. For example, it is possible to constructC8 using just
operations from the following restricted set: preparation of
qubits in the stateu0l; the identity gate, i.e., quantum
memory;H sHadamardd gates,Zp/4 andZp/8 gates, whereZu
is the rotation of a single qubit byu about thez axis of the
Bloch sphere; and controlled-NOT gates. As noted earlier,C8
does not include any measurement or classical processing of
data, except at the output; all dynamical operations are fully
unitary.

For our purposes in this paper it is convenient to replace
C8 with an equivalent circuit built up from a different set of
basic operations. We make this replacement in two stages.
The first stage is to replace the operations in the circuitC8 by
operations from the following set: preparations of a qubit in
the stateu1l; the identity gate; gates of the formXaZb; and
the controlled-Z gate, which we shall callCPHASE. That this
can always be done follows from well-known quantum cir-
cuit identities. We call the resulting circuitC9.

The second stage is to replace the operations inC9 by
operations from the following set: preparations of a qubit in
the state u1l; gates of the formHZa; and the gatesH
^ HdCPHASE. We refer to this as thecanonical setof allowed
operations. To see that this can be done requires a little care,
due to the absence of the identity gate from the canonical set.
The trick is to simulate each gate inC9 by two gates from the
canonical set, as follows:I →HH; XaZb→HZaHZb;
CPHASE→ sH ^ HdsH ^ HdCPHASE.

We call the circuit that results when these substitutions are
madeC-, and refer to it as thecanonical formof the fault-
tolerant circuitC8. It is clear on physical grounds that the
canonical form also satisfies the threshold theorem. Alter-
nately, a rigorous proof of this fact follows from the chaining
property for error strength, proposition 1. The essential idea
of the proof may be illustrated by example: suppose an iden-
tity gate in the original circuitC8 has been replaced by two
consecutiveH gates in the canonical circuitC-. Provided the
H gates both suffer from noise of strength less thanhth/2,
proposition 1 ensures that their product is equivalent to doing
the identity gate with error strength at mosthth. Thus, while
the thresholdhth- for C- may be somewhat reduced from the
threshold forC8, hth, it is reduced at most by some constant
factor.

Summing up, we have the following restatement of the
threshold theorem in the form that will be used for our analy-
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sis of fault-tolerant cluster-state quantum computation.
Theorem 4 (Threshold theorem for quantum computation,

with circuits in canonical form). There exists a constant
thresholdhth.0 for quantum circuit computation with the
following property. Letn be the number of locations in a
perfect quantum circuit,C, which outputs the probability dis-
tribution p. Let e.0. We can efficiently construct a noisy
quantum circuit,C-, in canonical formsdefined aboved, with
a total number of locationsnpolylogsn2/ed, and such that if
the noise inC8 satisfies the locality assumption and is of
strength at mosthth then the output distributionp- from C-
satisfiesip−p-i1øe.

III. CLUSTER-STATE QUANTUM COMPUTATION

In this section we describe how cluster-state quantum
computation works. Section III A gives a basic description of
the model, and introduces language useful in the later analy-
sis of fault tolerance. Section III B describes how cluster-
state computation can be realized in optics. All proofs are
omitted, and the reader is referred instead tof1g, or to the
leisurely pedagogical account inf33g. Note that our account
barely scratches the surface of the work that has been done
on cluster-state computation: the interested reader should
also consultf7–9,34,35g for further work on the cluster-state
model of quantum computation; further work on other
measurement-based models of quantum computation may be
found in f36–42g.

A. Introduction to cluster-state quantum computation

The basic element of the cluster-state model is the cluster
state, an entangled network of qubits.4 An example of a clus-
ter state is represented in Fig. 1. Each circle represents a
single qubit in the cluster. We may define the cluster state as
being the result of the following two-part preparation proce-
dure: first, prepare each qubit in the stateu+l;su0l
+ u1ld /Î2, and then applyCPHASE gates between any two
qubits joined by a line. Since theCPHASE gates commute
with one another, it does not matter in what order they are
applied. Note that this is merely a convenient way of defin-
ing the cluster state, and there is no requirement that it be
prepared in this way.

Given the cluster state, a cluster-state computation is sim-
ply a procedure for measuring some subset of qubits in the

cluster, using single-qubit measurements and feedforward of
the measurement results to control the bases in which later
qubits are measured. The output of the computation is the
joint state of whatever qubits remain unmeasured at the end
of the computation.

Remarkably, this procedure can be used to simulate an
arbitrary quantum circuit. Indeed, the cluster state of Fig. 1
was specifically chosen in order to simulate the circuit in Fig.
2. In Fig. 3 we illustrate visually how the cluster state of Fig.
1 can be used to simulate the circuit in Fig. 2. Each qubit in
the quantum circuit is replaced by a horizontal line of qubits
in the cluster state. Different horizontal qubits in the cluster
represent the original qubit at different times, with the
progress of time being from left to right. Each single-qubit
gateHZa in the quantum circuit is replaced by a single qubit
in the cluster state.CPHASE gates in the original circuit are
simulated using a vertical “bridge” connecting the appropri-
ate qubits. The cluster-state computation itself is carried out
by performing a series of measurements in the time order and
measurement bases indicated in the caption to Fig. 3. The
final output of the cluster-state computationucl is related to
the output of the quantum circuitufl by ucl=sufl, wheres
is a product of Pauli matrices that is an easy-to-compute
function of the measurement outcomes obtained during the
cluster-state computation.

4The states we call cluster states are in fact a generalization of the
cluster state used inf1g These generalized states have been called
graph stateselsewhere; we prefer to use the more elegant term
cluster state to refer to all the states in this class.

FIG. 1. A simple cluster state. Note that each circle represents a
single qubit in the cluster.

FIG. 2. A two-qubit quantum circuit. Without loss of generality
we may assume the computation starts with each qubit in theu+l
;su0l+ u1ld /Î2 state, since single-qubit gates can be prepended to
the circuit if we wish to start in some other state. The two-qubit gate
is aCPHASEgate. The boxes are single-qubit gates of the formHZa,
whereH andZa are as defined in Sec. II B. Note that by composing
three of these gates we can obtain an arbitrary single-qubit gate.
Thus gates of the formHZa, together withCPHASE gates, are uni-
versal for quantum computation.

FIG. 3. The cluster state of Fig. 1, marked to indicate how it is
used to simulate the different elements in the circuit of Fig. 2. Note
that the labeled qubits all have labels of the form “nU,” wheren is
a positive integer, andU is a unitary operation. The labeln indicates
the time order; qubits with the same label can be measured in either
order, or simultaneously.U indicates that the qubit is measured by
performing the unitaryU and then measuring in the computational
basis. Equivalently, a single-qubit measurement in the basis
hU†u0l ,U†u1lj is performed. Note that except for the first measure-
ments, all measurements haveU of the formHZ±a; the6 indicates
that the value of the sign depends upon the outcomes of earlier
measurements. The output from the computation is at the unlabeled
qubits, which are not measured.
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Although the example we have described involves a spe-
cific quantum circuit, general quantum circuits can be given
a cluster-state simulation along similar lines. Note that we
have not explicitly explained how the measurement feedfor-
ward procedure works, nor the precise function of measure-
ment outcomes that determines the Pauli corrections at the
end of the computation. These are explained in detail in
f1,33g; we also give an explicit description of the procedures
used in Sec. IV.

One feature of our example quantum circuit, Fig. 2, that
deserves attention is the fact that it does not involve any
ancilla qubits. An important feature of many quantum cir-
cuits is that they involve the preparation and discarding of
ancillas during the computation. This is especially true of
circuits for quantum error-correction and fault-tolerant quan-
tum computation, where the ancillas are used as a heat sink
to remove excess entropy from the computer. Such ancilla
preparations and removal are easily simulated in the cluster-
state model. Figure 4sad illustrates a simple quantum circuit
involving an ancilla that is prepared and later discarded. Fig-
ure 4sbd illustrates how this preparation and discarding can
be simulated within the cluster-state model.

The cluster states we have described so far have all been
embedded in two dimensions. This is for convenience only.
In practice, a more complicated topology for the cluster may
be useful in some circumstances. This may be achieved ei-
ther by embedding the cluster in a higher number of dimen-
sions, or by nonlocal connections between different parts of
the cluster. Fault-tolerant quantum circuits often involve two
sor mored spatial dimensions, corresponding to a three-
dimensional cluster-state computation. Note, however, that it
doesnot follow that we require the use of all three spatial
dimensions to do a cluster-state simulation of a two-
dimensional quantum circuit. We will see below that it is
only necessary to prepare a small part of the cluster at any
given time, and this means that the cluster-state computation
may be performed without requiring additional spatial di-
mensions beyond those used in the circuit being simulated.

Despite the different possible topologies of the cluster
state, we shall restrict out attention to cluster states arranged
on a regular grid in two dimensions. Furthermore, we shall
always arrange things so that each row of the cluster can be

mapped to a single qubit in the corresponding quantum cir-
cuit, and that the columns of the cluster are connected with
the time ordering of the sequence of measurements. Qubits
in the cluster are measured from left to right. This consider-
ably simplifies discussionsand the figuresd, and the exten-
sions to more complicated topologies are in all cases obvi-
ous.

Up until now, we have described a cluster-state computa-
tion as being composed of two steps: preparation of the clus-
ter state, followed by an adaptive sequence of single-qubit
measurements. However, it is also possible to implement
cluster-state computations in alternative ways. The key ob-
servation is that we can delay preparation of some parts of
the cluster until later, doing some of the measurements first.
So, for example we could do a cluster-state computation via
the following sequence of steps.

Prepare columns one and two of the cluster, usingu1l
preparations andCPHASEgates.

Perform the first column of measurements.
Prepare column three, usingu1l preparations andCPHASE

gates to adjoin the third column of qubits to the second
column.

