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Semiclassical limit of the entanglement in closed pure systems

Renato M. Angeld
Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66318, 05315-970, Séo Paulo, SP, Brazil

K. Furuyd
Instituto de Fisica “Gleb Wataghin,” Universidade Estadual de Campinas, Caixa Postal 6165, 13083-970, Campinas, SP, Brazil
(Received 13 October 2004; revised manuscript received 6 January 2005; published 13 April 2005

We discuss the semiclassical limit of the entanglement for the class of closed pure systems. By means of
analytical and numerical calculations, we obtain two main resl(iltshe short-time entanglement does not
depend on Planck’s constant afid the long-time entanglement increases as more semiclassical regimes are
attained. On one hand, this result is in contrast with the idea that the entanglement should be destroyed when
the macroscopic limit is reached. On the other hand, it emphasizes the role played by decoherence in the
process of emergence of the classical world. We also found that, for Gaussian initial states, the entanglement
dynamics may be described by an entirely classical entropy in the semiclassical limit.
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I. INTRODUCTION ence[6]. Environment, to which all systems are inevitably

) coupled, destroys quantum correlations and turns quantum
Understanding the emergence of all aspects of the classjiegictions identical to those offered by the classical statisti-

cal world from the quantum theory is far from being a trivial ¢5| formalism. Since the decoherence time is in general
task. In fact, it is a recurrent question which has been askef, ,ch smaller than the Ehrenfest time, the correspondence

since the early days of quantum mechanics. However, at thgayeen the quantum and classical world will be complete
level of the expectation values of position and momentume¢,. - instants of the dynamics.

the classical limit is reasonably understdde-4], according Within the above described lines of thought, a natural step
to the conceptual scheme we try to sketch in the next feWeore the introduction of the action of the environment is to
lines. analyze the classical limit of an intrinsically quantum

Concerning the Newtonian trajectories, which are base, aniitythe entanglement-for the class ofclosed pure
on the assumption of complete knowledge of the initial CON-gystems for which the theoretical semiclassical limif

ditions, their emergence from the quantum expectation val-_ 0) is well established at the level of expectation values.

ues is predicted by the Ehrenfest theorem, valid for initiaIIyHere, aword concerning the entanglement is in order, recall-

localized states_. Within the _Ehrenf_est tlr_ne scale,_ exp_ectanon]g that the entanglement is the greatest resource offered
values agree with the classical trajectories and, in this sensg

the quantum mechanics recovers the determinism of th?exclusively" by the quantum world, which allows for the
. . . ; . . lization of the most challenging i h ntum
Newtonian theory. The classical limit — 0) in this case is ealization of the most challenging ideas, such as quantu

: | _ d d . furth information processing and quantum computatiof-9].
In general asymptotic and does not require any furtheigj, o entanglement is regarded as an intrinsically quantum

mechanism suph as dgcoherence. In other words, the_re exl?§r°’operty with no classical analog, it seems to be an adequate
a formal classical limit for expectation values even in the

. ~modern tool for the study of the semiclassical behavior of
context of closed systems. Although such a mathematlcag]

T : : N _ uantum mechanics.
limit is not unique, one possible way to obtain it Is particl- = y\ye then ask about the behavior of the entanglement in
larly convenient: a two-degree-of-freedom classical Hamil-

such situations in which an underlying classical dynamics is

fjoman may fbe Eroduced with }hehassumptlonhofha s?pargbkﬁell known. This question motivates us to analyze the semi-
ynamics of coherent stat€S]. In this approach, the classi- lassical limit of the entanglement dynamics for closed pure

cal theory emerges as a consequence of the absence of tems in which classicality is achieved by means of mac-

entanglement. . . e :
. . ._roscopic coherent states, i.e., minimal uncertainty states
After the Ehrenfest time scale, the Newtonian mechanic ith |2|2>1 y state

