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We discuss the semiclassical limit of the entanglement for the class of closed pure systems. By means of
analytical and numerical calculations, we obtain two main results:sid the short-time entanglement does not
depend on Planck’s constant andsii d the long-time entanglement increases as more semiclassical regimes are
attained. On one hand, this result is in contrast with the idea that the entanglement should be destroyed when
the macroscopic limit is reached. On the other hand, it emphasizes the role played by decoherence in the
process of emergence of the classical world. We also found that, for Gaussian initial states, the entanglement
dynamics may be described by an entirely classical entropy in the semiclassical limit.
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I. INTRODUCTION

Understanding the emergence of all aspects of the classi-
cal world from the quantum theory is far from being a trivial
task. In fact, it is a recurrent question which has been asked
since the early days of quantum mechanics. However, at the
level of the expectation values of position and momentum,
the classical limit is reasonably understoodf1–4g, according
to the conceptual scheme we try to sketch in the next few
lines.

Concerning the Newtonian trajectories, which are based
on the assumption of complete knowledge of the initial con-
ditions, their emergence from the quantum expectation val-
ues is predicted by the Ehrenfest theorem, valid for initially
localized states. Within the Ehrenfest time scale, expectation
values agree with the classical trajectories and, in this sense,
the quantum mechanics recovers the determinism of the
Newtonian theory. The classical limits"→0d in this case is
in general asymptotic and does not require any further
mechanism such as decoherence. In other words, there exists
a formal classical limit for expectation values even in the
context of closed systems. Although such a mathematical
limit is not unique, one possible way to obtain it is particu-
larly convenient: a two-degree-of-freedom classical Hamil-
tonian may be produced with the assumption of a separable
dynamics of coherent statesf5g. In this approach, the classi-
cal theory emerges as a consequence of the absence of the
entanglement.

After the Ehrenfest time scale, the Newtonian mechanics
is no longer able to mimic the quantum expectation values of
observables and the single trajectory determinism is missed.
This means that predictions can only be made by means of
averages over ensembles. But, even in this case, classical
equations of motion are applicableswithin the Liouville for-
malismd. This is ensured by a mechanism known asdecoher-

encef6g. Environment, to which all systems are inevitably
coupled, destroys quantum correlations and turns quantum
predictions identical to those offered by the classical statisti-
cal formalism. Since the decoherence time is in general
much smaller than the Ehrenfest time, the correspondence
between the quantum and classical world will be complete
for all instants of the dynamics.

Within the above described lines of thought, a natural step
before the introduction of the action of the environment is to
analyze the classical limit of an intrinsically quantum
quantity—the entanglement—for the class ofclosed pure
systems, for which the theoretical semiclassical limits"
→0d is well established at the level of expectation values.
Here, a word concerning the entanglement is in order, recall-
ing that the entanglement is the greatest resource offered
“exclusively” by the quantum world, which allows for the
realization of the most challenging ideas, such as quantum
information processing and quantum computationf7–9g.
Since entanglement is regarded as an intrinsically quantum
property with no classical analog, it seems to be an adequate
modern tool for the study of the semiclassical behavior of
quantum mechanics.

We then ask about the behavior of the entanglement in
such situations in which an underlying classical dynamics is
well known. This question motivates us to analyze the semi-
classical limit of the entanglement dynamics for closed pure
systems in which classicality is achieved by means of mac-
roscopic coherent states, i.e., minimal uncertainty statesual
with uau2@1.

At first glance, one may be induced to expect a decrease
in the entanglement in the semiclassical limit. However, we
show analytically and also by means of numerical examples
that this is not a precise idea: in fact, the short-time entangle-
ment is"-independent for closed systemssSec. IId.

This paper is organized as follows. In Sec. II, we discuss
a short-time expansion for the entanglement in an arbitrary
pure bipartite system. In Sec. III, a semiclassical analysis of
the whole dynamics of the entanglement is numerically in-
vestigated for two different models, and an explanation in
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terms of mechanisms that are classically understandable as
well is given. Section IV is reserved for some concluding
remarks.

