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Scalable quantum computing in the presence of large detected-error rates
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The theoretically tolerable erasure error rate for scalable quantum computing is shown to be well above 0.1,
given standard scalability assumptions. This bound is obtained by implementing computations with generic
stabilizer code teleportation steps that combine the necessary operations with error correction. An interesting
consequence of the technique is that the only errors that affect the maximum tolerable error rate are storage and
Bell measurement errors. If storage errors are negligible, then any detected Bell measurement error below 1/2
is permissible. For practical computation with high detected error rates, the implementation overheads need to

be improved.
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[. INTRODUCTION necessarily practicplscalability assumptions. Interestingly,

L the only operations that have to meet this error probability

One of the most significant obstacles to scalable quanturg,e those needed for Bell measurements and for storing a
computing is physical noise that can quickly destroy the inypit for the duration of one Bell measurement. Other opera-
formation contained in the computational state. It is NOWijons need have only a nonzero probability of success. If
known that, provided the physical noise is sufficiently low qubit memory is perfect, any probability of erasure below
and local in space and time, scalable quantum computing i$/2 during a Bell measurement can be tolerated. Although
possible by means of fault-tolerant encodings of quantumpe techniques presented here are theoretically efficient, the
information[1-9]. Therefore, in studying a proposed physi- yesource requirements at high detected error rates are imprac-
cal implementation, a key question is whether the noise ifica| Further work is required to approach feasibility in prac-
the implementation is sufficiently low for scalability to be jce.
possible in principle. More importantly, is it feasible in prac- 14 establish a bound on threshold erasure error rates, the
tice?_Ansvv_ers_to the_se questiong depend significantly on t_hfechniques used in Reff19] are adapted to the general set-
specific noise in the implementation, as well as on the way ifjng Basically, all computational operations with error cor-
which the quantum operations necessary for computing argsction are combined into a single, very flexible teleportation
realized. Nevertheless, the current consensus is that the eM9%p. The ideas that make this possible can be found in Refs.
should be below an error rate of T(per operatiori10,11.  [1523_2§. Which operation is applied and the means for
There have been numerous suggestions tha &0a pessi- o correction are determined by which state is prepared for
mistic estimate of the error threshaldelow which scalable ;e in the teleportation step. This is where error detection
quantum computing is possiblend certainly does not apply ¢an he used to advantage: The prepared state can be guaran-
uniformly to all needed quantum operatidi2-15. Recent  (ee 1o be error-free at the time it is brought into the compu-
researcti15-18 makes it clear that thresholds are at least antion, Specifically, one can configure the computation so
order of magnitude higher under reasonable assumptions. {hat gl states that may be needed are manufactured in large

If the nature of the errors is constrained, then the maxiqantities at a state factory, with any states for which errors
mum tolerable error rate can be much higher. A notable exzre detected being discarded before use. Although this is po-
ample of this is in efficient linear optics quantum computingientially inefficient, it means that for theoretical scalability,

[19] where, by design, the errors are dominated by unintengny errors in the implementation of the teleportation process
tional but detected measurementssof For this error model,  jiself are relevant.

any error rate below 0.5 is tolerall20—22. That the toler-
able error rate is so high is due to the great advantages of

being able to detect errors before attempting correction. Here Il. ERROR MODELS
it is shown that these advantages also apply to the erasure
error model. In this model, errors are detected but otherwisgf
unknown. Another way of thinking about this error model is
to imagine that the only error is loss of qubits, and whethe

Threshold error rates depend in subtle ways on the details
the error model adopted and how it is tied to the universal
rgate set used for computing. For pure detected-error models,
each gate or other operation is error free if no error is de-

ffecti h bit’ Th ; it of thi Ulected. The model focused on in this paper is the erasure
affecting the qubits state. The main result of this paper 1Sy model, in which a detected error implies complete loss

