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The theoretically tolerable erasure error rate for scalable quantum computing is shown to be well above 0.1,
given standard scalability assumptions. This bound is obtained by implementing computations with generic
stabilizer code teleportation steps that combine the necessary operations with error correction. An interesting
consequence of the technique is that the only errors that affect the maximum tolerable error rate are storage and
Bell measurement errors. If storage errors are negligible, then any detected Bell measurement error below 1/2
is permissible. For practical computation with high detected error rates, the implementation overheads need to
be improved.
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I. INTRODUCTION

One of the most significant obstacles to scalable quantum
computing is physical noise that can quickly destroy the in-
formation contained in the computational state. It is now
known that, provided the physical noise is sufficiently low
and local in space and time, scalable quantum computing is
possible by means of fault-tolerant encodings of quantum
information f1–9g. Therefore, in studying a proposed physi-
cal implementation, a key question is whether the noise in
the implementation is sufficiently low for scalability to be
possible in principle. More importantly, is it feasible in prac-
tice? Answers to these questions depend significantly on the
specific noise in the implementation, as well as on the way in
which the quantum operations necessary for computing are
realized. Nevertheless, the current consensus is that the error
should be below an error rate of 10−4 per operationf10,11g.
There have been numerous suggestions that 10−4 is a pessi-
mistic estimate of the error thresholdsbelow which scalable
quantum computing is possibled and certainly does not apply
uniformly to all needed quantum operationsf12–15g. Recent
researchf15–18g makes it clear that thresholds are at least an
order of magnitude higher under reasonable assumptions.

If the nature of the errors is constrained, then the maxi-
mum tolerable error rate can be much higher. A notable ex-
ample of this is in efficient linear optics quantum computing
f19g where, by design, the errors are dominated by uninten-
tional but detected measurements ofsz. For this error model,
any error rate below 0.5 is tolerablef20–22g. That the toler-
able error rate is so high is due to the great advantages of
being able to detect errors before attempting correction. Here
it is shown that these advantages also apply to the erasure
error model. In this model, errors are detected but otherwise
unknown. Another way of thinking about this error model is
to imagine that the only error is loss of qubits, and whether
or not a qubit is present can easily be determined without
affecting the qubit’s state. The main result of this paper is
that the maximum tolerable erasure error rate can be as high
as 0.292 per operation, given otherwise standardsthough not

necessarily practicald scalability assumptions. Interestingly,
the only operations that have to meet this error probability
are those needed for Bell measurements and for storing a
qubit for the duration of one Bell measurement. Other opera-
tions need have only a nonzero probability of success. If
qubit memory is perfect, any probability of erasure below
1/2 during a Bell measurement can be tolerated. Although
the techniques presented here are theoretically efficient, the
resource requirements at high detected error rates are imprac-
tical. Further work is required to approach feasibility in prac-
tice.

To establish a bound on threshold erasure error rates, the
techniques used in Ref.f19g are adapted to the general set-
ting. Basically, all computational operations with error cor-
rection are combined into a single, very flexible teleportation
step. The ideas that make this possible can be found in Refs.
f15,23–26g. Which operation is applied and the means for
error correction are determined by which state is prepared for
use in the teleportation step. This is where error detection
can be used to advantage: The prepared state can be guaran-
teed to be error-free at the time it is brought into the compu-
tation. Specifically, one can configure the computation so
that all states that may be needed are manufactured in large
quantities at a state factory, with any states for which errors
are detected being discarded before use. Although this is po-
tentially inefficient, it means that for theoretical scalability,
only errors in the implementation of the teleportation process
itself are relevant.

II. ERROR MODELS

Threshold error rates depend in subtle ways on the details
of the error model adopted and how it is tied to the universal
gate set used for computing. For pure detected-error models,
each gate or other operation is error free if no error is de-
tected. The model focused on in this paper is the erasure
error model, in which a detected error implies complete loss
of the state of the qubits involved. Note that detected errors
can be converted to erasure errors by depolarizing qubits on
which an error has been detected. The error rate is deter-
mined by the probabilities of detected error for the various
operations. For simplicity, all operations are assumed to take*Electronic address: knill@boulder.nist.gov
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the same amount of times“one time-step”d and are synchro-
nously clocked on the qubits. It is assumed that classical
computations are instantaneous and error free, and that op-
erations can be applied to any pair of qubits without commu-
nication delays. In other words, there is no communication or
classical computation latency. Classical computation latency
can be a problem if the algorithms for calculating the neces-
sary error-correction steps depending on measurement out-
comes are too complex. Quantum communication latency
occurs when distant qubits need to be coupled. If classical
computation latency is negligible, quantum communication
latency can be significantly reduced by using teleportation
methodsf27g.

