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We prove that any multiple-copy entanglement transformdt®rBandyopadhyay, V. Roychowdhury, and
U. Sen, Phys. Rev. A65, 052315(2002] can be implemented by a suitable entanglement-assisted local
transformatior{ D. Jonathan and M. B. Plenio, Phys. Rev. L&38, 3566(1999]. Furthermore, we show that
the combination of multiple-copy entanglement transformation and the entanglement-assisted one is still
equivalent to the pure entanglement-assisted one. The mathematical structure of multiple-copy entanglement
transformations then is carefully investigated. Many interesting properties of multiple-copy entanglement
transformations are presented, which exactly coincide with those satisfied by the entanglement-assisted ones.
Most interestingly, we show that an arbitrarily large number of copies of state should be considered in
multiple-copy entanglement transformations.
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I. INTRODUCTION equivalent in the sense that they can be converted into each
) ) other by LOCC.

Quantum entanglement acts as a crucial role in the appli- |t js known in linear algebra that majorization relation
cations of quantum information processing, such as quantum.» js not a total ordering. Thus Nielsen's result in fact
cryptography{ 1], quantum superdense codifgj, and quan- jnpjies that there exist two incomparable entangled states
tum tele_portatlor[3]. It has been viewed as a different kind andy such that neither the transformationsofo y nor the
of physical resourcg4]. At the same time, a fruitful branch yransformation ofy to x can be realized with certainty under
of quantum information theory, named quantum entangle; occ. For transformations between incomparable states,
ment theory, has been developed very quickly because of thgja| [9] generalized Nielsen’s result with a probabilistic
wide use of quantum entanglement. manner and found an explicit expression of the maximal con-

One of the central problems in quantum entanglemengersion probability under LOCC. In Ref10], Jonathan and
theory is tq find the conditions for an entangled state to bes|enig discovered a strange property of entanglement: some-
converted into another one by means of local quantum opgmes an entangled state can help in converting impossible
erations and classical communicati¢hOCC for short.  gntanglement transformations into possible without being
Bennett and his collaborators] have made significant ~onsumed at  all. To be more specific, lek
progress in attacking this challenging problem for the:(0.4,0.4,0.1,0.)landy:(0.5,0.25,0.25,D We know that
asymptotic case. While in finite regime, the first step Wase transformation of to y cannot be realized with certainty
made by Nielsen in Re{6] where he proved a celebrated a1 | OCC. Surprisingly, if someone lends the two parties
theorem, which presents a necessary and sufficient Cond't'%other entangled staz=(0.6,0.4, then the transformation
for a bipartite entangled state to be transformed to another, x®7 to y®z can be realized with certainty because z
pure one deterministically, under the constraint of I‘OCC'<y® z. The effect of the statein this transformation is just
More precisely, letly) and|¢) be two bipartite entangled giyiar o that of a catalyst in a chemical process since it can

states. Then the transformation|gh to |¢) can be achieved help the entanglement transformation process without being

with certainty if and only ik, <\, wherex,, and\,, denote consumed. Thus it is termezhtalystfor the transformation

Epﬁ Schrr;)idlt‘igef:icizntfvef‘:tor_s 4’."» tr?md|<p|>, tfeseec';i]\'/erly. of X to y. Such a transformation that uses intermediate en-
€ Ssymbol =" stands for ‘majorization reiation, -which 1S tanglement without consuming it is called “entanglement-
a vast topic in linear algebreor details about majorization, - ,qqisted local transformation” in Ref10], abbreviated to
we refer to Refs[7,8]). In what follows we will identify a ELOCC. This phenomenon is now widely known as en-
bipartite entangled pure stalg) by its Schmidt coefficient tanglement catalysis
vector, WhICh. is just a probability veptor. We often directly Bandyopadhyagt al. found another interesting phenom-
call a probabmty vector a “state. This should not cause a_nyenon[ll]: there are pairs of incomparable bipartite entangled
confusion becguse it is well knovyn that any two bipartite oo te that are comparable when multiple copies are pro-
pure states with the same Schmidt coefficient vectors argijed. Take the above andy as an example. Althougk
£y andx®?£y®2, we do havex®3<y®3, which means that if
Alice and Bob share three copies of source statben they

*Electronic address: dry02@mails.tsinghua.edu.cn can transform them together to the same number of copies of
"Electronic address: feng-y@tsinghua.edu.cn y with certainty without any catalyst. It demonstrates that the
*Electronic address: x-li02@mails.tsinghua.edu.cn effect of a catalyst can, at least in the above situation, be
SElectronic address: yingmsh@tsinghua.edu.cn implemented by preparing more copies of the original state
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and transforming these copies together. This kind of transforean be transformed to the same number of copigswider
mation is called, by Bandyopadhyay al, “nonasymptotic ELOCC if and only ifn copies ofx can be transformed to the
bipartite pure-state entanglement transformatidri]. More  same number copies gfunder ELOCC.
intuitively, we call it “multiple-copy entanglement transfor-  The relation between multiple-copy entanglement trans-
mation,” or MLOCC for shor{12]. Some important aspects formation and entanglement catalysis presented in Sec. |l
of MLOCC have been investigatéd1]. leads us to study the structure of multiple-copy entanglement
In Ref.[12], we demonstrated that multiple copies of atransformation. In Sec. Ill, we carefully investigate the math-
bipartite entangled pure state may serve as a catalyst famatical structure of MLOCC. The major difficulty in study-
certain entanglement transformation while a single copy caning the structure of MLOCC is the lack of suitable math-
not. Such a state is called raultiple-copy catalysfor the  ematical tools. To overcome this difficulty, we first introduce
original transformation. In the above example some powerful lemmas. Then we are able to show that al-
=(0.55,0.45 is certainly not a catalyst for the transformation most all properties of ELOCC proved in R¢fL3] are also
from x to y sincex® z’' £y ® z'. The interesting thing here is held for MLOCC. Especially, for any statg we obtain an
that if Alice and Bob borrow eight copies &f, then they can  analytical characterization for when MLOCC is useful in
transformx to y sincex® zZ®8<y®7'®8, Soz isin fact a  producingy (i.e., there exist such thatx can be trans-
multiple-copy catalyst for the transformation fromto y.  formed toy by MLOCC whilex is incomparable tg). Com-
Moreover, a tradeoff between the number of the copies obining this together with a corresponding result about the
catalyst and that of the source state is observed in[R8f.  usefulness of ELOCC previously obtained in Ref3], we
the more copies of the catalyst that are provided, the feweestablish an equivalent relation between MLOCC and
copies of source state that are required. That is, the combELOCC. That is, for any statg, MLOCC is useful in pro-
nation of MLOCC and ELOCC is very useful in the caseducingy if and only if ELOCC is useful in producing the
when the number of copies of source state and that of catgame state.
lyst are limited. We _also address an inte_resting question about the number
Due to the importance of entanglement transformation irPf copies of state needed in MLOCC. We show that when-
quantum information processing, the mathematical structur8Ver MLOCC is useful in producing a certain target, the
of entanglement catalysis has been thoroughly studied bglumber of copies of state needed in MLOCC is not bounded.