II. THE SHORT-TIME ENTANGLEMENT

For globally pure bipartite systems, there exist suitable
entropic quantities obeying all requirements for an adequate
entanglement measuref10,11g. Particularly useful is the re-
duced linear entropy, which offers in general the same infor-
mation given by the von Neumann entropy but with a much
less computational effort.

The reduced linear entropysRLEd for a bipartite system
belonging to the Hilbert spaceE=Eu ^ Ev is defined by

Sstd = 1 − Trzfrz
2stdg, s1d

in which ru,vstd=Trv,ufrstdg is the reduced density operator.
The indexz denotes the subsystems “u” and “v.” The density
operatorr satisfies the von Neumann equationı"ṙ=fH ,rg,
where H is the Hamiltonian operator. This is a dynamical
measure of the purity of the subsystemz in the unitary bi-
partite dynamics of initially pure states. For this case, the
Schmidt decompositionf12g guarantees that RLE is also a
measure of the entanglement between the partsf13g. Further-
more, the Araki-Lieb inequalityf14g guarantees that the RLE
of the subsystems is identical for pure states.

In order to obtain a semiclassical expansion for the en-
tanglement in the approximation of short times, we write
Dyson’s series for the density operator up to the ordert2,

rstd . r0 +
fH,r0g

ı"
t +

fH,fH,r0gg
2sı"d2 t2, s2d

wherer0= uu0lku0u ^ uv0lkv0u is an initially disentangled pure
state composed of the product of bosonic coherent states cor-
responding to the subsystemsu and v. Now we apply the
partial trace over the subsystemu in the coherent state basis
to get

rvstd . rv
s0d + rv

s1dt +
1

2
rv

s2dt2, s3ad

rv
s0d = uv0lkv0u, s3bd

rv
s1d =E d2u1

p

ku1ufH,r0guu1l
ı"

, s3cd

rv
s2d =E d2u1

p

ku1ufH,fH,r0gguu1l
sı"d2 . s3dd

Then, the RLE defined by Eq.s1d may be written as

Sstd . Ss0d + Ss1dt + Ss2dt2, s4ad

Ss0d = 1 − Trvfrv
s0dg, s4bd

Ss1d = − Trvfrv
s0drv

s1d + rv
s1drv

s0dg, s4cd

Ss2d = − TrvFrv
s0drv

s2d + rv
s2drv

s0d

2
+ rv

s1drv
s1dG , s4dd

where Trvf·g=esd2v1/pdkv1u ·uv1l.
Straightforward manipulations on these equations yield

Ss0d=Ss1d=0. Consequently,Sstd.Ss2dt2. This result, which
has already appeared in the literaturef15g, is a direct conse-
quence of both the purity and the separability of the initial
state.

Defining the dimensionless Hamiltonian

H ;
Ht

"
, s5d

we put Eq.s4ad in the following compact form:

Sstd . 2fC00sHd + C11sHd − C10sHd − C01sHdg, s6d

in which he have defined the correlations

C00 = skc0uHuc0ld2, s7ad

C01 = kc0uHr1s0dHuc0l, s7bd

C10 = kc0uHr2s0dHuc0l, s7cd

C11 = kc0uH2uc0l, s7dd

with uc0l= uu0l ^ uv0l. Interestingly, by Eq.s6d we may put
the conditions for the existence of short-time entanglement
in terms of the inequality

2sC00 + C11 − C10 − C01d . 0. s8d

Now we look for a semiclassical expansion for the short-
time entanglement given by Eq.s6d in the basis of coherent
states. We start by defining a general two-degree-of-freedom
classical Hamiltonian,

Hsqu,pu,qv,pvd = o
n,m,l,k

cnmlkqu
npu

mqv
l pv

k. s9d

This is an explicit"-independent function. Following the or-
dered quantization proceduref4g, we obtain the correspond-
ing Hamiltonian operator

H = SuSv o
n,m,l,k

cnmlkQu
nPu

mQv
l Pv

k, s10d

with fQz,Pzg= ı". Sz=expf−sı" /2d]Qz
]Pz

g is the symmetric
ordering operatorf4g. This is a suitable quantization method
for our purposes since it factorizes the dependences in".
There are other sources of", namely the operatorH and the
parametrizations of the coherent states for the phase space.

