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In practical quantum cryptography, the source sometimes produces multiphoton pulses, thus enabling the
eavesdropper Eve to perform the powerful photon-number-splittingsPNSd attack. Recently, it was shown by
Curty and LütkenhausfPhys. Rev. A69, 042321s2004dg that the PNS attack is not always the optimal attack
when two photons are present: if errors are present in the correlations Alice-Bob and if Eve cannot modify
Bob’s detection efficiency, Eve gains a larger amount of information using another attack based on a 2→3
cloning machine. In this work, we extend this analysis to all distances Alice-Bob. We identify a new incoherent
2→3 cloning attack which performs better than those described before. Using it, we confirm that, in the
presence of errors, Eve’s better strategy uses 2→3 cloning attacks instead of the PNS. However, this improve-
ment is very small for the implementations of the Bennett-Brassard 1984sBB84d protocol. Thus, the existence
of these new attacks is conceptually interesting but basically does not change the value of the security
parameters of BB84. The main results are valid both for Poissonian and sub-Poissonian sources.
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I. INTRODUCTION

Quantum cryptography, or more precisely quantum key
distributionsQKDd is a physically secure method for the dis-
tribution of a secret key between two distant partners, Alice
and Bob, that share a quantum channel and a classical au-
thenticated channelf1g. Its security comes from the well-
known fact that the measurement of an unknown quantum
state modifies the state itself: thus an eavesdropper on the
quantum channel, Eve, cannot get information on the key
without introducing errors in the correlations between Alice
and Bob. In equivalent terms, QKD is secure because of the
no-cloning theorem of quantum mechanics: Eve cannot du-
plicate the signal and forward a perfect copy to Bob.

However, perfect single-photon sources are never avail-
able, and in most practical implementation the source is sim-
ply an attenuated laser. This means that some of the pulses
traveling from Alice to Bob contain more than one photon.
These items, in the unavoidable presence of losses in the
quantum channel, open an important loophole for security:
Eve may perform the so-called photon-number-splitting
sPNSd attack, consisting of keeping one photon in a quantum
memory while forwarding the remaining ones to Bobf2,3g.
This way, Eve has kept a perfect copy without introducing
any error. In particular, here we consider the BB84 QKD
protocol introduced by Bennett and Brassard in 1984f4g. In
this protocol, when the basis is revealed in the sifting phase
Eve can measure each photon that she has kept in the good
basis and obtain full information on the bit.

Until recently, it was thought that this attack was the best
Eve could do when two or more photons are present. How-
ever, in a recent workf5g, Curty and LütkenhaussCLd have
shown that this is not the case for noisy linessoptical visibil-
ity V,1d and imperfect detectorssquantum efficiencyh,
dark count probabilitypdd, when the natural assumption is
made that Eve cannot modify the detectors’ parameters. Ba-

sically, the idea is simple: consider pulses that contain two
photons. In the PNS attack, Eve has full information after the
basis announcementprovidedBob has detected the photon
that was sent. So, in the information balance, Eve’s informa-
tion for such an item ish31. Suppose now that Eve, instead
of performing the PNS, uses a suitable 2→3 cloning ma-
chine, keeps one photon and forwards the other two photons
to Bob. Eve’s information conditioned to Bob’s detection
could beIc2ø1, but now the probability that Bob detects a
photon of the pulse isf1−s1−hd2g. Thus for small values of
h, Eve’s information for a two-photon pulse becomes 2h
3 Ic2, and this may be larger thanh. Of course, by using
such a cloner, Eve introduces some errors, so this attack is
possible only up to the expected quantum bit error rate
sQBERd.

As we prove below however, the analysis of CL is re-
stricted to a specific distance of the line Alice-Bob, which
turns out to be unrealistically short. The goal of this paper is
to evaluate the contribution of the individual attacks that use
2→3 cloning machines for all distances in a realistic range
of parameters. When this is done, the contribution of attacks
using 2→3 cloning machines leads to a negligible improve-
ment over the usual PNS strategies: both the achievable
secret-key rate and the maximal distance are for all practical
purpose the same, whether these new attacks are used or not.
This is our main result. In the run, we describe a different
strategy that uses a 2→3 cloning machines, that performs
better than those previously described. This strategy has an
intuitive explanation which opens the possibility of immedi-
ate generalizations: in particular, it may prove useful to study
the security of other protocols, against which the PNS at-
tacks are less effectivef6–8g.

The paper is constructed as follows. In Sec. II, we state
our hypotheses precisely and write down general formulas,
in which Eve’s attack is parametrized by the probabilities of
performing each strategy, and submitted to some constraints.

PHYSICAL REVIEW A 71, 042316s2005d

1050-2947/2005/71s4d/042316s10d/$23.00 ©2005 The American Physical Society042316-1



At the end of this section, we show that the analysis of CL,
correct though it is, is valid only for a given distance be-
tween Alice and Bob, whence the need for the present exten-
sion of their work. Section III contains the main results: we
perform numerical optimization assuming the two known 2
→3 cloning strategies and our new one, showing that ours
performs indeed better but that its contribution is on the
whole negligible. Section IV is devoted to some extensions
and remarks. Finally, in Sec. V, we give some semianalytical
formulas that reproduce the full numerical optimization to a
satisfactory degree of accuracy: these are useful for experi-
mentalists, to find bounds for the performance of their set-
ups. Section VI is a conclusion.