Perform the second column of measurements.
Keep alternating the steps of preparing an extra column

then measuring an extra column, until the end of the
computation.

We call this aone-buffered implementationof cluster state
computation, since there is always a buffer of one column
between the column of qubits being measured, and the most
recently prepared column of qubits. We call the set of qubits
about to be measured thecurrent column, and the column
after that thenext column.

For fault tolerance the one-buffered implementation of
cluster-state computation has a great advantage over our
original prescription in which the entire cluster is prepared
first. The reason, as indicated in the Introduction, is that if
the entire cluster is prepared first, then qubits which are to be
measured later in the computation will have undergone sub-
stantial degradation by the time they are measured, and this
will unacceptably corrupt the output of the computation.5

More generally, the one-buffered implementation illus-
trates the important point that a given cluster-state computa-
tion may have many differentimplementations, i.e., different
methods for creating the cluster and performing the required
single-qubit measurements. When proving fault-tolerant
threshold theorems for cluster-state computation we will
need to carefully specify the details of the implementation
used. All the implementations used in this paper are variants
on the one-buffered implementation.

B. Optical cluster-state quantum computing

Our description of cluster-state computation has been as
an abstract model of quantum computation. As described in
the Introduction the cluster-state model also shows great
promise as the basis for experimental implementations of

5We thank Andrew Childs and Debbie Leung for pointing this fact
out.

FIG. 4. Use of ancillas in cluster-state computations. Figuresad
shows an ancilla which is prepared then discarded. The cluster-state
computation used to simulate this is shown insbd.
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quantum computation in opticsf10g. We now briefly describe
the optical implementation of cluster-state computation, fol-
lowing f10g, and some of the special challenges it poses for a
proof of fault tolerance.

The proposal off10g is a modified version of the proposal
of Knill, Laflamme, and MilburnsKLM d f16g, and we now
briefly review some of the basic elements of KLM, following
the review inf10g. KLM encodes a single qubit in two opti-
cal modes,A and B, with logical qubit statesu0lL;u01lAB,
and u1lL;u10lAB. sNote that we are using the standard
bosonic occupation number representation on the right-hand
side of these definitions, not the qubit notation, so that, for
example,u01lAB indicates zero photons in modeA, and one
photon in modeB.d State preparation is done using single-
photon sources, while measurements in the computational
basis may be achieved using high-efficiency photodetectors.
Such sources and detectors make heavy demands not entirely
met by existing optical technology, although encouraging
progress on both fronts has been reported recently. Arbitrary
single-qubit operations are achieved using phase shifters and
beamsplitters.

The main difficulty in KLM is achieving near-
deterministic entangling interactions between qubits. KLM
use the idea of gate teleportationf5,6g to produce a gate
CZn2/sn+1d2 which with probability n2/ sn+1d2 applies a
CPHASEgate to two input qubits, wheren is any fixed posi-
tive integer. When the gate fails, the effect is to perform a
measurement of those qubits in the computational basis. In-
creasing values ofn correspond to increasingly complicated
teleportation circuits. For this reason, KLM combine these
ideas with ideas from quantum error correction in order to
achieve a near-deterministicCPHASEgate, and thus complete
the set required for universal quantum computation.

An important property of the gateCZn2/sn+1d2 is that in the
ideal case of perfect implementation,we know when the gate
succeeds. In particular, in KLM’s implementation procedure,
success of the gate is indicated by certain photodetectors
going “click,” while failure is indicated by different photo-
detection outcomes. We call such gatespostselectedgates to
indicate that whether the gate has succeeded is known, and
can be fed forward to later parts of the computation.

The advantage of the optical cluster-state proposal off10g
is that it only makes use of theCZ1/4 andCZ4/9 gates, both of
which use relatively simple configurations of optical ele-
ments, and avoids the use of error correction in achieving a
near-deterministicCPHASEgate. This results in a greatly sim-
plified proposal for quantum computation.

A key observation used in the optical cluster-state pro-
posal is an interesting general property of cluster states. Sup-
pose we measure one of the cluster qubits in the computa-
tional basis, with outcomem. Then it can be shown that the
posterior state is just a cluster state with that node deleted, up
to a localZm operation applied to each qubit neighboring the
deleted qubit. These are known local unitaries, whose effect
may be compensated in subsequent operations, so we may
effectively regard such a computational basis measurement
as simply removing the qubit from the cluster.

This is a useful observation because when theCZn2/sn+1d2

gate fails, it effects a measurement in the computational ba-

sis. Thus, if one attempts to add qubits to a cluster using a
CZn2/sn+1d2 gate, failure of the gate merely results in a single
qubit being removed from the cluster, rather than the entire
cluster being destroyed.f10g shows that by combining this
observation with a random walk technique, it is possible to
efficiently build up an arbitrary cluster state using either
CZ4/9 or CZ1/4 gates. Once this is done, all the other opera-
tions in the cluster-state model can be done following KLM’s
prescription.

IV. FAULT TOLERANCE WITH DETERMINISTIC
CPHASE GATES

In this section we prove a threshold theorem for noisy
cluster-state quantum computation. This theorem is appli-
cable to situations in which the cluster can be extended dur-
ing the computation usingCPHASE gates that are noisy, but
operate deterministically. In the next section we extend the
theorem to some situations where theCPHASE gates operate
nondeterministically, as is the case for optical cluster-state
computation.

Rather than attempt to invent fault-tolerant methods for
cluster-state computation from scratch, it is natural to build
off the existing and rather extensive body of literature on
fault-tolerant quantum circuits. As described in the Introduc-
tion, our strategy is to consider a cluster-state computation
that simulates a fault-tolerant quantum circuit, and then ask
if the simulated fault-tolerant capabilities are able to correct
noise in the cluster-state implementation.

We therefore begin with a quantum circuitQ and, instead
of directly translating it into the cluster-state model, first en-
codeQ as a fault-tolerant circuitFQ in the canonical form of
theorem 4. Recall that a canonical fault-tolerant circuit uses
only preparations of qubits in the stateu1l, single-qubit gates
of the form HZa, and the two-qubit gatesH ^ Hd CPHASE.
Using the prescription described in Sec. III it is a simple
matter to translateFQ into a cluster-state computation, which
we denoteC.

Suppose now thatC8 is a noisy one-buffered implementa-
tion of C. Is C8 equivalent to some noisy implementationFQ8
of FQ? We will show in this section that this is indeed the
case, and moreover that the noise is of a type and strength
that is correctable by the fault-tolerance built intoFQ. The
noisy cluster-state computationC8 is therefore a fault-tolerant
simulation of the original quantum circuitQ. It is worth
noting that this noise correspondence holds foranyquantum
circuit and its corresponding one-buffered implementation;
we do not use any special properties ofFQ in proving the
noise correspondence.

A key construction used in establishing this noise corre-
spondence is what we call theliteral quantum circuit,L. The
literal circuit is a quantum circuit depiction of the operations
performed during a one-buffered implementation of a
cluster-state computation. It is a literal translation of the one-
buffered implementation, and should not be confused with
the quantum circuitFQ being simulated. As an example,
consider the single-qubit quantum circuit depicted in Fig.
5sad. The corresponding cluster-state computation is depicted
in Fig. 5sbd, and the literal circuit showing the one-buffered
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implementation is shown in Fig. 5scd. Note that although 3
qubits appear in the literal circuit, the quantum circuit being
simulated is a single-qubit computation.

The literal circuit L offers a convenient means for de-
scribing the effects of noise inC8, and for this reason we
have gone to some trouble in Fig. 5scd to depict the correct
time-ordering of events. We have, for example, offset the
preparation of the finalu1l state, since it is not actually pre-
pared until later in the one-buffered implementation, and
preparation at an earlier time would result in considerably
more noise affecting the qubit.

The noise inC8 is quantified by the error strengthDQ:E of
the operations appearing in the literal circuit. The key result
of this section is that if the worst-case noise strength inC8 is
h, then the corresponding noise in the quantum circuitFQ8
satisfies the locality assumption and has strength at mostch,
for some constantc. Providedchøhth we conclude that the
distribution p8 that results when we measure the output of
the cluster-state computation satisfiesip−p8i1øe, wherep
is the distribution output from the noise-free computation.

The section contains three parts. Section IV A introduces
our noise model for cluster-state computation. Section IV B
proves the noise correspondence described above for the
simplest case when the quantum circuitFQ and the corre-
sponding cluster-state computationC are single-qubit compu-
tations. All the ideas introduced in this subsection are then
extended to the case of a multiqubitFQ andC in Sec. IV C.

A. Noise model for a one-buffered cluster-state
computation

The noise model appropriate to a cluster-state computa-
tion depends critically upon the implementation procedure
used to perform the computation. The results in this section
are based on the one-buffered implementation procedure, as
described in Sec. III. Recall that in a one-buffered implemen-

tation the only qubits available in the cluster at any given
time are the qubits in the current column, and the next col-
umn. The computation is performed by repeatedly perform-
ing the following two steps:s1d making all the necessary
measurements on the current column; ands2d usingCPHASE

gates to add an extra column of qubits into the cluster. The
only variation in this procedure comes at the very beginning
of the computation, where we need to create two whole col-
umns of cluster-state qubits, and at the end, where we do not
need to add an extra column into the cluster.