The calculations of all terms in Eq.s6d are made by in-
serting Eq.s10d in Eq. s7d. Then, using the unities of the
coherent states basis, namely1u=esd2u1/pduu1lku1u and 1v
=esd2v1/pduv1lkv1u, we are led to
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"2

2t2
Sstd = sku0v0uHuu0v0ld2

+E d2u1

p

d2v1

p
ku0v0uHuu1v1lku1v1uHuu0v0l

−E d2u1

p
ku0v0uHuu1v0lku1v0uHuu0v0l

−E d2v1

p
pku0v0uHuu0v1lku0v1uHuu0v0l. s11d

The function ku0v0uHuu1v1l is the most general kernel we
have to manipulate in the calculation of the correlations. By
Eq. s10d we obtain

ku0v0uHuu1v1l = o
n,m,k,l

cnmklku0uSuQu
nPu

muu1l 3 kv0uSvQv
kPv

l uv1l.

s12d

The properties of the symmetric ordering operatorf4g allow
us to write

ku0uSuQu
nPu

muu1l
ku0uu1l

= es1/2d]u0
*]u1fsqu

s01ddnspu
s01ddmg, s13ad

qu
si j d ;

kuiuQuuujl
kuiuujl

, pu
si j d ;

kuiuPuuujl
kuiuujl

, s13bd

with similar expressions forv. Notice thatqij and pij corre-
spond to the usual canonical phase-space pair wheni = j .
Otherwise, wheni Þ j , they are complex numbers composed
of combinations of distinct canonical pairs.

Given the usual parametrization of the coherent state label
u sor vd for the phase spacefEq. s18dg, we may write]u

=Îs" /2ds]qu
− ı]pu

d. Considering smooth wave packets att
=0, we may regard this partial derivative as a small param-
eter and the exponential operator in Eq.s13ad may be ex-
panded in few terms. After performing such adequate expan-
sions in Eq.s13ad we return to Eq.s12d to calculate the
semiclassical expansion of the kernel.

The next step is to calculate the integrals in Eq.s11d,
which is done by means of the following useful formulaf4g:

E d2u

p
zku0uulz2fsu0,ud = fes"/4d=u

2
fsu0,udgu=u0

, s14d

with =u
2=]qu

2 +]pu

2 . This relation emerges from the fact that
zku0uulz2 is a Gaussian weight function. Once again we may
get a semiclassical expression by expanding the exponential
operator in the first orders in". In fact, the procedure de-
scribed up to here must be performed in a consistent way
such that the short-time RLE may be written as

Sstd . t2fOs"−2d + Os"−1d + Os"0d + ¯g. s15d

Notice that the classical limit"→0 seems to yield a diver-
gence of the short-time entanglement, which would be a
quite unexpected result. However, an exhaustive calculation
shows thatOs"−2d=Os"−1d=0 and Os"0dÞ0, in general.
This derivation is really lengthy and tedious, but does not

require any further recipe beyond that presented above and it
will be omitted here.

Concluding this calculation, in a semiclassical regime,
where" is finite, but arbitrarily smaller than a typical action
of the system, the RLE is given by

Sstd . t2Os"0d, s16d

showing that the short-time entanglementdoes not depend
on " in a semiclassical regime.

The constantOs"0d is constituted by a sum of terms in-
volving first-order derivativessin phase-space variablesd of
the Hamiltonian functions9d. Note that the possibility of
expressing the first contributions to the entanglement dynam-
ics in terms of classical quantities is a direct consequence of
the special basis used in the calculation.