It is assumed that the probabilities of detected error are
strictly less than 1. The following detected-error probabilities
will be used.s1d em, the probability of detected error for the
“memory” operation, which involves storing the state of a
qubit for one time-step.s2d eb, the probability of detected
error in implementing a Bell measurement on two qubits.
Here, a Bell measurement is considered to be an elementary
operation and assumed to require one time-step. Interest-
ingly, probabilities of detected errors for other operations do
not affect the threshold if the methods described below are
used. It is assumed that errors are independent between dif-
ferent operations.

III. STABILIZER CODES

For an introduction to the theory of stabilizer codes, see
Ref. f28g. Here we give a brief review to establish the basics.
A stabilizer codes for qubits is defined as a common eigen-
space of a set of commuting products of Pauli operators. Let
n be the length of the code, that is, the number of qubits
used. It is convenient to specify a product of Pauli operators
sPauli productd by a pair of length-n binary srowd vectorss
=sa,bd, a=saidi=1

n , b=sbidi=1
n . For example, sa1,a2,a3d

=s1,0,1d andsb1,b2,b3d=s0,1,1d. For brevity, one can omit
commas and use square brackets as follows:sa1,a2,a3d
=fa1a2a3g=s1,0,1d=f101g. The product of Pauli operators
associated withs is given by

Pssd = Psa,bd = p
j=1

n 5sx
s jd if aj = 1 andbj = 0,

sz
s jd if aj = 0 andbj = 1,

sy
s jd = isx

s jdsz
s jd if aj = 1 andbj = 1,

6
s1d

wheresx,sy,sz are the Pauli matrices and parenthesized su-
perscripts denote the label of the qubit on which the given
operator acts. Lett =sc,dd be another pair of length-n binary
vectors. Computations involving vectors and matrices are
performed modulo 2.Pssd commutes withPstd if a·dT

−b ·cT=0, and anticommutes otherwise. Explicitly,
PssdPstd=s−1da·dT−b·cT

PstdPssd. One can consider pairs of
n-dimensional row vectors such ass as 2n-dimensional row
vectors. To maintain the association with qubit positions, it is
convenient to merge the twon-dimensional vectors. That is,
by definition, s=sa,bd=fa1b1a2b2¯ g. With the example
above, one can writes=f100111g. To make the association

with Pauli matrices, the abbreviationsI =00, X=10, Z=01,
andY=11 are convenient. Thusf100111g=fXZYg.

Let S be the 2n32n block-diagonal matrix

S =1
0 1 0 0 . . .

− 1 0 0 0 . . .

0 0 0 1 . . .

0 0 − 1 0 . . .

A A A A �

2 . s2d

ThenPssd commutes withPstd if sStT=0 and anticommutes

otherwise. Specifically,PssdPstd=s−1dsStTPstdPssd.
Considerl independentsmodulo 2d 2n-dimensional binary

vectorssi describing Pauli products as explained above. Let
Q be thecheck matrixwhose rows are thesi. If the Pssid
commute, then the state space ofn qubits decomposes into 2l

disjoint common eigenspaces of thePssid, each of dimension
2n−l. The eigenspaces are characterized by their syndromes,
that is, by the eigenvalues of thePssid. Each syndrome is
described by anl-dimensional binarysrowd vectore and re-
lates to the eigenvalues as follows: Ifucl is in the eigenspace
with syndromee=seidi=1

l , then Pssiducl=s−1deiucl. The pro-
jection operator onto the eigenspace with syndromee is
given by

PsQ,ed = p
i

1

2
fI + s− 1deiPssidg. s3d

If it is necessary to emphasize the dependence of the syn-
drome onQ, it will be referred to as theQ syndrome. The
eigenspaces are the stabilizer codes associated withQ. For s
in the row span ofQ, Pssd stabilizes the states of each ofQ’s
stabilizer codes up to a phase. Such Pauli products form the
stabilizer of the codes. WritePsQd=PsQ,0d and consider
this to be the fundamental stabilizer code associated withQ.
The word “fundamental” will be omitted whenever possible.
Furthermore,PsQd is used to refer both to the projection
operator and to the code as a subspace: The intended mean-
ing will be clear from the context.