As in the fault-tolerance results for quantum circuits, our
results do not allow for completely arbitrary types of noise.
Instead, we make some physically plausible assumptions
about the nature of noise in the one-buffered implementation.
The noise model we adopt allows for the following types of
noise.

s1d Noise in unitary dynamics. We model this in a manner
similar to the noise model for quantum circuits described in
Sec. II B. Each qubit has its own environment, and we as-
sume that noninteracting qubits have noninteracting environ-
ments, but make no other assumptions about the noise. In-
deed, we can use an even more general noise model, in
which qubits at the same row in the cluster state are assumed
to share a common environment, and all we assume is that
noninteracting rows have noninteracting environments.

s2d Noise in quantum memory. Quantum memory is sim-
ply the sunitaryd identity operation, and we model a noisy
quantum memory step as we would any other noisy unitary
operation. Note that this type of noise affects all qubits other
than the current column during a round of measurements.

s3d Noise in preparation of theu1l state. We model this
as perfect preparation ofu1l, followed by a noisy quantum
memory step.

s4d Noise in measurements in the computational basis.
We model this as a noisy quantum memory step, followed by
a perfect measurement in the computational basis.
We quantify the overall strength of noise in a one-buffered
cluster-state computation by the worst-case error strength in
any of the unitary operations, including the noisy quantum
memory steps in preparation and measurement.

B. Noise correspondence for single-qubit computations

In this section we consider the simplest case of a single-
qubit circuit FQ made up of gatesHZa j

, as shown in Fig.
5sad. A cluster-state computationC simulatingFQ is shown
in Fig. 5sbd. The establishment of the noise correspondence
is a five-step process. To help orient the reader, we now
outline these steps. Note that the meaning of these steps may
not be completely clear upon a first read, but hopefully will
ease comprehension of later parts of the paper.

s1d We begin with the literal circuitL depicting a one-

FIG. 6. A circuit with the same output as that of Fig. 5scd. The
new two-qubit gates that have been inserted areSWAP gates.

FIG. 5. The starting point for mapping noise in the quantum
circuit model to corresponding noise in the cluster state model. We
begin with a simple quantum circuit in the canonical form of Sec.
II B, and translate this circuit into a cluster-state computation. The
explicit implementation of the cluster-state computation is de-
scribed by the literal circuit.
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buffered implementation ofC. Such a circuit is shown in Fig.
5scd.

s2d The literal circuit of Fig. 5scd does not explicitly con-
tain the classical feedforward and control that is performed
during the cluster-state computation. Without taking these
into account, it is not possible to understand the effects of
noise on the computation. Thus, we expandL to explicitly
include the classical feedforward and control.

s3d We use a series of circuit identities to transform the
literal circuit L into an equivalent circuit that contains
“block” operationsBa j

, each of which corresponds directly to
the action of some gateHZa j

in FQ. Looking ahead, the
block form equivalent to a perfectly implementedL is de-
picted in Fig. 14, with theBa j

shown in Fig. 15.
s4d The threshold theorem of Terhal and Burkard in-

volves only unitary operations. Thus, the next step is to re-
place the classical elements of the blocksBa j

with unitary
quantum equivalents to obtain a unitary operationQBa j

.
Looking ahead, the correspondence with theHZa j

of FQ is
explicitly shown in proposition 5. The circuit equivalent to
the literal circuit but containing unitary blocks is shown in
Fig. 19, with theQBa j

defined in Fig. 17.
s5d It can now be shown that noise inC is equivalent to

noise within the unitary blocksQBa j
. Using proposition 5

and the first unitary extension theorem, theorem 1, we show
that noise of strengthh in QBa j

corresponds to noise of
strength at mostch in HZa j

, for some appropriate constantc.
Our first task in this subsection, then, is to explicitly insert

the classical control and feedforward operations into the lit-
eral circuitL of Fig. 5scd, and to arrange that circuit into an
appropriate block form. We begin by inserting perfectSWAP

gates intoL to obtain a more compactsbut equivalentd cir-
cuit which is shown in Fig. 6. We may assume that these
SWAP gates operate perfectly as they are merely a mathemati-
cal convenience. The remaining operations in Fig. 6, how-

ever, are real operations and will be subject to noise. When
we need to emphasize that a circuit contains a mix of both
real and perfect operations we will refer to it as animperfect
circuit, as distinct from anoisy circuit where all operations
are subject to noise.

There are two classical aspects of the cluster-state com-
putation that we have not yet explicitly included in the literal
circuit. These are the Pauli corrections introduced by the
measurement, and the classical feedforward of measurement
results to account for these corrections. As an example, con-
sider the first measurement in Fig. 5scd. This introduces a
correctionXm1 to the state of the qubit immediately below
and consequently the second measurement is performed in
the basisHZ±a2

according to whetherm1 is 0 or 1. In general,
the Pauli correction is given byXxZz wherex andz are clas-
sical variables. Initiallyx and z are both zero, and they are
updated after each measurement by the rule

x8 = z+ m smod 2d, s21d

z8 = x smod 2d, s22d

where m=0,1 is the measurement outcome. Subsequent
measurement is performed in the basisHZ±a j

, with the
choice determined by whetherx is 0 or 1.

The two classical variablesx andz have been introduced
into the circuit in Fig. 7. The error update operation EU
updatesx andz using Eqs.s21d and s22d, and the variablex
is used to control the rotationsHZ±a j

. An explicit definition
of EU is shown in Fig. 8. The circuit of Fig. 7 can be made
more compact by introducing the notation of Fig. 9 for the
classical feedforward. The resulting circuit is shown in Fig.
10.

We have made several modifications to the literal circuit
L, but the output of the imperfect circuit shown in Fig. 10 is
still equivalent to the output of the noisy literal circuit in Fig.
5scd. To complete the construction of the blocksBa j

referred
to earlier in steps3d, we introduce some additional circuit
identities whose effect is to compensate for the corrections
XxZz. This will enable us to make exact the correspondence
with the gatesHZa j

in the quantum circuitFQ.

FIG. 7. A circuit with the same output as Fig. 6, but with the
classical controls explicitly drawn in. Note thatx is the top bit,
while z is the lower bit. The new circuit notation involving theHZa1
andHZa2

operations indicates how the classical variablex is used to
control the measurement basis. A value ofx=0 means thatHZa is
applied, while a value ofx=1 means thatHZ−a is applied. Note that
in the case ofHZa1

, we always havex=0, and soHZa1
is applied, as

expected.

FIG. 8. The classical error update circuit, following Eqs.s21d
and s22d.

FIG. 9. A definition to make other circuits more compact.

FIG. 10. The output of Fig. 5scd is the same as the output of this
imperfect circuit.
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First, at the beginning of the first block in Fig. 10, we
prepend the gates illustrated in Fig. 11. These are perfect
gates, and can be prepended without changing the output of
Fig. 10, since the initial values ofx andz are both zero.

Second, we modify the very final block in Fig. 10swhich
is not explicitly shownd, appending operations inverse to
those in Fig. 11, as illustrated in Fig. 12. The reason we may
do this is as follows. If all the operations in the cluster-state
computation are implemented perfectly, then at the end of the
computation the qubit would be in the stateXxZzucl, where
ucl is the output from the corresponding perfect quantum
circuit computation. If we then measure this state in the com-
putational basis, we can compensate for the error operator
XxZz by appropriate postprocessing of the measurement re-
sult, i.e., by addingx to the outcome of the measurement,
modulo two. This process of compensating the measurement
results is, however, equivalent to appending the perfect gates
illustrated in Fig. 12, and dropping the process of compen-
sation.

Our third and final modification is to insert the perfect
gates of Fig. 13 between each pair of the repeating blocks in
Fig. 10. Another way of stating this is that we insert the
circuit of Fig. 12 at theendof every block in the computa-
tion, except the last block, where it has already been inserted,
and insert the circuit of Fig. 11 at thebeginningof every
block in the computation, except the first, where it has al-
ready been inserted. This insertion does not modify the out-
put of the circuit, since, as is apparent from Fig. 13, these
gates cancel one another out.

With these modifications, we see that the output of the
noisy cluster-state computation in Fig. 5scd is equivalent to
the output of the imperfect circuit illustrated in Fig. 14,
where the operationBa is defined in Fig. 15.

This completes the construction of the repeating blocks
Ba. The circuit shown in Fig. 14 allows us a fiction of iden-
tifying the topmost qubitQ as a persistent data qubit carrying
the information in a cluster-state computation. We will see
that Ba effectively performs single-qubit gates onQ. To see
how eachBa corresponds to a gate in the quantum circuitFQ
consider the circuit identity shown in Fig. 16. This identity
shows that aperfectimplementation ofBa is equivalentsup
to a known global phase factord to the effect of applying a
perfect HZa gate to the first qubit, initially in the stateucl.
Intuitively, then, we would expect that the result of the actual
imperfections inBa would be to effect an imperfectHZa

gate. That is, we obtain a way of translating our noisy
cluster-state computation into an equivalent noisy quantum
circuit computation.

We have introduced the identity of Fig. 16 for motiva-
tional purposes only; we omit a proof, as we prove a stronger
result later. Interested readers may wish to confirm this iden-
tity by hand. What we do now is find a way of showing
quantitatively that noise in the imperfect operationBa may
be mapped to noise in the quantum circuitFQ.

The next step in our proof, steps4d, is to replace the
classical elements inBa j

with unitary quantum equivalents to
obtain fully unitary blocks, which we denoteQBa j

. The rea-
son for doing so will become clear in the final step of the
proof, where we use the first unitary extension theorem,
theorem 1, to compare an imperfectQBa j

to a noisyHZa j
.

The classical elements ofBa j
are the classical variablesx,

z; the error update operation EU; and the classical controlled
U±a. These have all been replaced by quantum equivalents to
defineQBa j

in Fig. 17. The quantum error update operation
QEU is defined in Fig. 18, andU±a is defined as before but
with a quantum control. The bits carryingx andz have been
replaced by qubits which we labelX and Z. We therefore
assume that operations performed on these qubits are noise-
less, including the operations in QEU.

The output of the noisy literal circuitL is thus equivalent
to the output from the imperfect circuit in block unitary form
shown in Fig. 19. The qubit labeledQ is persistent, and we
can see that the cluster-state computation can be thought of

FIG. 11. The output of Fig. 10 is unchanged if these perfect
gates are prepended at the beginning of the computation.

