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We prove that any multiple-copy entanglement transformationfS. Bandyopadhyay, V. Roychowdhury, and
U. Sen, Phys. Rev. A65, 052315 s2002dg can be implemented by a suitable entanglement-assisted local
transformationfD. Jonathan and M. B. Plenio, Phys. Rev. Lett.83, 3566s1999dg. Furthermore, we show that
the combination of multiple-copy entanglement transformation and the entanglement-assisted one is still
equivalent to the pure entanglement-assisted one. The mathematical structure of multiple-copy entanglement
transformations then is carefully investigated. Many interesting properties of multiple-copy entanglement
transformations are presented, which exactly coincide with those satisfied by the entanglement-assisted ones.
Most interestingly, we show that an arbitrarily large number of copies of state should be considered in
multiple-copy entanglement transformations.
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I. INTRODUCTION

Quantum entanglement acts as a crucial role in the appli-
cations of quantum information processing, such as quantum
cryptographyf1g, quantum superdense codingf2g, and quan-
tum teleportationf3g. It has been viewed as a different kind
of physical resourcef4g. At the same time, a fruitful branch
of quantum information theory, named quantum entangle-
ment theory, has been developed very quickly because of the
wide use of quantum entanglement.

One of the central problems in quantum entanglement
theory is to find the conditions for an entangled state to be
converted into another one by means of local quantum op-
erations and classical communicationsLOCC for shortd.
Bennett and his collaboratorsf5g have made significant
progress in attacking this challenging problem for the
asymptotic case. While in finite regime, the first step was
made by Nielsen in Ref.f6g where he proved a celebrated
theorem, which presents a necessary and sufficient condition
for a bipartite entangled state to be transformed to another
pure one deterministically, under the constraint of LOCC.
More precisely, letucl and uwl be two bipartite entangled
states. Then the transformation ofucl to uwl can be achieved
with certainty if and only iflcalw, wherelc andlw denote
the Schmidt coefficient vectors ofucl and uwl, respectively.
The symbol “a” stands for “majorization relation,” which is
a vast topic in linear algebrasfor details about majorization,
we refer to Refs.f7,8gd. In what follows we will identify a
bipartite entangled pure stateucl by its Schmidt coefficient
vector, which is just a probability vector. We often directly
call a probability vector a “state.” This should not cause any
confusion because it is well known that any two bipartite
pure states with the same Schmidt coefficient vectors are

equivalent in the sense that they can be converted into each
other by LOCC.

It is known in linear algebra that majorization relation
“a” is not a total ordering. Thus Nielsen’s result in fact
implies that there exist two incomparable entangled statesx
and y such that neither the transformation ofx to y nor the
transformation ofy to x can be realized with certainty under
LOCC. For transformations between incomparable states,
Vidal f9g generalized Nielsen’s result with a probabilistic
manner and found an explicit expression of the maximal con-
version probability under LOCC. In Ref.f10g, Jonathan and
Plenio discovered a strange property of entanglement: some-
times an entangled state can help in converting impossible
entanglement transformations into possible without being
consumed at all. To be more specific, letx
=s0.4,0.4,0.1,0.1d andy=s0.5,0.25,0.25,0d. We know that
the transformation ofx to y cannot be realized with certainty
under LOCC. Surprisingly, if someone lends the two parties
another entangled statez=s0.6,0.4d, then the transformation
of x^ z to y ^ z can be realized with certainty becausex^ z
ay ^ z. The effect of the statez in this transformation is just
similar to that of a catalyst in a chemical process since it can
help the entanglement transformation process without being
consumed. Thus it is termedcatalyst for the transformation
of x to y. Such a transformation that uses intermediate en-
tanglement without consuming it is called “entanglement-
assisted local transformation” in Ref.f10g, abbreviated to
ELOCC. This phenomenon is now widely known as en-
tanglement catalysis.

Bandyopadhyayet al. found another interesting phenom-
enonf11g: there are pairs of incomparable bipartite entangled
states that are comparable when multiple copies are pro-
vided. Take the abovex and y as an example. Althoughx
a” y andx^2a” y^2, we do havex^3ay^3, which means that if
Alice and Bob share three copies of source statex, then they
can transform them together to the same number of copies of
y with certainty without any catalyst. It demonstrates that the
effect of a catalyst can, at least in the above situation, be
implemented by preparing more copies of the original state
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and transforming these copies together. This kind of transfor-
mation is called, by Bandyopadhyayet al., “nonasymptotic
bipartite pure-state entanglement transformation”f11g. More
intuitively, we call it “multiple-copy entanglement transfor-
mation,” or MLOCC for shortf12g. Some important aspects
of MLOCC have been investigatedf11g.

In Ref. f12g, we demonstrated that multiple copies of a
bipartite entangled pure state may serve as a catalyst for
certain entanglement transformation while a single copy can-
not. Such a state is called amultiple-copy catalystfor the
original transformation. In the above example,z8
=s0.55,0.45d is certainly not a catalyst for the transformation
from x to y sincex^ z8a” y ^ z8. The interesting thing here is
that if Alice and Bob borrow eight copies ofz8, then they can
transformx to y sincex^ z8^8ay ^ z8^8. So z8 is in fact a
multiple-copy catalyst for the transformation fromx to y.
Moreover, a tradeoff between the number of the copies of
catalyst and that of the source state is observed in Ref.f12g:
the more copies of the catalyst that are provided, the fewer
copies of source state that are required. That is, the combi-
nation of MLOCC and ELOCC is very useful in the case
when the number of copies of source state and that of cata-
lyst are limited.

Due to the importance of entanglement transformation in
quantum information processing, the mathematical structure
of entanglement catalysis has been thoroughly studied by
Daftuar and Klimesh in Ref.f13g. Especially, they showed
that the dimension of catalyst is not bounded, which dis-
proved a Nielsen’s conjecture in his lecture notesf14g. Fur-
thermore, they proved that any nonmaximally bipartite en-
tangled pure state can serve as a catalyst for some
transformation. This gives a positive answer to Nielsen’s
other conjecturef14g.

However, many interesting problems related to
entanglement-assisted transformation and multiple-copy en-
tanglement transformation are still open. One of the most
important problems is, given a pair of bipartite entangled
statesx andy, how to find a general criterion under which a
transformation from one to the other is possible under
ELOCC or MLOCC. In other words, how to characterize the
structure of entanglement catalysis and multiple-copy en-
tanglement transformation? Furthermore, is there any rela-
tion between MLOCC and ELOCC?