Daftuar and Klimesh in Refl13]. Especially, they showed hat is, if MLOCC is useful in producing, then for any
that the dimension of catalyst is not bounded, which disPCS!tIVe mtege]lk, there eX|hsts< such that muIt|pre copies of
proved a Nielsen’s conjecture in his lecture ndte4]. Fur- x can be transformed to the same number of copie it

thermore, they proved that any nonmaximally bipartite en-the number of copies needed is larger thaalthough the

tanaled tat talvst dimensions ofk or y are very small.
angied pure slale can Serve as a caalyst for SOme |, gec |v we try to characterize the entanglement trans-

transformation. This gives a positive answer to Nielsen'sqy mation in a different way. This is given in terms of
other conjectur¢14]. _ Renyi's entropies. We denote byl(y) the set of entangled
However, “many interesting problems related tOgtates which can be transformedytty MLOCC, T(y) is the
entanglement-assisted transformation and multiple-copy enset of entangled states which can be transformed yniy
tanglement transformation are still open. One of the mosg| occ, R(y) is the set of entangled states whose Renyi's
important problems is, given a pair of bipartite entangledentropies are not less than thatyofAs pointed out in Sec. II,
statesx andy, how to find a general criteripn unde_r which a T(y) is bounded byM(y) from the bottom. It is interesting
transformation from one to the other is possible undefhat the continuous spectrum of Renyi's entropies enables us
ELOCC or MLOCC. In other words, how to characterize theto give a nested set which bmd’éy) from a different direc-
structure of entanglement catalysis and multiple-copy ention. Some interesting properties Bfy) are also discussed
tanglement transformation? Furthermore, is there any re|6brief|y_
tion between MLOCC and ELOCC? In Sec. V, we draw a conclusion together with some open
One of the main goals of current paper is devoted to theyroblems for further study.
relationship between MLOCC and ELOCC. In Sec. Il, we
demonstrate that any transformation that is possible using !l RELATION BETWEEN MLOCC AND ELOCC

multiple copies is also possible for a single copy using en-  The purpose of this section is to examine the relationship
tanglement assistance. More precisely, if multiple copies of petween multiple-copy entanglement transformation and en-
can be transformed to the same number of copieg dfien  tanglement catalysis. Before going further, we introduce
x can also be transformed toby borrowing a suitable cata- some useful notations. LeW" denote the set of all
|ySt Z. |ntuitive|y, this result means that ELOCC is at least asp-dimensional probab|||ty vectors. For arye Vn, the di-
powerful as MLOCC. Since our method is constructive, andmensjonality ofx is often denoted by difw), i.e., din(x)

in the practical use it is always more feasible to check=n The notationx' denotes the vector obtained by sorting
whetherx®“<y®* for somek, our result in fact gives a suf- the components ok in nonincreasing order. We often use

ficient condition to decide whether there exists some approg (x) to denote the sum of thielargest components o i.e.,
priate catalyst for the transformation &fto y. We further

show that the combination of MLOCC and ELOCC is still I |

equivalent to pure ELOCC, again by explicit construction of &(x) = 2 X 1)
the catalyst. An interesting implication of our results is that =t

for any two fixed positive integerst and n, m copies ofx ~ Then the majorization relation can be stated as
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x<yif g(x) <g(y), forall 1<1<n, (2) Applying Proposition 1 and noticing Eqé) and(7), we

. . ) can easily check
wherex andy are inV" (note that in the case ¢fn it holds

equality). X®c<y®c. (8)
With the above notations, Nielsen’s theorem can be re
stated: the transformation afto y can be realized with cer- For a positive integek, we define byM,(y) the set of all

tainty under LOCC if and only ik<y. L . o ok i
Although we consider probability vectors only, sometimes,’ dimensional probability vectors: such thatx™* is ma

. ®k .
for simplicity we omit the normalization step since the resultJorIZEd byy™. That s,
is not affected. We use® x’ to denote the direct sum, that is, M(y) = {x e VMx®K < y@k1, (9)
the vector concatenatingandx’. Let A andB be two sets of

Sox e T(y). That completes our proof of this theorem .l

finite dimensional vectors, theA® B denotes the set of Similarly,

all vectors of the forma®b with ac A andbeB, i.e., T((y) ={x e V" for somec e VK x®@ c<y® c}. (10)
AeB={a®b:acAandbeB}. Similarly, A9 B={a®b:a . o
c A andb e B, According to the proof of Theorem 1, we have the following:

Corollary 1. For anyn-dimensional probability vectoy
and positive integek, M,(y) is just a subset off}x-1(y).
That is, Mk(y) - Tknk—l(y).
M(y) ={x e V":x®* < y*Kfor somek = 1} 3 We have proved that every multiple-copy entanglement
transformation can be implemented by an appropriate
entanglement-assisted one. Another interesting question is
Svhether we can help the entanglement-assisted transforma-
tion by increasing the number of copies of the original state.
Sy) ={x e V:x <y} (4)  To be concise, let us define

In what follows, we consider deterministic transforma-
tions only[15]. For anyy e V", define

to be the set of probability vectors which, when provided
with a finite number of copies, can be transformed to th
same number of under LOCC. Moreover, we write

™(y) ={x e V":x®*® c < y*k @ ¢, for somek = 1 andc}.
(1)
Obviously, T(y) C TM(y). But whether or nofT(y)=T"(y)?

Intuitively, S(y) denote all the probability vectors which can ¢ following theorem gives a positive answer to this ques-
be transformed ty directly by LOCC whileT(y) denotes the  tjgn.

and

T(y) ={x e V:x® c <y ® ¢ for some vectoc}. (5)

ones which can be transformedytdy LOCC with the help Theorem 2 For anyn-dimensional probability vectoy,

of some suitable catalyst. The latter definition is owed toTM(y)=T(y).