FIG. 12. The effective output of Fig. 10 is unchanged if these
perfect gates are appended at the end of the computation.

FIG. 13. We insert these perfect gates between each pair of
blocks in Fig. 10.

FIG. 14. The output of this imperfect circuit is the same as the
output of the noisy cluster-state computation in Fig. 5scd.
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as the successive application of unitariesQBa j
. These unitar-

ies require three ancilla to perform an operation onQ, but the
following proposition shows that, when all operations are
done perfectly, the effect of eachQBa j

on Q is identical to
that of HZa j

.
Proposition 5. The circuit identity of Fig. 20 holds, where

both circuits are assumed to be perfect. All inputs are as-
sumed to be arbitrary, except the fixedu1l input, as shown.

The proof of the circuit identity of Fig. 20 is straightfor-
ward, but somewhat technical. The details are sketched in
Appendix B.

The final step in establishing the noise correspondence for
single-qubit computation is to use proposition 5 and the first
unitary extension theorem, theorem 1, to argue that an im-
perfect implementation ofQBa j

is equivalent to a noisy op-
erationHZa j

. Following the noise model of Sec. IV A, letE
be the environment responsible for the noisy operations in
the imperfect implementation ofQBa j

. We denote this imper-
fect operation byQBa j

8 , a unitary acting onQMjXZE. By
assuming that the same environmentE is reused by all the
imperfect operationsQBa j

8 we make the most pessimistic as-
sumption we can possibly make about noise in the cluster-
state computation. In the more general multiqubit situation
this assumption will correspond to assuming that all the qu-
bits in the same row of the cluster share the same environ-
ment.

Now, supposeh is the maximal error strength in any of
the noisy operations making up the imperfectQBa j

. That is,
h quantifies the strength of the noise in the cluster-state com-
putation. Letc be the number of noisy operations in the
imperfectQBa j

. Then the chaining property, proposition 1,
implies that

DQMjXZ:EsQBa j
,QBa j

8 d ø ch, s23d

whereQBa j
is theperfect QBa j

operation. Note our conven-
tion that in algebraic expressions we always useQBa j

8 to

refer to the imperfect operation, while in the text we some-
times useQBa j

to refer to the imperfect operation, provided
the context is clear. It follows that there exists a unitary
operationUE on E such that

iQBa j
8 − QBa j

^ UEi ø ch. s24d

sNote thatUE may depend onj , but that dependence is not
important in the argument that follows, and so is sup-
pressed.d

So, if QBa j
8 is the noisy implementation ofQBa j

, can we
show that this corresponds to a noisy implementation of
HZa j

? In Fig. 19 we see that the qubitMj is always initially
prepared in the stateu1l. This is anexactstatement, since
imperfect preparation of the stateu1l is modeled as a perfect
preparation, followed by a noisy quantum memory step that
is absorbed into the imperfect operationQBa j

. DefineSj to
be the subspace ofQMjXZE in which Mj is in the stateu1l,
and the other systems may be in an arbitrary state. Then

defineUj ;QBa j
^ UE andVj ;QBa j

8 . DefineŨj as shown in

Fig. 21. By proposition 5 we see thatuUjuSj
= uŨjuSj

and so we
can apply the first unitary extension theorem, theorem 1, to

conclude that there exists a unitary extensionṼj of uVjuSj
such that

iṼj − Ũji ø iVj − Uji s25d

=iQBa j
8 − QBa j

^ UEi s26d

øch. s27d

Applying proposition 2 we see that

DQ:MjXZEsHZa j
,Ṽjd ø ch. s28d

Next, defineM =M1 ^ M2 ^ . . . to be the combination of
all the systemsMj. Applying proposition 3 and Eq.s28d we
see that

DQ:E8sHZa j
,Ṽjd ø ch, s29d

FIG. 15. The definition of the operationBa used as the basis for
the repeating blocks in Fig. 14.

FIG. 16. The output of the circuit on the left is identical to the
output of the circuit on the right. For this identity we assume that all
operations in both circuits are done perfectly—there is no noise.

FIG. 17. The definition of the operationQBa.

FIG. 18. The definition of the quantum error update operation,
QEU.
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whereE8;MXYE is theeffective environmentfor the qubit

Q, and we have extendedṼj to act in the natural way onE8,

i.e., Ṽj acts trivially on systemsMk such thatkÞ j . Because

uṼjuSj
= uVjuSj

we see that the noisy implementationVj =QBa j
8

of QBa j
is exactly equivalent to a noisy implementationṼj of

HZa j
of strength at mostch.

To conclude, we have shown that if the one-buffered
cluster-state computation depicted in Fig. 5scd is imple-
mented with noise of strength at mosth in each operation,
then the output of that computation is equivalent to the out-
put of the noisy quantum circuit in Fig. 22, where each op-
eration is performed with noise of strength at mostch. As we
have described it,c is the number of noisy operations in the
imperfect operationQBa, i.e.,c<101. In actual implementa-
tions it would be possible to directly evaluate the total
strength of the noise in the imperfect operationQBa, result-
ing in a more accuratesand better, from the point of view of
the thresholdd value forc.

A interesting feature of our argument is that even if the
various physical operations involve only Markovian noise,
the corresponding effective noise in the implementation of
HZa j

is inherently non-Markovian. The reason is that the
qubitsX andZ associated with the classical variablesx andz
are part of the effective environment ofQ at every stage of
the computation, due to the necessity of feeding forward the
measurement results. This is the reason we need to use the
non-Markovian threshold result of Terhal and Burkardf29g.

C. Noise correspondence for multiqubit computations

In this subsection we extend the ideas of the previous
subsection, explaining how noise in a multiqubit one-
buffered cluster-state quantum computation may be mapped
to equivalent noise in the corresponding quantum circuit.
The ideas used to do this are the same as were used in the
proof for single-qubit cluster-state computations. As a result,
we merely sketch out how the proof goes for a specific ex-
ample, with the general proof following similar lines.

The noise correspondence is established via the same pro-
cess followed in Sec. IV B. We begin with a multiqubit quan-
tum circuit like the circuitFQ shown in Fig. 23. The cluster-
state computationC simulating this circuit is shown in Fig.
24. As before, we construct a literal circuit and rearrange it
into the block form where each block is identifiable with a
gate in the quantum circuitFQ. We have omitted the details
of this rearrangement, and presented the final block form
equivalent to the literal circuit in Fig. 25. The blocksQBa j

,
QBb j

correspond to the single-qubit gatesHZa j
, HZb j

in FQ,
as in the previous subsection, and the effects of noise in these
blocks has already been considered. The new element is the
unitary blockQC, which is shown in detail in Fig. 26. The
following proposition shows that a perfect implementation of
QC effects the operationsH ^ HdCPHASE on the qubitsQ1

andQ2. ssee also Fig. 27.d
Proposition 6. The circuit identity of Fig. 28 holds, where

both circuits are assumed to be perfect.
Proof: The proof of this identity uses the same techniques

as the proof of proposition 5, and is omitted. The identity
may easily be verified using any of the standard computer
algebra packages. h

This proposition plays a similar role to that played by
proposition 5 in establishing the single-qubit noise corre-
spondence. In this case the noise correspondence will again
follow from the first unitary extension theorem.

Following the noise model of Sec. IV A, we introduce
environmentsE1 andE2 associated with the respective rows
in the cluster-state computation of Fig. 24. Under the locality
assumption an imperfectQBa1

, for example, is thus repre-
sented as a unitary operatorQBa1

8 acting onQ1M1X1Z1E1,
which results in an effective environment for the correspond-

ing HZa1
8 of Ẽ1=M1X1Z1E1. As in the single-qubit case, the

noise strength in the operations of the formHZa is at most
ch, where c<101 is a small constant, andh is the noise
strength in the operations used to implement the cluster-state
computation.

An imperfect QC is similarly represented as a unitary
QC8 which involves both the environmentsE1 and E2.
Using the first unitary extension theorem we can show

that this results in an effective environmentẼ12

FIG. 19. The output atQ in this imperfect circuit is identical to
the output of the imperfect circuit of Fig. 14, and thus is equivalent
to the output of the noisy cluster-state computation of Fig. 5scd.

FIG. 20. The circuit identity of proposition 5. This is aperfect
circuit identity, i.e., all elements in both circuits are assumed to be
performed without any noise.

FIG. 22. This noisy circuit is equivalent to the noisy one-
buffered cluster-state computation of Fig. 5scd.

FIG. 21. The definition of the operationŨj. The environmentE
is shown at the bottom, where the wire with a slash through it
indicates an arbitrary quantum system.
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=M3X1Z1M4X2Z2E1E2 for the operationsH ^ HdCPHASE in
FQ. It follows that the noise strength in thesH ^ HdCPHASE

gate is at mostc8h, wherec8 is the total number of noisy
operations in the imperfect operationQC, and again is of
order 101.

Summing up, suppose we perform a noisy one-buffered
implementation of a cluster-state computation, satisfying the
noise model described in Sec. IV A, and withh the maximal
noise strength in any operation. Then we can show that this
noisy computation is equivalent to performing the corre-
sponding quantum circuit with noise satisfying the locality
assumption, and of strength at mostc9h, wherec9<101 is
some constant. This completes the proof that quantum cir-
cuits may be simulated in a fault-tolerant fashion using a
one-buffered cluster-state computation.

One remarkable feature of our proof is that it goes
through unchanged even if we allow noise to occur in the
classical computations and feedforward. It is easy to see that
such noise simply causes an additional contribution to the
strength of the noise in the corresponding quantum circuit,
and thus a decrease in the effective threshold. This feature of
the proof also carries over to the threshold theorem for opti-
cal cluster-state computation presented in the next section.
Thus, our results show that not only can cluster-state com-
putation be made resilient against the effects of unitary non-
Markovian errors, it can even be made resilient against the
effects of noise in the classical parts of the computation.