One of the main goals of current paper is devoted to the
relationship between MLOCC and ELOCC. In Sec. II, we
demonstrate that any transformation that is possible using
multiple copies is also possible for a single copy using en-
tanglement assistance. More precisely, if multiple copies ofx
can be transformed to the same number of copies ofy, then
x can also be transformed toy by borrowing a suitable cata-
lyst z. Intuitively, this result means that ELOCC is at least as
powerful as MLOCC. Since our method is constructive, and
in the practical use it is always more feasible to check
whetherx^kay^k for somek, our result in fact gives a suf-
ficient condition to decide whether there exists some appro-
priate catalyst for the transformation ofx to y. We further
show that the combination of MLOCC and ELOCC is still
equivalent to pure ELOCC, again by explicit construction of
the catalyst. An interesting implication of our results is that
for any two fixed positive integersm and n, m copies ofx

can be transformed to the same number of copies ofy under
ELOCC if and only ifn copies ofx can be transformed to the
same number copies ofy under ELOCC.

The relation between multiple-copy entanglement trans-
formation and entanglement catalysis presented in Sec. II
leads us to study the structure of multiple-copy entanglement
transformation. In Sec. III, we carefully investigate the math-
ematical structure of MLOCC. The major difficulty in study-
ing the structure of MLOCC is the lack of suitable math-
ematical tools. To overcome this difficulty, we first introduce
some powerful lemmas. Then we are able to show that al-
most all properties of ELOCC proved in Ref.f13g are also
held for MLOCC. Especially, for any statey, we obtain an
analytical characterization for when MLOCC is useful in
producingy si.e., there existsx such thatx can be trans-
formed toy by MLOCC whilex is incomparable toyd. Com-
bining this together with a corresponding result about the
usefulness of ELOCC previously obtained in Ref.f13g, we
establish an equivalent relation between MLOCC and
ELOCC. That is, for any statey, MLOCC is useful in pro-
ducing y if and only if ELOCC is useful in producing the
same state.

We also address an interesting question about the number
of copies of state needed in MLOCC. We show that when-
ever MLOCC is useful in producing a certain target, the
number of copies of state needed in MLOCC is not bounded.
That is, if MLOCC is useful in producingy, then for any
positive integerk, there existsx such that multiple copies of
x can be transformed to the same number of copies ofy but
the number of copies needed is larger thank although the
dimensions ofx or y are very small.

In Sec. IV, we try to characterize the entanglement trans-
formation in a different way. This is given in terms of
Renyi’s entropies. We denote byMsyd the set of entangled
states which can be transformed toy by MLOCC,Tsyd is the
set of entangled states which can be transformed intoy by
ELOCC, Rsyd is the set of entangled states whose Renyi’s
entropies are not less than that ofy. As pointed out in Sec. II,
Tsyd is bounded byMsyd from the bottom. It is interesting
that the continuous spectrum of Renyi’s entropies enables us
to give a nested set which bindsTsyd from a different direc-
tion. Some interesting properties ofRsyd are also discussed
briefly.

In Sec. V, we draw a conclusion together with some open
problems for further study.

II. RELATION BETWEEN MLOCC AND ELOCC

The purpose of this section is to examine the relationship
between multiple-copy entanglement transformation and en-
tanglement catalysis. Before going further, we introduce
some useful notations. LetVn denote the set of all
n-dimensional probability vectors. For anyxPVn, the di-
mensionality ofx is often denoted by dimsxd, i.e., dimsxd
=n. The notationx↓ denotes the vector obtained by sorting
the components ofx in nonincreasing order. We often use
elsxd to denote the sum of thel largest components ofx, i.e.,

elsxd = o
i=1

l

xi
↓. s1d

Then the majorization relation can be stated as
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x a y if elsxd ø elsyd, for all 1 ø l , n, s2d

wherex andy are inVn snote that in the case ofl =n it holds
equalityd.

With the above notations, Nielsen’s theorem can be re-
stated: the transformation ofx to y can be realized with cer-
tainty under LOCC if and only ifxay.

Although we consider probability vectors only, sometimes
for simplicity we omit the normalization step since the result
is not affected. We usex% x8 to denote the direct sum, that is,
the vector concatenatingx andx8. Let A andB be two sets of
finite dimensional vectors, thenA% B denotes the set of
all vectors of the forma% b with aPA and bPB, i.e.,
A% B=ha% b:aPA andbPBj. Similarly, A^ B=ha^ b:a
PA andbPBj.

In what follows, we consider deterministic transforma-
tions only f15g. For anyyPVn, define

Msyd = hx P Vn:x^k a y^k for somek ù 1j s3d

to be the set of probability vectors which, when provided
with a finite number of copies, can be transformed to the
same number ofy under LOCC. Moreover, we write

Ssyd = hx P Vn:x a yj s4d

and

Tsyd = hx P Vn:x ^ c a y ^ c for some vectorcj. s5d

Intuitively, Ssyd denote all the probability vectors which can
be transformed toy directly by LOCC whileTsyd denotes the
ones which can be transformed toy by LOCC with the help
of some suitable catalyst. The latter definition is owed to
Nielsen in his lecture notesf14g, also see Ref.f13g. Some-
times we writexaTy if xPTsyd.

Now we ask: what is the precise relationship between
multiple-copy entanglement transformations and
entanglement-assisted ones in general? The following theo-
rem gives a sharp answer to this question. It shows that for
any probability vectory, Msyd is just a subset ofTsyd. This
also gives a positive and stronger answer for the problem
mentioned in the conclusion part of Ref.f11g: if x^k andy^k

are comparable under LOCC for somek, then for any posi-
tive integerl, x^ l andy^ l are comparable under ELOCC.

Before stating the main theorem, we present some simple
properties of majorizationf7g.

Proposition 1. Suppose thatxay and x8ay8, then x
% x8ay % y8 and x^ x8ay ^ y8. More compactly, Ssyd
% Ssy8d#Ssy % y8d andSsyd ^ Ssy8d#Ssy ^ y8d.

The following theorem is one of the main results of the
current paper.