: er
thagtggzmaxmum tqleraple erashure error rate can l:;]e as h'QZT the state of the qubits involved. Note that detected errors
as u. per operation, given otherwise standtrugh not can be converted to erasure errors by depolarizing qubits on

which an error has been detected. The error rate is deter-
mined by the probabilities of detected error for the various
*Electronic address: knill@boulder.nist.gov operations. For simplicity, all operations are assumed to take
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the same amount of timgone time-step) and are synchro- with Pauli matrices, the abbreviatioms 00, X=10, Z=01,
nously clocked on the qubits. It is assumed that classicaindY=11 are convenient. Thy400111=[XZY].
computations are instantaneous and error free, and that op- Let S be the 21X 2n block-diagonal matrix

erations can be applied to any pair of qubits without commu-

nication delays. In other words, there is no communication or 0O 1 0 O

classical computation latency. Classical computation latency 10 0 0O

can be a problem if the algorithms for calculating the neces-

sary error-correction steps depending on measurement out- sS= 0 0 0 1 2
comes are too complex. Quantum communication latency 0O 0 -1 0

occurs when distant qubits need to be coupled. If classical
computation latency is negligible, quantum communication
latency can be significantly reduced by using teleportatlonl_hen P(s) commutes withP(t) if sStT=0 and anticommutes
methodd27]. ) . T

It is assumed that the probabilities of detected error ar@therwise. SpecificallyP(s)P(t) =(-1)*" P(t)P(s).
strictly less than 1. The following detected-error probabilites ~Considert independentmodulo 2 2n-dimensional binary
will be used.(1) e, the probability of detected error for the Vectorss; describing Pauli products as explained above. Let
“memory” operation, which involves storing the state of aQ be thecheck matrixwhose rows are the. If the P(s)
qubit for one time-step(2) e,, the probability of detected commute, then the state spacenafubits decomposes inté 2
error in implementing a Bell measurement on two qubits.disjoint common eigenspaces of tR¢s), each of dimension
Here, a Bell measurement is considered to be an elementa®)”'. The eigenspaces are characterized by their syndromes,
operation and assumed to require one time-step. Interesthat is, by the eigenvalues of the(s). Each syndrome is
ingly, probabilities of detected errors for other operations dadescribed by am-dimensional binaryrow) vectore and re-
not affect the threshold if the methods described below aréates to the eigenvalues as follows]# is in the eigenspace
used. It is assumed that errors are independent between difith syndromee=(e)!_,, then P(s)|¢)=(-1)%|¢). The pro-
ferent operations. jection operator onto the eigenspace with syndroenés

given by

Ill. STABILIZER CODES

For an introduction to the theory of stabilizer codes, see
Ref.[28]. Here we give a brief review to establish the basics.

A stabilizer codes for qubits is defined as a common eigenrf it is necessary to emphasize the dependence of the syn-
space of a set of commuting produgts of Pauli operators. I.‘e(ﬁrome onQ, it will be referred to as th& syndrome. The

n be the length of the code, that is, the number of qubit igenspaces are the stabilizer codes associatedQuiEor s

: 3 . $n the row span of), P(s) stabilizes the states of each@%
(_Pauh prod_ucl l?]y a pé'r ofnlengtm binary (row) vectorss stabilizer codes up to a phase. Such Pauli products form the
=(a,b), a=(@)z,, b=(b),. For exam_ple, (ay,8;,83) .. stabilizer of the codes. Writ€l(Q)=II(Q,0) and consider
=(1,0,1 and(by, by, b3)=(0,1,1. For brevity, one can omit this to be the fundamental stabilizer code associated @ith
commas and use square brackets as follo®s.a2,83)  The word “fundamental” will be omitted whenever possible.
=[218,8;]=(1,0,9=[101]. The product of Pauli operators prythermore,[1(Q) is used to refer both to the projection

Qe =11 501+ 1%P(s)] @

associated witls is given by operator and to the code as a subspace: The intended mean-
. Ux(j) if a,=1 andb, =0, ing V\_/lll_be clear from the context. _
_ ) It is important to understand the effects of Pauli products
P(s)=P(a,b) = H o if =0 andb; =1, on states in a stabilizer code. One can verify that
"o =io VeV if ay=1 andb; =1, P(9TI(Q,e)P(s)'=T1(Q,e’), where &' =e+s5Q". This im-