V. FAULT TOLERANCE WITH OPTICAL
CLUSTER STATES

In this section we explain how the ideas of Sec. IV can be
extended to enable fault-tolerant simulation of quantum cir-
cuits usingoptical cluster states. The main challenge in prov-
ing this result is the non-deterministic nature of the entan-
gling gates used in optical cluster-state computation. We
show that this challenge can be met by using those nonde-
terministic gates to add additional pieces to the cluster in a
near-deterministic fashion using what we call thedangling
node implementation of optical cluster-state quantum com-
putation. On those rare occasions when the addition to the
cluster fails, one simply accepts failure and moves on, re-
garding the failure as a small amount of additional noise in a
deterministic preparation of the cluster state. This allows us

FIG. 23. An illustrative two-qubit quantum circuitFQ using
canonical fault-tolerant gates.

FIG. 24. A noisy two-qubit cluster-state computation.

FIG. 25. The output of this imperfect circuit is equivalent to the
output of the noisy two-qubit cluster-state computation in Fig. 24.
The operationsQBa j

,QBb j
are as defined in the previous subsec-

tion, while QC is defined in Fig. 26.

FIG. 26. The definition of the imperfect operationQC appearing
in Fig. 25. We have prepended and appended the same fictitious
elements used in the single-qubit case in Figs. 11 and 12. The gate
QEU8 is the two-qubit extension of the error update, and is shown
in detail in Fig. 27. The only noisy operations are the Hadamard
gates, and theCPHASEgate between the first and the fifth qubits.

FIG. 27. The definition of the two-qubit quantum error update
operation analogous to that of Fig. 18.

FIG. 28. The circuit identity of proposition 6. This is aperfect
circuit identity, i.e., all elements in both circuits are assumed to be
performed without any noise.
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to apply the results of the Sec. IV to deduce a fault-tolerant
threshold for optical cluster states.

Although we phrase our results in terms of optics, there
may be other natural contexts in which our results apply. The
crucial fact about the optical implementation that we use is
the existence of a postselected nondeterministicCPHASEgate
which, when it fails, effects a measurement in the computa-
tional basis. The threshold results we apply would apply
equally well to other implementations which share this fea-
ture.

We begin our account in Sec. V A with an overview of the
main elements of the proof. In particular, we explain the
dangling node implementation in detail, and explain heuris-
tically how noise in the dangling node implementation maps
to noise in the quantum circuit model. Section V B discusses
the noise model we use in our description of optical cluster-
state computation. Section V C proves a rigorous threshold
for what we call thetwo-at-a-timeimplementation of cluster-
state computation. The two-at-a-time implementation makes
use of deterministicCPHASEgates, and thus is not of imme-
diate relevance for optical cluster-state computing. Its inter-
est arises from the fact that it is intermediate in complexity
between the one-buffered implementation studied in Sec. IV,
and the full dangling node implementation of optical cluster-
state computation. Analyzing the two-at-a-time implementa-
tion thus provides a useful stepping stone on the way to
understanding fault-tolerance in the dangling node imple-
mentation. Section V D introduces some useful nomencla-
ture for describing postselected quantum gates, and proves a
simple lemma about such gates. The threshold proof for
optical cluster-state computation is completed in Sec. V E,

which explains how noise in the dangling node implementa-
tion may mapped to equivalent noise in the quantum circuit
model.

A. Overview

The broad structure of the threshold proof for optics is
similar to the proof for the deterministic one-buffered imple-
mentation discussed in Sec. IV. We take a quantum circuit
that we wish to simulate, and turn it into a fault-tolerant
quantum circuit, using the standard prescriptions for fault
tolerance. We then convert the fault-tolerant circuit into an
equivalent cluster-state computation, and then specify in de-
tail a specific implementation protocol for performing that
computation. In this case that will be a dangling node imple-
mentation. We now describe how the dangling node imple-
mentation works. We will show in later subsections that
noise in the dangling node implementation can be mapped
onto equivalent noise in the original fault-tolerant quantum
circuit. This enables us to deduce that the output of the noisy
optical cluster-state computation is equivalent to the output
of a noisy fault-tolerant quantum circuit computation, and
thus to obtain a threshold result.

We begin by describing the dangling node implementation
for the simplest case of a single-qubit cluster-state computa-
tion. The basic idea is to to build the cluster up using small
cluster states that we callmicroclusters.6 The basic micro-
cluster is illustrated in Fig. 29. It includes a singlebase node,
on the left, andk dangling nodes, on the right, wherek is
some fixed constant.

Optically, we may prepare microclusters by sequentially
performingk nondeterministicCPHASE gates. These may be
either the nondeterministic KLMCPHASEgate, or one of its
more efficient sbut still nondeterministicd modern descen-
dants. Sincek is a constant, the expected number of opera-
tions required to form a microcluster is also constant. In
practice, there are likely to be much more efficient means of
preparing a microcluster than this procedure. However, for
the purposes of this paper we shall not be concerned with
optimizing the formation of the microcluster.

The dangling node implementation of a single-qubit
cluster-state quantum computation works as follows. The
first step is to prepare a single microcluster, as illustrated in
Fig. 29. This forms the basis from which a larger cluster state
will gradually be grown by adjoining extra microclusters.

The second step of the dangling node implementation is
to attempt to adjoin microclusters to each of the firstk−1
dangling nodes of the first microclustersi.e., all but the last
of the dangling nodesd, using nondeterministicCPHASEgates.
If one of these attempts to adjoin should succeed, then we
stop, and use computational basis measurements and single-
qubit operations to ensure that we end up with the larger
cluster state shown in Fig. 30sad. To ensure that this works, it
is critical that we use one of the special KLM nondetermin-
istic CPHASE gates, which, as noted in Sec. III, have the
property that failure of the gate results in a computational

6A similar microcluster construction was used for different pur-
poses inf10g

FIG. 29. The microcluster used in the dangling node implemen-
tation of cluster-state computation. There arek dangling nodes, in
general; in this example,k=3.

FIG. 30. Figure 30sad shows the cluster state which results after
successfully adjoining a microcluster to the initial microcluster in
Fig. 29, deleting the extra nodes, and applying appropriate local
operations. Figure 30sbd shows the cluster which results afterk−1
failed joining attempts.
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basis measurement, and removal of a qubit from the cluster.
If all k−1 attempts to adjoin fail, then we simply accept the
failure, and apply the appropriate single-qubit operation to
end up with the larger cluster state shown in Fig. 30sbd. Note
that if the nondeterministic KLMCPHASE gate fails with
probability pf, then the probability of successfully adjoining
a microcluster, as in Fig. 30sad, is 1−pf

k−1, while the prob-
ability of failing, as in Fig. 30sbd, is pf

k−1. When the adjoin-
ment succeeds, we effectively add two perfect extra columns
of qubits to the cluster. Failure introduces a defect into the
cluster, but we can ensure this occurs with small probability
by choosingk to be large.

The third step of the dangling node implementation is to
perform the first two columns of single-qubit measurements
in the cluster-state computation. We then go back to the sec-
ond step, effectively adding another two columns of qubits
into the cluster, and so on, through the entire course of the
computation. The only variation comes at the very end of the
computation, where there is no need to adjoin a microcluster
of the form in Fig. 29, but instead we can add the simpler
two-qubit microcluster illustrated in Fig. 31.

We have seen how a single-qubit cluster-state computa-
tion may be performed in the dangling node implementation;
what about multiqubit cluster-state computations? The key is
to introduce a third type of microcluster, illustrated in Fig.
32. Once again, note that these microclusters may be pre-
pared in constant expected time using nondeterministic
CPHASEgates.

Consider the cluster-state computation depicted in Fig. 33.
We may implement this computation as follows. The first
step is to prepare the first two columns of the cluster. This
may be done using the nondeterministicCPHASEgate in con-
stant time, as described earlier.

The second step of the dangling node implementation is
to add in two additional columns to the cluster. This is done
in a similar fashion to the adjoinment of a microcluster in the
single-qubit case. In this case, success requires that we ad-
join the microcluster in Fig. 32 to two different dangling
nodes, one on the top row of the computation in Fig. 33, the
other to the bottom row. Success in adjoinment to both rows
results in the cluster of Fig. 34sad being prepared. A simple

calculation shows that this occurs with probability 1−2pf
k−1

+pf
2k−2, which approaches 1 rapidly ask becomes large. If,

on the other hand, either adjoinment should fail, we simply
declare failure overall, resulting in the cluster of Fig. 34sbd
being prepared. Note that if one part of the microcluster is
successfully adjoined, but the other part fails, then it may be
necessary to delete some nodes of the cluster using compu-
tational basis measurements and localZ operations in order
to obtain the cluster of Fig. 34sbd.

The third step in the dangling node implementation of the
computation in Fig. 33 is to perform the first two columns of
single-qubit measurements. The fourth step is to add in the
final two columns of the cluster, which is done using the
same procedure as for single-qubit computations. The fifth
and final step of the implementation is to do the final four
columns of single-qubit measurements in the standard way.

The generalization of the dangling node implementation
to arbitrary multiqubit cluster-state computations follows the
same lines, alternating attempts to adjoin microclusters with
two columns of single-qubit measurements. Each successful
adjoinment of a microcluster adds two perfect extra columns
to one or more rows of the cluster, while failure to adjoin
correctly introduces a defect into the cluster, but occurs with
probability 2pf

k−1−pf
2k−2.

How does noise in the dangling node implementation map
to noise in the quantum circuit model? A heuristic argument
is as follows. Roughly speaking, each gate in the original
circuit is simulated by adjoining a microcluster and perform-

FIG. 32. This microcluster is used in the dangling node imple-
mentation of multiqubit cluster-state quantum computations.