|sbno Iongler abl3 t%mmlclthe quantumdexpec_ta.tmn_valu_es O At first glance, one may be induced to expect a decrease
1o_h$erva es fr‘\nt t ed§|rtlg € trajectorly beterm:jnlskr)n IS mlssegf the entanglement in the semiclassical limit. However, we
IS means that predictions can only beé made by means @, analytically and also by means of numerical examples

averages over e_nsembles. BUt’ even in th'.s case, ClaSSICtﬂ t this is not a precise idea: in fact, the short-time entangle-
equations of motion are applicakleithin the Liouville for- ment is#i-independent for closed syster®ec. 1)

malism). This is ensured by a mechanism knowrdasoher- This paper is organized as follows. In Sec. I, we discuss
a short-time expansion for the entanglement in an arbitrary

pure bipartite system. In Sec. lll, a semiclassical analysis of

*Electronic address: renato@ifi.unicamp.br the whole dynamics of the entanglement is numerically in-
"Electronic address: furuya@ifi.unicamp.br vestigated for two different models, and an explanation in
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terms of mechanisms that are classically understandable as . p\0p@ + 20 @ @
well is given. Section IV is reserved for some concluding s?=-Tr, Y TPy | (4d)
remarks.

where Tg[-]=[(d?v,/ 7){v4] - |v4).
[l. THE SHORT-TIME ENTANGLEMENT Straightforward manipulations on these equations yield
o _ . §9=g9=0. ConsequentlyS(t)=S?t2. This result, which
For globally pure bipartite systems, there exist smtablenas already appeared in the literat{its], is a direct conse-

entropic quantities obeying all requirements for an adequatauence of both the purity and the separability of the initial
entanglement measufé&0,11]. Particularly useful is the re- state

duc_ed Iln_ear entropy, which offers in general the same infor- Defining the dimensionless Hamiltonian
mation given by the von Neumann entropy but with a much

less computational effort. Ht
The reduced linear entrop§RLE) for a bipartite system H= R (5)
belonging to the Hilbert spacg=£,® &, is defined by
S(t) = 1 - Trfp(t)] (1) we put Eqg.(4a) in the following compact form:
Z 1
in which p,,(t)=Tr, J[p(t)] is the reduced density operator. S(t) = 2[Coo(H) + C11(H) = C1o(H) = Coa()],  (6)
The indexz denotes the subsystems’‘and “v.” The density ) ] )
where H is the Hamiltonian operator. This is a dynamical _ 2
measure of the purity of the subsystenin the unitary bi- Coo= (ol H]1p0))*, (78)
partite dynamics of initially pure states. For this case, the
Schmidt decompositiofil2] guarantees that RLE is also a Co1 = {tho|Hp1(0)H| o), (7b)
measure of the entanglement between the pasgk Further-
more, the Araki-Lieb inequalitj14] guarantees that the RLE
of the subsystems is identical for pure states. C10= (4ho[Hp2(0)H] o), (70)
In order to obtain a semiclassical expansion for the en-
tanglement in the approximation of short times, we write Cor= (|12 7
Dyson’s series for the density operator up to the otder 1= (Wl o), (79
[H.pol  [H.[H.poll with |¢o)=|Ug) ® [vg). Interestingly, by Eq(6) we may put
p(t) = po+ —— 2t 4 ——— 20 2, (2)  the conditions for the existence of short-time entanglement
Ih 2(1#) in terms of the inequality
where po=|ug)(Ug| ® [vo){ve| is an initially disentangled pure
state composed of the product of bosonic coherent states cor- 2(Coo* €11~ C20=Coy) > 0. (8)
responding to the subsysternsandv. Now we apply the Now we look for a semiclassical expansion for the short-
partial trace over the subsystanin the coherent state basis time entanglement given by E() in the basis of coherent
to get states. We start by defining a general two-degree-of-freedom
1 classical Hamiltonian,
P = pl7 + pt+ SpE, (3a -
H (G PusGusP) = 2 ComiPy 0, P 9
n,m,l,k
P = [ue)vyl, (3b) - o . .
This is an expliciti-independent function. Following the or-
) dered quantization proceduf4], we obtain the correspond-
oD :f d?uy {uy|[H, pol|uy) (3¢  ing Hamiltonian operator
v T 1% ’
H=5,5, 2 cmiQIPQLP;, (10
p(z)zf d?uy (uy|[H,[H, pollluy (30 nmlk
’ ™ (11)? with [Q,,P,1=1h. S,=ex{~(17i/2)dq dp ] is the symmetric
Then, the RLE defined by Eql) may be written as ordering operatof4]. This is a suitable quantization method
’ for our purposes since it factorizes the dependencek. in
St) = SO + SVt + S22, (4a)  There are other sources bf namely the operatdd and the
parametrizations of the coherent states for the phase space.
0_1_ 0) The calculations of all terms in E¢6) are made by in-
s¥=1 Talp,"l, (4b) serting Eq.(10) in Eq. (7). Then, using the unities of the
coherent states basis, namdly=(d?u,/)|u,){u,| and 1,
SY==Tr[p2p® + pPp], (40 =[(d?v,/m)|v)v4|, we are led to
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ﬁZ
?S(t) = ((ugvo/H|ugve))?