1) plies that if|) has syndrome, so thatlI(Q,e)|#)=|¢), then
P(s)|#) has syndromee+sSQ'. To see this, compute
where o,,0y,0, are the Pauli matrices and parenthesized SUP(s)|y)=P(9)I1(Q, )| =11(Q,e+sSQP()| ).
perscripts denote the label of the qubit on which the given | et C=C(Q) be the row span of. C is a classical binary
operator acts. Let=(c,d) be another pair of length-binary  ge. IfQ’ has the same row span @s thenC(Q")=C(Q),
vectors. Computations involving vectors and matrices ar@nd the set of stabilizer codes associated W@itis the same
performed modulo 2P(s) commutes withP(t) if a:d" a5 that associated wit). For understanding the error-
-b-c'=0, and anticommutes  otherwise.  Explicitly, correcting properties of stabilizer codes, one has to look at
P(s)P(t)=(-1)29 < P(t)P(s). One can consider pairs of C', the set of vectorg such thatxSQT=0 or, equivalently,
n-dimensional row vectors such asas h-dimensional row  such thatP(x) commutes with all of thé(s;). Fort e C* but
vectors. To maintain the association with qubit positions, it isnot in C, P(t) preserves each stabilizer code associated with
convenient to merge the two-dimensional vectors. That is, Q but acts nontrivially in each code. Consequently, the quan-
by definition, s=(a,b)=[a;b;asb,---]. With the example tum minimum distance of these codes is the minimum dis-
above, one can write=[100111. To make the association tance of the se€+\C. Here, minimum distance is defined as
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the weight of the smallest-weiglhonzerg vector inC*+\C. contains nos with nonzero entries only for qubits i8. It
The weight ofx is the number of qubits on whicR(x) acts  follows that a code of minimum distanckis an erasure code
nontrivially. for all S of cardinality at mostd—1. A useful property of
When working with stabilizer codes and syndrome mea-erasure codes when all errors are detected is that if an error
surements, it is helpful to be able to determine the new stacombination cannot be corrected, then this is known. This is
bilizer of a state after making a syndrome measurement for Because give it is possible to determine whether the code
different code. LetQ be as above. Suppose that the initialjs an erasure code fd. If an error combination cannot be
state|i)) is an arbitrary state ofI(Q,e) and that one mea- corrected, this becomes a detected error for the encoded in-
sures theR syndrome with outcomé. What Pauli products  formation. In particular, for the erasure error model, the en-

are guaranteed to stabilize the resulting stae up to a  ¢oded information is also subject to erasure errors, hopefully
phase®(r) stabilizes¢) if r is in C(R) orin C(Q NC(RI*. 4t a much lower rate.

The latter set consists of the Pauli operators that are guaran- |, addition to being able to correct errors with high prob-
teed to stabilize the initial state and commute with the Meazhility, a good stabilizer code should be able to encode a

surement. In general, the only Pauli products guaranteed 19 qe number of qubits. For the present purposes, analysis is
stabilize|¢) are products of the above. One can construct aRjmplified by encoding one qubit at a time. However, effi-

independent set of such products fr@andR by the usual  jency can be improved substantially by encoding more and
linear-algebra methods modulo 2. the basic techniques that are used are still applicableQLet
It is not the case that minimum distance completely de,q 3 matrix withn-1 rows defining a two-dimensional sta-
termines whethefl(Q) is a stabilizer code with good error- pijizer code. A qubit can be encoded in a way consistent with
correction properties for typical error models. That is, pro-ine stabilizer formalism by choosing two row vectégsand
vided that the number of low-weight elements@f\C is  {_ ith the property that,SQT=0, t,5QT=0, andt,St!=1.
sufficiently small, it is still possible to correct most errors. 'Fhen P(t,) andP(t,) relatexto each other asandZ gné can
Suppose that then-1)-qubit state|y) is encoded ag/) in  therefore serve as encod¥candZ observables. Note that if
I1(Q). For any error model, the effect of the errors |gn, Q is extended byt,, t, or t,=t,+t, then one-dimensional

can be thought of as a probabilistic mixture of the statéstapilizer codes are obtained whose states are encaded
Ay, where(A,) are the operators in the operator sum rep-gndy eigenstates.