It is important to understand the effects of Pauli products
on states in a stabilizer code. One can verify that
PssdPsQ,edPssd†=PsQ,e8d, where e8=e+sSQT. This im-
plies that ifucl has syndromee, so thatPsQ,educl= ucl, then
Pssducl has syndromee+sSQT. To see this, compute
Pssducl=PssdPsQ,educl=PsQ,e+sSQTdPssducl.

Let C=CsQd be the row span ofQ. C is a classical binary
code. IfQ8 has the same row span asQ, thenCsQ8d=CsQd,
and the set of stabilizer codes associated withQ8 is the same
as that associated withQ. For understanding the error-
correcting properties of stabilizer codes, one has to look at
C', the set of vectorsx such thatxSQT=0 or, equivalently,
such thatPsxd commutes with all of thePssid. For t PC' but
not in C, Pstd preserves each stabilizer code associated with
Q but acts nontrivially in each code. Consequently, the quan-
tum minimum distance of these codes is the minimum dis-
tance of the setC' \C. Here, minimum distance is defined as
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the weight of the smallest-weightsnonzerod vector inC' \C.
The weight ofx is the number of qubits on whichPsxd acts
nontrivially.

When working with stabilizer codes and syndrome mea-
surements, it is helpful to be able to determine the new sta-
bilizer of a state after making a syndrome measurement for a
different code. LetQ be as above. Suppose that the initial
stateucl is an arbitrary state ofPsQ,ed and that one mea-
sures theR syndrome with outcomef. What Pauli products
are guaranteed to stabilize the resulting stateufl up to a
phase?Psr d stabilizesufl if r is in CsRd or in CsQdùCsRd'.
The latter set consists of the Pauli operators that are guaran-
teed to stabilize the initial state and commute with the mea-
surement. In general, the only Pauli products guaranteed to
stabilizeufl are products of the above. One can construct an
independent set of such products fromQ andR by the usual
linear-algebra methods modulo 2.

It is not the case that minimum distance completely de-
termines whetherPsQd is a stabilizer code with good error-
correction properties for typical error models. That is, pro-
vided that the number of low-weight elements ofC' \C is
sufficiently small, it is still possible to correct most errors.
Suppose that thesn− ld-qubit stateucl is encoded asuclL in
PsQd. For any error model, the effect of the errors onuclL
can be thought of as a probabilistic mixture of the states
AkuclL, wheresAkd are the operators in the operator sum rep-
resentation of the errors and satisfyokAk

†Ak= I. The probabil-
ity of AkuclL is LkcuAk

†AkuclL. Because Pauli products form a
complete operator basis,Ak=osaksPssd. To correct the errors
one can measure theQ syndrome of the noisy state. Suppose
that the measured syndrome ise. Then the stateAkuclL is
projected toos:sSQT=eaksPssduclL. The sum is over a setC'

+s0. A good code for the error model has the property that,
with high probability, the dominant amplitudes among the
aks with sPC'+s0 satisfy the condition thats is in the same
setC+s8#C'+s0, independent of whichAk occurred. If that
is true, then a decoding algorithm can determine the domi-
nant amplitude’s cosetC+s8 and applyPss8d† to restoreuclL.
A practical code also has the property that there is an effi-
cient decoding algorithm that has a high probability of suc-
cessfully inferringC+s8.

The discussion of the previous paragraph assumes that
nothing is known about the error locations. Suppose that it is
known that the errors occurred on a given setS of m qubits.
If the errors are erasures, without loss of generality, reset the
erased qubit to 0sreplacing it with a fresh qubit if necessaryd.
Suppose that after this, the measured syndrome ise. The
possible Pauli products appearing in the new stateufl
=os:sSQT=eaksPssduclL satisfy the condition thats has nonzero
entries only for qubits inS andsPC'+s0 for somes0. Sup-
pose thatC' \C contains nos with nonzero entries only for
qubits inS. Then alls appearing in the sum forufl are in the
same setC+s8 for somes8. Applying Pss8d corrects the error.
Note that a suitables8 can be computed efficiently givene
and S: It suffices to solvesSQT=e subject to the condition
that s is zero for positions associated with qubits outside of
S. This is a set of linear equations modulo 2.