II. HYPOTHESES AND GENERAL FORMULAS

A. Imperfect source, line, and detectors

We are concerned with practical quantum cryptography,
so the first point is to describe the limitations on Alice’s and
Bob’s hardware. We work in a prepare-and-measure scheme.

Alice’s source. Alice encodes her classical bits in light
pulses; the number of photons in each pulse is distributed
according to a probability lawpAsnd. In most practical QKD
setups, Alice’s source is an attenuated laser pulse, sopAsnd
=psnumd the Poissonian distribution of mean photon number
m. But our general formulae and most of our results will be
valid independently of the distribution, so in particular they
apply to all quasi-single-photon sourcesf9g. For heralded
single-photons obtained from an entangled pairf10g, the situ-
ation is more complex. If the twin photon is used only as a
trigger, and the preparation of the state is done directly on
the photonssd traveling to Bob, then this source behaves ex-
actly as a sub-Poissonian source, and our subsequent analysis
applies. If on the contrary the twin photon is used also for the
preparationsbecause one detects its polarization state, thus
preparing at a distance the state of the photon traveling to
Bobd, then the PNS attack is not relevantf1,3g.

Alice-Bob quantum channel. The quantum channel which
connects Alice and Bob is characterized by the lossesa,
usually given in dB/kmsfor optical fibers at the telecom
wavelength 1550 nm, the typical value isa.0.25 dB/kmd.
The transmission of the line at a distanced is therefore

t = 10−ad/10. s1d

Moreover, we take into account nonperfect visibilityV of the
interference fringes.

Bob’s detector. It has a limited quantum efficiencyh and
a probability of dark count per gatepd. The gate here means
that Bob knows when a pulse sent by Alice is supposed to
arrive, and opens his detector only at those times; so here,
“per fBob’sg gate” and “perfAlice’sg pulse” are equivalent.
Those two parameters are not uncorrelated: in reverse-biased
avalanche photodiodes, a larger bias voltage increases bothh
andpd. Typical values nowadays areh=0.1 andpd=10−5.

B. Alice and Bob’s rates and information

We write pBs0d the probability per pulse that Bob detects
no photon sent by Alice. Since both losses in the line and
detection are binomial processes

pBs0d = o
n

pAsnds1 − thdn; s2d

for a Poissonian distribution on Alice’s side,pBs0d
=ps0umthd. We consider only those cases in which Alice and
Bob use the same basis, because in any case the other items
will be discarded during the sifting phase. Bob’s count rates
per pulse in the “right” and the “wrong” detector are then
given by f11g

Cright =
1

2
Ff1 − pBs0dgS1 + V

2
D + pBs0dpdG , s3d

Cwrong=
1

2
Ff1 − pBs0dgS1 − V

2
D + pBs0dpdG , s4d

where the factor1
2 accounts for the losses in the sifting

phase. The QBER is the fraction of wrong bits accepted by
Bob,

Q =
Cwrong

Cright + Cwrong
=

1

2
−

V

2S1 +
2pdpBs0d
1 − pBs0dD

. s5d

In particular, as long asf1−pBs0dg@pBs0dpd, one can ne-
glect Cwrong in the denominator and decomposeQ=Qopt
+Qdet, with the optical QBER defined asQopt=s1−Vd /2. The
mutual information Alice-Bob after sifting is

IsA:Bd = sCright + Cwrongdf1 − HsQdg, s6d

whereH is Shannon entropy.

C. Hypotheses on Eve’s attacks

Hypothesis 1. The characteristics of the quantum channel
sthe optical QBER, or more preciselyV, and the losses, that
determine the transmissiontd are fully attributed to Eve. On
the contrary, Eve has no access to Bob’s detector:h and pd
are given parameters for both Bob and Eve. The eavesdrop-
per will of course adapt her strategy to the value of these
parameters, but she cannot play with them. This hypothesis
is almost unanimously accepted as reasonable; it implies that
Bob monitors the rate of double clicks when he happened to
measure in the wrong basis; if this rate is larger than ex-
pected, he aborts the protocol. As realized by CLf5g, it is
precisely this hypothesis that opens the possibility for the
cloning attacks to perform better than the PNSf12g.

Hypothesis 2. Through her PNS attacks, Eve should not
modify Bob’s expected count rate due to Alice’s photons
Cph= 1

2f1−pBs0dg. This constraint is usually assumed in the
study of PNS attacks, see, e.g., Refs.f2,3,5–7g; still, two
comments are needed. One could strengthen the constraint
by requiring Eve to reproduce the full photon-number statis-
tics at Bob’s side. But one could weaken it as well: here, we
are asking that Bob should not notice PNS attacks at all; Eve
could be allowed to perform noticeable PNS attacks, in
which case one should bound her information and study the
possibility of privacy amplification.