d?u, d%
+J Tl_771<Uovo|H|U101><U1U1|H|Uovo>

d’u;
- T(Uovo|H|Ulvo><Ulvo|H|Uovo>

d%
‘f7177(U000|H|U001><U001|H|Uovo>- (11)
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require any further recipe beyond that presented above and it
will be omitted here.

Concluding this calculation, in a semiclassical regime,
wheret is finite, but arbitrarily smaller than a typical action
of the system, the RLE is given by

S(t) = t?0(49), (16)

showing that the short-time entanglemeldes not depend
on# in a semiclassical regime.

The constanO(#°) is constituted by a sum of terms in-
volving first-order derivativegin phase-space variab)esf

The function (ugo/H|u;v;) is the most general kernel we the Hamiltonian function(9). Note that the possibility of
have to manipulate in the calculation of the correlations. ByeXPressing the first contributions to the entanglement dynam-

Eqg. (10) we obtain

(UguolH[ugvy) = E Crmkf Uo| SuQUP U X <UO|SUQ5P!)|UI>'

n,myk,l
(12

The properties of the symmetric ordering operdérallow
us to write

<UO|SUQ[}PLT|ul> (1/2)4, 9, (01 (01)

_— Up“Uy| n m y 13
Ul € [(a,)"(py )™, (133
iy wlQulup iy (u[Pyuy)
('J)E—J, SI)E—J, 13b
! <Ui|Uj> <Ui|Uj> (130

with similar expressions fos. Notice thatq’ and p' corre-
spond to the usual canonical phase-space pair whgn

ics in terms of classical quantities is a direct consequence of
the special basis used in the calculation.

Result(16), which is general within the class of bipartite
bosonic systems in pure states, attests to the fact that the
entanglement does not tend asymptotically to the classically
expected limitS(t)=0, as does those well-behaved quantities
such as expectation values of canonical operafpesd P.

Also it has to be remarked that the quadratic dependence
in time found for the short-time entanglement is independent
of the integrability of the underlying classical system, i.e., it
is always algebraic no matter whether the classical system is
chaotic or regular. In an approach based on the Loschmidt
echo dynamicg16], different behavior has been predicted
for the entanglement in chaotic and regular regimes. How-
ever, this has not been done for the time scale we are con-
sidering, and furthermore, in that case the entanglement gen-
eration is obtained by means of two distinct unitary

Otherwise, when # j, they are complex numbers composed evolutions(echo operatdr In this sense, there is no conflict

of combinations of distinct canonical pairs.