Theorem 1. For any probability vectory, Msyd#Tsyd.
Proof. TakexPMsyd. By definition, there exists a positive

integerk such that

x^k a y^k. s6d

We define a vector

c = x^sk−1d
% x^sk−2d

^ y % ¯ % x ^ y^sk−2d
% y^sk−1d.

s7d

Applying Proposition 1 and noticing Eqs.s6d ands7d, we
can easily check

x ^ c a y ^ c. s8d

So xPTsyd. That completes our proof of this theorem.j
For a positive integerk, we define byMksyd the set of all

n-dimensional probability vectorsx such thatx^k is ma-
jorized byy^k. That is,

Mksyd = hx P Vn:x^k a y^kj. s9d

Similarly,

Tksyd = hx P Vn: for somec P Vk,x ^ c a y ^ cj. s10d

According to the proof of Theorem 1, we have the following:
Corollary 1. For anyn-dimensional probability vectory

and positive integerk, Mksyd is just a subset ofTknk−1syd.
That is,Mksyd#Tknk−1syd.

We have proved that every multiple-copy entanglement
transformation can be implemented by an appropriate
entanglement-assisted one. Another interesting question is
whether we can help the entanglement-assisted transforma-
tion by increasing the number of copies of the original state.
To be concise, let us define

TMsyd = hx P Vn:x^k
^ c a y^k

^ c, for somek ù 1 andcj.

s11d

Obviously, Tsyd#TMsyd. But whether or notTsyd=TMsyd?
The following theorem gives a positive answer to this ques-
tion.

Theorem 2. For anyn-dimensional probability vectory,
TMsyd=Tsyd.

Intuitively, the combination of MLOCC and ELOCC is
still equivalent to pure ELOCC. This result is rather surpris-
ing since we have demonstrated that in the situation when
the resource is limited, the combination of ELOCC and
MLOCC is strictly more powerful than pure ELOCCf12g.

Proof. By definition, it is obvious thatTsyd#TMsyd. Sup-
posexPTMsyd, then there exists a positive integerk and a
vectorc8 such that

x^k
^ c8 a y^k

^ c8. s12d

It is a routine calculation to show that a vectorc9 defined
by

c9 = c ^ c8 s13d

is a catalyst for the transformation fromx to y, wherec is
defined as Eq.s7d. That is,

x ^ c9 a y ^ c9. s14d

ThusxPTsyd, and it follows thatTMsyd#Tsyd. j

As a direct application of Theorem 1, we reconsider an
interesting phenomenon. In Ref.f16g, Leung and Smolin
demonstrated that the majorization relation is not monotonic
under tensor product, where “monotonic” means thatx^k

ay^k implies x^sk+1day^sk+1d for any k. If we extend the
majorization relation “a” into trumping relation “aT,” then
we may naturally hope that for any fixed positive integersm
and n, it is held thatx^maTy^m if and only if x^naTy^n,
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since both relations can be interpreted asx is more entangled
than y. Theorem 2 enables us to give a rigorous proof to
show that such an interpretation is reasonable, as the follow-
ing theorem indicates:

Theorem 3. Let x andy be two probability vectors, and let
m andn be any two fixed positive integers. Then

x^maTy^m iff x^naTy^n. s15d

Intuitively, if we can transformm copies ofx to the same
number copies ofy with the aid of some catalyst, then we
can also transformn copies of x to the same number of
copies ofy, and vice versa.

Proof. We only need to prove one direction. Fromx^m

aTy^m it follows that x^mPTsy^md or xPTMsyd by defini-
tion. ThenxPTsyd follows from the relationTMsyd=Tsyd,
which also impliesx^naTy^n. That completes the proof.j

With the aid ofTMsyd=Tsyd, we have shown the equiva-
lence ofx^maTy^m andx^naTy^n, which, of course, is ac-
cordant with our common sense.

The relationMsyd#Tsyd has a very important applica-
tion: it provides a feasible sufficient condition to determine
whether a givenx is in Tsyd by checkingxPMsyd. In Ref.
f17g, an algorithm with the time complexityOsn2k+3.5d was
proposed to determine whether a givenn-dimensional in-
comparable pairhx,yj admits ak-dimensional catalystc. It is
a polynomial time algorithm ofn whenk is fixed. However,
in the practical use, the dimensions of thex andy are fixed,
while the dimension of the potential catalystc is not fixed,
i.e., k is a variable. Even for very smalln, the above algo-
rithm turns into an exponential one ask increases. For ex-
ample, whenn=4, the time complexity of the algorithm is
aboutOs42kd. This is intractable. On the other hand, it is easy
to check that the number of distinct components ofx^k and
y^k are at mosts n−1+k

n−1
d, which is only a polynomial ofn skd

whenk snd is fixed. So, even whenk increases, we can still
check the relationx^kay^k efficiently. From this point of
view, it is very important to study the structure of MLOCC
carefully, which may give us a characterization of ELOCC.

III. MATHEMATICAL STRUCTURE OF MULTIPLE-COPY
ENTANGLEMENT TRANSFORMATION

In the last section, the relation between multiple-copy en-
tanglement transformation and entanglement catalysis is in-
vestigated. The fact that any MLOCC transformation can be
implemented by a suitable ELOCC transformation suggests
that a careful investigation of the mechanism of MLOCC is
necessary. The aim of this section is to examine the math-
ematical structure behind this mechanism. To be more spe-
cific, for any quantum statey, we focus on the following
three problems:sid characterize the interior points ofMsyd;
sii d determine the conditions of when MLOCC is useful in
producing a given target;siii d demonstrate that in general, an
arbitrarily large number of copies of state should be consid-
ered in MLOCC. To achieve these goals, we first provide
some basic properties of multiple-copy entanglement trans-
formation in Sec. III A. Then in Sec. III B, some technical
lemmas are presented. The successive three subsections con-
sider the above three problems, respectively.

A. Some basic properties of MLOCC

We begin with some simple properties of MLOCC, some
of which have been investigated in Ref.f11g.

Theorem 4. Let x andy be twon-dimensional probability
vectors whose components are both arranged into nonin-
creasing order. Then we have that

s1d Ssyd#Msyd.
s2d If xPMsyd thenx1øy1 andxnùyn.
s3d If xPMsyd andyPMsxd thenx=y. Intuitively, x and

y are interconvertible under MLOCC if and only if they are
equivalent up to local unitary transformations.

Proof. s1d is obvious from the definitions ofSsyd and
Msyd. s2d is proved by Lemma 1 in Ref.f11g. s3d follows
immediately fromMsyd#Tsyd and Lemma 2 in Ref.f10g.