Because of the argument of the previous paragraph, an
erasure code forS is defined as a codeC such thatC' \C

contains nos with nonzero entries only for qubits inS. It
follows that a code of minimum distanced is an erasure code
for all S of cardinality at mostd−1. A useful property of
erasure codes when all errors are detected is that if an error
combination cannot be corrected, then this is known. This is
because givenS it is possible to determine whether the code
is an erasure code forS. If an error combination cannot be
corrected, this becomes a detected error for the encoded in-
formation. In particular, for the erasure error model, the en-
coded information is also subject to erasure errors, hopefully
at a much lower rate.

In addition to being able to correct errors with high prob-
ability, a good stabilizer code should be able to encode a
large number of qubits. For the present purposes, analysis is
simplified by encoding one qubit at a time. However, effi-
ciency can be improved substantially by encoding more and
the basic techniques that are used are still applicable. LetQ
be a matrix withn−1 rows defining a two-dimensional sta-
bilizer code. A qubit can be encoded in a way consistent with
the stabilizer formalism by choosing two row vectorstx and
tz with the property thattxSQT=0, tzSQT=0, and txStz

T=1.
ThenPstxd andPstzd relate to each other asX andZ and can
therefore serve as encodedX andZ observables. Note that if
Q is extended bytx, tz or ty= tx+ tz, then one-dimensional
stabilizer codes are obtained whose states are encodedX, Z,
andY eigenstates.

IV. ERROR CORRECTION BY TELEPORTATION

Let Q be thel 32n binary check matrix with entries de-
fining a stabilizer code onn qubits for encodingk=n− l qu-
bits with good error-detecting or -correcting properties. Con-
sider ann qubit input blockcarryingk qubits encoded in the
stabilizer code forQ, where the block has been affected by
errors. An effective way of detecting or correcting errors is to
teleport each of then qubits of the input block using two
blocks of n qubits that form anencoded Bell pair. That is,
both blocks have syndrome0 with respect toQ and corre-
sponding qubits encoded in the two blocks are in the state
su00l+ u11ld /Î2. The state of the two blocks is defined by the
following preparation procedure: Start withn pairs of qubits
in the standard Bell statesu00l+ u11ld /Î2. The two blocks are
formed from the first and second members of each pair, re-
spectively. Use aQ-syndrome measurement on then second
members of each pair to project them into one of the joint
eigenspaces ofQ. Finally, apply identical Pauli matrices to
both members of pairs in such a way as to reset the syn-
dromes to0. To teleport, apply the usual protocol to corre-
sponding qubits in the three blocks. In the absence of errors,
this copies the encoded input state to the second block of the
encoded Bell pair. The following argument shows that the
errors are revealed by parities of the teleportation measure-
ment outcomes.

The standard quantum teleportation protocol begins with
an arbitrary stateucl1 in qubit 1 and the Bell statesu00l23

+ u11l23d /Î2 in qubits 2,3. The global initial state can be
viewed asucl encoded in the stabilizer code generated by
IXX and IZZ, whose check matrix has rowsb1=f001010g
andb2=f000101g. Let Bs23d be the check matrix whose rows
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are thebi. To teleport, one makes a Bell-basis measurement
on the first two qubits. This is equivalent to making a
Bs12d-syndrome measurement, whereBs12d has as rows
f101000g=fXXIg and f010100g=fZZIg. This is identical to
Bs23d with qubits 2,3 exchanged for qubits 1,2. Depending on
the syndromee that results from the measurement, one ap-
plies correcting Pauli matrices to qubit 3 to restoreucl in
qubit 3.

Consider the teleportation ofn qubits in a block as de-
scribed above. The protocol is such that the 2n binary mea-
surement outcomes linearlyswith respect to computation
modulo 2d determine the Pauli product correction to be ap-
plied to the second block of the encoded Bell pair. Letg be
the binary representation of the Pauli product correction. The
syndrome of the input block constrainsg as shown in Fig. 1.
The principle is as explained in Ref.f24g for unitary gates,
but generalized to measurements. In this case, a stabilizer
projection on the destination qubits before teleportation is
equivalent to a projection after teleportation, where the syn-

drome associated with the projection is modified by the cor-
rection Pauli product used at the end of teleportation. The
expressiongSQT must match the syndrome of the input
block. Consequently, the syndrome of the input block can be
deduced fromg, a function of the teleportation Bell measure-
ment. Errors can be detected or corrected accordingly. Com-
pared to the syndrome extraction methods of Steanef15g,
error-correcting teleportation involves only one step instead
of at least two but requires preparing more complex states.