Hypothesis 3. Eve performs incoherent attacks: she at-
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tacks each pulse individually, and measures her quantum sys-
tems just after the sifting phase. The justification for this
strong hypothesis is related to the state-of-the-art of the re-
search in quantum cryptography: no one has found yet an
explicit coherent attacks that performs better than the inco-
herent onesf13g. In other words, incoherent attacks are still
used to compute upper bounds for security, while “uncondi-
tional security” proofs provide lower boundsf14g, and for all
protocols there is an open gap between the two bounds. Note
also that incoherent attacks are not “realistic” in the sense of
those described, e.g., in Ref.f15g; in particular, Eve is al-
lowed to store quantum information in a quantum memory.
The hypothesis of incoherent attacks implies in particular
that after sifting, Alice, Bob, and Eve share several indepen-
dent realizations of a random variable distributed according
to a classical probability law. Under this assumption and the
assumption of one-way error correction and privacy amplifi-
cation, the Csiszar-Körner bound appliesf16g: one can
achieve a secret-key rate given by

S= IsA:Bd − IsA:Ed. s7d

Actually, this is a conservative assumption: in the presence
of dark counts,IsB:Ed, IsA:Ed holds, so the strict bound for
S is IsA:Bd− IsB:Ed; however, the difference is small, and
IsA:Ed is easier to estimate. We devote Sec. IV C below to
comments aboutIsB:Ed. The mutual informationIsA:Bd has
been given in Eq.s6d, we should now provide an expression
for IsA:Ed.

D. Eve’s strategies

Having stated the hypotheses on Eve’s attacks, we can
now formulate Eve’s strategy as a function of some param-
eters. We suppose that the first thing Eve does, just outside
Alice’s lab, is a nondestructive measurement of the photon
number. Sometimes, she will simply findn=0 and there is
nothing more to do. Whenn.0, she will choose some at-
tacks with the suitable probabilities. We have attributed all
the losses in the line to Eve: this means that Eve replaces the
quantum channel with a lossless line, and takes advantage of
the losses to keep in a quantum memory or simply block
some photons.

Strategy for n=1. When Eve finds one photon, with some
probability pc1 she applies the well-known optimal incoher-
ent attackf17g, that consists insid applying the optimal
asymmetric phase-covariant cloning machinef18g, sii d for-
warding the original photon to Bob while keeping the clone
and the ancilla in a quantum memory,siii d make the suitable
measurement as soon as the basis is revealed. This strategy
contributes to Bob’s detection rate with

R1 =
1

2
hpAs1dpc1, s8d

where the factor12h is due to the fact that Bob must accept
the itemsdetect the photon and accept at siftingd. On these
items, Eve introduces a disturbanceD1 and gains the infor-
mation I1sD1d=1−HsP1d with P1= 1

2 +ÎD1s1−D1d. With
probability pb1=1−pc1, Eve simply blocks the photon—in

principle, one can define the probabilitypl1 that Eve leaves
the photon fly to Bob without doing anything, but this is not
useful for herswe left this parameter free in our numerical
simulations, see Sec. III, and verified that one indeed finds
alwayspl1=0d.

Strategy for n=2. Sometimes, Eve finds two photons. The
standard PNS strategy is a storage attack: Eve keeps one
photon in a quantum memory, and forwards the other one to
Bob. Eve applies the storage attack with probabilityps2. This
strategy contributes to Bob’s detection rate with

R2s =
1

2
hpAs2dps2; s9d

on these items, Eve introduces no disturbanceD1 and gains
the informationIs2=1. As stressed in the Introduction, the
main theme of this work is CL’s observation that the storage
attack may not always be the best Eve can do on two pho-
tons. With probabilitypc2, she rather uses a 2→3 asymmet-
ric cloning machine, keeps the clone and the ancillae and
forwards the two original photons, now slightly perturbed, to
Bob. This strategy contributes to Bob’s detection rate with

R2c =
1

2
f1 − s1 − hd2gpAs2dpc2; s10d

on these items, Eve introduces a disturbanceD2 and gains an
informationI2sD2d that depends on the cloning machine that
is used. Finally, one can in principle define the probability of
blocking both photonspb2; but this turns out to be always
zero in practicesas forpl1, we used this as a free parameter
in the numerical simulationsd. The reason is the following. If
Eve could reproduce Bob’s detection rate by blocking all the
n=1 itemssin which case, she might have to block also some
of the n=2 itemsd, she would have full information. Alice
will then choose her probabilitiespAsnd in such a way that
this is not the case: Eve must be forced to forward some
items with n=1. Now, Eve gains more information on the
n=2 than on then=1 items: therefore, she had better use all
the losses to block as muchn=1 items as possible; but then,
she cannot block anyn=2 item. Thuspb2=0 and pc2=1
−ps2.

Strategy for nù3. If Eve finds more than two photons, we
suppose that she performs always the storage attack: she
keeps one photon and forwards the remainingn−1 photons
to Bob. This strategy contributes to Bob’s detection rate with

R3 =
1

2 o
nù3

f1 − s1 − hdn−1gpAsnd; s11d

on these items, Eve introduces no disturbance and gains full
information. This is not always optimal: unambiguous dis-
crimination strategiesf6,7g or cloning attacksf5g may give
Eve more information. However, we do not discuss the full
optimization because in any case the contribution of items
wheren.2 to the total information is small, as will be clear
below. Note also that in a storage attack Eve systematically
removes one photon; at very short distances, this might not
be possible because the expected losses in the line Alice-Bob
are not large enough. To avoid any surprise, we shall start all
our numerical optimization at a distanced=10 km, where
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the losses are definitely large enough to allow storage attack
on all items withnù3 f19g.

Summary. We allow different attacks with different prob-
abilities, conditioned on the knowledge of the number of
photons present in each pulse. Apart from the hypotheses
made onR3, this represents the most general incoherent at-
tack on the BB84 protocol—provided the hardware is pro-
tected against “realistic attacks” such as Trojan horses, faked
states, etc.f21g, as we suppose it to be.