Nielsen in his lecture notel4], also see Refl13]. Some- Intuitively, the combination of MLOCC and ELOCC is
times we writex<yy if x e T(y). still equivalent to pure ELOCC. This result is rather surpris-

Now we ask: what is the precise relationship betweenng since we have demonstrated that in the situation when
multiple-copy ~ entanglement  transformations  andthe resource is limited, the combination of ELOCC and
entanglement-assisted ones in general? The following thegn.OCC is strictly more powerful than pure ELOC@2).
rem gives a sharp answer to this question. It shows that for proof By definition, it is obvious thaT(y) C TM(y). Sup-
any probability vector, M(y) is just a subset oT(y). This posex e TM(y), then there exists a positive integerand a
also gives a positive and stronger answer for the problenyectorc’ such that
mentioned in the conclusion part of RgL1]: if x* andy®k . .
are comparable under LOCC for sorkethen for any posi- x*ec <y*ec. (12
tive integerl, x®' andy®' are comparable under ELOCC.

Before stating the main theorem, we present some simplgy
properties of majorizatiofi7].

It is a routine calculation to show that a vectrdefined

Proposition 1 Suppose thak<y and x’ <y’, then x c'=cec (13
©x'<yoy’ and x®x'<y®y’. More compactly, Sy) s 5 catalyst for the transformation fromto y, wherec is
@Sy’ )CSyey') andSy)© Sly') CSy®y’). defined ai Eq(7). That is, g

The following theorem is one of the main results of the
current paper. x@c' <yec (14)

Theorem 1For any probability vectoy, M(y) CT(y). Thusx e T(y), and it follows thatT™(y) C T(y). m
. Proof. Takex € M(y). By definition, there exists a positive As a direct application of Theorem 1, we reconsider an
integerk such that interesting phenomenon. In Refl6], Leung and Smolin

Xk < yok, (6) demonstrated that the majorization relation is not monotonic
under tensor product, where “monotonic” means th&f

We define a vector <y® implies x®® D < y®*D for any k. If we extend the

majorization relation <” into trumping relation <+,” then
we may naturally hope that for any fixed positive integars
(7)  andn, it is held thatx®M<y®*™ if and only if x*"<y®",

c= X®(k—1) ® X®(k—2) QYD - OX® y®(k—2) ® y®(k—1)_
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since both relations can be interpreteckas more entangled A. Some basic properties of MLOCC
thany. Theorem 2 enables us to give a rigorous proof to
show that such an interpretation is reasonable, as the followd
ing theorem indicates:

Theorem 3Letx andy be two probability vectors, and let
m andn be any two fixed positive integers. Then

We begin with some simple properties of MLOCC, some
f which have been investigated in Rgt1].

Theorem 4Let x andy be twon-dimensional probability
vectors whose components are both arranged into nonin-
creasing order. Then we have that
XEM< Y@M iff xEN< y@n, (15) (1) Sly) SM(y).

(2) If xe M(y) thenx;<y; andx,=Y,,.
(3) If xe M(y) andy e M(x) thenx=y. Intuitively, x and
y are interconvertible under MLOCC if and only if they are

Intuitively, if we can transfornm copies ofx to the same
number copies of with the aid of some catalyst, then we
can also transforrm copies ofx to the same number of equivalent up to local unitary transformations.

copies ofy, and vice versa. Proof. (1) is obvious from the definitions of(
Lo m . y) and
Proof. We only need to prove one direction. Froxfi M(y). (2) is proved by Lemma 1 in Ref11]. (3) follows

<y®M it follows thatx®™e T(y®™) or x e TM(y) by defini- . , :
tion. Thenx e T(y) follows from the relationT(y)=T(y), immediately fromM(y) CT(y) and Lemma 2 in Ref.10}.

which also impliesx®*"<1y®". That completes the proofll

With the aid of TM(y)=T(y), we have shown the equiva- B. Some technical lemmas
lence ofx®M<y®M and x®"<1y®", which, of course, is ac-
cordant with our common sense.

The relationM(y) C T(y) has a very important applica-
tion: it provides a feasible sufficient condition to determine
whether a giverx is in T(y) by checkingx e M(y). In Ref.
[17], an algorithm with the time complexit@(n?*35 was
proposed to determine whether a givesdimensional in-
comparable paifx,y} admits ak-dimensional catalyst. It is
a polynomial time algorithm oh whenk is fixed. However,
in the practical use, the dimensions of thandy are fixed,
while the dimension of the potential catalysis not fixed,
i.e., k is a variable. Even for very smatl, the above algo-
rithm turns into an exponential one &sncreases. For ex-
ample, whem=4, the time complexity of the algorithm is
aboutO(4%). This is intractable. On the other hand, it is easy
to check that the number of distinct componentx®f and

Before investigating the structure bf(y) more carefully,
we need some lemmas. For a sub&et V", the set of all
interior points ofA is denoted byA°. It is easy to see that
x e S(y) if and only if in Eq.(2), all inequalities hold strictly
ande,(x)=€,(y).

The major difficulty in studying the structure of entangle-
ment catalysis and multiple-copy entanglement transforma-
tion is the lack of suitable mathematical tools to deal with
majorization relation under tensor product. In what follows,
we try to present some useful tools to overcome this diffi-
culty. To be more readable, the lengthy proofs are put into
the Appendix.

Lemma 1If x andx’ are interior points o5(y) andS(y’),
respectively. Therx®@x’ is also an interior point ofS(y
®Yy’). More compactly,

y®* are at most™ 1), which is only a polynomial of (k) ) LV C P , 16
whenk (n) is fixed. So, even wheh increases, we can still ¥ eSy)cSysy). (16)
check the relatiorx®*<y®K efficiently. From this point of By using Lemma 1 repeatedly, we have the following:

view, it is very important to study the structure of MLOCC  Corollary 2. Letx, X', y, andy’ as above. Suppose p, q
carefully, which may give us a characterization of ELOCC. are any positive integers. Thex¥* is in the interior of
S(y®K), andx®P® x'®9 is in the interior ofS(y®P®y’©9),
Ill. MATHEMATICAL STRUCTURE OF MULTIPLE-COPY A similar result involving direct sum is the following:
ENTANGLEMENT TRANSFORMATION Lemma 2If x andx’ are interior points oB8(y) andS(y’),