B. Some technical lemmas

Before investigating the structure ofMsyd more carefully,
we need some lemmas. For a subsetA#Vn, the set of all
interior points ofA is denoted byAo. It is easy to see that
xPSosyd if and only if in Eq.s2d, all inequalities hold strictly
andensxd=ensyd.

The major difficulty in studying the structure of entangle-
ment catalysis and multiple-copy entanglement transforma-
tion is the lack of suitable mathematical tools to deal with
majorization relation under tensor product. In what follows,
we try to present some useful tools to overcome this diffi-
culty. To be more readable, the lengthy proofs are put into
the Appendix.

Lemma 1. If x andx8 are interior points ofSsyd andSsy8d,
respectively. Thenx^ x8 is also an interior point ofSsy
^ y8d. More compactly,

Sosyd ^ Sosy8d # Sosy ^ y8d. s16d

By using Lemma 1 repeatedly, we have the following:
Corollary 2. Let x, x8, y, andy8 as above. Supposek, p, q

are any positive integers. Thenx^k is in the interior of
Ssy^kd, andx^p ^ x8^q is in the interior ofSsy^p ^ y8^qd.

A similar result involving direct sum is the following:
Lemma 2. If x andx8 are interior points ofSsyd andSsy8d,

respectively, thenx% x8 is still in the interior ofSsy % y8d if
and only if y1.yn8 andy18.ym. More compactly, we have

Sosyd % Sosy8d # Sosy % y8d iff y1 . yn8 andy18 . ym.

s17d

Here we assume thaty and y8 are, respectively,
m-dimensional andn-dimensional nonincreasingly ordered
vectors. Furthermore, we assume thaty1.ym and y18.yn8,
i.e., neithery nor y8 is uniform vector because otherwise the
result is trivial.

Intuitively, the direct sum ofSosyd andSosy8d is still in the
interior of Ssy % y8d if and only if y andy8 have some suit-
able “overlap.”

Before stating a corollary of Lemma 2, we introduce a
useful notation. We usex%k to denotek times direct sum ofx
itself. That is,
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Similarly, for a setA,

Now a direct consequence of Lemma 2 is the following:
Corollary 3. For any probability vectory and positive

integerk, it holds that

x P Sosyd ⇔ x%k P Sosy%kd. s18d

Combining Lemma 2 with Corollary 3, we obtain the fol-
lowing sufficient condition for determining whether a given
x is in the interior ofSsyd:

Corollary 4. Suppose thathsyid%ki :1ø i ømj is a set of
vectors, yi is an ni-dimensional vector with components
in nonincreasing order,xi PSosyid, 1ø i øm. Denote
x= % i=1

m sxid%ki, y= % i=1
m syid%ki. If sid y1

1=maxhy1
i :1ø i ømj,

sii d ynm

m =minhyni

i :1ø i ømj, and siii d yni

i ,y1
i+1 for all 1ø i

,m, thenxPSosyd.
Intuitively, if y1 andym have the maximal and the minimal

components among all the components of the sethsyid%ki :1
ø i ømj, respectively, and the elements in the sequence
y1, . . . ,ym overlap with each other suitably, thenx is in the
interior of Sosyd.

C. What is the interior point of M„y…?

The most basic problem about the structure of MLOCC is
given yPVn and xPMsyd, under what conditionsx is an
interior point of Msyd? Notice that in the ELOCC case, the
same problem has been solved in Ref.f13g. We outline the
method in Ref.f13g as follows.

The key tool used in Ref.f13g is a lemma connectingSsyd
andTsyd: if xPSsyd andx1,y1, xn.yn, thenx is an interior
point of Tsyd. sHere we have assumed that bothx andy are
in nonincreasing order.d To prove this lemma, another prob-
ability vector c such thatx^ cPSosy ^ cd is constructed.
ThenxPTosyd follows immediately.

Unfortunately, the method presented in Ref.f13g cannot
be generalized to MLOCC directly although we have known
Msyd#Tsyd. The structure ofMsyd seems to be much more
complicated thanTsyd since it should involve the majoriza-
tion relation with finite times tensor product, whose property
is little known at present. To obtain a characterization of the
interior points ofMsyd, we need to obtain a similar lemma as
in Ref. f13g. This goal can be achieved by showing that for
anyxPSsyd satisfyingx1,y1 andxn.yn, x is in the interior
of Msyd. For this purpose, we first consider a special form of
x. That is,x is a boundary point ofSsyd with only one equal-
ity edsxd=edsyd s1,d,n−1d in the majorizationxay. We
show that in this special case, there indeed existskù1 such
that x^k is an interior point ofSosy^kd. Then we generalize
the result in this special case to a more general case, wherex
has the form such thatxPSsyd, x1,y1, andxn.yn. We sur-
prisingly find that for any such probability vectorx one can
choose a suitable positive integerk such thatx is an interior

point of Mksyd fsee Eq.s9dg, which follows thatx is in the
interior of Msyd. By Theorem 1 we deduce thatTsyd shares a
similar property. Therefore our result can be treated as an
extensive generalization of Lemma 4 in Ref.f13g. As a direct
consequence of this result, we obtain a simple characteriza-
tion of the interior points ofMsyd.

The following lemma shows that ifx is on the boundary
of Ssyd but with only one equalityedsxd=edsyd s1,d,n
−1d in the majorizationxay, then we can makex^k in the
interior of Ssy^kd by choosing a suitable positive integerk.

Lemma 3. Supposex and y are inVn whose components
are both in nonincreasing order, andd is a positive integer
such that 1,d,n−1. If

elsxd ø elsyd for any 1ø l , n, s19d

with equality if and only ifl =d, then for positive integerk,

x^k P Sosy^kd ⇔ yd
k , y1

k−1yd+1 andyd+1
k . ydyn

k−1.

s20d

The most interesting part of this lemma is that the condition
on the right-hand side of Eq.s20d does not involvex.