Results16d, which is general within the class of bipartite
bosonic systems in pure states, attests to the fact that the
entanglement does not tend asymptotically to the classically
expected limitSstd=0, as does those well-behaved quantities
such as expectation values of canonical operatorsQ andP.

Also it has to be remarked that the quadratic dependence
in time found for the short-time entanglement is independent
of the integrability of the underlying classical system, i.e., it
is always algebraic no matter whether the classical system is
chaotic or regular. In an approach based on the Loschmidt
echo dynamicsf16g, different behavior has been predicted
for the entanglement in chaotic and regular regimes. How-
ever, this has not been done for the time scale we are con-
sidering, and furthermore, in that case the entanglement gen-
eration is obtained by means of two distinct unitary
evolutionssecho operatord. In this sense, there is no conflict
with our results. In fact, the quadratic dependence of the
short-time linear entropy has already been found inf15g. It is
just a consequence of the initial separability of the quantum
state. Recent studies also confirm our results concerning the
algebraic dependencef17g and the" independencef18g of
the short-time entanglement.

Next we present two numerical examples confirming the
above result and we also discuss the long-time behavior of
the entanglement.

III. NUMERICAL ANALYSIS

A. Classical states

Since we are interested in the quantum-to-classical aspect
of the entanglement, we avoid initial states that are initially
entangled, mixed, or delocalized. The natural choice is the
minimum uncertainty coherent states defined by

uvl = Dsvdurl, s17ad

Dsvd = 5expfvâ+ − v* âg,

expFarctanuvu
uvu

svĴ+ − v* Ĵ−dG .
s17bd

D was defined, respectively, for the harmonic oscillator and
for the angular momentumsspinsd. The reference stateurl
stands for the ground statesu0l, in the Fock basis, anduJ,
−Jl, in the angular momentum basis.
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The coherent state label,v, has the following common
parametrization in terms of classical phase-space variables:

v =5
q + ıp
Î2"

,

q + ıp
Î"J − sq2 + p2d

.

s18d

For bosonic coherent states, the classicality is attained by
taking uvu2 sufficiently macroscopic to guarantee that the av-
erage energykvuHuvl will be much greater than a typical
spectral distanceEn+1−En. In this case, takinguvu2→` is
mathematically equivalent to requiring"→0. On the other
hand, for spin coherent states, the classicality emerges by
means of a more sophisticated limitf19g: J→`, "→0, and
"ÎJsJ+1d<"J=1.

We consider Hamiltonian operators like

H = H1 ^ 12 + 11 ^ H2 + H12, s19d

the last term being a nonlinear coupling which is able to
entangle initially separable coherent states.

B. Dicke model

First, we investigate the entanglement in one of the most
important models in quantum opticssQOd and more recently
in quantum computationsQCd, namely theN-atom Jaynes-
Cummings modelsor Tavis-Cummings modeld f20g. In QO it
is mostly known in the so-called rotating-wave approxima-
tion sRWAd, and describes the coupling of a monochromatic
field of frequencyv with N noninteracting two-level atoms
with level separatione. Recently, in connection with QC, the
model received renewed attention from the solid-state com-
munity working on “phonon cavity quantum dynamics”
f21,22g, Josephson junctions and quantum dotsf23g, quan-
tum chaosf24g, and quantum phase transitionsf25g. These
works are concerned with the model in the original form
conceived by Dickef26g without the RWA. The Hamiltonian
in the last case is composed of the following terms:

H1 = eJz, H2 = "va†a,

H12 =
G

Î2J
saJ+ + a†J−d +

G8
Î2J

sa†J+ + aJ−d, s20d

in which the operatorsa and a† are the usual harmonic-
oscillator creation and destruction operators associated with

the field, andĴ+,Ĵ−, Ĵz are angular momentum ladder opera-
tors. Here, the spin algebra is associated with the atoms, with
the total spin given byJ=N/2. G and G8 are real coupling
constants, and generally could be taken unequal.