E. Formulas for Eve’s attack

We can now group everything together and describe the
formulas that will be used for Eve’s attack. Eve’s informa-
tion on Bob’s bits readsf20g

IsA:Ed = R1I1sD1d + R2s + R2cI2sD2d + R3, s12d

where

I1sD1d = 1 −HS1

2
+ ÎD1s1 − D1dD s13d

and whereI2sD2d is the information gained by Eve using a
2→3 asymmetric cloning machine, for which the optimal is
not knownssee next sectiond. For a given probability distri-
bution used by AlicepAsnd, Eve chooses the four parameters
pc1, pc2, D1, andD2 in order to maximize Eq.s12d, submitted
to the constraints that determinet andV. Theconstraint on t
guarantees that the losses introduced by Eve must be those
expected on the quantum channel, so in particular that Bob’s
detection rate is unchanged:

R1 + R2s + R2c + R3 =
1

2
f1 − pBs0dg. s14d

Alice and Bob have to choose their source in order to ensure
that Eve cannot setR1=0, otherwise she has full information
by simply using the PNS. This is the reason why the contri-
bution ofR3 is small: the leading term is a fraction ofpAs1d,
typically of the order ofpAs2d. Now, pAs3d /pAs2d=Osmd
,0.1 for the usual Poissonian source, and even smaller for
sub-Poissonian ones. Theconstraint on Vguarantees that the
error rate introduced by Eve must sum up to the observed
optical QBER, that is,

R1D1 + R2cD2 =
1

2
f1 − pBs0dgS1 − V

2
D . s15d

In the next section, we discuss a good choice ofI2sD2d, then
perform numerically the optimization of Eve’s strategies
over the four parameterspc1, pc2, D1, andD2. Before this, we
are now able to pinpoint the limitations of the analysis of
CL.

F. The limitation in CL

In our notations, the parameterp that characterizes Alice’s
source in Ref.f5g is given byp=pAs1d / f1−pAs0dg, the con-
ditional probability of having one photon in a nonempty
pulse. Items with more than two photons are neglected, so in
our notationsR3=0 and 1−p=pAs2d / f1−pAs0dg. This as-

sumption is not criticala priori. What is critical, is the
choice of Eve’s attacks that are compared. The PNS attack
R2c=0 is compared to a cloning attack in which not onlyR2s,
but alsoR1 is set to 0. As CL correctly note, the comparison
is fair only if the counting rates are the same between the two
strategies, which reads hereR1

PNS+R2s
PNS=R2c

clon; in turn, this
condition determinesp=1/s2−hd. Now, Alice should adapt
the parameters of her probability distribution as a function of
the distance of the quantum channel. Thus, a given value of
p will be optimal only for a given distancesor at best, for a
small range of possible distancesd: the fact of settingR1=0 in
the cloning attack limits the validity of CL’s analysis to a
given length of the line Alice-Bob.

In particular, if we consider thatpAsnd is a Poissonian
distribution, thens1−pd /p=ps2umd /ps1umd=m /2; settingp
=1/s2−hd leads tom=2/s1−hdù2. This is a very large
value ofm, that consequently can be used only at a very short
distance.

III. MAIN RESULTS

The problem that we want to solve involves a double
optimization. For any given distance, Alice should choose
the parameters of her sourcese.g., for a Poissonian source,
the mean number of photons per pulsed in such a way as to
optimize the secret key rateS, Eq. s7d. This quantity must be
computed for Eve’s best strategy, i.e., forIsA:Ed as large as
possible: so, for any choice of Alice’s parameters, we must
find the values ofpc1, pc2, D1, andD2 that maximize Eq.s12d
under the constraintss14d and s15d. For this task, numerical
algorithms are the reasonable choice. But, as an input for
these algorithms, we need the explicit form ofI2sD2d. We
devote the next paragraph to this point.

A. The choice of the 2\3 cloning attack

Eve receives two photons in the stateucl^2, whereucl is
one of the four states used in BB84. She has these photons
interact with a probe of hers, then she forwardstwo photons
to Bob, having introduced an average disturbanceD2. By
measuring her probe after the sifting phase, Eve gains an
information I2sD2d on the state prepared by Alice. Finding
the optimal attacks means finding the best unitary transfor-
mation, the best probe and the best measurement on it, such
that I2sD2d is maximal for any given value ofD2. Though
well defined, this problem is very hard to solve in general.
Let us restrict to attacks where the photons flying to Bob
after the interaction are in a symmetric state, so that the
transformation reads

ukluEl → o
k8=1

3

ck
k8uk8luEk

k8l, s16d

whereukl is a basis of the symmetric subspace of two qubits.

There are nine vectorsuEk
k8l, so Eve’s probe must be at least

nine-dimensional to avoid loss of generality. In addition, the
measurement that gives Eve the best guess on the state sent
by Alice is not known in general. In summary, finding the
optimal I2sD2d in full generality amounts to solving an opti-
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mization over more than hundred real parameters, for an un-
defined figure of merit. We give this up and try a different
approach, namely to guess a goodsif not the optimald 2
→3 cloning attack.