resentation of the errors and sati§IyAﬁAk:I. The probabil-

ity of Ay is “(yAIAY), . Because Pauli products form a IV. ERROR CORRECTION BY TELEPORTATION

complete operator basi8,=>.aP(s). To correct the errors

one can measure ti@ syndrome of the noisy state. Suppose  Let Q be thel X 2n binary check matrix with entries de-
that the measured syndromeds Then the statédJy), is  fining a stabilizer code on qubits for encodingk=n-I qu-
projected t0Zsgor-ectsP(9)|¥)L. The sum is over a set* b_|ts with good_ grror—detectmg or -correcting properties. Con-
+s,. A good code for the error model has the property thatSider ann qubitinput blockcarryingk qubits encoded in the
with high probability, the dominant amplitudes among theStabilizer code foQ, where the block has been affected by
ays With s e C +5, satisfy the condition thatis in the same ~ €fTors. An effective way of detecting or correcting errors is to
setC+s' C CL +s,, independent of which, occurred. If that  teleport each of the qubits of the input block using two
is true, then a decoding algorithm can determine the domiPlocks ofn qubits that form arencoded Bell pairThat is,
nant amplitude’s cose@+s’ and applyP(s')" to restordyy, . Poth blocks have syndrom@ with respect toQ and corre-

A practical code also has the property that there is an effiSPonding qubits encoded in the two blocks are in the state
cient decoding algorithm that has a high probability of suc-(/00+[11))/+2. The state of the two blocks is defined by the
cessfully inferringC+s'. following preparation procedure: Start withpairs of qubits

The discussion of the previous paragraph assumes thét the standard Bell sta¢00)+|11))/12. The two blocks are
nothing is known about the error locations. Suppose that it iSormed from the first and second members of each pair, re-
known that the errors occurred on a given Setf m qubits.  spectively. Use &-syndrome measurement on theecond
If the errors are erasures, without loss of generality, reset thexembers of each pair to project them into one of the joint
erased qubit to Qreplacing it with a fresh qubit if necessary ~ eigenspaces oR. Finally, apply identical Pauli matrices to
Suppose that after this, the measured syndrome iEhe both members of pairs in such a way as to reset the syn-
possible Pauli products appearing in the new state  dromes to0. To teleport, apply the usual protocol to corre-
:ES:S%QT:eaksP(S)|'r//>L satisfy the condition that has nonzero sponding qubits in the three blocks. In the absence of errors,
entries only for qubits irS andse C' +s, for somes,. Sup-  this copies the encoded input state to the second block of the
pose thaiC'\C contains nas with nonzero entries only for encoded Bell pair. The following argument shows that the
qubits inS. Then alls appearing in the sum fdg) are in the ~ errors are revealed by parities of the teleportation measure-
same seC+s’ for somes’. Applying P(s') corrects the error. ment outcomes.

Note that a suitabls’ can be computed efficiently givem The standard quantum teleportation protocol begins with
and S It suffices to solvesSQT=e subject to the condition an arbitrary staté); in qubit 1 and the Bell stat€00),;
thats is zero for positions associated with qubits outside of+|11),3)/v2 in qubits 2,3. The global initial state can be
S. This is a set of linear equations modulo 2. viewed as|) encoded in the stabilizer code generated by

Because of the argument of the previous paragraph, abiXX and 1ZZ, whose check matrix has rows =[001010
erasure code fo6 is defined as a cod€ such thatC*\C andb,=[00010]. Let B3 pe the check matrix whose rows
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n input qubits drome associated with the projection is modified by the cor-
rection Pauli product used at the end of teleportation. The
expressiongSQ" must match the syndrome of the input
block. Consequently, the syndrome of the input block can be
deduced frong, a function of the teleportation Bell measure-
ment. Errors can be detected or corrected accordingly. Com-
pared to the syndrome extraction methods of Stedr;
error-correcting teleportation involves only one step instead
of at least two but requires preparing more complex states.

It is necessary to consider the effects of errors in the pre-
pared encoded Bell pair. Errors on the second block propa-
gate forward and must be handled by future teleportations.
Because of the Bell measurement, Pauli product errors on the
first block have an effect equivalent to the same errors on the
input block. Thus, using the inferred syndrome for detection
or correction of errors deals with errors in both blocks, as
long as their combination is within the capabilities of the
code.