with our results. In fact, the quadratic dependence of the

Given the usual parametrization of the coherent state lab&lhort-time linear entropy has already been founglsi. It is

u (or v) for the phase spackEq. (18)], we may writed,

just a consequence of the initial separability of the quantum

=y (ﬁ/2)(aqu—|&pu). Considering smooth wave packetstat state. Recent studies also confirm our results concerning the
=0, we may regard this partial derivative as a small paramalgebraic dependendd7] and the#. independenc¢l18] of

eter and the exponential operator in E&3a may be ex-

the short-time entanglement.

panded in few terms. After performing such adequate expan- Next we present two numerical examples confirming the

sions in Eq.(139 we return to Eq.(12) to calculate the

semiclassical expansion of the kernel.
The next step is to calculate the integrals in Effl),
which is done by means of the following useful form{#g:

d?u 2 — a4 V2
~— Kuol*f(uo, ) = [ uf (Uo, W) ey, (14)

above result and we also discuss the long-time behavior of
the entanglement.
IIl. NUMERICAL ANALYSIS
A. Classical states

Since we are interested in the quantum-to-classical aspect
of the entanglement, we avoid initial states that are initially

. 2_ 2 . .
with Vi=d; +4;, . This relation emerges from the fact that entangled, mixed, or delocalized. The natural choice is the

. u u . . . .
[{uo|u)* is a Gaussian weight function. Once again we mayminimum uncertainty coherent states defined by
get a semiclassical expression by expanding the exponential

operator in the first orders ifi. In fact, the procedure de- lv) =D()|r), (173
scribed up to here must be performed in a consistent way
such that the short-time RLE may be written as exdva"-v'al,

St) = t{0(%2) + O™ + O(H°) +---]. (15) (17b)

(vj+ - v*j_) )

D(v) = exp{ arctar|

Notice that the classical limi# —0 seems to yield a diver- o

gence of the short-time entanglement, which would be @ was defined, respectively, for the harmonic oscillator and
quite unexpected result. However, an exhaustive calculatiofor the angular momentunfsping. The reference statf)
shows thatO(~9)=0(%"1)=0 and O(#° #0, in general. stands for the ground staté®, in the Fock basis, anfd,
This derivation is really lengthy and tedious, but does not-J), in the angular momentum basis.
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The coherent state labet, has the following common Hyaem)  Haeaem3)
parametrization in terms of classical phase-space variables: 3 = 3 . (21
q+1p If this relation is satisfied for the pair$E(J),J] and
on [E(J"),J"], then the associated dynamics will be totally
v=y (18)  equivalent.
q+ip The initial state|p)=|v,) ® |vs) is thus constructed by
VEI - (P +p?) means of the following process. We use the formuja

. o . =r1\VJ in order to rescale the vector of initial conditiong

For bosonic coherent states, the classicality is attained b¥(qa P..qr.Py), keeping the dynamics fal=1 as a refer-
takingv|* sufficiently macroscopic to guarantee that th_e &V-ance. This guarantees automatically that we obtain a dynam-

erage energyv|H|v) will be much greater than a typical ics [E(J),J] equivalent to the unitar§E(1),1]. Then, we

i - i i 2 i L. Vo
spectral distance,,,~E,. In this case, takindu|*— is  congiryct the coherent initial state by puttingin Egs. (18)
mathematically equivalent to requirinfg— 0. On the other and (17). Resuming, we chose initial quantum states with

hand, for spin coherent states, the classicality emerges yitrerentJ, but producing always the same classical dynam-
mean/ﬂ a more sophisticated lirfit9): J—, #—0, and  jo5 The semiclassical conditions in this case are satisfied by
fiydJ+1)~hJ=1. increasing) and keeping: constant(as it indeed occurs in

We consider Hamiltonian operators like naturg. It may be shown that this is totally equivalent to the
mathematical conditioh=1/J, with J— o0 and fixed initial
H=H;®1,+1; ® Hy+ Hyy, (190  conditions.