FIG. 33. An example cluster-state computation. We have omit-
ted explicit description of the measurements performed, since it is
the formation of the cluster that we wish to concentrate on, rather
than the details of the measurements.

FIG. 34. The cluster after success and failure to adjoin the mi-
crocluster of Fig. 32.

FIG. 31. The simpler two-qubit microcluster adjoined to the
cluster state at the veryendof a single-qubit cluster-state computa-
tion, in place of the microcluster in Fig. 29.
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ing some single-qubit measurements. Adjoining a microclus-
ter involves up toc1k

2 physical operations, wherec1 is some
positive constant in the range 100–102. If each operation is
performed with error strengthh, then the total associated
noise is at mostc1k

2h. There is also an intrinsic failure prob-
ability, due to the nondeterminism of the gates, which causes
defects in the cluster. This probability is bounded by 2pf

k−1.
Finally, the noise contribution due to the single-qubit mea-
surements scales asc2h, wherec2 is a constant of order 100.
In consequence we expect that noise of strengthh in the
dangling node implementation will map to equivalent noise
of strengthc1k

2h+c2h+2pf
k−1 in the quantum circuit model.

It follows that if hth is the threshold in the quantum circuit
model then providedh satisfies c1k

2h+c2h+2pf
k−1øhth

fault-tolerant computation is possible using optical cluster-
state computation. The goal of the next four subsections is to
make this heuristic argument rigorous. We will see that the
rigorous conclusions are in qualitative agreement with this
heuristic analysis, with some minor quantitative changes.

An issue we have glossed over in our discussion is that
the dangling node implementation restricts the structure of
the clusters that may be formed. In particular, connections
between rows of the cluster can only be formed within odd
numbered columns of the cluster. This has the effect of
slightly restricting the quantum circuit operations that may
be directly simulated with such a cluster. Using an argument
analogous to that in Sec. II B one can verify that this re-
stricted canonical set of operations can be used to prove a
threshold theorem analogous to theorem 4. We omit the de-
tails of this argument, which is straightforward.

B. The noise model in optical cluster-state computation

We assume that noise in optical cluster-state computation
follows essentially the same model as was introduced in Sec.
IV A for cluster-state computation with deterministicCPHASE

gates. In particular, we assume that noisy preparation and
measurement can be modeled as perfect operations, accom-
panied by noisy quantum memory steps. To model noisy uni-
tary operations we assume that each row in the cluster has its
own environment, and that noninteracting rows have nonin-
teracting environments. The only new element that needs to
be accounted for is when unitary operations are performed
which involve the ancilla used during the nondeterministic
CPHASE gate. To cope with this, we make the pessimistic
assumption that these ancilla share a common environment
with whichever rows of the cluster are involved in the at-
temptedCPHASEgate.

This noise model omits a significant possible source of
noise, that of photon loss. The basic problem, as alluded to
earlier, is that the noise model we are using, based on that in
f29g, does not allow leakage errors. Noise is assumed to arise
from the interaction of a qubit with some environment. In
reality, noise may sometimes have a rather different nature.
In particular, a qubit is sometimes a two-dimensional sub-
space of a larger physical state space, and noise may be due
not to interaction with an environment, but rather to leakage
of the state of the qubit into some other part of the state
space. This is exactly the type of error caused by photon loss
in optical quantum computation.

How to deal with this type of leakage error is well under-
stood in the theory of quantum error correction, and is ad-
dressed by several of the standard threshold theorems. In
particular, loss detection techniques are used in the threshold
analysisf43g accompanying the original KLM proposal for
optical quantum computation. This type of error is not, how-
ever, explicitly addressed by the threshold theorem off29g.
Although we believe that the result off29g can likely be
adapted to cope with such leakage errors, we have not yet
performed a complete analysis. Such an analysis will appear
in future work. In the meantime, our results apply to the
more restricted model of noise without leakage.

C. The two-at-a-time implementation of cluster-state
quantum computation

In Sec. IV we explained how noise in a one-buffered
implementation of cluster-state computation may be mapped
to noise in a quantum circuit computation. In this section we
will extend those results to a more complex implementation
of cluster-state computation, which we call a two-at-a-time
implementation.

A two-at-a-time implementation is similar to the one-
buffered implementation, except now qubits are added into
the cluster two columns at a time, and the single-qubit mea-
surements are performed two columns at a time. In particu-
lar, we assume that deterministicCPHASEgates are available
in a two-at-a-time implementation. More explicitly:

Prepare columns one through four of the cluster, usingu1l
preparations andsdeterministicd CPHASEgates.

Perform the first two columns of measurements.
Prepare columns five and six, usingu1l preparations and

CPHASEgates to adjoin the extra columns.
Perform the third and fourth columns of measurements.
Keep alternating the preparation of two extra columns

with the measurement of two extra columns, until the end of
the computation.
The literal circuit for a two-at-a-time implementation of a
single-qubit cluster-state computation is shown in Fig. 35. In
this figure we have explicitly drawn in the noisy quantum
memory steps, using little crosses to indicate when a quan-
tum memory step is being performed. Including these explic-
itly makes it easier to map this implementation onto an
equivalent one-buffered implementation.

FIG. 35. The literal circuit for a two-at-a-time implementation
of a single-qubit cluster-state computation, with the noisy quantum
memory steps explicitly indicated by crosses. For simplicity we
have combined the single-qubit rotations and computational basis
measurements into a single-qubit measurement in some other basis,
not explicitly specified.
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Commuting the operations in Fig. 35 forward in time, we
see that that the output of Fig. 35 is equivalent to the output
of the circuit in Fig. 36. Note that doing this commutation
requires the use of proposition 4, since noisy operations on
different qubits that are on the same row of the cluster may
potentially involve the same environment, and so may not
commute. Fortunately, proposition 4 allows this commuta-
tion to be performed without increasing the strength of the
underlying noise.

Inspection of Fig. 36 reveals that this circuit may be re-
garded as the literal circuit for a one-buffered implementa-
tion of a cluster-state computation, and thus is equivalent to
a noisy quantum circuit, using the results of Sec. IV. A simi-
lar argument can be used to map noise in a multiqubit two-
at-a-time implementation of a cluster-state computation to
equivalent noise in a quantum circuit. We omit the details of
the argument, which is a straightforward extension of the
single-qubit case.

D. Postselected gates

In order to map noise in optical cluster-state computation
into the quantum circuit model, we need a simple lemma
about postselected quantum gates. In this subsection we pro-
vide a formal definition of what we call aunitary postse-
lected gate, and prove the required lemma. The unitary post-
selected gates discussed here differ in an important respect
from the postselected gates in the discussion of optical quan-
tum computing in Sec. III. In the optical gates, success of the
quantum gate is conditional on some measurement outcome
occurring. In the present scenario the postselected gate is all
unitary, i.e., no measurement is involved. The connection
between the two types of postselection is made by replacing
the measurement by an equivalent unitary process; we will
see an explicit example of how this works in the next sub-
section.

Let U be a unitary gate acting on two registers, labeledA
andB. B is initially in some fixed stateubl, while A may be
in an arbitrary stateucl. Let V be a unitary gate acting on
registerA alone.U is said to be aunitary postselected gate
that implements V with probability pif for all ucl,

Uuclubl = ÎpVuclub8l + Î1 − puc8lub9l, s30d

where ub8l is some fixed state, andub9l is orthonormal to
ub8l.

Lemma 1. Let U be a unitary postselected gate implement-
ing V with probability p, on registersA andB, and whenubl
is input to the registerB. Let S be a subspace of the state
space for registerA, and letT be the subspace of the total
state space forAB that contains states of the formuclubl,

where uclPS. Then there exists a unitaryW acting on reg-
ister B such that

iuUuT − usV ^ WduTi = Î2s1 −Îpd. s31d

Proof. By definition, for all statesucl in registerA we
have

Uuclubl = ÎpVuclub8l + Î1 − puc8lub9l. s32d

Let W be a unitary operator takingubl to ub8l. Then

sU − V ^ Wduclubl = sÎp − 1dVuclub8l + Î1 − puc8lub9l.

s33d

Evaluating the norm, and restricting to normalized states
uclubl which are inT, we obtain the result. h

E. How noise in optical cluster-state computation maps to
noise in the quantum circuit model

In this subsection we explain how noise in the dangling
node implementation of optical cluster-state computation is
mapped to equivalent noise in the two-at-a-time implemen-
tation described in Sec. V C. The results in Sec. V C may
then be used to map that noise to equivalent noise in the
original quantum circuit, which enables us to complete the
threshold proof. Our main focus here is on noise in single-
qubit cluster-state computations, since the multiqubit case
follows similar lines, and requires no new ideas.

Consider a dangling node implementation of a single-
qubit cluster-state computation. The literal circuit for such a
computation is depicted in Fig. 37. The first step of the cir-
cuit sets up the initial microcluster. The remaining steps of

FIG. 37. The literal circuit for a dangling node implementation
of a single-qubit cluster-state computation. We have chosen to use
an implementation withk=3 dangling nodes; the circuit for other
values ofk follows similar lines.

FIG. 38. The operationADD satisfies the approximate circuit
identity illustrated here. This identity becomes more exact ask is
increased, and the level of noise in the physical operations used to
do the operation is decreased.

FIG. 36. The output of this circuit is equivalent to the output of
the literal circuit for the two-at-a-time implementation in Fig. 35.
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the circuit alternate between applications of the operation
ADD, which effectively adds two extra columns of qubits to
the cluster, and the operationMEASURE, which implements
the desired single-qubit measurements and feedforward of
measurement results.sNote that we have omitted ancillas,
classical processing of data, and feedforward from the visual
depiction, for simplicity.d

The operationADD may be broken down into the follow-
ing operations.

Preparation of microcluster states which we attempt to
adjoin to the existing cluster.