Error correction or detection by teleportation handles
leakage errors in the same way as other errors. If a qubit

FIG. 1. Teleporting with an encoded entangled state is equiva«|eaked,” the outcome of its Bell measurement becomes un-
lent to a syndrome measurement. The gray lines are the time ling$etermined. The Bell measurement can be filled in arbi-
of blocks of n qubits. The boxes denote various operations. Thetrarily, because for the purpose of interpreting the syndrome,

Bell-state preparation on corresponding pairs of qubits in tWoyq effect is the same as if a Pauli error occurred depending
blocks is depicted with a box angled to the right and labeled “BeII."On how the measurement result is filled in

The state used for teleportation in the top diagram is obtained after
Bell-state preparation by projecting one of the blocks WIit@Q, 0).
(The actual preparation procedure is different but has the same out- V. COMBINING OPERATIONS WITH ERROR
put) Projection operators are shown with boxes angled both ways CORRECTION
with the operator written in the box. Bell measurement of corre- ) ) ) )
sponding pairs of qubits in two blocks is depicted with a box angled  Operations can now be integrated into the error-correction
to the left and labeled “Bell.” A Bell measurement on qubits 1 andProcess using the techniques described in Rf]. The ba-
2 may be implemented by applying a CNOT from qubit 1 to 2, Sic idea is to apply the desired encoded operation to the
performing ano, measurement on qubit 1 andrameasurement on  destination qubits of the entangled stéte stateyto be used
qubit 2. The top diagram is the actual network implemented. Thefor teleportation. If the operation is in the Clifford group, the
other two are logically equivalent. The Bell measurement outcoméeleportation protocol results in the desired operation being
g is correlated with the effective projection in the bottom diagram.applied, except that the Pauli products needed to correct the
If the input state has a particular syndrome, then anfgr which  state are modifiedThe Clifford group consists of the unitary
the projection is onto the subspace with this syndrome have nonzeigperators that normalize the group generated by the Pauli
probabilities. products) To achieve universality, an additional operation
that has the property of conjugating Pauli products to ele-
are theb;. To teleport, one makes a Bell-basis measuremenments of the Clifford group is required. One such operation
on the first two qubits. This is equivalent to making ais the 45° rotatione™x™8, Again, it is applied in encoded
B12-syndrome measurement, whe®'? has as rows form to the destination qubits of the prepared state used for
[101000=[XXI] and [010104=[ZZI]. This is identical to teleportation. After teleportation, the necessary correction
B3 with qubits 2,3 exchanged for qubits 1,2. Depending onmay be a Clifford-group element not of the form of a Pauli
the syndromee that results from the measurement, one ap{roduct. If that is the case, this Clifford-group element is
plies correcting Pauli matrices to qubit 3 to restdge in  applied in the next teleportation step.
qubit 3. Note that for applying Clifford-group elements such as
Consider the teleportation of qubits in a block as de- the controlled-not, the teleportation step has to act on two
scribed above. The protocol is such that timebhary mea-  encoded qubits and the error-correction aspects of the tele-
surement outcomes linearlgwith respect to computation portation step for the two qubits have to be implemented on
modulo 2 determine the Pauli product correction to be ap-both at the same time.
plied to the second block of the encoded Bell pair. gdie
the binary representation of the Pauli product correction. The
syndrome of the input block constraigsaas shown in Fig. 1.
The principle is as explained in RdR4] for unitary gates, The same teleportation step used for computing can also
but generalized to measurements. In this case, a stabilizée used for measurement, except that in this case the desti-
projection on the destination qubits before teleportation isation qubits are redundant. That is, if one prepares an en-
equivalent to a projection after teleportation, where the syneoded state on the first block of qubits with the encoded

n output qubits

VI. MEASUREMENT
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qubits in logical zero, the Bell measurement will reveal not

just the syndrome of the code, but also the measurement -
outcome. Errors can be classically corrected to reveal the o
true measurement outcome.

State

VII. OMITTING POST-TELEPORTATION CORRECTIONS

Preparation

The thresholds to be established require that all post- N
teleportation corrections are omitted. For Clifford gates
implemented by teleportation, the only such correction in-
volves appyling Pauli products to restore the syndrome. That State
these Pauli products can be omitted by book-keeping meth-
ods was observed by Steah&5]. This involves keeping
track of a Pauli frame, which is the Pauli product that cor-
rectly restores the state to the zero syndrome code. Note that
the Pauli frame is usually retroactive and does not account
for newly introduced errors. See also Rf6]. Assume that
the only non-Clifford gate is the 45° rotation given above.
Whenever this is implemented by teleportation, it may be
necessary to apply a 90° rotation to compensate for a pos- | ] e
sible direction error induced by the Pauli frame. Rather than