. A L e
In the last section, the relation between multiple-copy en_resdpectllve_:fly, i]e?(@); I,S>St'” 'R/Ithe Interior ?Ifs(y@ﬁ ) if
tanglement transformation and entanglement catalysis is irfnd only 1y, =y, andy; =y Vioreé compactly, we have

vestigated. The fact that any MLOCC transformation can be , o , ,
implemented by a suitable ELOCC transformation suggests > ) ® S(y) € SNy @ y") iff y1 >y, andy; >y

that a careful investigation of the mechanism of MLOCC is 17
necessary. The aim of this section is to examine the math-

ematical structure behind this mechanism. To be more spédere we assume thaty and y’ are, respectively,
cific, for any quantum statg, we focus on the following mM-dimensional andh-dimensional nonincreasingly ordered
three problems(i) characterize the interior points ®(y);  vectors. Furthermore, we assume tlyat-y,, andy;>y;,

(i) determine the conditions of when MLOCC is useful in i-€., neithery nory’ is uniform vector because otherwise the
producing a given targetiii) demonstrate that in general, an result is trivial.

arbitrarily large number of copies of state should be consid- Intuitively, the direct sum o&(y) andS°(y’) is still in the
ered in MLOCC. To achieve these goals, we first provideinterior of Sly@y’) if and only if y andy’ have some suit-
some basic properties of multiple-copy entanglement transable “overlap.”

formation in Sec. Ill A. Then in Sec. Ill B, some technical  Before stating a corollary of Lemma 2, we introduce a
lemmas are presented. The successive three subsections cogeful notation. We usg®™ to denotek times direct sum ok
sider the above three problems, respectively. itself. That is,
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P=xox® - D point of M(y) [see Eq.9)], which follows thatx is in the
% times interior of M(y). By Theorem 1 we deduce thaty) shares a

similar property. Therefore our result can be treated as an
extensive generalization of Lemma 4 in Rf3]. As a direct
A¥=A@A® - A, consequence of this result, we obtain a simple characteriza-
T kimes tion of the interior points oM(y).

The following lemma shows that ¥ is on the boundary
of S(y) but with only one equalityey(x)=¢e4(y) (1<d<n
-1) in the majorizatiorx<y, then we can maka®¥ in the
interior of S(y®¥) by choosing a suitable positive integer
x e S(y) = x% e S(y*k). (18 Lemma 3 Supposex andy are inV" whose components

- . . are both in nonincreasing order, adds a positive integer
Combining Lemma 2 with Corollary 3, we obtain the fol- such that Kd<n-1. If

lowing sufficient condition for determining whether a given
X is in the interior ofS(y): A g(x) < g(y) for any 1<1<n, (19
Corollary 4. Suppose thaf(y)®k:1<i<m} is a set of
vectors, y' is an n-dimensional vector with components
in nonincreasing order,x € (y'), 1s<is<m. Denote XK e S(yK) o YK <y Iy andyK,, >y
x=@M, (), y=al (y)?k. If (i) yi:max{y'l:lﬁsm}, y Yo <Y1 Ya Yd+1 = Yd¥n

Similarly, for a setA,

Now a direct consequence of Lemma 2 is the following:
Corollary 3. For any probability vectoly and positive
integerk, it holds that

with equality if and only ifl =d, then for positive integek,

(i) Y =minfy, :1=i=m}, and (i) y, <yi’" for all 1=i (20)

<m, thenx e S(y). The most interesting part of this lemma is that the condition
Intuitively, if y* andy™ have the maximal and the minimal on the right-hand side of E¢20) does not involvex.

components among all the components of the{6gj®": 1 Proof. Let X' =(xy, ... ,Xq) be the vector formed by thé

<i<mj}, respectively, and the elements in the sequencéargest components of andx” be the rest part of. y’ and
y!, ..., y™ overlap with each other suitably, thenis in the y” can be similarly defined. Then it is easy to check that

interior of S(y). X' e (y') andx’ e (Y’ (21)

C. What is the interior point of M(y)? by Eq. (19). Also we have

The most basic problem about the structure of MLOCC is x=x"®x" andy=y @y (22)
giveny e V" and x e M(y), under what conditionx is an
interior point of M(y)? Notice that in the ELOCC case, the
same problem has been solved in Réaf3]. We outline the
method in Ref[13] as follows. )

The key tool used in Ref13] is a lemma connectin§(y) ~ kN
andT(y): if x e S(y) andx; <y, X,>Y,, thenx is an interior (y*9"= (So(y/@(k e y"®l)®(i >> : (23
point of T(y). (Here we have assumed that botlandy are
in nonincreasing orderTo prove this lemma, another prob- x®K has a similar expression. For the sake of convenience, we
ability vector ¢ such thatx®ce S(y®c) is constructed. denote
Thenx e T°(y) follows immediately.

Unfortunately, the method presented in Ref3] cannot
be generalized to MLOCC directly although we have knownx' has a similar meaning.

M(y) C T(y). The structure oM(y) seems to be much more Noticing Eqgs.(21) and(24), we have
complicated tha(y) since it should involve the majoriza- i i .
tion relation with finite times tensor product, whose property X e Sy), 0<isk (25

is little known a;c p(re)sent. To 3btainba charactelriz?tion of thepy Corollary 2. So to ensune’* e (y¥), we only need that
interior points ofM(y), we need to obtain a similar lemma as _roina(K). q—: - e

in Ref. [13]. This goal can be achieved by showing that for_thecsetA;l— {(yl)l Ilt iOS'Ski SatLSf'is tt:aeﬁcongltll? n($)_(l'llh)
anyx e Sy) satisfyingx, <y; andx,> Yy, X is in the interior "' ~oronary 4. 1tis €asy 1o chec andyy, are the

of M(y). For this purpose, we first consider a special form ofM@ximal and the minimal components among the compo-
X. That is,x is a boundary point o§(y) with only one equal- nents .Of the vectors in Sét, respectively. Thus the condi-
ity esx)=ey(y) (L<d<n-1) in the majorizationx<y. We tions (i) aqd(u_)__are_ fqu|IiIed. i\{r\lle only need\_ to satisfy the
show that in this special case, there indeed eXstd such left <_:o_nd|t|on (i), ie., Yo <Y1 for any O<i<k, or more
that x** is an interior point of(y®X). Then we generalize €XPlicitly,

the result in this special case to a more general case, where keivi o (KeHDiTl i 26

has the form such thate S(y), X, <y;, andx,>y,. We sur- Ya Yn=Y1" Vo ' (26)
prisingly find that for any such probability vectgrone can By the monotonicity, Eq(26) is just equivalent to the cases
choose a suitable positive integesuch thatx is an interior  of i=0 andi=k-1. That is,

We give a proof of the part&” by seeking a sufficient
condition for x®% e (y®K). First we notice the following
identity by binomial theorem:

yi — (y/®(k—i) ® y/r®i)i, n, = dk—i(n _ d)i; (24)
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(27)

Y < Vi g andy,, > yay<

which is exactly the condition on the right-hand side of Eq.