Proof. Let x8=sx1, . . . ,xdd be the vector formed by thed
largest components ofx, andx9 be the rest part ofx. y8 and
y9 can be similarly defined. Then it is easy to check that

x8 P Sosy8d andx9 P Sosy9d s21d

by Eq. s19d. Also we have

x = x8 % x9 andy = y8 % y9. s22d

We give a proof of the part “⇐” by seeking a sufficient
condition for x^kPSosy^kd. First we notice the following
identity by binomial theorem:

sy^kd↓ = S%
i=0

k

sy8^sk−id
^ y9^ id%Sk

i DD↓
; s23d

x^k has a similar expression. For the sake of convenience, we
denote

yi = sy8^sk−id
^ y9^ id↓, ni = dk−isn − ddi; s24d

xi has a similar meaning.
Noticing Eqs.s21d and s24d, we have

xi P Sosyid, 0 ø i ø k s25d

by Corollary 2. So to ensurex^kPSosy^kd, we only need that

the setA=hsyid%sk
i
d :0ø i økj satisfies the conditionssid–siii d

in Corollary 4. It is easy to check thaty1
0 and ynk

k are the
maximal and the minimal components among the compo-
nents of the vectors in setA, respectively. Thus the condi-
tions sid and sii d are fulfilled. We only needA to satisfy the
left condition siii d, i.e., yni

i ,y1
i+1 for any 0ø i ,k, or more

explicitly,

yd
k−iyn

i , y1
k−si+1dyd+1

i+1 , 0 ø i , k. s26d

By the monotonicity, Eq.s26d is just equivalent to the cases
of i =0 andi =k−1. That is,
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yd
k , y1

k−1yd+1 andyd+1
k . ydyn

k−1, s27d

which is exactly the condition on the right-hand side of Eq.
s20d. That completes the proof of the part “⇐.”

Now we prove the part “⇒.” By contradiction, suppose
the condition on the right-hand side of Eq.s20d is not satis-
fied. Then there should exist 0ø i0,k that violates the con-
ditions in Eq.s26d, i.e.,

yd
k−i0yn

i0 ù y1
k−si0+1dyd+1

i0+1. s28d

But then we can deduce that

edsi0dsy^kd = o
i=0

i0 Sk

i
Deni

syid = o
i=0

i0 Sk

i
Deni

sxid ø edsi0dsx^kd,

s29d

which contradicts the assumptionx^kPSosy^kd, where
dsi0d=oi=0

i0 s k
i
dni. That completes the proof. j

The following lemma is an important and useful tool to
prove the properties ofMsyd, just as Lemma 4 in Ref.f13g.

Lemma 4. Let x and y be two nonincreasingly sorted
n-dimensional probability vectors. If

x P Ssyd, x1 , y1 andxn . yn, s30d

thenx is in the interior ofMsyd.
Proof. Let us denoteIx,y as the set of indices where equali-

ties hold inxay, i.e.,

Ix,y = hd:edsxd = edsyd,1 ø d , nj. s31d

If Ix,y=x, thenxPSosyd. By the relationSsyd#Msyd, it fol-
lows thatxPMosyd. We only need to consider the nontrivial
case ofIx,yÞx. In this casex is on the boundary ofSsyd.
According to Eq.s30d, for any dP Ix,y it holds that 1,d
,n−1.

Let d1 andd2 be the minimal and the maximal elements in
Ix,y, respectively, and letx8 be the vector formed by thed1
largest components andsn−d2d least components ofx, i.e.,
x8=sx1, . . . ,xd1

,xd2+1, . . . ,xnd. Let x9 be the rest part ofx. y8,
y9 can be similarly defined.

From the definitions ofd1 andd2, we have

x1 ù xd1
. yd1

ù yd1+1 ù xd1+1 s32d

and

xn ø xd2+1 , yd2+1 ø yd2
ø xd2

. s33d

We also have

x8 P Ssy8d andx9 P Ssy9d. s34d

Notice that forx8, it holds thatelsx8døelsy8d for any 1
ø l ,dimsx8d=n−d2+d1, with equality if and only if l =d1.
Let us choosek such that

yd1

k , y1
k−1yd2+1 andyd2+1

k . yd1
yn

k−1. s35d

By Lemma 3, it follows thatx8^k is an interior point of
Ssy8^kd, i.e.,

elsx8^kd , elsy8^kd, for any 1ø l , sn − d2 + d1dk.

s36d

Let bx be the rest part ofx^k=sx8 % x9d^k except the term
x8^k. Then we have

sx^kd↓ = sx8^k
% bxd↓. s37d

For any 1ø l ,nk, according to Eq.s37d we rewrite

elsx^kd = el1
sx8^kd + el2

sbxd, s38d

for some 0ø l1ø sn−d2+d1dk, 0ø l2ønk−sn−d2+d1dk, and
l1+ l2= l. By Eq. s34d and Proposition 1, it follows that

bx a by, s39d

whereby is defined similar tobx. So we have

el1
sx8^kd + el2

sbxd ø el1
sy8^kd + el2

sbyd. s40d

By the definition ofelsy^kd, we also have

el1
sy8^kd + el2

sbyd ø elsy^kd. s41d

In what follows, we will prove that in Eq.s40d, the inequality
should be strict under the constraint of Eq.s35d. Therefore,
by combing Eqs.s40d and s41d, we obtain

elsx^kd , elsy^kd. s42d

First, we prove that if l1=0 then l2=0, and if l1
=dimsx8^kd thenl2=dimsbxd. In other words, the components
of bx are strictly smaller than the maximal component of
x8^k, but strictly greater than the minimal component ofx8^k.
These two facts are implied by Eqs.s32d and s33d, respec-
tively. Specifically,

maxx8^k = x1
k . x1

k−1xd1+1 = maxbx s43d

by Eq. s32d, and

min x8^k = xn
k , xn

k−1xd2
= min bx s44d

by Eq. s33d.
Second, we directly deduce 0, l1, sn−d2+d1dk from the

first step and the fact that 0, l ønk. By Eqs.s36d and s39d,
and the just proved fact 0, l1, sn−d2+d1dk, we conclude
that the inequality in Eq.s40d is strict. So we have shown
that for any 1ø l ,nk, Eq. s42d holds, which indicates that
x^k is an interior point ofSsy^kd. Thusx is in the interior of
Msyd. j

For any yPVn whose components are in nonincreasing
order, we denote by

SOsyd = hx P Vn:x a y,x1 , y1,xn . ynj s45d

the set of generalized interior points ofSsyd. According to
the proof of Lemma 4, we can choose a positive integerk
such thatSOsyd# fMksydgo. To present this result, we define

dmin = minhi:y1 . yij

and

dmax= maxhi:yi . ynj.