It is necessary to consider the effects of errors in the pre-
pared encoded Bell pair. Errors on the second block propa-
gate forward and must be handled by future teleportations.
Because of the Bell measurement, Pauli product errors on the
first block have an effect equivalent to the same errors on the
input block. Thus, using the inferred syndrome for detection
or correction of errors deals with errors in both blocks, as
long as their combination is within the capabilities of the
code.

Error correction or detection by teleportation handles
leakage errors in the same way as other errors. If a qubit
“leaked,” the outcome of its Bell measurement becomes un-
determined. The Bell measurement can be filled in arbi-
trarily, because for the purpose of interpreting the syndrome,
the effect is the same as if a Pauli error occurred depending
on how the measurement result is filled in.

V. COMBINING OPERATIONS WITH ERROR
CORRECTION

Operations can now be integrated into the error-correction
process using the techniques described in Ref.f24g. The ba-
sic idea is to apply the desired encoded operation to the
destination qubits of the entangled statesor statesd to be used
for teleportation. If the operation is in the Clifford group, the
teleportation protocol results in the desired operation being
applied, except that the Pauli products needed to correct the
state are modified.sThe Clifford group consists of the unitary
operators that normalize the group generated by the Pauli
products.d To achieve universality, an additional operation
that has the property of conjugating Pauli products to ele-
ments of the Clifford group is required. One such operation
is the 45° rotatione−isxp/8. Again, it is applied in encoded
form to the destination qubits of the prepared state used for
teleportation. After teleportation, the necessary correction
may be a Clifford-group element not of the form of a Pauli
product. If that is the case, this Clifford-group element is
applied in the next teleportation step.

Note that for applying Clifford-group elements such as
the controlled-not, the teleportation step has to act on two
encoded qubits and the error-correction aspects of the tele-
portation step for the two qubits have to be implemented on
both at the same time.

VI. MEASUREMENT

The same teleportation step used for computing can also
be used for measurement, except that in this case the desti-
nation qubits are redundant. That is, if one prepares an en-
coded state on the first block of qubits with the encoded

FIG. 1. Teleporting with an encoded entangled state is equiva-
lent to a syndrome measurement. The gray lines are the time lines
of blocks of n qubits. The boxes denote various operations. The
Bell-state preparation on corresponding pairs of qubits in two
blocks is depicted with a box angled to the right and labeled “Bell.”
The state used for teleportation in the top diagram is obtained after
Bell-state preparation by projecting one of the blocks withPsQ,0d.
sThe actual preparation procedure is different but has the same out-
put.d Projection operators are shown with boxes angled both ways
with the operator written in the box. Bell measurement of corre-
sponding pairs of qubits in two blocks is depicted with a box angled
to the left and labeled “Bell.” A Bell measurement on qubits 1 and
2 may be implemented by applying a CNOT from qubit 1 to 2,
performing ansx measurement on qubit 1 and asz measurement on
qubit 2. The top diagram is the actual network implemented. The
other two are logically equivalent. The Bell measurement outcome
g is correlated with the effective projection in the bottom diagram.
If the input state has a particular syndrome, then onlyg for which
the projection is onto the subspace with this syndrome have nonzero
probabilities.
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qubits in logical zero, the Bell measurement will reveal not
just the syndrome of the code, but also the measurement
outcome. Errors can be classically corrected to reveal the
true measurement outcome.

VII. OMITTING POST-TELEPORTATION CORRECTIONS

The thresholds to be established require that all post-
teleportation corrections are omitted. For Clifford gates
implemented by teleportation, the only such correction in-
volves appyling Pauli products to restore the syndrome. That
these Pauli products can be omitted by book-keeping meth-
ods was observed by Steanef15g. This involves keeping
track of a Pauli frame, which is the Pauli product that cor-
rectly restores the state to the zero syndrome code. Note that
the Pauli frame is usually retroactive and does not account
for newly introduced errors. See also Ref.f16g. Assume that
the only non-Clifford gate is the 45° rotation given above.
Whenever this is implemented by teleportation, it may be
necessary to apply a 90° rotation to compensate for a pos-
sible direction error induced by the Pauli frame. Rather than
applying this rotation explicitly, it can be absorbed into the
next teleportation step. Since the state needed for this next
step must be ready immediately after the Bell measurement
of the current step, this requires anticipating possible com-
pensations by preparing two states ahead of time, where the
second serves to implement the additional 90° rotation if
necessary. Note that the next gate must be a Clifford gate
since there is no reason to apply a second 45° rotation. To-
gether with the possible 90° compensating rotation, this is
still a Clifford gate.