(20). That completes the proof of the par=""

Now we prove the part=." By contradiction, suppose

the condition on the right-hand side of EQO) is not satis-

fied. Then there should exist0i,<k that violates the con-

ditions in Eq.(26), i.e.,

k=io, i k—=(ig+1),,ig+1
Ya Yo =Y1 O Y-

But then we can deduce that

(28)

1) k ) o k )
ey = ZO (i )eni(yl) = % (i )eni(X') < €qip(X™),

(29
which contradicts the assumptior® e S(y*¥), where
d(ig)==l2,(*)n;. That completes the proof. [

The following lemma is an important and useful tool to

prove the properties dfi(y), just as Lemma 4 in Ref13].

PHYSICAL REVIEW A 71, 042319(2005

Let b, be the rest part at®*=(x’ @ x")®k except the term
x'®k. Then we have

(x*)=(x"*k @ by'. (37)
For any I=<I<nX according to Eq(37) we rewrite
a(x™) =, +e, (b, (38)

for some 0<|;<(n-d,+d,)%, 0<Il,<n*-(n-d,+d,)¥ and
I,+1,=I. By Eq. (34) and Proposition 1, it follows that

b, < by, (39
whereb, is defined similar td,. So we have
e, (x'*) +e,(b) < ey +e.(b). (40)
By the definition ofe(y®¥), we also have
e,y +e,(b) = &y™"). (41)

In what follows, we will prove that in E40), the inequality
should be strict under the constraint of E§5). Therefore,

Lemma 4 Let x and y be two nonincreasingly sorted by combing Eqgs(40) and (41), we obtain

n-dimensional probability vectors. If

x e Sy),

thenx is in the interior ofM(y).

Xy <Yyq andx, > Y, (30)

Proof. Let us denotg, , as the set of indices where equali-

ties hold inx<y, i.e.,
Iy ={d:eg(x) =ey(y),1<d <n}. (31)
If 1,,=@, thenx e S’(y). By the relationS(y) C M(y), it fol-

lows thatx e M°(y). We only need to consider the nontrivial

case ofl,,# @. In this casex is on the boundary o§(y).
According to Eq.(30), for any del,, it holds that 1<d
<n-1.

Let d; andd, be the minimal and the maximal elements in

Iy, respectively, and lex’ be the vector formed by the,
largest components an@—d,) least components of, i.e.,
X' =(Xq, ... Xd, Xd,+1, - - Xn). LELX" be the rest part of. y’,
y” can be similarly defined.

From the definitions ofl; andd,, we have

X1 = Xq, = Yo, = Yo, 01 = X421 (32)
and
Xn < Xg,41 < Ypr1 < Yo, < Xd,- (33
We also have
x' e §y’) andx” € y"). (34)

Notice that forx’, it holds thate(x’)<g(y’) for any 1
<|<dim(x’)=n-d,+d;, with equality if and only ifl=d;.
Let us choosé such that

Ve, < V5 Va1 @NAYE 1> VoV
By Lemma 3, it follows thatx’®X is an interior point of
Sy'®), i.e.,
g(x'®%) < q(y'®"), for any 1=<1 < (n—d, +dy)*.
(36)

(35

a(x*) < a(y®. (42)

First, we prove that ifl;=0 then I,=0, and if I,
=dim(x’'®%) thenl,=dim(b,). In other words, the components
of b, are strictly smaller than the maximal component of
x'®K but strictly greater than the minimal componenk&t.
These two facts are implied by Eq82) and (33), respec-
tively. Specifically,

maxx’ €= x§ > x4"!xy 41 = maxb, (43)
by Eg.(32), and
min X' %= x§ < X xg, = min b, (44)

by Eq.(33).

Second, we directly deduce<d; <(n—d,+d,)* from the
first step and the fact that<0l <nk. By Egs.(36) and (39),
and the just proved fact<0l;<(n-d,+d,)¥, we conclude
that the inequality in Eq(40) is strict. So we have shown
that for any I=<I<n*, Eq. (42 holds, which indicates that
x®Kis an interior point ofS(y®¥). Thusx is in the interior of
M(y). u

For anyy e V" whose components are in nonincreasing

order, we denote by
SAy) ={x & V"X <y,x; < Y1, % > Yn} (45)

the set of generalized interior points 8fy). According to
the proof of Lemma 4, we can choose a positive intdger
such thatSP(y) C[M(y)]°. To present this result, we define
dmin = min{i:yl > Yi}
and
dmax: ma){i:yi > yn}-

Then we have the following:
Corollary 5. For anyy e V" whose components are in
nonincreasing order. If
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yg < y'fly 4 a1 andyﬁ 1> Yy _yﬁ—ly (46) that are distinct from both its smallest and largest compo-
min max max min nentS
then S°(y) C[M,(y)]°. Also we haveS®(y) C[Ty«-1(y)]° by Proof. Suppose that there exists suthlLet x be the
Corollary 1. n-dimensional vector whose firdt components are each

Proof. We use the same notations as Lemma 4. Take equal to the average of the firstomponents of/, and the
e P(y). If lyy=9, thenx e S(y), thusx e [M(y)]° for any  last n—I components each equal to the average of the last
k=1. Now assume thdt ,# @. We only need to show the n-I| components of. More precisely, we have=g(y)/l if
fact that Eq.(46) implies Eq.(35). This fact can be simply ie{1,... |} andx=[e,(y)-&a(y)]/(n=1) if ie{l+1,... n}
proved as follows. By the definitions, we have Then it is easily checked thaky. In factx is on the bound-
ary of S(y) sinceg(x)=g(y). However, by Theorem % is in
the interior ofM(y); thusM(y) # S(y).

dmin = d1 = d2 < dmax-

which yields Conversely, assume that there is Insuch that KI1<n
—y - - -1, y;>y,, andy;41>Y,. Under this assumption we will
Yin = ¥dy = Ydpr1 = Y 1 prove that for anyx e V" whose components are in nonin-

Hence Eq.(46) implies Eq.(35). m creasing order, only two inequalities, nameky,<y,; and