Let us first look at what is already known. Two asymmet-
ric 2→3 cloning machines were proposed in Ref.f7g; Curty
and Lütkenhausf5g based their analysis of 2→3 cloning
attacks on those. The first machinescloner Ad is a universal
asymmetric cloner, recently proven to be optimal in terms of
fidelity f22g. For a disturbanceD2 introduced on Bob’s
states, this machine gives Eve an informationf5g

I2
AsD2d = 2D2 + s1 − 2D2df1 − HsP2dg s17d

with P2= 1
2sÎ8D2s1−4D2dd / s1−2D2d. A particularly interest-

ing feature is thatI2
AsD2=1/6d=1. This sounds at first aston-

ishing, because one is used to Eve’s getting full information
only by breaking all correlations between Alice and Bob. But
this is the case only if Eve receives a single photon from
Alice. Here Eve receives two photons in the same state. In
fact, the resultI2

AsD2=1/6d=1 is not only reasonable, but it
can be reached by a much simpler strategy: Eve just keeps
one of the two incoming photonssso, after sifting, she can
get full informationd and duplicates the second one using the
optimalsymmetric1→2 cloner of Bužek-Hilleryf23g, which
makes copies with fidelity56, whenceD2= 1

6.
Cloner A is goodsand we conjecture it to be optimald to

attack two-photon pulses in the six-state protocolf24g, be-
cause of its symmetry. However, here we are dealing with
BB84: for the one-photon case, it is known that one can do
better than using the universal asymmetric cloner. In fact, the
optimal incoherent attack on single-photon pulses uses the
phase-covariant cloning machine, that copies at best two
maximally conjugated bases out of 3f18g. So we suspect that
also for the 2→3 cloning attack, we should rather look for
an asymmetric 2→3 phase-covariant cloner. The second
clonerscloner Bd described in Ref.f7g is an example of such
a cloner. However, it has some unpleasant features: on the
one hand, in terms of fidelity it is slightly suboptimal for the
parameter that defines symmetric cloningf25g; more impor-
tant, I2

BsD2d,1 for all values ofD2—we do not writeI2
BsD2d

explicitly, because it is quite complicated and after all unim-
portant for the present work; see Ref.f5g.

In summary, two 2→3 asymmetric cloning machines
have been discussed in the literature, but they are suboptimal
for our task. Still, in the sake of comparison with Ref.f5g,
we ran our first numerical optimizations usingI2

AsD2d, then
I2
BsD2d. The result is striking:sid if I2= I2

A, then the optimal
strategy is always obtained forD2= 1

6, whatever the values of
the other parameters;sii d if I2= I2

B, the optimal strategy is the
one that uses no 2→3 cloning attackspc2=0d. Following this
observation, it is natural to emit the followingconjecture: the
2→3 cloner is always used for the value ofD2 that gives

I2sD2d = 1. s18d

Under this conjecture, we can then replaceI2sD2d by 1 in Eq.
s12d, and we have to find the lowest value ofD2 for which
Eq. s18d holds. In general, this is a task of the same com-
plexity as optimizing Eve’s strategy for all values ofD2; but

we can at least construct a very simple strategy which has an
intuitive interpretation, and which performs better than the
ones which use cloners A and B.

Hypothesis 4. The strategy for the 2→3 cloning attack is
the following: out of two photons sent by Alice, Eve keeps
one and sends the other one into the optimal symmetric 1
→2 phase-covariant cloner. This provides Eve withI2sD2d
=1 after sifting, and Bob receives two photons with a distur-
bance

D2 =
1

2S1 −
1
Î2

D , s19d

that is,.0.1464f18g. Since this disturbance is smaller than
1
6, for any fixed value ofV Eve can use the 2→3 cloning
attack more often than in the optimized version of the attack
using cloner A, see constraints15d. That is why our new
attack performs better. Moreover, the attack has an intuitive
form, that can be generalized: in particular, it seems natural
to extend the conjecture to attacks onn.2 photons, al-
though here we do not consider this extension because these
cases are raressee aboved. In what follows, we comment on
the explicit results that we find for the numerical optimiza-
tion using this strategy.

B. Numerical optimization for Poissonian sources

We use numerical optimization to find, under hypotheses
1–4, Eve’s best strategy and the optimal value of Alice’s
parametersssee Fig. 1d. We consider a Poissonian distribu-
tion for Alice’s source

pAsnd ; psnumd = e−mmn

n!
s20d

so that the only parameter that characterizes Alice’s source is
the mean number of photonsm ssee Sec. IV A below for
extension to sub-Poissonian sourcesd. As sketched above, the
numerical optimization is done as follows. For any value of
the distanced Alice-Bob, we choose a value ofm and find
the values ofpc1, pc2, andD1 that optimize Eve’s information

FIG. 1. Illustrating the conjecture on Eve’s 2→3 cloning strat-
egies: the asymmetric 2→3 cloning machineAs2,3d is actually
used at a working point where Eve keeps a perfect copy and for-
wards two identically perturbed photons to Bob, produced with the
symmetric 1→2 cloning machineSs1,2d.
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under the constraints. This gives a value for the secret key
rate S. Then we varym and repeat the procedure, until the
highest value ofS is found. This defines the optimal value of
m.

We have done these calculations for the nowadays stan-
dard sand even conservatived values a=0.25 dB/km, h
=0.1 andpd=10−5. Of course, the qualitative features are
independent of these precise values.