In Fig. 1 we show numerical results for the entanglement
the last term being a nonlinear coupling which is able toas a function of time for several values &f Actually, for
entangle initially separable coherent states. long times, the quantity plotted is a kind of mean entangle-
ment of the states “associated” to a given classical trajectory.
We calculated it as follows: given a certain classical trajec-
tory, we choose a set &l initial states|;(0)) centered at

First, we investigate the entanglement in one of the mospoints along the trajectory, and calculate the respective
important models in quantum opti¢®@0) and more recently RLE’s, S(t). Then, the averaged quantity is given by
in quantum computatiofQC), namely theN-atom Jaynes- M
Cummings mode{or Tavis-Cummings modg[20]. In QO it S.(b) = lz (). (22)
is mostly known in the so-called rotating-wave approxima- Mia
tion (RWA), and describes the coupling of a monochromatic )
field of frequencyw with N noninteracting two-level atoms Such a calculation allows us to observe a smooth mean be-
with level separatiore. Recently, in connection with QC, the hawor for gntanglgment without the characteristic oscilla-
model received renewed attention from the solid-state comtions associated with the border eff¢28]. The mean long-
munity working on “phonon cavity quantum dynamics” time en_tanglemt_ant is then suitably described by a fitting
[21,22, Josephson junctions and quantum d@g], quan-  €xpressiori29] given by
tum chaog24], and quantum phase trqnsitiofﬁs]_. These S, () = Ag(1 - A1), (23)
works are concerned with the model in the original form
conceived by Dickg26] without the RWA. The Hamiltonian WwhereA, andA, are fitting parameters.

B. Dicke model

in the last case is composed of the following terms: At least two aspects are remarkable in this numerical re-
sult: (i) the short-time behavior, proportional ttf, is
H,=el, H,=fiwa'a J-independent andi) the plateau value increases with
yal 1

The aspecti) has already been predicted in Sec. Il, but
for a different class of Hamiltonians. The results shown in
_ G . G Fig. 1 are, therefore, a numerical verification of ELf) in a
Hip= E(&L +a'l)+ E(a J.+al), (200 more general context, in which the Hamiltonian operator
v v is not obtained from a classical function by means of a quan-
) . t . tization based on bosonic coheréBussianstates. Such an
in which the operatora and a' are the usual harmonic- 4 i qenendence induces us to believe that the rising in the
oscillator creation :imd destruction operators associated W'thtangIement is determined just by classical sources, as the
the field, andl,,J_, J, are angular momentum ladder opera-|ocal departure of neighboring phase-space points. This is
tors. Here, the spin algebra is associated with the atoms, witindeed suggested by previous studies on quantum ¢B&hs
the total spin given by)=N/2. G and G’ are real coupling But the main point is that entanglement does not diminish as
constants, and generally could be taken unequal. more macroscopic regimes are attained.

This model possesses a classical counterp@bcm(J) The second aspect may seem even more curious at first
obtained in Ref[27] which presents several interesting prop- glance, since it means that the entanglement increases as we
erties, e.g., chaotic behavior. Another peculiar feature is théend to a more semiclassical limit. We will return to this
scaling property analysis after our second example.
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1.0 @ ‘ ‘ tanglement dynamics between the modes for initially disen-

tangled coherent states was exactly calculd@s]. We re-
produce here the analytical result for the RLE,

2n 2m
St =1 _e—2\/31(t)|2% |31r(]t!)| |ﬂ1:])!|

« @ 4820 sirlgt(n-m)] , (25)

in which B;é(t)=(a1,2e"“’t COSAt—la, ;€7 sinkt) and o
=(qgi+1p;)/v2h. Result(25) predicts that the system recovers
totally its purity (disentangled statgst

a
t o (26)
after passing by an intricate interference prodess|33] for
details.
1.0 ‘ ' ‘ Following the reasoning presented in Sec. |, our argumen-
tation will be supported by a classical entropy, which is de-
fined within the classical theory of ensembles. It describes
0s | the classical correlation dynamics of initially separable prob-
\ abilities. This quantity has been shown to evolve very closely
10° 107 10° to its quantum counterpart, the reduced linear entropy, in
‘ ‘ cases that are initially separable and in which intrinsic quan-
™05 / tum effects are abseft3]. Similar approaches may be found
i ] in [34]. We then introduce thelassical reduced linear en-
s tropy (CRLE), defined in Ref[13] as follows:

0.2 | 07 | ] _ . tn[P(®]
SO =1 PO

in which the partial classical trace is given by=tfdgdpy

10 30 50 70 %0 for k=1,2. P, , denotes the reduced probability function ob-
t tained by tg [ P(t)], in which the joint probabilityP(t) is a

function satisfying the Liouville equation,
FIG. 1. Mean long-time entanglement for initial coherent states

centered in(a) a periodic orbit and ir(b) a chaotic trajectory. The @ _

insets show the result for the short-time entanglement, which be- ot ={H.P}. (28)

haves likeS=0.0%2, for all values ofJ. Upper curves correspond to

larger values of], which assumes the values 3.5, 6.5, and 10.5. In/ is the classical Hamiltonian function. The normalization in

these calculations we usedcw=1.0, G=G'=0.35, and%=1, in  EQ. (27) is necessary to guarantee both an adequate dimen-

arbitrary units. sional unity ands;(0)=0. The connection between quantum

and classical worlds &at=0 is established by taking

(27)

0.0

C. Coupled nonlinear oscillators (v |p |v vy
1U2[PolV2V1

We thus proceed to show analytical results of the en- P(0) = 2t '
tanglement dynamics in a second model, for which it is pos-
sible to understand the behavior of the entanglement in th&/herepy is the pure density operator &t0. The normaliza-
presence of an effect which has no classical analog, nameljon is chosen in such a way thaPtr 1. The initial distribu-
the quantum interference. This is done for a model of twdtion (29) is the unique source of in the CRLE dynamics.
resonant oscillators coupled nonlinearly which in certain re-Thus, the semiclassical regime in the classical Liouvillian
gimes describe a coupled Bose-Einstein conden®&e).  formalism is associated to strongly localized initial distribu-

(29)

The terms of the Hamiltoniafl9) are tions.
L The numerical results for both quantum and classical re-
H=holala+3) (k=1,2), duced linear entropies are shown in Fig. 2. The dependence

of CRLE in time reflects the fact that classical probabilities
le:ﬁ)\(éiéz*'ﬁlé;) +hzg(élré1+é£é2+ 12. (24 a!so_beqome correlated, i.e., i_nitially in_d_ependent probability
distributions are transformed into conditional ones as the dy-
Such a Hamiltonian has been applied to describe an idealamical evolution takes place. In some cases, similarities be-
two-mode BEC in the equal scattering length situafidh] tween these quantum and classical quantities indicate that
with internal Josephson coupling2]. Recently, the en- entanglement has indeed a strong statistical charft8r
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1.0

ample, namely short-time behavior independentiofsee
[35] for the analytical demonstratipand higher plateaus for
more classical regimes. Actually, this scenario has been
shown to be quite general for a wide class of nonlinear sys-
tems[36].

These results lead us to separate the dynamics of the en-
tanglement in two main time scales. The first one, namely the
short-time scale, may be regarded as a classical scale in
which entanglement is determined essentially by the vicinity
of the initial condition in classical phase space. Accordingly,
it has been shown that this scale is connected with the Ehren-
fest time for the systert24) [33]. Then, this is a situation in
\ / which, although the subsystems are entangled, the quantum