VIII. THRESHOLDS

The sequential implementation of the scheme in the con-
text of a computation is shown in Fig. 2. In order to obtain a
lower bound on the erasure error threshold and discussing
the depolarizing error threshold, observe that the efficiency
with which the needed states are prepared has no effect on
the threshold. It is necessary only to determine for what error
rates it is possible to make the error per step in the encoded
slogicald qubits arbitrarily small. Consider the erasure error
model. In this case, the error model for the logical qubits is
also independent erasures. If the rate of logical erasures is
sufficiently small, then according to the known threshold
theorems, we can use the logical qubits to efficiently imple-
ment arbitrarily accurate quantum computations. Efficiency
in these theorems requires only that the cost of each elemen-
tary step of the computation is bounded by a constant inde-
pendent of the length of the computation. Here, this constant
depends on the length of the code needed to achieve an en-
coded error below the general threshold, for which there are
known lower bounds. The effort required to prepare the
states for the teleportation steps only adds to the constant. In
particular, the states can be prepared naively, by attempting
to implement a quantum network that prepares them, and
discarding any unsuccessful attempts. It is known that any
one-qubit state encoded in a stabilizer code of lengthn re-
quires at mostOsn2d quantum gatesf29g. Because each suc-

ceeds only with probabilitys,1, the expected number of
attempts for each state to be prepared is bounded byeOsn2d.
Although this is superexponential, it contributes “only” a
constant overhead to the implementation of each encoded
operation. In conclusion, it is possible to invoke the general
threshold theorems to show that state preparation overhead
can be ignored for the purpose of establishing lower bounds
on the threshold by the methods used here. Nevertheless, a
self-contained proof not relying on the general threshold
theorems for scalability is given in Sec. IX.

Suppose that we use a one-qubit erasure code for which
the probability of an uncorrectable erasure isfsed, given that
the probability of erasure of each qubit ise. The error prob-
ability of a quantum computation using the scheme of Fig. 2
is determined by the probability that the Pauli product cor-
rection or Pauli frame change deduced from the syndrome
derived from the Bell measurement outcomes is correct.
Note that the inferred Pauli product correction does not
strictly speaking correct the output state as it exists at the end
of the Bell measurement. Rather, it is retroactive and would
have restored the output state if it had been applied to the

FIG. 2. Sequence of computational steps. Each step consists of a
teleportation with integrated operations and error correction. The
steps required for correction determine the prepared state used in
the next step. That is, a state that has the appropriate operations
preapplied to the destination qubit is used. Any such state is as-
sumed to be available at the “state preparation factory” at the next
step. Zero communication and classical computation delays are as-
sumed. In particular the classical feed forward following the Bell
measurement and selection of the desired prepared state take no
additional time. The state preparations are implemented so that the
states are ready at selection time. The prepared states have been
checked for errors, with no errors detected just before they are used.
Errors in the computation are therefore due only to the Bell mea-
surement and the storage time required for the second block of each
prepared state. The storage time is the duration of the Bell
measurement.
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output state when it emerged from the state preparationssee
Fig. 2d. Subsequent errors accumulated while waiting for the
current Bell measurement to complete are taken into account
at the next teleportation. Thus, the errors that affect the syn-
drome determined by the Bell measurements come from the
Bell measurement itself and from thesdetectedd storage error
accumulated on the input qubits during the previous Bell
measurement after they emerged from the previous telepor-
tation’s state preparation. The total probability of detected
error is given byem+s1−emdeb, where the first term comes
from detected error in the storage period of the input qubits
and the second comes from the Bell measurement, which
may be applied only to qubits with no previously detected
error. The probability of erasure of the encoded qubit is
therefore ffem+s1−emdebg. Because the prepared states are
error-free at the instant when they are used, this erasure
probability also applies to each qubit independently in tele-
ported two-qubit operations. It remains to determine for what
error rates there exist one-qubit erasure stabilizer codes with
arbitrarily small probability of encoded erasure. If the supre-
mum of these error rates isemax, then the threshold forem
and eb is determined by the curveemax=em+s1−emdeb. The
value of emax is determined in Ref.f30g and is given by
emax=1/2. Figure 3 shows the region forem and eb where
scalable computing with the detected-error model is possible
in principle.