The achievable secret key rateS, Eq.s7d, is plotted in Fig.
2 as a function of the distance, in log scale. The full lines are
obtained by allowing Eve to use our new 2→3 cloning at-
tack defined above. Supposing this attack we can extract, at
any distance, an optimal value ofm: this is the mean number
of photons Alice and Bob should choose. For the so-
computedm, we then computeS by supposing two subopti-
mal attacks by Eve, namely, no 2→3 cloning, and 2→3
cloning with cloner Af5g. The results of these suboptimal
attacks are plotted in the discontinuous lines. We see that
indeed our strategy yields the best results for Evesthe small-
estSachievabled, but the difference between the optimal and
the suboptimal attacks is very small—in fact, under the as-
sumptions of practical cryptography this difference is com-
pletely negligible, see beginning of Sec. V.

Figures 3 and 4 illustrate in detail the parameters for
Eve’s optimal attack, for a fixed distances30 kmd, as a func-
tion of the visibility V. In Fig. 3 are plotted the probabilities
introduced in Sec. II D that define Eve’s strategies on the
pulses withn=1 slower half of the figured and with n=2
supper halfd. Figure 4 represents the four terms that sum up
to Eve’s informations12d. Much information is stored in
these graphics.

First note that atV&0.74, that isQopt*13%, one has
IsA:Ed= IsA:Bd so S=0. For smaller values of the visibility,
with our assumptions on the attacks and on the numerical

values of the parameters, the BB84 protocol becomes inse-
cure for allm at 30 km. This is due to the characteristics of
the source: recall that for incoherent attacks on the BB84
protocol with perfect single-photon sources, the critical vis-
ibility is V&0.7 sQoptù14.67%d independent of the distance
f1,17g.

For V=1, Eve is not allowed to introduce any error.
Therefore, forn=1 she can either block or forward the pulse
without introducing any errorsD1=0d, and she gains no in-
formation; forn=2, she can only perform the storage attack.

As soon asV,1, Eve’s strategy on the one-photon pulses
does not change, while on the two-photon pulses she starts
using the cloning strategy. She uses it on as many pulses as
possible, compatible with constraints15d. This situation goes
on until V.0.88: for that visibility, Eve can perform the 2
→3 cloning attack on all the two-photon pulses. Then, for
V&0.88, Eve can start introducing errorssand gaining some
informationd on one-photon pulses as well; and indeed, we
see the increase ofD1 in Fig. 3 and the corresponding in-
crease ofIc1 in Fig. 4.

In the region 0.88&V,1, we note an ambiguity of the
simulation for the single-photon pulses. In factsFig. 3d we
havepc1.0 butD1=0, so this “cloning” actually amounts to

FIG. 2. Secret key rate per pulseS as a function of the distance,
for a=0.25 dB/km, h=0.1, and pd=10−5, and for V
=1,0.95,0.9,0.85,0.8. The best attacksfull lined uses strategy C for
2→3 cloning; the value of the optimalm is fixed by this strategy.
For comparison, we plot the results that one would obtain using
strategy A for 2→3 cloning sdashed linesd and without using any
2→3 cloning sdashed-dotted linesd, computed for the samem.

FIG. 3. Probabilities that define Eve’s optimal attack as a func-
tion of the visibility, for d=30 km, for the optimalm. In the lower
half one reads the probabilities for the attacks onn=1; in the upper
half, for n=2. The white symbols representD1 slower halfd andD2

supper halfd. Note that high visibilityssmall optical errorsd are on
the left. See text for detailed comment.

FIG. 4. The four terms that sum up to Eve’s informations12d as
a function of the visibility, ford=30 km and for the optimalm.
Eve’s information is divided by the value ofIsA:Bd at anyV. See
text for detailed comments.
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leaving photons undisturbed and might as well be accounted
for throughpl1. Recall that in Sec. II D we said that one can
always setpl1=0; it is now clear why: as long asD1=0,
letting it pass is equivalent to cloning and we see that when
D1 becomes larger than 0, cloning is applied on all the for-
warded photons so that indeedpl1=0.

There is a slight discontinuity in Eve’s information, vis-
ible in Fig. 4, at the point where Eve starts to use the cloning
strategy on the single-photon pulses. We ran more detailed
simulations in order to rule out the possibility that this is an
artefact. It appears that this discontinuity is a direct conse-
quence of a discontinuous modification ofm: for that value
of the parameters, Alice and Bob should decreasem slightly
more than expected by continuity.

At the end of this discussion, one might reasonably raise a
doubt. We have just seen that the 2→3 cloning machine is
used as soon asV,1, and that for some rather high visibility
sV<0.88 at d=30 kmd it is used on all the two-photon
pulses. Why then is its effect so negligible in comparison to
the case when this machine is not used, as we saw in Fig. 2?
The reason is that Figs. 3 and 4 would look fundamentally
different if the 2→3 cloning machine is not used. If Eve
performs the storage attack instead of the cloning attack on
the two-photon pulses, then she can introduce errors, and
consequently gain information, on the single-photon pulses:
we would haveD1.0 andIc1.0 as soon asV,1, not only
for V&0.88. It turns out that all the information, that Eve
loses on the two-photon pulses by not using the cloning at-
tack, is almost exactly compensated by the information that
she gains on the single-photon pulses. This casts a new light
on the result of Fig. 2: the difference between the optimal
and the suboptimal strategies is small, not because the 2
→3 cloning is rarely used, but because the constraintss14d
and s15d imply that using the 2→3 cloning attack onn=2
reduces the possibility of using the 1→2 cloning attack on
n=1.