Then we have the following:
Corollary 5. For any yPVn whose components are in

nonincreasing order. If
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ydmin

k , y1
k−1ydmax+1 andydmax+1

k . ydmin
yn

k−1, s46d

then SOsyd# fMksydgo. Also we haveSOsyd# fTknk−1sydgo by
Corollary 1.

Proof. We use the same notations as Lemma 4. Takex
PSOsyd. If Ix,y=x, thenxPSosyd, thusxP fMksydgo for any
kù1. Now assume thatIx,yÞx. We only need to show the
fact that Eq.s46d implies Eq.s35d. This fact can be simply
proved as follows. By the definitions, we have

dmin ø d1 ø d2 ø dmax,

which yields

ydmin
ù yd1

ù yd2+1 ù ydmax+1.

Hence Eq.s46d implies Eq.s35d. j
Intuitively, Msyd and Tsyd both encloseSOsyd into their

interiors when finite copies are provided or finite dimen-
sional catalysts are available.

Now we can give a characterization of the interior points
of Msyd as follows:

Theorem 5. Let x andy be twon-dimensional nonincreas-
ing ordered probability vectors such thatxPMsyd. Thenx is
in the interior ofMsyd if and only if x1,y1 andxn.yn.

Proof. By definition, there existsk such thatx^kay^k.
Let us assume thatx1,y1 and xn.yn. Then we havex1

k

,y1
k andxn

k.yn
k. So it follows from Lemma 4 thatx^k is in

the interior ofMsy^kd. Noticing that the mapx°x^k is con-
tinuous with respect tox, we deduce thatx is in the interior
of hx̄: x̄^kPMsy^kdj, which is obviously a subset ofMsyd.

Conversely, supposex is in the interior ofMsyd but x1

ùy1 or xnøyn. By part s2d of Theorem 4, the only possible
cases arex1=y1 or xn=yn. Then for any kù1, either
e1sx^kd=e1sy^kd or enk−1sx^kd=enk−1sy^kd, both contradicting
the assumptionxPMosyd. That completes the proof. j

D. When is MLOCC useful?

It is desirable to know when multiple-copy entanglement
transformation has some advantage over LOCC. When only
a three-dimensional probability vector is under consider-
ation, we can simply find thatSsyd=Msyd since one can eas-
ily check that for anyx,yPV3 andkù1, x^kay^k is equiva-
lent toxay sthis result follows immediately from parts2d of
Theorem 4d. Thus in such a situation, MLOCC has no ad-
vantage over LOCC, ELOCC also has no advantage. In Ref.
f13g, a characterization ofTsyd=Ssyd has been obtained. To
one’s surprise,Msyd=Ssyd has also a simple characterization.
The most interesting thing we would like to emphasize here
is that such two characterizations are exactly the same. Thus
a nice equivalent relationTsyd=Ssyd⇔Msyd=Ssyd is ob-
tained.

The following theorem characterizes when MLOCC is
more powerful than mere LOCC:

Theorem 6. Let y be ann-dimensional probability vector
with its components sorted nonincreasingly. ThenMsyd
ÞSsyd if and only if y1.yl andyl+1.yn for somel such that
1, l ,n−1.

In other words, for a statey, MLOCC is useful in produc-
ing y if and only if y has at least two successive components

that are distinct from both its smallest and largest compo-
nents.

Proof. Suppose that there exists suchl. Let x be the
n-dimensional vector whose firstl components are each
equal to the average of the firstl components ofy, and the
last n− l components each equal to the average of the last
n− l components ofy. More precisely, we havexi =elsyd / l if
i P h1, . . . ,lj and xi =fensyd−elsydg / sn− ld if i P hl +1, . . . ,nj.
Then it is easily checked thatxay. In factx is on the bound-
ary of Ssyd sinceelsxd=elsyd. However, by Theorem 5,x is in
the interior ofMsyd; thusMsydÞSsyd.

Conversely, assume that there is nol such that 1, l ,n
−1, y1.yl, and yl+1.yn. Under this assumption we will
prove that for anyxPVn whose components are in nonin-
creasing order, only two inequalities, namely,x1øy1 and
xnùyn, are sufficient to guaranteexay. This together with
part 2 of Theorem 4 yieldsMsyd#Ssyd. For this purpose, let
d1 be the number of components ofy equal toy1, andd2 the
number of components equal toyn. Then x1øy1 indicates
thatejsxdøejsyd for j P h1, . . . ,d1j. Similarly, xnùyn implies
oi=j+1

n xi ùoi=j+1
n yi, and thereforeejsxdøejsyd, for j P hn

−d2, . . . ,n−1j. But our assumption implies thatd1+d2+1
ùn. Soejsxdøejsyd for all j P h1, . . . ,n−1j, andxay. Thus
Msyd=Ssyd. j

In applying the above theorem, it should be noted that the
dimension ofy is somewhat arbitrary, as one can append
zeroes to the vectory and thereby increase its dimension
without changing the underlying quantum state. If the non-
zero components ofy take exactly two distinct values, and at
least two components are equal to the smaller values of these
values, then appending zeroes will result in a vectory8 such
that Msy8dÞSsy8d, although Msyd=Ssyd. For example,y
=s0.5,0.25,0.25d andy8=s0.5,0.25,0.25,0d. The reason for
this phenomenon is that we only consider vectorsx with the
same dimension as that ofy; by increasing the dimension of
y, we increase the allowed choices forx as well. Thus the
dimension of the initial statesx under consideration may
determine whetherMsyd=Ssyd.

Now we can state the following weak equivalent relation
between MLOCC and ELOCC:

Corollary 6. Let y be ann-dimensional probability vector.
ThenMsyd=Ssyd if and only if Tsyd=Ssyd.

Proof. This is a consequence of the above theorem and
Theorem 6 in Ref.f13g. j

Corollary 6 establishes an essential connection between
multiple-copy entanglement transformation and entangle-
ment catalysis. That is, for any statey, MLOCC is useful in
producingy if and only if ELOCC is useful in producing the
same target.

E. Arbitrarily large number of copies should be considered
in MLOCC

We will show that for mosty, there is nok such that
Msyd=Mksyd. The physical meaning of this result is that for
any giveny, generally there does not exist an upper bound on
the number of copies of state we should provide when we try
to determine which probability vectors can be transformed to
y by means of MLOCC. Our proof will proceed as follows:
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first we will show thatMksyd is a closed set for anyk, and
then we will show thatMsyd is in general not closed. It then
follows thatMsydÞMksyd.