Intuitively, M(y) and T(y) both encloses®(y) into their ~ Xn=Yn, are sufficient to guarantee<y. This .together with
interiors when finite copies are provided or finite dimen-Part 2 of Theorem 4 yieldsl(y) C S(y). For this purpose, let

sional catalysts are available. d; be the number of components pkqual toy;, andd, the
Now we can give a characterization of the interior pointsnumber of components equal §. Thenx, <y, indicates
of M(y) as follows: thate;(x) <g(y) for j e {1, ... ,di}. Similarly, x,=y, implies

Theorem 5Let x andy be twon-dimensional nonincreas- Zin:j+1xi >Zin:j+1)’i= and thereforgej(x}Sej(y), for je{n
ing ordered probability vectors such that M(y). Thenxis  ~G2.....n—1}. But our assumption implies that,+d,+1

in the interior ofM(y) if and only if x, <y; andx,>y,. =n. Soe(x)<eg(y) forall je{1,... n-1}, andx<y. Thus
Proof. By definition, there existk such thatx®k<y®k  M(y)=Sly). u
Let us assume that,<y; and x,>y,. Then we havex In applying the above theorem, it should be noted that the

<y¥ andx¥>yX. So it follows from Lemma 4 that®k is in ~ dimension ofy is somewhat arbitrary, as one can append
the interior ofM(y®¥). Noticing that the map+—>x®k is con- ~ Zeroes to the.vectoy and thgreby increase its dimension
tinuous with respect ta, we deduce that is in the interior ~ Without changing the underlying quantum state. If the non-
of {x:x®k e M(y®¥)}, which is obviously a subset &fl(y). zero components of take exactly two distinct values, and at
Conversely, suppose is in the interior ofM(y) but x, least two component; are equal tq the sm:_illervalues of these
>y, or x,<y,. By part(2) of Theorem 4, the only possible values, tr,1en ap?endmg zeroes will result in a vegtosuch
cases arex;=y; or x,=y, Then for anyk=1, either that M(y’)#Sly’), although M(y)=Sly). For example,y
e,(x®) =e,(y®") or e 1(x*9) =ex_,(y*¥), both contradicting :(_0.5,0.25,0.2}3apdy':(0.5,0.25,0.2_5,1) The reason for
the assumptiox e M°(y). That completes the proof. W this phe_nomenon is that we or_lly cons_lder veci_;onslth .the
same dimension as that gf by increasing the dimension of
D. When is MLOCC useful? y, we increase the allowed choices foras well. Thus the

It is desirable to know when multiple-copy entanglementdimens_ion of the initial stateg under consideration may
transformation has some advantage over LOCC. When onl§€t€rmine whethek(y)=Sy). _ ,
a three-dimensional probability vector is under consider- NOW We can state the following weak equivalent refation
ation, we can simply find tha(y)=M(y) since one can eas- Petween MLOCC and ELOCC: »
ily check that for any,y e V3 andk= 1, x**< y®K is equiva- Corollary 6. Le_ty be ann-(j|men5|onal probability vector.
lent tox <y (this result follows immediately from pa¢) of ~ 1henM(y)=Sly) if and only if T(y)=Sly).
Theorem 4. Thus in such a situation, MLOCC has no ad- Proof. Th_|s is a consequence of the above theorem and
vantage over LOCC, ELOCC also has no advantage. In Reflheorem 6 in Ref[13]. _ . n
[13], a characterization of(y)=S(y) has been obtained. To Cprollary 6 establishes an essential c_onnecuon between
one’s surpriseM(y)=9(y) has also a simple characterization. mulUpIe-copy entanglement transformation .and entqngle-
The most interesting thing we would like to emphasize heréﬂent cf';\taly_sls. That 1S, for any SWBMLO.CC IS use_ful n
is that such two characterizations are exactly the same. Thupcroducmgy if and only if ELOCC is useful in producing the
a nice equivalent relatiom(y)=S(y) = M(y)=S(y) is ob- same target.
talr-}-i% following theorem characterizes when MLOCC is E. Arbitrarily large number of copies should be considered
more powerful than mere LOCC: in MLOCC

Theorem 6Lety be ann-dimensional probability vector We will show that for mosty, there is nok such that
with its components sorted nonincreasingly. ThiHy) M(y)=M,(y). The physical meaning of this result is that for
# q(y) if and only if y, >y, andy,,; >y, for somel such that any giveny, generally there does not exist an upper bound on
1<l<n-1. the number of copies of state we should provide when we try

In other words, for a statg, MLOCC is useful in produc- to determine which probability vectors can be transformed to
ing y if and only if y has at least two successive componentsy by means of MLOCC. Our proof will proceed as follows:
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first we will show thatM,(y) is a closed set for anly, and  formed to another one by means of ELOCC. In this section,
then we will show thaM(y) is in general not closed. It then we tend to characterize entanglement transformation in an-

follows thatM(y) # M(y). other way: we seek for necessary conditions of when a given
Theorem 7Lety be ann-dimensional probability vector. state can be transformed to another by means of ELOCC.
If M(y) # S(y), thenM,(y) # M(y) for anyk. We begin with a characterization of majorization. A nec-

Proof. We complete the proof by showing two factg)  €ssary condition for two probability vectoxsandy such that
for any k=1 andye V", M,(y) is closed; (2) if M(y) x<y is that the Shannon entropy ®fis not less than that of

+S(y) thenM(y) is not closed. y. But this is surely not a sufficient one. In fact, a necessary
First we prove factl). Suppose that!,x?,... is anarbi- and sufficient condition is given by the following lemma
trary vector sequence iNl(y) that converges tx. By the [18]: i _
definition of M,(y), we have that(x)®k<y®k for eachi Lemma 5Letx andy be twon-dimensional vectors. Then
=1,2,... .Specifically,e((x)®%) < &(y®¥) for any 1=I=<nk. x<y if and only if for any continuous concave functidn
Noticing thate (x®¥) is continuous with respect towhenk R—=R,
and| are fixed. By taking limit according to ea¢hwe have n n
that (x*¢) <g(y®") for any 1<I<n¥ which yields x 2 f(x) = 2 f(yi). (47)
e M(y). = =
Now we turn to prove fact2). By Theorem 6, the as- Notice that the Shannon entropl(x)=-3,x; log; X;

sumption thatM(y) # S(y) is equivalent to the existence bf  corresponds to a special concave functién=-t log, t. It
such that k1 <n-1,y, >y, andy;.,>Y,. For convenience, cannot of course sufficiently describe the relationy.