IX. STATE-PREPARATION INEFFICIENCY

It is possible to prove directly that state preparation can be
done with polynomial overhead instead of relying on the
general threshold theorems. This is done here to make the
paper more self-contained and to show that two levels of
concatenation suffice for the erasure error model. Letn be
the final length of thesconcatenatedd code for each logical
qubit. The code is constructed by concatenating two erasure
codes of lengthl1 andl2 with l1l2=n andl1,În. State prepa-
ration through the first level of encoding is handled by the
naive method of repeated attempts. At the second level of

encoding, the methods of the previous sections are used to
improve the probability of successful state preparation.

To see that one level of encoding with the naive state-
preparation method is insufficient, consider the following:
The goal is to implement a computation ofN elementary
operations with polynomial overhead. In order for the com-
putation to have a probability 1−e of success with logical
qubits and no further error correction, the logical qubits must
be subject to an error rate ofe /N per operation.sErasure
errors add probabilistically.d Given thatem andeb are in the
scalability region, the error rate as a function of code length
n for the best codes goes ase−cn sasymptoticallyd for some
constantc depending onem andeb f31g. One should therefore
choosen. lnsN/ed /c. Typically, the state-preparation net-
works for these codes have at leastc8n2 gates for some con-
stant c8.0. The naive state preparation therefore requires
resources bounded byec9n2

for some constantc9.0. Substi-
tuting the lower bound forn gives a superpolynomial func-
tion of N/e.

To eliminate the superpolynomial overhead, choose a first
level code that reduces the error rate toe−cl1. Choose a
second level code that can correct any combination of at
most l2/6 erasuresssuch stabilizer codes exist by using
random coding f32,33gd. The concatenation of the two
codes results in logical qubits with an error rate bounded by
s l2

l2/6
dse−cl1dl2/6øe−c8n for some constantc8.0 and suffi-

ciently largel1, l2. Choosen. lnsN/ed /c8. The naive state-
preparation method for computations with qubits encoded in

the first-level code requires an overhead ofec9l1
2
øedn for

some constantd. Computations at the next level are imple-
mented using the teleportation techniques discussed above.
The probability of success of one step is at least 1−e−c-l1 for
some constantc- sdifferent fromc8 because a step involves
both storage and Bell measurementsd. The probability of suc-
cess of a state-preparation network for states needed by the
second level code is at least 1−c8l2

2e−c-l1.1/2 for suffi-
ciently largel1. The total overhead for the concatenated state
preparation is bounded by 2c8l2

2edn,ed8 lnsN/ed=polysN/ed.

FIG. 3. Region for which scalable computing
with the detected-error model is possible. Toler-
able error rates are in the gray region, strictly
below the upper boundary. If memory and Bell
measurement error are equal, then any error rate
below 0.292 is tolerable. The point on the bound-
ary corresponding to this value is shown. If
memory errors are negligible, then Bell-
measurement error rates close to 1/2 are tolerable
in principle.
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An obvious way to improve the efficiency of this state-
preparation scheme is to choose the size of the first level
code to better balance the overheads between the two levels.
In particular, the first level code need have length only of
order logsnd for the probability of success of the second-level
state preparation to exceed a constant. This reduces the over-
head to polylogarithmic inN/e, comparable to overheads in
the standard threshold theorems based on concatenation.

X. DISCUSSION

The work reported here shows that the maximum toler-
able error rates depend strongly on the error model. If the
errors are constrained, then they can be tolerated much better
than depolarizing errors. In particular, if errors can be de-
tected, tolerable error rates for computation are well above
0.1, depending on what are considered elementary operations
and the relationship between storage errors, gate errors, and
measurement times. This is strong motivation to build in
error detection when engineering quantum devices and de-
signing error-correction strategies.

The use of teleportation demonstrates yet again the now
well-known versatility of this basic quantum communication

protocol. It is worth noting that frequent use of teleportation
in a computation implicitly solves the leakage problem. This
is the problem where qubits are lost from the computation
without the event being detected, either by physical loss of
the underlying particles, or by the particle’s state leaving the
qubit-defining subspace. In every teleportation step, the des-
tination qubits are fresh, and any previously leaked qubits
contribute only to errors in the Bell measurements. These
errors can be treated just like other errors.

After the work presented here was completed, the power
of error-correcting teleportation and error detection has been
shown to extend to general independent error models, lead-
ing to very high thresholds for fault-tolerant quantum com-
puting. See Ref.f16g.
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