IV. EXTENSIONS AND REMARKS

A. Extension to sub-Poissonian sources

For the numerical optimization, we have supposed the
Poissonian distribution for the number of photons produced
by Alice, because this is the most frequent case in practical
implementations. However, sub-Poissonian sources are being
developed for quantum cryptographyf9g. The main result,
namely, that 2→3 cloning attacks contribute with a very
small correction to Eve’s information, remains valid for these
sources: the fraction of pulses withn=2 photon is even
smaller than in the Poissonian case, so the contribution of the
2→3 cloning attack will be even more negligible—actually,
it is even possible that, for a sufficiently large deviation from
the Poissonian behavior, this kind of attack does not help at
all.

B. Extension to other protocols

One might ask how our study applies to other protocols.
In the last months, practical QKD has witnessed great
progress: several ideas have been put forward that make the

PNS attacks less effective by modifying the hardwaref8g, the
classical encodingf6,7g or the quantum encodingf26g. Of
course, even if the PNS can never be used by Eve, multipho-
ton pulses open the possibility for elaborated cloning attacks:
these must be taken into account when assessing the security
of new protocols.

C. About reverse reconciliation

In Sec. II, when definingS in Eq. s7d, we mentioned the
fact thatIsB:Ed is slightly smaller thanIsA:Ed here, so that
Alice and Bob would better do “reverse reconciliation”f27g.
In this paragraph, we want to elaborate a little more on this
point.

The first cause of the relationIsB:Ed, IsA:Ed is the pres-
ence of dark counts: when Bob accepts an item, Evesas well
as Bob himselfd does not know if his detector fired because
of the photon that she has forwardedsand on which she has
some informationd or because of a dark countson which she
has no informationd. It is easy to take this effect into account.
Suppose that Eve forwardsn photons to Bob. Conditioned to
this knowledge, Bob’s detection rate readsrn=rph+rdark
whererph=f1−s1−hdng andrdark=pds1−hdn. Thus, to obtain
IsB:Ed, then-photon contribution to formulas12d should be
multiplied by a factorf1−Hsendg, whereen=rdark/ rn. Now,
e1.pd/h, and enù2,e1; so all these corrections are really
negligible.

The second contribution is much less easily estimated: it
comes from the 2→3 cloning machines. The formulae we
used for strategies A and B, derived by CLf5g, refer to the
mutual information Alice-Eve. In strategy C, that looks op-
timal whenIsA:Ed is optimized, Eve’s information on Bob’s
result is smaller than 1 because she does not know determin-
istically whether Bob will obtain the same bit as Alice or the
wrong bit. This study would require some more work. We do
not think this work is worthwhile, after seeing how small the
correction introduced on the final values ofm andS by tak-
ing the 2→3 cloning attack into account’s.

V. ANALYTICAL FORMULAS FOR RAPID ESTIMATES

A. Further simplifying assumptions

As mentioned before, the goal of this section is to provide
some simple formulas that allow a good estimate of the im-
portant parameterssoptimal mean number of photons, ex-
pected secret key rateS, maximum distanced for implemen-
tations of the BB84 protocol, without resorting to the full
numerical optimization. Indeed, for practical implementa-
tions, absolute precision of these calculations is not required:
on the one hand, existing algorithms for error correction
sECd and privacy amplificationsPAd reach up to some 80%
of the attainableS; on the other hand, nobody is going to
operate his cryptosystem too close to the critical distance. So
in short, what one needs issid an estimate of the critical
distance in order to keep away from it,sii d an estimate of the
optimal mean number of photons per pulse in order to cali-
brate the source, andsiii d an estimate of the secret-key rate
sof Eve’s informationd in order to choose the parameters for
EC+PA. Note that similar formulae have been found by Lüt-
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kenhausf3g; in that work, however, Eve was supposed to
have an influence onall the sources of inefficiency, in par-
ticular the parameters of the detector. This is why we cannot
simply refer to Lütkenhaus’ results here.

Thus, for this analysis, we make two further simplifying
assumptions on Eve’s attack.

s1d We completely neglect the contribution of the pulses
with nù3 photons. Since we are interested in sources where
the mean number of photonsm is significantly smaller than
1, we have

pAs1d = m, pAs2d = g2
m2

2
, s21d

whence, in particular, 1−pBs0d<mth. The factorg2 is 1 for a
Poissonian source, smaller than 1 for sub-Poissonian sources.

s2d For n=2, we neglect the 2→3 cloning attack and
focus only on storage attacks, that is,p2s=1. In fact, we have
seen that the cloning attack plays a non-negligible role only
for V<0.8; but this means an optical QBER of 10%, which
is enormous and would lead to the failure of the EC+PA
algorithms. For practical cryptography,V*0.9 is required,
and in this region the correction due to cloning 2→3 is
really negligible.