Yve redefind to be the |nde.X of the first Co_mponenty)that Renyi entropy[lg] is a genera”zed version of Shannon
is not equal toy;, and definem to be the index of the last entropy. For anyn-dimensional probability vectox whose
component ofy that is not equal toy,; clearly we havel  components are sorted into nonincreasing orderatiRenyi
<m. Let A=min{y;-y;,Ym=Ys} and let x be the entropy whema+1 is defined by

n-dimensional vector given by =y,+A, X,=Yn,—A, andx; )

=y; for i ¢ {l,m}. It is easily checked thagy<x but x<Yy; W SN« 3

therefore x & M(y) by part (3) of Theorem 4. Letw S99 = 1-a Iogz<§1xi ) (48)
=(1/n,...,1/n) and note thatv e Sy). .

Suppose thak(y) is a closed set. Let us consider the setwhere d, is the number of nonzero components xf
G={x(t)=tx+(1-t)w:0<t<1}. Obviously, x(0)=w and sgr(a):l if a_>0,.ot_herW|se sg(m):_—l. The presence of
x(1)=x. Hence geometricall( is just a segment connecting the sign function is just for convenience. In E@8), we
w andx. Sincew is in the interior ofM(y) andx is not in have generalized the deflnltlor) (_)f Renyi entropy to any real
M(y), and, moreoverM(y) is closed,G should intersect numberq altho_ugh commonly it is only defined fcu_? 0.
M(y) at some pointx(ty), where O<ty<1. That is, x(ty) Some special cases Wh_en takes or tends to dlfferen_t
should be a boundary point A (y). However, it is easy to values deserve attention. First, whertends to 1, the Renyi

: entropyS®(x) has just the Shannon entropyoés its limit;
ek a3, i o Theoan Sy s LTt an e i ey s
M(y) cannot be closed. . limits —log, x; and log X respectively; third, whem=0,

So whenever multiple-copy entanglement transformatior}tjhe Renyi entropy is just logl,. Thus it is reasonable to
- 1 l) = +°°) i —oo)
is useful in producingy [i.e., M(y)# S(y)], an arbitrarily efine that SU()=H(x), S™(x)=-logox,, and S™(x)

large number of copies of state must be considered. In othezrIOgZ X . . .
For twon-dimensional probability vectorsandy, we say

words, whenM(y) # S(y), then for anyk there is ak’ >k . : )
such that My(y) is a proper subset oMy (y), ie., the Renyi entropy ok is not less than that of, if
M(y) € M/ (y). An interesting question is to ask whether dy>dy, andS¥(x) = S¥(y) for all a=0, (49
increasing the number of copies of state by 1 will necessaril%r

give an improvement. That is, to decide whether there is any

vector y and k=1 such thatM(y)#S(y) but M.(y) de=d, andS?(x) = S¥(y) foralla e R.  (50)

=My(y).

Let R(y) denote the set of alh-dimensional probability
vectorsx whose Renyi entropy is not less than thaypf.e.,

IV. ENTANGLEMENT TRANSFORMATIONS R(y) ={x e V":x satisfies Eqs(49) or (50)}. (51

AND RENYI'S ENTROPY . .
The following theorem and its corollary show that the sets

In Sec. Il, we proved that any MLOCC transformation T(y) and M(y) are both contained iR(y). Intuitively, if x
can be implemented by a suitable ELOCC transformationcan be transformed tg by some catalyst-assisted transfor-
We further proved that the combination of these two kind ofmation or multiple-copy one, then the Renyi entropyxa$
transformations has no advantages over pure ELOCC. Whot less than that of.
argued that these results in fact give us some sufficient con- Theorem 8 For anyn-dimensional probability vectoy,
ditions to check whether a given entangled state can be tran3{y) C R(y).
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Proof. Noticing the additivity of Renyi entropy, that is, There are many open problems about MLOCC and
SY(x®c)=S*(x)+S(c), we can obtain the result of the ELOCC. The biggest one is, of course, how to give a char-

theorem immediately by Lemma 5. [ | acterization of statg such thatT(y)=M(y). Another inter-
Combining Theorem 8 with Theorem 1 we have the fol-esting problem is from the aspect of computability: for a

lowing: given statey, whether it is computable to decide a given state
Corollary 7. For any probability vectoy, M(y) CR(y). x in R(y) [T(y), or M(y)].

What is very interesting here is that the fundamental prop-
erties exposed in Theorem 4 that bdtty) and M(y) enjoy

are even held foR(y), just as the following theorem shows: ACKNOWLEDGMENTS
Theorem 9Let x andy be twon-dimensional probability The authors wish to thank the colleagues in the Quantum
vectors whose components are nonincreasingly Ordere‘é‘;omputation and Quantum Information Research Group.
Then This work was partly supported by the Natural Science
(L) Sy)CR(y). Foundation of China(Grant Nos. 60273003, 60433050,
(2) If xe R(y) thenx;<y; andx,=>V;. 60321002, and 603050p5Especially, Runyao Duan ac-
(3) If xeR(y) andy e R(x) thenx=y. knowledges the financial support of the Ph.D. Student Cre-
(4) If T(y)=Sly) thenR(y)=S(y). ative Foundation of Tsinghua UniversityGrant No.
Proof. (1) follows immediately fromS(y)CT(y) and 052420003
Theorem 8. : :
(23 ; (23
We now prove(2). Whena> 1, from S (x) = S%(y), we APPENDIX

have —log x; =-log, y; by letting « tend to +0. Sox; <VY;.
The proof ofx,=y, needs to consider the following two  proof of Lemma 1Without loss of generality, we assume

cases: _ _ that all the probability vectors given in the proof are nonin-
Case 1y,=0, thenx,=0 follows immediately. creasingly ordered. More specifically, letandy be m di-
Case 2y,>0. Whena<0, fromS¥(x)=S“(y), we de-  mensional, and let’ andy’ be n dimensional. To prove our

rive log, X,=10g, Y, by letting a tend to <o. Thusx,=yp,. lemma, we only need to show that
To prove (3), notice that whena ranges over positive

integer values, the equaliti&®(x)=S(y) or equivalently, a(x@x)<gly®y'), for 1<|<mn, (A1)