This model possesses a classical counterpartHN-JCMsJd
obtained in Ref.f27g which presents several interesting prop-
erties, e.g., chaotic behavior. Another peculiar feature is the
scaling property

HN-JCMsJd
J

=
HN-JCMsJ8d

J8
. s21d

If this relation is satisfied for the pairsfEsJd ,Jg and
fEsJ8d ,J8g, then the associated dynamics will be totally
equivalent.

The initial stateuc0l= uval ^ uv fl is thus constructed by
means of the following process. We use the formular J

=r 1
ÎJ in order to rescale the vector of initial conditionsr J

=sqa,pa,qf ,pfd, keeping the dynamics forJ=1 as a refer-
ence. This guarantees automatically that we obtain a dynam-
ics fEsJd ,Jg equivalent to the unitaryfEs1d ,1g. Then, we
construct the coherent initial state by puttingr J in Eqs.s18d
and s17d. Resuming, we chose initial quantum states with
different J, but producing always the same classical dynam-
ics. The semiclassical conditions in this case are satisfied by
increasingJ and keeping" constantsas it indeed occurs in
natured. It may be shown that this is totally equivalent to the
mathematical condition"=1/J, with J→` and fixed initial
conditions.

In Fig. 1 we show numerical results for the entanglement
as a function of time for several values ofJ. Actually, for
long times, the quantity plotted is a kind of mean entangle-
ment of the states “associated” to a given classical trajectory.
We calculated it as follows: given a certain classical trajec-
tory, we choose a set ofM initial statesucis0dl centered at
points along the trajectory, and calculate the respective
RLE’s, Sistd. Then, the averaged quantity is given by

Smstd ;
1

M
o
i=1

M

Sistd. s22d

Such a calculation allows us to observe a smooth mean be-
havior for entanglement without the characteristic oscilla-
tions associated with the border effectf28g. The mean long-
time entanglement is then suitably described by a fitting
expressionf29g given by

Smstd = A0s1 − e−A1td, s23d

whereA0 andA1 are fitting parameters.
At least two aspects are remarkable in this numerical re-

sult: sid the short-time behavior, proportional tot2, is
J-independent andsii d the plateau value increases withJ.

The aspectsid has already been predicted in Sec. II, but
for a different class of Hamiltonians. The results shown in
Fig. 1 are, therefore, a numerical verification of Eq.s16d in a
more general context, in which the Hamiltonian operatorH
is not obtained from a classical function by means of a quan-
tization based on bosonic coherentsGaussiand states. Such an
" independence induces us to believe that the rising in the
entanglement is determined just by classical sources, as the
local departure of neighboring phase-space points. This is
indeed suggested by previous studies on quantum chaosf30g.
But the main point is that entanglement does not diminish as
more macroscopic regimes are attained.

The second aspect may seem even more curious at first
glance, since it means that the entanglement increases as we
tend to a more semiclassical limit. We will return to this
analysis after our second example.
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C. Coupled nonlinear oscillators

We thus proceed to show analytical results of the en-
tanglement dynamics in a second model, for which it is pos-
sible to understand the behavior of the entanglement in the
presence of an effect which has no classical analog, namely
the quantum interference. This is done for a model of two
resonant oscillators coupled nonlinearly which in certain re-
gimes describe a coupled Bose-Einstein condensatesBECd.
The terms of the Hamiltonians19d are

Hk = "vsak
†ak + 1

2d sk = 1,2d,

H12 = "lsâ1
†â2 + â1â2

†d + "2gsâ1
†â1 + â2

†â2 + 1d2. s24d

Such a Hamiltonian has been applied to describe an ideal
two-mode BEC in the equal scattering length situationf31g
with internal Josephson couplingf32g. Recently, the en-

tanglement dynamics between the modes for initially disen-
tangled coherent states was exactly calculatedf33g. We re-
produce here the analytical result for the RLE,

Sstd = 1 −e−2ub1stdu2o
n,m

ub1stdu2n

n!

ub1stdu2m

m!