Theorem 7. Let y be ann-dimensional probability vector.
If MsydÞSsyd, thenMksydÞMsyd for any k.

Proof. We complete the proof by showing two facts:s1d
for any kù1 and yPVn, Mksyd is closed; s2d if Msyd
ÞSsyd thenMsyd is not closed.

First we prove facts1d. Suppose thatx1,x2, . . . is anarbi-
trary vector sequence inMksyd that converges tox. By the
definition of Mksyd, we have thatsxid^kay^k for each i
=1,2, . . . .Specifically,el(sxid^k)øelsy^kd for any 1ø l ønk.
Noticing thatelsx^kd is continuous with respect tox whenk
and l are fixed. By taking limit according to eachl we have
that elsx^kdøelsy^kd for any 1ø l ønk, which yields x
PMksyd.

Now we turn to prove facts2d. By Theorem 6, the as-
sumption thatMsydÞSsyd is equivalent to the existence ofl
such that 1, l ,n−1, y1.yl andyl+1.yn. For convenience,
we redefinel to be the index of the first component ofy that
is not equal toy1, and definem to be the index of the last
component ofy that is not equal toyn; clearly we havel
,m. Let D=minhy1−yl ,ym−ynj and let x be the
n-dimensional vector given byxl =yl +D, xm=ym−D, andxi
=yi for i ¹ hl ,mj. It is easily checked thatyax but xay;
therefore x¹Msyd by part s3d of Theorem 4. Let w
=s1/n, . . . ,1 /nd and note thatwPSsyd.

Suppose thatMsyd is a closed set. Let us consider the set
G=hxstd= tx+s1−tdw:0ø tø1j. Obviously, xs0d=w and
xs1d=x. Hence geometricallyG is just a segment connecting
w and x. Sincew is in the interior ofMsyd and x is not in
Msyd, and, moreover,Msyd is closed,G should intersect
Msyd at some pointxst0d, where 0, t0,1. That is, xst0d
should be a boundary point ofMsyd. However, it is easy to
check thatxst0d1,y1 andxst0dn.yn. By Theorem 5,xst0d is
an interior point ofMsyd. This is a contradiction. Hence
Msyd cannot be closed. j

So whenever multiple-copy entanglement transformation
is useful in producingy fi.e., MsydÞSsydg, an arbitrarily
large number of copies of state must be considered. In other
words, whenMsydÞSsyd, then for anyk there is ak8.k
such that Mksyd is a proper subset ofMk8syd, i.e.,
Mksyd'Mk8syd. An interesting question is to ask whether
increasing the number of copies of state by 1 will necessarily
give an improvement. That is, to decide whether there is any
vector y and kù1 such that MsydÞSsyd but Mk+1syd
=Mksyd.

IV. ENTANGLEMENT TRANSFORMATIONS
AND RENYI’S ENTROPY

In Sec. II, we proved that any MLOCC transformation
can be implemented by a suitable ELOCC transformation.
We further proved that the combination of these two kind of
transformations has no advantages over pure ELOCC. We
argued that these results in fact give us some sufficient con-
ditions to check whether a given entangled state can be trans-

formed to another one by means of ELOCC. In this section,
we tend to characterize entanglement transformation in an-
other way: we seek for necessary conditions of when a given
state can be transformed to another by means of ELOCC.

We begin with a characterization of majorization. A nec-
essary condition for two probability vectorsx andy such that
xay is that the Shannon entropy ofx is not less than that of
y. But this is surely not a sufficient one. In fact, a necessary
and sufficient condition is given by the following lemma
f18g:

Lemma 5. Let x andy be twon-dimensional vectors. Then
xay if and only if for any continuous concave functionf:
R→R,

o
i=1

n

fsxid ù o
i=1

n

fsyid. s47d

Notice that the Shannon entropyHsxd=−oi=1
n xi log2 xi

corresponds to a special concave functionfstd=−t log2 t. It
cannot of course sufficiently describe the relationxay.

Renyi entropyf19g is a generalized version of Shannon
entropy. For anyn-dimensional probability vectorx whose
components are sorted into nonincreasing order, thea-Renyi
entropy whenaÞ1 is defined by

Ssadsxd =
sgnsad
1 − a

log2So
i=1

dx

xi
aD , s48d

where dx is the number of nonzero components ofx,
sgnsad=1 if aù0, otherwise sgnsad=−1. The presence of
the sign function is just for convenience. In Eq.s48d, we
have generalized the definition of Renyi entropy to any real
numbera although commonly it is only defined foraù0.

Some special cases whena takes or tends to different
values deserve attention. First, whena tends to 1, the Renyi
entropySsadsxd has just the Shannon entropy ofx as its limit;
second, whena tends to +̀ and −̀ , the Renyi entropy has
limits −log2 x1 and log2 xdx

, respectively; third, whena=0,
the Renyi entropy is just log2 dx. Thus it is reasonable to
define that Ss1dsxd=Hsxd, Ss+`dsxd=−log2 x1, and Ss−`dsxd
=log2 xdx

.
For twon-dimensional probability vectorsx andy, we say

the Renyi entropy ofx is not less than that ofy, if

dx . dy andSsadsxd ù Ssadsyd for all a ù 0, s49d

or

dx = dy andSsadsxd ù Ssadsyd for all a P R. s50d

Let Rsyd denote the set of alln-dimensional probability
vectorsx whose Renyi entropy is not less than that ofy, i.e.,

Rsyd = hx P Vn:x satisfies Eqs.s49d or s50dj. s51d

The following theorem and its corollary show that the sets
Tsyd and Msyd are both contained inRsyd. Intuitively, if x
can be transformed toy by some catalyst-assisted transfor-
mation or multiple-copy one, then the Renyi entropy ofx is
not less than that ofy.