All quantum gates applied in the process of attempting to
adjoin the additional microclusters, including nondeterminis-
tic CPHASEgates.

Ancillas used in the nondeterministicCPHASEgates.
All the classical control and feedforward.
The computational basis measurements and localZ opera-

tions needed to remove undesired qubits from the cluster.
In addition to these physical operations, to simplify the

analysis it is convenient to append some fictitious perfect
controlled-SWAPoperations to ensure that the effective output
qubits always appear on the same output lines. That is, these
controlled-SWAP operations effectively change the labels on
the qubits to ensure that the same qubits always act as the
output, but otherwise don’t affect the output state. The op-
erations are chosen so that the approximate circuit identity
illustrated in Fig. 38 holds. This identity illustrates the fact
that the result of attempting to add two extra columns of
qubits to the cluster of Fig. 29 results, with high probability,
in the cluster of Fig. 30sad. The identity fails to be exact

becausesad the attempt to add extra columns sometimes
fails, resultingseven in the ideal case of perfect operationsd
in the cluster of Fig. 30sbd, and sbd the physical operations
used are inevitably somewhat noisy.

The next step of the proof is to replace the measurements,
classical control and feedforward performed in theADD op-
eration by equivalent ancilla preparations and unitary quan-
tum operations, in a similar fashion to our threshold proof for
deterministicCPHASE gates in Sec. IV. The result is an op-
erationQADD, involving only quantum systems, perfect an-
cilla preparation, and noisy unitary operations. Note that,
once again, we model noisy ancilla preparation by perfect
ancilla preparation, followed by a noisy quantum memory
step. The output of the noisy dangling node cluster-state
computation is thus the same as the output of the imperfect
circuit illustrated in Fig. 39.

As in the deterministic case, we may insert fictitious per-
fect extra gates betweenQADD operations without changing
the overall output, as illustrated in Fig. 40. The entire noisy
cluster-state computation is thus equivalent to the repeating
circuit illustrated in Fig. 41, where the gateG is as defined in
Fig. 42.

In our analysis it is convenient to distinguish between the
perfect gateG, and the imperfect gateGn, which also in-
cludes the effects of noise due to interactions with the envi-
ronment, E. Note that due to the chaining property,
DQ:AEsG,GndøNh, where the systemsQ and A are as de-
fined in Fig. 42,N is the total number of noisy operations
involved in the operationGn, and h is the maximal noise
strength of any of those operations. Simple counting shows
that Nøc1k

2 for some positive constantc1 in the range
100–102, and soDQ:AEsG,Gndøc1k

2h.
With these definitions we see thatG is a unitary postse-

lected gate acting on the registersQ andA, implementing the
gateV defined in Fig. 43 on registerQ, with probability ps

FIG. 39. The output of this imperfect circuit is the same as the
output of the noisy cluster-state computation. The stateuancl is an
ancilla preparedsnoisilyd offline; it contains microclusters, the an-
cillas used in the KLMCPHASE, and qubits used to simulate the
classical control and feedforward in the dangling node implemen-
tation. Note that the ancilla line is marked by a slash to indicate that
it involves many systems, not just a single qubit.

FIG. 40. We may insert some fictitious perfect gates between the
operations in Fig. 39, without changing the output.

FIG. 41. The output of this imperfect circuit is the same as the
output of the noisy dangling node cluster-state computation.

FIG. 42. The definition of the gateG used in Fig. 41. This figure
also defines subsystem labelsQ andA.
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=1−pf
k−1. Let S be the subspace of states forQ of the form

uclu+l¯ u+l, whereucl is an arbitrary single-qubit state. Let
T be the subspace of states for the systemQA which are of
the formufluancl, whereufl is any state inS, anduancl is the
initial state of the ancillaA. It is also useful to defineT8 to be
the subspace of the combined systemQAE containing states
of the form uflSE^ uancl, whereuflSE is an arbitrary state in
S^ E. Applying lemma 1, we conclude that there exists a
unitary W acting onA such that

iuGuT − usV ^ WduTi = Î2s1 −Îpsd. s34d

Recalling thatDQ:AEsG,Gndøc1k
2h, we see that there exists

unitary GE acting onE such that

iGn − G ^ GEi ø c1k
2h. s35d

Restricting to the subspaceT8 we have

iuGnuT8 − usG ^ GEduT8i ø c1k
2h. s36d

From Eq.s34d we deduce that

iusG ^ GEduT8 − usV ^ W ^ GEduT8i = Î2s1 −Îpsd. s37d

Using the triangle inequality and Eqs.s36d and s37d we ob-
tain

iuGnuT8 − usV ^ W ^ GEduT8i ø c1k
2h + Î2s1 −Îpsd.

s38d

Applying the second unitary extension theorem, theorem 2,

we see that there exists unitaryG̃n whose action onT8 is
identical to the action ofGn, and such that

iG̃n − sV ^ W ^ GEdi ø 2c1k
2h + 2Î2s1 −Îpsd. s39d

Summarizing, the output of the noisy cluster-state compu-
tation is the same as the output of the noisy circuit in Fig. 44.
The blocks of two imperfectCPHASE gates shown in this

circuit represent the operationG̃n, which we have seen sat-
isfies

DQ:AEsV,G̃nd ø 2c1k
2h + 2Î2s1 −Îpsd, s40d

whereps=1−pf
k−1 is the probability of successfully adjoining

a microcluster, andpf is the probability of a nondeterministic
CPHASE failing. Examining Fig. 44, we see that a dangling
node implementation using nondeterministic gates is equiva-
lent to a noisy two-at-a-time deterministic implementation,
where the additional columns of the cluster are added with
noise of total strength at most 2c1k

2h+2Î2s1−Îpsd. Com-

bining this with the results about the two-at-a-time imple-
mentation in Sec. V C, we see that a noisy dangling node
implementation of a single-qubit cluster-state computation is
equivalent to a noisy single-qubit quantum circuit computa-
tion. Noise of strengthh in the dangling node implementa-
tion is mapped to equivalent noise of strengthc1k

2h+c2h

+2Î2s1−Îpsd in the quantum circuit model of computation,
where the extra contributionc2h is due to noise in the single-
qubit measurements, andc2 is a positive constant of order
100.

Similar reasoning can be used to map noise of strengthh
in a dangling node implementation of a multiqubit cluster-
state computation back to the original quantum circuit with
noise of strength at mostc1k

2h+c2h+2Î2s1−Îpsd, where
the constantsc1 andc2 may now be different, but are still of
the same order, andps=1−2pf

k−1+pf
2k−2. The only difference

in the proof is that in addition to theG operations, multiqubit
computations also involve analogous operations based on the
process of adjoining the more complex microcluster of Fig.
32. However, the analysis for such operations goes through
in exactly the same way as in the single-qubit case.

Summing up, we have shown that noise of strength up to
h in a dangling node implementation of a cluster-state com-
putation is equivalent to noise of strength at mostc1k

2h

+c2h+2Î2s1−Îpsd in the original quantum circuit, wherec1

is a positive constant of order 100–102, c2 is a positive con-
stant of order 100, andps=1−2pf

k−1+pf
2k−2. Thus, providedk

andh satisfy

c1k
2h + c2h + 2Î2s1 −Îpsd ø hth s41d

it is possible to compute fault-tolerantly in the optical
cluster-state proposal for computation. This may be re-
phrased as the condition:

h ø hk,th
ocs ;

hth − 2Î2s1 −Îpsd
c1k

2 + c2
. s42d

We can always ensure thathk,th
ocs.0 by choosingk suffi-

ciently large. Provided this condition is satisfied,hk,th
ocs is thus

a threshold for optical cluster-state computation.

VI. CONCLUSION

In this paper we have proved two fault-tolerant threshold
theorems for the cluster-state model of quantum computa-

FIG. 43. The definition of the gateV.

FIG. 44. The output of this noisy circuit is the same as the
output of the noisy cluster-state computation.
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tion. Our first threshold theorem applies to implementations
in which deterministicsbut noisyd entangling gates are avail-
able. Our second threshold theorem is specifically adapted to
the case of optical quantum computation, where entangling
gates are performed nondeterministically. In both cases our
threshold theorems hold for quite pessimistic noise models,
allowing non-Markovian noise applied by an intelligent ad-
versary who can exploit constructive interference to enhance
the effects of the noise, and even cause errors in the classical
computation and feedforward of measurement results. A
drawback of our noise models is that they do not yet allow
the possibility of leakage errors, like photon loss in optics.
We expect to remove this drawback in future work, by com-
bining the ideas inf29g with well-established methods for
dealing with photon loss, e.g.f43g.

Our focus has been on proving that a finite thresholdex-
ists for cluster-state computation, rather than on obtaining a
precise numerical evaluation of the threshold. This is consis-
tent with our general philosophy of understanding the thresh-
old through a two-part process: first, rigorously proving the
existence of a finite threshold for some large class of noise
models; and second, through a combination of numerical and
analytic work obtaining a realistic estimate of the threshold
for some specific and physically-motivated noise model. In
this paper we have obtained a rigorous proof that a finite
threshold exists. Detailed numerical simulation and optimi-
zation of the threshold value for realistic noise models is
underway, and will be reported elsewheref28g.

Our investigations in this paper have been geared toward
variants of the one-way quantum computing model intro-
duced by Raussendorf and Briegelf1g. However, the tech-
niques we have proposed seem quite generally applicable to
the task of making measurement-based schemes for quantum
computation fault tolerant. It seems likely that schemes such
as those proposed inf2,8,9,22g ssee also references thereind
can be made fault tolerant using similar ideas. Particularly
appealing from a theoretical point of view is the possibility
of fault-tolerant computation using measurement alone, with
no unitary gates whatsoeversexcepting quantum memoryd.
This might be done using, for example, a scheme such asf2g,
or one of the simpler variants that has since been proposed
f36–38,41g.