3 e−4ub2stdu2 sin2f"gtsn−mdg, s25d

in which b1,2std=sa1,2e
−ıvt coslt− ıa2,1e

−ıvt sinltd and ai

=sqi + ıpid /Î2". Results25d predicts that the system recovers
totally its purity sdisentangled statesd at

t =
p

g"
, s26d

after passing by an intricate interference processsseef33g for
detailsd.

Following the reasoning presented in Sec. I, our argumen-
tation will be supported by a classical entropy, which is de-
fined within the classical theory of ensembles. It describes
the classical correlation dynamics of initially separable prob-
abilities. This quantity has been shown to evolve very closely
to its quantum counterpart, the reduced linear entropy, in
cases that are initially separable and in which intrinsic quan-
tum effects are absentf13g. Similar approaches may be found
in f34g. We then introduce theclassical reduced linear en-
tropy sCRLEd, defined in Ref.f13g as follows:

Sclstd = 1 −
trkfPkstdg
trkfPks0dg

, s27d

in which the partial classical trace is given by trk=edqkdpk
for k=1,2. P1,2 denotes the reduced probability function ob-
tained by tr2,1fPstdg, in which the joint probabilityPstd is a
function satisfying the Liouville equation,

]P

]t
= hH,Pj. s28d

H is the classical Hamiltonian function. The normalization in
Eq. s27d is necessary to guarantee both an adequate dimen-
sional unity andScls0d=0. The connection between quantum
and classical worlds att=0 is established by taking

Ps0d =
kv1v2ur0uv2v1l

2p"
, s29d

wherer0 is the pure density operator att=0. The normaliza-
tion is chosen in such a way that trP=1. The initial distribu-
tion s29d is the unique source of" in the CRLE dynamics.
Thus, the semiclassical regime in the classical Liouvillian
formalism is associated to strongly localized initial distribu-
tions.

The numerical results for both quantum and classical re-
duced linear entropies are shown in Fig. 2. The dependence
of CRLE in time reflects the fact that classical probabilities
also become correlated, i.e., initially independent probability
distributions are transformed into conditional ones as the dy-
namical evolution takes place. In some cases, similarities be-
tween these quantum and classical quantities indicate that
entanglement has indeed a strong statistical characterf13g.

FIG. 1. Mean long-time entanglement for initial coherent states
centered insad a periodic orbit and insbd a chaotic trajectory. The
insets show the result for the short-time entanglement, which be-
haves likeS=0.05t2, for all values ofJ. Upper curves correspond to
larger values ofJ, which assumes the values 3.5, 6.5, and 10.5. In
these calculations we usede=v=1.0, G=G8=0.35, and"=1, in
arbitrary units.
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Here, however, remarkable differences emphasize the role
played by an intrinsic quantum effect, as is the interference.
In fact, it has been shown that interference is the major re-
sponsible for such flagrant differences, since there is no ana-
log effect in the classical formalismf33g.

Concerning the semiclassical limit, we see that quantum
recurrences, and, consequently, quantum interferences, are
postponed by the dynamics as" is made small as compared
with the classical actionub1u2+ ub2u2. This is indeed predicted
analytically by Eq.s26d. Accordingly, the resemblance be-
tween quantum and classical entropies tends to increase in
semiclassical regimes. In this sense, these results allow us to
consider the CRLE as the very semiclassical limit of the
entanglement. This is an indication that in a semiclassical
regime, the occurrence of the entanglement is due solely to
spreading effects of the wave function, i.e., statistical effects
present also in the classical theory of ensembles.

The entanglement dynamics of the systems24d presents
the same qualitative general features of our precedent ex-

ample, namely short-time behavior independent of" ssee
f35g for the analytical demonstrationd and higher plateaus for
more classical regimes. Actually, this scenario has been
shown to be quite general for a wide class of nonlinear sys-
temsf36g.