Theorem 8. For anyn-dimensional probability vectory,
Tsyd#Rsyd.
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Proof. Noticing the additivity of Renyi entropy, that is,
Ssadsx^ cd=Ssadsxd+Ssadscd, we can obtain the result of the
theorem immediately by Lemma 5. j

Combining Theorem 8 with Theorem 1 we have the fol-
lowing:

Corollary 7. For any probability vectory, Msyd#Rsyd.
What is very interesting here is that the fundamental prop-

erties exposed in Theorem 4 that bothTsyd andMsyd enjoy
are even held forRsyd, just as the following theorem shows:

Theorem 9. Let x andy be twon-dimensional probability
vectors whose components are nonincreasingly ordered.
Then

s1d Ssyd#Rsyd.
s2d If xPRsyd thenx1øy1 andxnùyn.
s3d If xPRsyd andyPRsxd thenx=y.
s4d If Tsyd=Ssyd thenRsyd=Ssyd.
Proof. s1d follows immediately from Ssyd#Tsyd and

Theorem 8.
We now proves2d. Whena.1, fromSsadsxdùSsadsyd, we

have −log2 x1ù−log2 y1 by letting a tend to +̀ . Sox1øy1.
The proof of xnùyn needs to consider the following two
cases:

Case 1:yn=0, thenxnù0 follows immediately.
Case 2:yn.0. Whena,0, from SsadsxdùSsadsyd, we de-

rive log2 xnù log2 yn by letting a tend to −̀ . Thusxnùyn.
To prove s3d, notice that whena ranges over positive

integer values, the equalitiesSsadsxd=Ssadsyd or equivalently,
oixi

a=oiyi
a can sufficiently force thatx=y.

The proof ofs4d is similar to Theorem 6. According tos1d,
we only need to showRsyd#Ssyd under the hypothesis
Tsyd=Ssyd. Take xPRsyd, by s2d we havex1øy1 and xn

ùyn. Then, fromTsyd=Ssyd we deduce thatyl =y1 or yl+1

=yn for any 1, l ,n−1. With the same arguments in Theo-
rem 6, we can prove thatx1øy1 andxnùyn impliesxay, or
equivalently, xPSsyd. Thus we complete the proof of
Rsyd#Ssyd. j

We have shown that for any probability vectory,
Msyd#Tsyd#Rsyd, and they enjoy many common proper-
ties. An interesting question that arises here is whether any
pair of them are equal. The complete answer remains open.

V. CONCLUSION AND OPEN PROBLEMS

In conclusion, we proved that for any probability vectory,
Msyd#Tsyd. That is, any multiple-copy entanglement-
transformation can be replaced by a suitable entanglement-
assisted transformation. Furthermore, we proved thatTMsyd
=Tsyd for any probability vectory, which means that the
combination of multiple-copy entanglement transformation
and the entanglement-assisted one is also equivalent to the
pure entanglement-assisted one. Then the mathematical
structure of MLOCC has been investigated very carefully.
We surprisingly found that almost all known properties of
ELOCC are also satisfied by MLOCC. At present, we can
useMsyd#Tsyd andTMsyd=Tsyd as sufficient conditions to
decide whetherxPTsyd by checkingxPMsyd or xPTMsyd.
On the other hand, we can also usex¹Rsyd to disprove that
xPTsyd or xPMsyd. This method is feasible in practical use.

There are many open problems about MLOCC and
ELOCC. The biggest one is, of course, how to give a char-
acterization of statey such thatTsyd=Msyd. Another inter-
esting problem is from the aspect of computability: for a
given statey, whether it is computable to decide a given state
x in Rsyd fTsyd, or Msydg.
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APPENDIX

Proof of Lemma 1. Without loss of generality, we assume
that all the probability vectors given in the proof are nonin-
creasingly ordered. More specifically, letx and y be m di-
mensional, and letx8 andy8 be n dimensional. To prove our
lemma, we only need to show that

elsx ^ x8d , elsy ^ y8d, for 1 ø l , mn. sA1d

From xay andx8ay8, by Proposition 1 it follows that

x ^ x8 a x ^ y8 a y ^ y8. sA2d

So we have

elsx ^ x8d = o
i=1

m

xieri
sx8d ø o

i=1

m

xieri
sy8d ø elsy ^ y8d,

sA3d

where 0ø r i øn, oi=1
m ri = l. The equality is by the definition of

elsx^ x8d; the first inequality is byx8ay8; and the last in-
equality is by Eq.sA2d. If one of these inequalities is strict,
then Eq.sA1d holds. We prove this by considering two cases:

Case 1. There exists an indexi0 such that 0, r i0
,n.

From the assumption thatx8 is in the interior ofSsy8d, we
have

elsx8d , elsy8d for all l , nsespecially forl = r i0
d.

sA4d

Notice further that any component ofx is positivesespecially
xi0

.0d since otherwisex will not be an interior point ofSsyd.
It follows that the first inequality in Eq.sA3d is strict.

Case 2. For any 1ø i øm, r i =0 or r i =n. Let k be the
maximal index such thatrk=n. Since l ,mn, it is easy to
show that 1øk,m and r i =n for any 1ø i øk. Noticing
ensx8d=ensy8d=1, we have
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elsx ^ x8d = o
i=1

k

xiensy8d , o
i=1

k

yiensy8d ø elsy ^ y8d,

sA5d

where the strict inequality in Eq.sA5d is due tok,n and the
assumption thatx is in the interior ofSsyd. That completes
the proof. j

Proof of Lemma 2. In the following proof, we assume that
xPSosyd andx8PSosy8d. “⇐:” Suppose that

y1 . yn8 andym , y18. sA6d

We will prove thatx% x8 is in the interior ofSsy % y8d. It
suffices to show that

elsx % x8d , elsy % y8d sA7d

for any 1ø l ,m+n.
One can easily verify

elsx % x8d = epsxd + eqsx8d ø epsyd + eqsy8d ø elsy % y8d,

sA8d

where 0øpøm, 0øqøn, and p+q= l. To complete the
proof, we need to consider the following two cases:

Case 1. 0,p,m or 0,q,n. By the conditions thatx
PSosyd andx8PSosy8d, we have

epsxd , epsyd or eqsx8d , eqsy8d. sA9d

Then the first inequality in Eq.sA8d is strict, and Eq.sA7d
follows immediately.

Case 2. p=m, q=0 or p=0, q=n. They both contradict the
assumption in Eq.sA6d. So we finish the proof of the suffi-
ciency part.

“⇒:” By contradiction, suppose that Eq.sA7d holds for
very 1ø l ,m+n but Eq.sA6d does not hold. Ify1øyn8 then

ensy % y8d = ensy8d = ensx8d ø ensx % x8d, sA10d

a contradiction with Eq.sA7d when l =n. Similarly, if ym
ùy18 then

emsy % y8d = emsyd = emsxd ø emsx % x8d, sA11d

which contradicts Eq.sA7d again. That completes the proof
of the lemma. j
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