The most important conclusion from our results is that
noise need not be an obstacle to scalable quantum computa-
tion using cluster states. In particular, our results provide
encouraging evidence that practical proposals for cluster-
state quantum computation using neutral atomsf1g and op-
tics f10g are, in principle, fully scalable approaches to quan-
tum computation.
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APPENDIX A: THE UNITARY EXTENSION THEOREMS

In this appendix we restate and prove the first and second
unitary extension theorems, from Sec. II A.

Theorem 5 (First unitary extension theorem). Let U, Ũ
andV be unitaries acting on a Hilbert spaceT. SupposeS is

a subspace ofT such thatU andŨ have the same action on

S, i.e., uUuS= uŨuS. sNote that we do not assume thatU andŨ

leave the subspaceS invariant, so uUuS and uŨuS should be
considered as maps fromS into T.d Then there exists a uni-

tary extensionṼ of uVuS to the entire spaceT such that

iṼ − Ũi ø iV − Ui. sA1d

It is worth noting that the proof below holds not just for
the matrix norm, but for any norm such thatiABiø iAi iBi,
and iWiø1 for all unitariesW.

Proof. Let P be the projector onto the subspaceS, and let
Q= I −P be the projector onto the orthocomplement ofS in T.
Define

Ṽ ; VP+ VU†ŨQ. sA2d

We will show thatṼ has the required properties. It is clear

thatṼ is an extension ofuVuS. To prove unitarity ofṼ we first
observe that

U†ŨQ = QU†Ũ. sA3d

To prove this equation, observe that it is equivalent to

U†ŨP=PU†Ũ, since Q= I −P. But U†ŨP=PU†Ũ follows

easily from the fact thatuUuS= uŨuS. The unitarity ofṼ fol-
lows from Eqs.sA2d and sA3d, and some algebra:

ṼṼ† = VPV† + VsU†ŨdQsU†Ũd†V† sA4d

=VPV† + VQV† sA5d

=VV† sA6d

=I . sA7d

To boundiṼ−Ũi observe that

Ṽ − Ũ = VP+ VU†ŨQ − ŨP − ŨQ. sA8d

Observing thatŨP=UP and insertingUU†= I we get

Ṽ − Ũ = VP+ VU†ŨQ − UP − UU†ŨQ sA9d

=sV − UdsP + U†ŨQd. sA10d

Recall thatiABiø iAi iBi, and observe thatP+U†ŨQ is uni-

tary. It follows that iP+U†ŨQi=1, and thusiṼ−Ũiø iV
−Ui, as required. h
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Theorem 6 (Second unitary extension theorem). Let U and
V be unitary operations acting on asfinite-dimensionald inner
product spaceT. SupposeS is a subspace ofT. Then there

exists a unitary operationṼ such that uṼuS= uVuS and

iU − Ṽi ø 2iuUuS− uVuSi. sA11d

The proof of the second unitary extension theorem is
somewhat more complex than the proof of the first. We begin
the proof by introducing some notation related to the singular
value decomposition of a matrix, and then we state and prove
some simple lemmas about singular values and matrix
norms.

Recall that the singular value decomposition states that an
arbitrarym3n matrix M can be writtenM =LMSMRM, where
LM is anm3m unitary matrix,RM is ann3n unitary matrix,
and SM is an m3n matrix, all of whose entries are zero,
except the diagonal entriessSMd j j =s jsMd, known as thesin-
gular values, which are non-negative and arranged in de-
creasing order,s1sMdùs2sMdù . . .. It is easy to see that the
singular values are determined by the equations jsMd2

=l jsM†Md=l jsMM†d, the j th largest eigenvalues of the ma-
trices M†M and MM†. It is also useful to note thatiMi
=s1sMd. WhenM is anm3m matrix si.e., a square matrixd,
we will use the notationsminsMd;smsMd to denote the
smallest singular value ofM.

Proposition 7. SupposeU is a unitary matrix that can be
written

U = FA C

B D
G , sA12d

whereA is anm3m matrix, B is n3m, C is m3n, andD is
n3n. ThensminsAd=sminsDd.

Proof. Inspection of the equationsU†U=UU†= I implies
that A†A+B†B= Im and BB†+DD†= In, where we useIk to
denote thek3k identity matrix. Using these equations we
have

sminsAd2 = lmsA†Ad sA13d

=1 −l1sB†Bd sA14d

=1 −l1sBB†d sA15d

=lnsDD†d sA16d

=sminsDd2, sA17d

from which the result follows. An alternate proof of this
proposition follows immediately from the well-known CS
decomposition of linear algebrassee, for example, theorem
VII.1.6 on p. 196 off44gd. h

To state the next proposition we need to introduce some
additional notation. We define the partial orderXøY for ma-

trices X and Y if Y−X is a positive matrix. We defineuXu
;ÎX†X.

Proposition 8. SupposeM is a matrix such thatuMuø I.
Then iI −Miù1−sminsMd.

Proof. Choose a normalized vectorucl so that SMucl
=sminsMducl. By the singular value decompositioniI −Mi
=iI −LMSMRMi=iW−SMi, whereW;LM

† RM
† . Thus

iI − Mi ù isW− SMducli sA18d

ùiWucli − iSMucli sA19d

=1 −sminsMd, sA20d

where we have used the triangle inequality. h
Proposition 9. Let

M = F A B

B† C
G sA21d

be a positivesand thus Hermitiand square matrix. We assume
A is m3m, B is m3n, andC is n3n. Then

iMi ø iAi + iCi. sA22d

Proof. This proposition can be viewed as a special case of
Aronszajn’s inequality, theorem III.2.9 on p. 64 off44g. Al-
ternately, sinceM is positive we can find a block matrixD
=fD1D2g such that M =D†D, and thus A=D1

†D1 and C
=D2

†D2. We have

iMi = l1sD†Dd sA23d

=l1sDD†d sA24d

=l1sD1D1
† + D2D2

†d sA25d

øl1sD1D1
†d + l1sD2D2

†d sA26d

=iAi + iBi, sA27d

where the second-last line follows from the well-known ei-
genvalue inequalityl1sA+Bdøl1sAd+l1sBd, true for all
Hermitian matricesA andB. h

Proof of the second unitary extension theorem. We prove
the theorem in two parts. In the first part we prove the result
for the caseU= I. In the second part we show that the general
result follows from the case whenU= I.

For the first part, we writeV in block-diagonal form as

FIG. 45. Identity 1 of Appendix B. FIG. 46. Identity 2 of Appendix B.

FIG. 47. Identity 3 of Appendix B.
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V = FA C

B D
G , sA28d

where the first block represents a basis forS, and the second
block represents a basis for the orthocomplementS'. Let the
singular value decomposition ofD be D=LDSDRD. Rotating
by LD

† to change the basis ofS' we see thatV can be written
in the new basis as

V = FA8 C8

B8 SDRDLD
G , sA29d

whereA8 ,B8 ,C8 represent the action ofV with respect to the

new basis. We define the extensionṼ by

Ṽ ; VF I 0

0 LD
† RD

† G sA30d

=FA8 C9

B8 SD
G , sA31d

where C9=C8LD
† RD

† . It is clear thatṼ is unitary and uṼuS
=VS. All that remains to complete the first part of the proof is

to boundiṼ− Ii. We have

iṼ − Ii2 = isṼ − IdsṼ† − Idi sA32d

=i2I − Ṽ − Ṽ†i sA33d

=IF2I − A8 − A8† − C9 − B8†

− B8 − C9† 2I − 2SD
GI .

sA34d

Applying proposition 9 we obtain

iṼ − Ii2 ø i2I − A8 − A8†i + i2I − 2SDi. sA35d

But i2I −A8−A8†iø iI −A8i+iI −A8†i=2iI −A8iø2iuI uS
− uVuSi. We also have i2I −2SDi=2−2sminsDd=2
−2sminsA8dø2iI −A8iø2iuI uS− uVuSi. The first part of the
proof follows.

For the second part of the proof we setU8; I ,V8;U†V.

Then by the first part of the proof there exists unitaryṼ8 such

that uṼ8uS= uU†VuS, and iṼ8− Iiø2iuU†VuS− ISi. Set Ṽ;UṼ8.

Then Ṽ is a unitary matrix such thatuṼuS= uVuS and

iṼ − Ui = iṼ8 − Ii sA36d

ø2iuU†VuS− uI uSi sA37d

=2iuVuS− uUuSi. sA38d

h
An alternate proof of the second unitary extension theo-

rem may be given, following similar lines, but based on the
well-known CS decomposition from linear algebra. We have
taken the approach presented here as it is only slightly more
complex than the alternate proof, and relies on less back-
ground material.

APPENDIX B: PROOF OF PROPOSITION 5

In this appendix we prove proposition 5, which asserts the
truth of the circuit identity in Fig. 20. This proposition estab-
lishes the correspondence between blocksQBa and gates
HZa in the quantum circuit.

The result follows by making use of four commutation
relations between the gates that constituteQBa. All these
relations are readily verified, so they are given without proof.

Identity 1. The circuit identity of Fig. 45 holds.
Note that commuting the controlledNOT sCNOTd through

the controlledHZ±a leaves us with the single-qubitHZa on
the right-hand side. It is also easy to verify the following
identity which is used to simplify the controlledU±a gate of
Fig. 9.

Identity 2. The identity of Fig. 46 holds where the second
qubit is in the stateu1l.

The remaining two identities concern the commutativity
properties ofCNOT scontrolled-NOTd andCPHASEgates when
the control of one operator is the target of the operator im-
mediately following or preceding it.

Identity 3. The circuit identity of Fig. 47 holds.
Identity 4. The circuit identity of Fig. 48 holds.
By applying these commutation relations to the definition

of QBa in Fig. 17 we obtain the identity shown in Fig. 49
which is our desired result. Interested readers are invited to
verify this by hand.
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