B. S as a function of m alone

Using the Poissonian distributions20d, the mutual infor-
mation Alice-Bobs6d reads

IsA:Bd =
1

2
smth + 2pddf1 − HsQdg s22d

with the QBER

Q =
1

2
−

V

2S1 +
2pd

mth
D . s23d

Using our assumptionsR2c=R3=0, the first constraints14d
that Eve must fulfill readsmpc1h+g2sm2/2dh=mth, whence
one can extract

pc1 = t − g2
m

2
. s24d

The second constraints15d, usingR2c=0 and the expression
we have just found forpc1, reads mft−g2sm /2dghD1

=mthfs1−Vd /2g, whence

D1 =
1 − V

2 − g2m/t
. s25d

Then, the mutual information Alice-Eves12d reads

IsA:Ed =
1

2
mhFSt − g2

m

2
DI1sD1d + g2

m

2
G , s26d

where we recall that I1sD1d=1−HsP1d with P1= 1
2

+ÎD1s1−D1d. Presently then,S= IsA:Bd− IsA:Ed is written
as a functionSsmd of m alone—in particular, our hypotheses
removed two of the four parameters of Eve’s attacks, and

because of the two constraints there are no more free param-
eters for Eve. One can then find the optimalm as a function
of the distance, and the correspondingS, by running a nu-
merical optimization ofSsmd. This is already simple enough
and gives very accurate results, see Fig. 5. Still, we want to
go a few steps forward, to provide less accurate but explicit
formulas.

C. Formulas for high visibility and not too long distances

To perform analytical optimization, we must get rid of the
m dependence in the nonalgebraic functionsHsQd and
I1sD1d. This can be done for not too long distances, that is
when 2pd!mth, because thenQ.Qopt=s1−Vd /2. More-
over, one can easily see that forV=1, the optimalm ssatis-
fying dS/dm=0d is

FIG. 5. Optimalm and secret key rate per pulseS slog scaled for
Poissonian sources as a function of the distance, fora=0.25, h
=0.1, andpd=10−5, and forV=1,0.9,0.8. Comparison of the exact
resultssdashed lines, coming from Fig. 2d with two approximations.
sId Full lines: numerical optimization overm alone as discussed in
paragraph VB.sII d Dotted lines: explicit formulass29d and s30d,
that cannot be used forV=0.8. ForV=1, the vertical asymptote is
the limiting distance defined by Eq.s33d.

NIEDERBERGER, SCARANI, AND GISIN PHYSICAL REVIEW A71, 042316s2005d

042316-8



m =
t

g2
sV = 1d. s27d

Therefore, we set this value form in D1, so that nowD1
=1−V=2Qopt also becomes independent ofm f28g. This
givesP1; P= 1

2 −ÎVs1−Vd. Under these new assumptions

Ssmd .
1

2
mhFtfHsPd − HsQoptdg − g2

m

2
HsPdG; s28d

the maximum is obtained fordS/dm=0, that is,

m .
t

g2
S1 −

HsQoptd
HsPd

D . s29d

This must be non-negative, so this approximationsin particu-
lar here, the approximationm= t /g2 in D1d is valid provided
Qopt, P, that is forV.0.8; as we discussed in the introduc-
tion of this section, this is perfectly consistent with the vis-
ibility requirements in practical setups. Inserting Eq.s29d
into Eq. s28d, we find an explicit formula for the secret key
rate

S.
1

4
h

t2

g2
HsPdS1 −

HsQoptd
HsPd

D2

. s30d

In the limiting caseV=1−« we can setHsPd=1 while
HsQoptd=Hs« /2d cannot be neglected becauseH increases
very rapidly for its argument close to zero. Therefore

S.
1

2
ht

t

g2
S1

2
− Hs«/2dD sV = 1 −«d. s31d

This formula has an intuitive meaningf29g: 1
2htst /g2d is sim-

ply the sifted-key rate;Hs« /2d is the fraction that must be
subtracted in error correction, and a fraction1

2 is subtracted
in privacy amplification because of the PNS attackf28g. For
distances far from the critical distance, the agreement of both
Eqs.s29d ands30d with the exact results is again satisfactory
sFig. 5d.

D. Exact limiting distance for V=1

For the value of the limiting distance, we were able to find
a closed formula only for the caseV=1. The idea is thatm
decreases very rapidly when approaching the limiting dis-

tance, so that nowmth!pd. The QBER s23d becomesQ
= 1

2 −« with «=mth /4pd f30g. Now, it holds 1−Hs 1
2 −«d

=s2/ ln 2d«2+Os«4d. Inserting this into Eq.s22d we obtain

IsA:Bd = pd
1

8 ln 2
Smth

pd
D2

+ Osmthd3. s32d

On the other hand,IsA:Ed is still given by Eq.s26d, of course
with I1sD1d=0 sinceV=1, soIsA:Ed= 1

4g2hm2. The limiting
distance is thus defined by imposingIsA:Bd= IsA:Ed, i.e.,
S=0, that is, by the attenuation

tlim =Î2 ln 2g2
pd

h
. s33d

This result is in good agreement with the limiting distance
found in the exact calculation, see Fig. 5. The calculation of
Eq. s33d is easy becausem drops out of the conditionS=0;
this is no longer the case forV,1, which is why the estimate
of the limiting distance becomes cumbersome: one has to
provide the link betweenm and t when approaching that
distance, different from Eq.s29d.

VI. CONCLUSION

In conclusion, we have discussed incoherent attacks on
the BB84 protocol in the presence of multiphoton pulses that
allow both for the photon-number splitting and the 2→3
cloning attacks. We have identified a new efficient 2→3
cloning attack: Eve keeps one of the incoming photons, and
sends the other one into the suitable symmetric 1→2 cloner,
then forwards the two photons to Bob. The effect of taking
the cloning attacks into account is negligible for realistic
values of the parameterssin particular, for an optical visibil-
ity V*0.9d with respect to the PNS attacks. This means that
these attacks do not change the security of BB84; however,
they may be important when assessing the security of modi-
fied protocols aimed at countering the PNS attacks.
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