\ / ﬂ/ state still allows the correspondence between quantum ex-
0.0 - ‘ | ‘ | pectation values and classical trajectories.
0 25 50 75 100 The second scale, associated to long titieswhich the
Ehrenfest theorem does not applgontains all the allowed
1.0 quantum effects, like interferences, and also indicates the
fact that the entropy is extensive with the number of pure
states accessible to the dynamics. These remarkably different
time scales and the extensivity of the entropy have already
been mentioned in slightly different contexts[i83,37, re-
spectively. Also, other time scales have been established in
j [35].
] All results shown here point to the same important con-
clusion: in closed pure bipartite systems, entanglement exists
even in arbitrarily semiclassical regimes. On the other hand,
in a strictly formal classical limit(A=0), entanglement is
indeed expected to disappear completely, since classical
points have no statistics associated. In fact, this is a crucial
assumption for obtaining the Newtonian trajectories from the
0.0 quantum formalisni5]. But this is a peculiar mathematical
0 25 50 75 100 limit which will never be accessible in the physical world. In
t this sense, our results also indicate that the formal classical

FIG. 2. (@ Entanglement between two Bose-Einstein conden-imit of entanglement is rather singular for closed systems.
sates andb) the classical reduced linear entropy for the classical The analysis presented above concerns a theoretical

counterpart as a function of time. Higher plateaus were attained foffamework for the classical limit of quantum mechanics in
smaller values ofi. The parameter values used wese 1, g=0.1,  closed pure systems. It is a mathematical limit which ensures

A=0.2, andg,=p;=1, and# assumed the values 0.1, 0.5, and 1.0 that quantum mechanics is a universal theory which recovers
(arbitrary units. the classical results in a particular regime of parameters. In

) ) closed systems, the limit is asymptotic for expectation values
Here, however, remarkable differences emphasize the rolg,i seems to be rather singular for the entanglement. How-

played by an intrinsic quantum effect, as is the interferenceg, o this conceptual scenario does not match the real world
In fact, it has been shown that interference is the major re

. : . : of quantum open systems. In this sense, our results must be
sponsible for such flagrant differences, since there is no aN3egarded as the starting point for a more fundamental analy-
log effect in the classical formalisfi83].

Concerning the semiclassical limit, we see that quantun’?is that takes into account the effects of the environment, to

recurrences, and, consequently, quantum interferences, a}\ﬁ’@'Ch every real system is coupled. As is well known, deco-

postponed by the dynamics Ass made small as compared Nerence tends_ to wash out quantum superpositions _and .the

with the classical actiohB,|2+ |,/ This is indeed predicted ©€ntanglement is expected to disappear under such situation.

analytically by Eq.(26). Accordingly, the resemblance be- However, a rigorous test of such assertions requires an ad-

tween quantum and classical entropies tends to increase fifluate entanglement measure for mixed states of continuous

semiclassical regimes. In this sense, these results allow us ¥giable systems, which is still a very controversial issue.

consider the CRLE as the very semiclassical limit of the

entanglement. This is an indication that in a semiclassical IV. CONCLUDING REMARKS

regime, the occurrence of the entanglement is due solely to

spreading effects of the wave function, i.e., statistical effects We have shown by two numerical examples and by ana-

present also in the classical theory of ensembles. lytical calculations that entanglement does not decrease as
The entanglement dynamics of the systé) presents the semiclassical regime is attained asymptotically in closed

the same qualitative general features of our precedent eyure systems. In fact, the results point to an increasing
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amount of entanglement as the equilibrium is attained. more, we have studied strictly the case where the subsystems
This behavior may be understood by noticing that theare initially in pure states. The common point in these inves-
semiclassical regime avoids quantum interferences, but it isgations is that the regarded systems do not interact with the
not able to eliminate the spreading of the wave packet. Eveenvironment. In this sensanitarity seems to be a key word
extremely localized coherent states perceive the local spreait such apparent contradicting semiclassical limits. Then,
ing caused by the classical flux of trajectories associatedhere is a remaining question to be answered: Is decoherence
Furthermore, since we note that the entropy is extensive witindeed able to provide the “expected” semiclassical limit for
the number of pure quantum states of the density operatothe entanglement?
the increase in the long-time entanglement in the semiclassi-
cal limit beC(_)mes just a natural fact. _ ACKNOWLEDGMENTS
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