applying this rotation explicitly, it can be absorbed into the £ 5 sequence of computational steps. Each step consists of a
next teleportation step. Since the state needed for this next|enortation with integrated operations and error correction. The
step must be ready immediately after the Bell measuremengeps required for correction determine the prepared state used in
of the current step, this requires anticipating possible cOMne next step. That is, a state that has the appropriate operations
pensations by preparing two states ahead of time, where thgeapplied to the destination qubit is used. Any such state is as-
second serves to implement the additional 90° rotation isumed to be available at the “state preparation factory” at the next
necessary. Note that the next gate must be a Clifford gatetep. Zero communication and classical computation delays are as-
since there is no reason to apply a second 45° rotation. Teumed. In particular the classical feed forward following the Bell
gether with the possible 90° compensating rotation, this isneasurement and selection of the desired prepared state take no
still a Clifford gate. additional time. The state preparations are implemented so that the
states are ready at selection time. The prepared states have been
checked for errors, with no errors detected just before they are used.
Errors in the computation are therefore due only to the Bell mea-
The sequential implementation of the scheme in the consurement and the storage time required for the second block of each

text of a computation is shown in Fig. 2. In order to obtain aprepared state. The storage time is the duration of the Bell
lower bound on the erasure error threshold and discussin@easuremem'

the depolarizing error threshold, observe that the efficiency

with which the needed states are prepared has no effect gieds only with probabilite<1, the expected number of
the threshold. It is necessary only to determine for what erroattempts for each state to be prepared is boundeePsy.
rates it is possible to make the error per step in the encodeflithough this is superexponential, it contributes “only” a
(logical) qubits arbitrarily small. Consider the erasure errorconstant overhead to the implementation of each encoded
model. In this case, the error model for the logical qubits isoperation. In conclusion, it is possible to invoke the general
also independent erasures. If the rate of logical erasures threshold theorems to show that state preparation overhead
sufficiently small, then according to the known thresholdcan be ignored for the purpose of establishing lower bounds
theorems, we can use the logical qubits to efficiently imple-on the threshold by the methods used here. Nevertheless, a
ment arbitrarily accurate quantum computations. Efficiencyself-contained proof not relying on the general threshold
in these theorems requires only that the cost of each elemetihieorems for scalability is given in Sec. IX.

tary step of the computation is bounded by a constant inde- Suppose that we use a one-qubit erasure code for which
pendent of the length of the computation. Here, this constarthe probability of an uncorrectable erasuré(ig), given that
depends on the length of the code needed to achieve an etire probability of erasure of each qubitasThe error prob-
coded error below the general threshold, for which there arability of a quantum computation using the scheme of Fig. 2
known lower bounds. The effort required to prepare theis determined by the probability that the Pauli product cor-
states for the teleportation steps only adds to the constant. hection or Pauli frame change deduced from the syndrome
particular, the states can be prepared naively, by attemptinderived from the Bell measurement outcomes is correct.
to implement a quantum network that prepares them, antlote that the inferred Pauli product correction does not
discarding any unsuccessful attempts. It is known that angtrictly speaking correct the output state as it exists at the end
one-qubit state encoded in a stabilizer code of lengtie-  of the Bell measurement. Rather, it is retroactive and would
quires at mosO(n?) quantum gatef29]. Because each suc- have restored the output state if it had been applied to the