Zix*=2yi" can sufficiently force that=y.
The proof of(4) is similar to Theorem 6. According 1), Fromx<y andx’ <y’, by Proposition 1 it follows that
we only need to showR(y) C S(y) under the hypothesis
T(y)=Sy). Take xe R(y), by (2) we havex;<y; and x, XxOX <X®Y <y®Yy'. (A2)
=vy,. Then, fromT(y)=S(y) we deduce thay,=y; or y,;
=y, for any 1<I<n-1. With the same arguments in Theo- g4 we have
rem 6, we can prove thai <y; andx,=y, impliesx<y, or
equivalently, xe S(y). Thus we complete the proof of

m m
R(y)CSly). - a(x®x) =2 xe (X) < X xe (y) <aly®y),
We have shown that for any probability vectgr, = =1
M(y) CT(y) CR(y), and they enjoy many common proper- (A3)

ties. An interesting question that arises here is whether any
pair of them are equal. The complete answer remains openynare O<r,<n, =™ r;=I. The equality is by the definition of
g(x®x’); the first inequality is byx’ <y’; and the last in-
V. CONCLUSION AND OPEN PROBLEMS equality is by Eq.A2). If one of these inequalities is strict,

. . then Eq.(A1) holds. We prove this by considering two cases:
In conclusion, we proved that for any probability vecyor Case 1 There exists an indek, such that G<r, <n.
0

M(y)CT(y). That is, any multiple-copy entanglement o\ o assumption that is in the interior ofS(y’), we
transformation can be replaced by a suitable entanglement-

assisted transformation. Furthermore, we proved Th4y) have
=T(y) for any probability vectory, which means that the
combination of multiple-copy entanglement transformation

and the entanglement-assisted one is also equivalent to the (A4)
pure entanglement-assisted one. Then the mathematical

structure of MLOCC has been investigated very carefully.Notice further that any component xfs positive(especially
We surprisingly found that almost all known properties ofxi0> 0) since otherwise& will not be an interior point o8(y).
ELOCC are also satisfied by MLOCC. At present, we canit follows that the first inequality in Eq(A3) is strict.
useM(y) C T(y) and TV(y)=T(y) as sufficient conditions to  Case 2 For any k<i<m, r;=0 or r;=n. Let k be the
decide whethex e T(y) by checkingxe M(y) or xe T(y).  maximal index such that,=n. Sincel<mn, it is easy to
On the other hand, we can also use R(y) to disprove that show that i k<m and r;=n for any 1<i<k. Noticing
x e T(y) orx e M(y). This method is feasible in practical use. e,(x’)=e,(y')=1, we have

a(x’) <e(y’) for all I < n(especially forl =r; ).
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k k
a(x®x) =2 xey) < 2 yiey)<ely®y),
i=1 i=1

(A5)

where the strict inequality in EGA5) is due tok<<n and the
assumption thak is in the interior ofS(y). That completes
the proof. |

Proof of Lemma 2In the following proof, we assume that
xe L(y) andx’ € S(y’). “«<=:" Suppose that

Y1> Yy andy, <yj. (AB)

We will prove thatx@®x’ is in the interior of Sly®y’). It
suffices to show that

axex)<elyey')
for any 1<lI<m+n.
One can easily verify
a(x @ X') =ey(x) +ey(X) < eyy) +tely) <ealyey’),
(A8)

where O<sp=m, O0=qg=n, and p+q=Il. To complete the
proof, we need to consider the following two cases:

(A7)

PHYSICAL REVIEW A 71, 042319(2005

Case 1 0<p<m or 0<qg<n. By the conditions thak
e S(y) andx’ € S(y’), we have

e,(X) < ey(y) or gy(x’) < eyy"). (A9)
Then the first inequality in EQLA8) is strict, and Eq(A7)
follows immediately.

Case 2p=m, q=0 orp=0, g=n. They both contradict the
assumption in Eq(A6). So we finish the proof of the suffi-
ciency part.

“=:" By contradiction, suppose that E¢A7) holds for
very 1<|<m+n but Eq.(A6) does not hold. Ify; <y, then

eyoy)=ey)=eX)<egxex'), (AL0)

a contradiction with Eq(A7) when I=n. Similarly, if y,,
=y, then
emly ®Y') =en(y) =en(X) s ep(x @ X'),  (All)

which contradicts Eq(A7) again. That completes the proof
of the lemma. |

[1] C. H. Bennett and G. Brassard, Proceedings of IEEE Internaf11] S. Bandyopadhyay, V. Roychowdhury, and U. Sen, Phys. Rev.

tional Conference on Computers, Systems, and Signal Process-

ing, Bangalore, India, 1984, pp. 175-179.
[2] C. H. Bennett and S. J. Wiesner, Phys. Rev. Lé8, 2881
(1992.

[3] C. H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres,

and W. K. Wootters, Phys. Rev. Letf0, 1895(1993.

[4] M. A. Nielsen and I. L. ChuangQuantum Computation and
Quantum Information(Cambridge University Press, Cam-
bridge, England, 2000

[5] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schuma-

cher, Phys. Rev. A53, 2046(1996.

[6] M. A. Nielsen, Phys. Rev. Lett83, 436(1999.

[7] A. W. Marshall and I. Olkinlnequalities: Theory of Majoriza-
tion and Its ApplicationgAcademic Press, New York, 1979

[8] P. M. Alberti and A. UhlmannStochasticity and Partial Or-
der: Doubly Stochastic Maps and Unitary MixiriBordrecht,
Boston, 1982

[9] G. Vidal, Phys. Rev. Lett83, 1046(1999.

[10] D. Jonathan and M. B. Plenio, Phys. Rev. Le®3, 3566
(1999.

A 65, 052315(2002.

[12] R. Y. Duan, Y. Feng, X. Li, and M. S. Ying, quant-ph/0312010.

[13] S. Daftuar and M. Klimesh, Phys. Rev. 84, 042314(2001).

[14] M. A. Nielsen, Introduction to Majorization and Its Applica-

tions to Quantum Mechanic&inpublished notgs available

online: http://www.ginfo.org/talks/2002/maj/book.ps

[15] The underlying mathematical structure of probabilistic en-

tanglement transformation is different from that of determinis-

tic transformations. We need to deal with a special mathemati-

cal tool named “super majorization.” Theorem 1 and Theorem

2 can be generalized to probabilistic entanglement tranforma-

tions with the aid of the properties of super majorization.

[16] D. W. Leung and J. A. Smolin, quant-ph/0103158.

[17] X. M. Sun, R. Y. Duan, and M. S. Ying, IEEE Trans. Inf.
Theory 51, 75 (2005.

[18] G. H. Hardy, J. E. Littlewood, and G. Polydnequalities
(Cambridge University Press, Cambridge, England, 1952

[19] A. Renyi, Probability Theory (North-Holland, Amsterdam,

1970.

042319-10