These results lead us to separate the dynamics of the en-
tanglement in two main time scales. The first one, namely the
short-time scale, may be regarded as a classical scale in
which entanglement is determined essentially by the vicinity
of the initial condition in classical phase space. Accordingly,
it has been shown that this scale is connected with the Ehren-
fest time for the systems24d f33g. Then, this is a situation in
which, although the subsystems are entangled, the quantum
state still allows the correspondence between quantum ex-
pectation values and classical trajectories.

The second scale, associated to long timessfor which the
Ehrenfest theorem does not applyd, contains all the allowed
quantum effects, like interferences, and also indicates the
fact that the entropy is extensive with the number of pure
states accessible to the dynamics. These remarkably different
time scales and the extensivity of the entropy have already
been mentioned in slightly different contexts inf33,37g, re-
spectively. Also, other time scales have been established in
f35g.

All results shown here point to the same important con-
clusion: in closed pure bipartite systems, entanglement exists
even in arbitrarily semiclassical regimes. On the other hand,
in a strictly formal classical limits"=0d, entanglement is
indeed expected to disappear completely, since classical
points have no statistics associated. In fact, this is a crucial
assumption for obtaining the Newtonian trajectories from the
quantum formalismf5g. But this is a peculiar mathematical
limit which will never be accessible in the physical world. In
this sense, our results also indicate that the formal classical
limit of entanglement is rather singular for closed systems.

The analysis presented above concerns a theoretical
framework for the classical limit of quantum mechanics in
closed pure systems. It is a mathematical limit which ensures
that quantum mechanics is a universal theory which recovers
the classical results in a particular regime of parameters. In
closed systems, the limit is asymptotic for expectation values
but seems to be rather singular for the entanglement. How-
ever, this conceptual scenario does not match the real world
of quantum open systems. In this sense, our results must be
regarded as the starting point for a more fundamental analy-
sis that takes into account the effects of the environment, to
which every real system is coupled. As is well known, deco-
herence tends to wash out quantum superpositions and the
entanglement is expected to disappear under such situation.
However, a rigorous test of such assertions requires an ad-
equate entanglement measure for mixed states of continuous
variable systems, which is still a very controversial issue.

IV. CONCLUDING REMARKS

We have shown by two numerical examples and by ana-
lytical calculations that entanglement does not decrease as
the semiclassical regime is attained asymptotically in closed
pure systems. In fact, the results point to an increasing

FIG. 2. sad Entanglement between two Bose-Einstein conden-
sates andsbd the classical reduced linear entropy for the classical
counterpart as a function of time. Higher plateaus were attained for
smaller values of". The parameter values used werev=1, g=0.1,
l=0.2, andqi =pi =1, and" assumed the values 0.1, 0.5, and 1.0
sarbitrary unitsd.

R. M. ANGELO AND K. FURUYA PHYSICAL REVIEW A 71, 042321s2005d

042321-6



amount of entanglement as the equilibrium is attained.
This behavior may be understood by noticing that the

semiclassical regime avoids quantum interferences, but it is
not able to eliminate the spreading of the wave packet. Even
extremely localized coherent states perceive the local spread-
ing caused by the classical flux of trajectories associated.
Furthermore, since we note that the entropy is extensive with
the number of pure quantum states of the density operator,
the increase in the long-time entanglement in the semiclassi-
cal limit becomes just a natural fact.

Recently, it was shown that entanglement can always arise
in the interaction of an arbitrarily large system in any mixed
state with a single qubit in a pure statef38g. This result
stresses the role played by the subsystem purity as an en-
forcer of entanglement, even in a thermodynamic limit of
high temperatures. Here, we are concerned with a different
kind of classicality, namely that attained by"→0. Further-

more, we have studied strictly the case where the subsystems
are initially in pure states. The common point in these inves-
tigations is that the regarded systems do not interact with the
environment. In this sense,unitarity seems to be a key word
in such apparent contradicting semiclassical limits. Then,
there is a remaining question to be answered: Is decoherence
indeed able to provide the “expected” semiclassical limit for
the entanglement?
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