Preparation

Preparation

VIlIl. THRESHOLDS
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035 | 4 FIG. 3. Region for which scalable computing
em =€, =1— 1/\/5 > 0.292 with the detected-error model is possible. Toler-
03 § able error rates are in the gray region, strictly
below the upper boundary. If memory and Bell
025 T measurement error are equal, then any error rate
02 ] below 0.292 is tolerable. The point on the bound-
’ ary corresponding to this value is shown. If
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measurement error rates close to 1/2 are tolerable
01} - in principle.
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output state when it emerged from the state prepardiea  encoding, the methods of the previous sections are used to
Fig. 2). Subsequent errors accumulated while waiting for themprove the probability of successful state preparation.
current Bell measurement to complete are taken into account To see that one level of encoding with the naive state-
at the next teleportation. Thus, the errors that affect the syrpreparation method is insufficient, consider the following:
drome determined by the Bell measurements come from th&he goal is to implement a computation bf elementary
Bell measurement itself and from tketectedistorage error ~ Operations with polynomial overhead. In order for the com-
accumulated on the input qubits during the previous BellPutation to have a probability le-of success with logical
measurement after they emerged from the previous te|ep0qub|ts and no further error correction, the logical qubits must
tation’s state preparation. The total probability of detected?® subject to an error rate @fN per operation(Erasure
error is given bye,+(1-e,)e, where the first term comes €rrors _a_dd prqbabilisticaII)/.Given thate, an_deD are in the
from detected error in the storage period of the input qubit$calability region, the error rate as a function of code length
and the second comes from the Bell measurement, which for the best codes goes as™ (asymptotically for some
may be applied only to qubits with no previously detectedconstant depending ore,, ande; [31]. One should therefore
error. The probability of erasure of the encoded qubit ischoosen=>In(N/e)/c. Typically, the state-preparation net-
thereforef[e,,+(1-€,)e,]. Because the prepared states areworks for these codgs have at least? gates for some con-
error-free at the instant when they are used, this erasur@antc’>0. The naive state preparation therefore requires
probability also applies to each qubit independently in telefesources bounded k& " for some constant”> 0. Substi-
ported two-qubit operations. It remains to determine for whatuting the lower bound fon gives a superpolynomial func-
error rates there exist one-qubit erasure stabilizer codes wittion of N/e.

arbitrarily small probability of encoded erasure. If the supre- To eliminate the superpolynomial overhead, choose a first
mum of these error rates &,,, then the threshold foe,,  level code that reduces the error rate €6't. Choose a
ande, is determined by the curve,,,=e,+(1-€e,)&,. The second level code that can correct any combination of at
value of ey, is determined in Ref[30] and is given by most [,/6 erasures(such stabilizer codes exist by using
emax=1/2. Figure 3 shows the region fa, and e, where  random coding[32,33). The concatenation of the two
scalable computing with the detected-error model is possiblgodes results in logical qubits with an error rate bounded by

. . . | ’ .
in principle. (|2,26)(e'°'1)'2’6se‘°“ for some constant’ >0 and suffi-
ciently largel,,l,. Choosen>In(N/¢)/c’. The naive state-
IX. STATE-PREPARATION INEFFICIENCY preparation method for computations with qubits encoded in

. : . m2 an
It is possible to prove directly that state preparation can béhe first-level code requires an overhead ebfi<e™ for

done with polynomial overhead instead of relying on the>OMe con;tanrﬂ. Computatlons at the next Ieyel are imple-
general threshold theorems. This is done here to make t ented usmg the teleportation technlgues d|scus:”sed above.
paper more self-contained and to show that two levels of "€ probability of success of one step is at 'easeﬂf,Jl for
concatenation suffice for the erasure error model.ee ~ SOMe constant” (different fromc’ because a step involves
the final length of the(concatenatedcode for each logical Poth storage and Bell measuremgnise probability of suc-
qubit. The code is constructed by concatenating two erasuréeSs Of a state-preparation network for states needed by the
codes of length, andl, with 1;1,=n andl; < n. State prepa- second level code is at least ¢’+§e‘° 1>1/2 for suffi-
ration through the first level of encoding is handled by theciently largel;. The total overhead for the concatenated state
naive method of repeated attempts. At the second level gfreparation is bounded byc22e®"<e? "Ne=poly(N/e).
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An obvious way to improve the efficiency of this state- protocol. It is worth noting that frequent use of teleportation
preparation scheme is to choose the size of the first leveh a computation implicitly solves the leakage problem. This
code to better balance the overheads between the two levels. the problem where qubits are lost from the computation
In particular, the first level code need have length only ofwithout the event being detected, either by physical loss of
order logn) for the probability of success of the second-levelthe underlying particles, or by the particle’s state leaving the
state preparation to exceed a constant. This reduces the oveubit-defining subspace. In every teleportation step, the des-
head to polylogarithmic imN/e, comparable to overheads in tination qubits are fresh, and any previously leaked qubits
the standard threshold theorems based on concatenation. contribute only to errors in the Bell measurements. These

errors can be treated just like other errors.
X. DISCUSSION After the work presented here was completed, the power
of error-correcting teleportation and error detection has been

The work reported here shows that the maximum tolershown to extend to general independent error models, lead-

able error rates depend strongly on the error model. If theng to very high thresholds for fault-tolerant quantum com-
errors are constrained, then they can be tolerated much bettgyiting. See Ref[16].

than depolarizing errors. In particular, if errors can be de-
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